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1 Differential Equations in Physics

1. Start with basics

F = ma→ F = m
d2x

dt2
= mẍ

2. If F = K then

x =
K

2m
t2 + bt+ c

b and c are called the initial conditions.

3. Proposition: The number of free variables in a differential equation is the maximum number of derivatives
in the equation (most of the time)

4. Consider a drag equation
F = −mg −mαv

5. how do we solve this equation?

ˆ
dv

g + αv
= −
ˆ
dt =⇒ v =

−g
α

(1− e−αt)

and so

y(t) = h− g

α

(
t− 1

α
(1− e−αt)

)
approximating

e−x ∼= 1− x+
x2

2

we get that when αt � 1, that y(t) ∼= h − gt2/2, which is the same result when the initial velocity is 0 and
there is no drag.

6. Physicists like to do these types of approximations a lot. And they’re good sanity checks

7. See here for a demo

https://phet.colorado.edu/sims/html/projectile-motion/latest/projectile-motion_en.html

8. Now let’s move on to oscillations. We have the picture of a spring system and the following differential equation
for k > 0:

F = mẍ = −kx =⇒ x(t) = A sin(
√
kt) +B cos(

√
kt)

9. Solution is periodic

10. If we assumed k > 0, then our solution would be

x(t) = Ae
√
kt +Be−

√
kt

11. Really, the second equation handles both cases when k > 0 and k < 0 (why is k = 0 not included?)
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12. Recall Euler’s identity

eix = cosx+ i sinx =⇒ cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i

If k < 0 then
√
k = i

√
|k| = iω and

x(t) = Aeiωt+Be−iωt = A(cos(ωt)+i sin(ωt))+B(cos(ωt)−i sin(ωt)) = (A+B) cos(ωt)+i(A−B) sin(ωt) = A∗ cos(ωt)+B∗ sin(ωt)

13. Our constants now are complex numbers, of the form a+ ib, but this handles the most general case

14. What if we combine oscillation and drag?

F = ma =⇒ mẍ = −kx−mbv = −kx−mbẋ

A lot of times in math, we figure out tricks and then see how far they go. This is one of those times. Let’s try
x(t) = eαt

15. Doing the work, we’ll get

α2 + bα+
k

m
= 0

let’s use the quadratic equation for this!

α =
−b±

√
b2 − 4k/m

2

Because we’re mature mathematicians, we can handle complex numbers, so the ± sign gives us two different
values, α1 and α2 (write these out) and hence we have

x(t) = Aeα1t +Beα2t

right? Wrong!

16. What if α1 = α2. What conditions would lead us to this

17. Really, we have three cases

b2 > 4k/m→ overdamped, b2 = 4k/m→ critically damped, b2 < 4k/m→ underdamped

18. Question: Amongst the three scenarios, which one goes to 0 the fastest? We rewrite the equation:

ẍ+ 2γẋ+ ω2x = 0

where ω2 = k/m and 2γ = b/m.

19. To determine the fastest convergence to 0, we solve each case and take ratios of limits

20. Let Ω2 = γ2 − ω2, then the general solution is given by

α± = −γ ± Ω = − b
2
±
√
b2 − 4ω2

2

x(t) = e−γt(AeΩt +Be−Ωt)

21. Overdamped: our condition of b2 > 4k/m becomes exactly Ω2 > 0, and so Ω is the positive square root

22. Note that in the overdamped case, we get two, real exponential solutions.

23. Critically damped: Corresponds to Ω2 = 0 and so

x(t) = e−γt(Ae0 +Be0) = (A+B)e−γt

Here, we’ve violated our rule of “number of derivatives equals number of free variables.” So I pull out of my
ass the general solution

y(t) = e−γt(At+B)

why is this different? Because Ateαt is not “similar” enough to Beαt, in the same way that Aeαt and Beαt are
similar
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24. Underdamped: We have Ω2 < 0 and so we let Ω = iw for w > 0. We get an exponential times a periodic
function

x(t) = e−γt(Aeiwt +Be−iwt) = e−γtC cos(wt+ φ)

This alternate form comes from cosine of a sum and A + B = C cosφ and A − B = iC sinφ is the equivalent
transformation of constants

25. Note that our two free variables changed from A and B to C and φ.

26. C can be understood as the amplitude of the harmonic motion

27. φ is the “phase” which tells us that the motion doesn’t start at the origin, but at some other point along the
curve

28. See picture

29. Good videos of under damped, overdamped, and critically damped:

https://www.youtube.com/watch?v=99ZE2RGwqSM

30. We usually go for critically damped bc as the video shows, it’s the fastest!

2 Secondary Application: Population Model

1. Another common application of differentiation is differential equations in population modeling

2. (Bunny model): The population grows proportionally to the population:

dp

dt
= ṗ = ap =⇒ ṗ

p
= a =⇒ p(t) = Ceat

3. A more nuanced model has the following assumptions

(a) If the population is small, the growth rate remains directly proportional to the size of population. Think
of this as an excess of resources, and the only limiting factor is the number of participants which can
reproduce

(b) If the population grows too large, the growth rate becomes negative. I.e. the population is limited by
resources

4. In this case, we have a logistic population growth model

ẋ = ax(1− x/N) =⇒ ẋ

ax(1− x/N)
=
N

a

ẋ

x(N − x)
=
ẋ

a

[
1

x
− 1

x−N

]
1

a
[ln(x)− ln(x−N)] = t+ C =⇒ ln

(
x

x−N

)
= at+ C =⇒ x

x−N
= 1 +

N

x−N
= Keat

N = 1 =⇒ x(t) =
Keat

1 +Keat
= 1− 1

1 +Keat

5. a and N are positive parameters: a is the population growth rate, and N represents the max capacity.

6. Here’s the slope field and a plot of the solution for various values of a

7. Note that when K = x(0) > 0 the solutions tend to 1 (or N equivalently). When x(0) < 0, the solution diverge
off to −∞, but these aren’t physically relevant

8. A modified system is
ẋ = x(1− x)− h

Using a trig sub we have

x(t) =
1

2

[√
4h− 1 tan

(
1

2

(
c1
√

4h− 1−
√

4h− 1t
))

+ 1

]
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Figure 1

9. This is nice and general, but it doesn’t tell us much about what happens, so let’s plot the graph of the derivative

ẋ = x(1− x)− h = −x2 + x− h = −(x− 1/2)2 + (1/4− h) = fh(x)

for h > 1/4, h < 1/4, and h = 1/4

10. fh(x) has two roots when 0 ≤ h ≤ 1/4, one root when h = 1/4 and no roots when h > 1/4

Figure 2

11. Looking at the graph, when fh(x) > 0 our change in x is positive, so we move to the right on the graph and
vice versa

12. Via the graph, we have that h < 1/4 has a source and a sink, meaning that if we make small perturbations
away from that value xl, then the population will not return for a while/in a short period of time

4



3 Random Cool Things

1. Proving that the harmonic series diverges

2. Proving the p-series test, generalizes the above example

3. Theorem: Consider the sequence
∞∑
n=1

1

np

Then this series converges iff p > 1 and diverges else.

4. Proving the limit comparison test

5. Theorem: Consider
∑
n an and

∑
n bn, and define

c = lim
n→∞

an
bn

If 0 < c <∞, then either both series converge or diverge.

6. Proof idea is that there exists A, B with 0 < A < c < B <∞, so that for N sufficiently large, we have

n ≥ N =⇒ A <
an
bn

< B =⇒ an < bnB, Abn < an

and so taking the sum from N to ∞ tells us that both converge via this bound and the fact that c > 0 (i.e.
same sign in the long run)
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