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1 Motivating Example

� H3 ball model

gH3 =
dr2 + r2dgS2

(1− r2)2

want to compute the volume of some Y 2 ↪→ H3 (Draw picture!)

� If Y 2 closed, then its fine because
gH3 ≤ K(dr2 + r2dS2)

� If Y 2 is noncompact, then consider Y
2 ⊆ H3, then gH3 has unbounded coefficients

� Example: H2 ⊆ H3 represented as the geodesic disk. The restricted metric on H2 is

h := g
∣∣∣
H2

=
4

(1− r2)2
[dr2 + r2dθ2] =⇒

�
H2

dV olh =

� 1

0

� 2π

0

4

(1− r2)2
rdrdθ =∞

(you can check that this integral diverges, because near the boundary it tends like (1− r)−2

� Despite our foolish idea, suppose we wanted to still extract some information related to the volume
computation

� Let ρ = 2(1−r)
1+r . Notice that

– ρ−1(0) = {r = 1}

– Define everywhere on H3

g := ρ2gH2 =
16

(1 + r)4
[dr2 + r2dθ]

– We have
||d log(ρ)||2g = ||dρ||2g = 1

∇gρ
∣∣∣
r=1

= grr(∂rρ)∂r = −∂r

g
∣∣∣
{ρ=0}

= dθ

so ρ is like a distance function from the boundary (e.g. norm of gradient is 1 everywhere, like
eikonal equation, and it vanishes to first order on the boundary), and it recreates the standard
S1 metric on the boundary.

(These conditions actually determine ρ, though its unclear at the moment why we’d want this)
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� Consider the expansion of

�
ρ>ε

dA =

�
ρ>ε

4r

(1− r2)2
drdθ

= 4π

� (2−ε)/(2+ε)

r=0

d

dr

1

1− r2
dr

since ρ > ε↔ 2−ε
2+ε > r. Integrating, we get

�
ρ>ε

dA = 4π
[
(1− r2)−1

](2−ε)/(2+ε)

r=0
= 4π

[
4 + 4ε+ ε2

8ε
− 1

]
= 4π

[
1

2ε
− 1

2
+
ε

8

]
Taking the constant term in ε then yields

FP
ε→0

�
ρ>ε

dA = 4π · −1

2
= −2π

(FP
ε→0

means “finite part” as ε→ 0)

� More generally,

– (Replace) H3 ↔ Mn+1, asymptotically hyperbolic, conformally compact (TBD but i.e.
has a compact boundary with some given conformal class of metrics, [k]), Y m ⊆Mn+1 minimal

– ρ = 2(1−r)
1+r ↔ ρY such that

* ρ−1
Y (0) = ∂Y

* ||d log(ρ)||2g = 1

� Do the same process and define the Hadamard Regularization of Volume

RV(Y ) := FP
ε→0

�
ρY >ε

dAY

� We call RV(Y ) the Renormalized Volume

� (Potential questions: Can this always be defined? When does ρY exist? Does it depend on the choice
of ε→ 0? Good questions!)

� An equivalent way to compute Renormalized Volume is to define

f(z) =

�
xzdAY

� Happens to be meromorphic in z with poles at {. . . ,−1, 0, 1, . . . ,m}.

� Define Riesz Regularization of volume as

RV(Y ) = FP
z=0

�
xzdAY

� (The idea is that for <(z) > m this integral converges and FP
z=0

means remove the pole at z = 0 and

evaluate. )

� (At first glance, doesn’t seem equivalent, but it ends up being a computation)
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� Advantage: Differentiating RV(Y ) in Riesz form gives more geometric information because (infor-
mally)

RV(Yt) =

�
xzt dAYt

∂t

∣∣∣
t=0−−−−→

�
zxz−1ẋdAY +

�
xz∂t(dAYt

)

(Cross out latter due to minimality, for the former, we have)

Lemma 1.1. For f(x, s) nice in x, s, we have that

FP
z=0

�
Y

zxz−1f(x, s)dAY =

�
γ

[f(x, s)

√
det g

∣∣∣
Y

(x, s)](m)

– [·](m) denotes the coefficient of xm in the asymptotic expansion of the function

– This means bulk integrals become boundary integrals with the presence of a factor of zxz−1.

– Integrand for boundary integral often geometric things like volume form, ẋ, etc.

2 Formal Background

� Given an ambient space, Mn, with boundary N = ∂M , and a conformal class of metrics [k], the
conformal infinity, for N

� (M, g) is Einstein if
Ricg = kg

for some k ∈ R (Being conformally compact and Einstein means that g is even to high order in some
expansion)

� Definition: M is conformally compact (CC), if

– M is a manifold with compact boundary

–
∃ ρ : M → R≥0, s.t. {ρ = 0} = ∂M

– g := ρ2g is a metric on M

– And
∇gρ

∣∣∣
∂M
6= 0

� Definition: ρ as above is called a boundary definition, and each ρ is associated to a boundary metric
in the conformal class [k] given by

h := g
∣∣∣
∂M

� Remark If ϕ : M → R+ smooth, then ρ∗ = ϕρ is a bdf

� Definition: A bdf is special if
||d log(ρ)||2g = ||dρ||2g = 1

∇gρ
∣∣∣
{ρ=0}

6= 0

(So special bdfs are most like distance functions to the boundary)

�

Proposition. For M conformally compact and a choice of representative k0 ∈ [k], there exists a unique
special bdf for M such that

g
∣∣∣
N

= k0

Proof: Requires more machinery than I have time for

� Proposition: For n even, Renormalized volume is independent of the choice of special bdf (i.e.
independent of the choice of k0 ∈ k)
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2.1 Example

� Poincare Ball model of hyperbolic space H3

g =
4

(1− r2)2

[
dr2 + r2dφ2 + r2 sin2 φdθ2

]
is Einstein.

� Want special bdf, ρ, for H3. Assume rotational symmetry and enforce

1 = ||d log(ρ)||2g =
ρ2
r

ρ2
grr = ∂r(log(ρ))2 (1− r2)2

4

=⇒ ρ = A
1− r
1 + r

� Suppose we want to prescribe the standard S2 metric on the boundary, then

g := ρ2g

g
∣∣∣
r=1

= gS2 =
4A2

16
[dφ2 + sin2 φdθ2] =⇒ A = 2

∇ρ
∣∣∣
r=1

= −∂r

3 Theoretical Motivation

Physical Motivation

� String theory: happens (in one old model) on M × S5, M Einstein and conformally compact. (Draw
M at least, ball model is good choice)

� “Wilson Loop Operator”, W (γ) for γ ⊆ ∂M , → find “string” whose “world sheet”, Y ⊆M , ∂Y = γ

� In good approximation

〈W (γ)〉 ≈
∑

Y minimal
∂Y=γ

exp(−TRV(Y ))

� (Won’t say more about this)

Mathematical Motivation:

� Renormalized Volume is a conformal invariant of the boundary metric for even dimensional manifolds

– i.e. if we change the metric on γ = ∂Y by a conformal factor, then RV(Y ) stays the same

� RV(Y ) reflects topological/geometric information

Proposition (Alexakis, Mazzeo 2008). Suppose (M, g) Einstein with conformally compact boundary.
Suppose γ ⊆ ∂M and Y 2 ↪→M with ∂Y = γ and Y intersecting the boundary orthogonally, then

RV(Y ) = −2πχ(Y ) +
1

2

�
Y

2|H|2 − |̊k|2dA+

�
Y

W1212dA

Some remarks:

– This formula is very specific for Y two dimensional

–
�
|H|2 is the Willmore energy and is conformally invariant in two dimensions

–
�
Y
|̊k|2, where k̂ is trace-free second fundamental form is also conformally invariant

– W1212 is the ambient Weyl curvature, and also conformally invariant, and is the asymmetric part
of the Riemann curvature tensor (note: this vanishes when Y ⊆ Hn+1)

– “Intersecting the boundary orthogonally” is guaranteed when Y is minimal!
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4 Results Overview

� For convenience, we work in M = Hn+1 the half space model with

gHn+1 =
dx2 + dy2

1 + · · ·+ dy2
n

x2

where x is almost a special bdf for Hn+1, and

g = x2gHn+1 = gEuc

I’ll explain technicalities of why x is not a special bdf but we can still use it to compute renormalized
volume. I.e. we can treat x like a special bdf for Y , despite it not satisfying the “special” condition of
||dx||

g

∣∣∣
Y

= 1

4.1 Graphicality

� Y m ⊆ Hn+1 minimal, conformally compact with boundary γ = ∂Y = Y ∩ ∂Hn+1. We require that Y
be embedded in some neighborhood of the boundary γ.

� Consider cylinder over the boundary: (Draw this in Half-space model)

Γ = γ × R+ = {(x, s) | s ∈ γ}

� Describe Y near the boundary as a graph over Γ via the exponential map (Draw Y !)

Y ∩ {x ≤ ε} = {expΓ(u(s, x))}

where exp denotes the exponential map taken with respect to the Euclidean metric, restricted to
elements of N(Γ).

� u satisfies a degenerate elliptic equation coming from Y being minimal, and just like the ambient metric
is even to high order

Theorem 4.1. For u(s, x) = ui(s, x)N i(s) with {N i} ONB for Γ,

ui(s, x) =

u
i
2(s)x2 + ui4(s)x4 + · · ·+ uim(s)xm + uim+1(s)xm+1 + . . . m even

ui2(s)x2 + ui4(s)x4 + · · ·+ uim+1(s)xm+1 + U i(s)xm+1 log(x) + um+2(s)xm+2 + . . . m odd

for smoothly varying coefficients uk(s) and U(s).

Remarks:

– Done before by [Lin], [Guan, Spruck, Szapiel], [Tonegawa], [Han, Sehn, Wang], [Jiang]

– PDE can be thought of as an ODE in x

(x∂x)(x∂x − (m+ 1))u(s, x) + (Terms even in x) = 0

– Getting regularity is difficult: requires geometric arguments with maximum principle, and mi-
crolocal analysis (edge operators)

– Underlying Idea: g is even to high order, MSS (minimal surface system) elliptic, so evenness
preserved for Y to high order

– Above expansion is asymptotic, not convergent (i.e. can give partial series with remainder
vanishing to next order)

� Corollary: Renormalized Volume is well defined mathematically
(The reason behind this is that RV requires an asymptotic expansion of the volume form, which is true
if we have an even graphical expression

RV(Y ) = FP
z=0

�
Y

xzdAY = FP
z=0

�
Y

xz
√

det g
∣∣∣
Y
dx ∧ ds
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4.2 Variations Codimension 1

� Consider variations of Y . Describe smooth family of minimal submanifolds as

Yt = expp,Y (φt(p)ν(p))

� φ̇ := ∂tφt

∣∣∣
t=0

satisfies the Jacobi equation

∆Y φ̇+ RicHn+1(ν, ν)φ̇+ |AY |2φ̇ = 0

so φ̇ satisfies a regularity theorem

φ̇(s, x) =

φ̇0(s) + φ̇2(s)x2 + · · ·+ φ̇m(s)xm +O(xm+1) m even

φ̇0(s) + φ̇2(s)x2 + · · ·+ φ̇m(s)xm+1 + Φ(s)xm+1 log(x) +O(xm+2) m odd

Idea: g is even to high order, Y is also even via graphical expansion, so ∆⊥Y , ÃY , and Ric record this
evenness. Now a similar ODE argument gives the actual expansion and regularity.

�

Theorem 4.2. First variation of Renormalized volume in codimension 1:

n even =⇒ d

dt
RV(Yt)

∣∣∣
t=0

= −(n+ 1)

�
γ

φ̇0(s)un+1(s) dAγ(s)

n odd =⇒ d

dt
RV(Yt)

∣∣∣
t=0

= −(n+ 1)

�
γ

[
φ̇0(s)un+1(s) + F (φ̇0, u2)(s)

]
dAγ(s)

and the second variation:

n even =⇒ d2

dt2
RV(Yt)

∣∣∣
t=0

=

�
γ

(
(1− n)φ̇0(s)φ̇n+1(s) + φ̇0(s)2 [(n− 1)(n− 2)− 8nu2un+1(s)]

)
dAγ(s)

n odd =⇒ d2

dt2
RV(Yt)

∣∣∣
t=0

=

�
γ

[
(1− n)φ̇0(s)φ̇n+1(s) + φ̇0(s)2 [(n− 1)(n− 2)− 8nu2un+1(s)]

− φ̇0(s)
[
4(n+ 2)φ̇0(s)u2(s)U(s) + Φ̇(s)

]
+ F2(φ̇0, u2)

]
dAγ(s)

5 Sketch of Proof of First variation (Skip if time is short)

We have

RV(Yt) = FP
z=0

�
Yt

xzdAYt

Let
Ft : Y → Yt

Ft(p) = expgY ,p(φt(p)ν(p))

Then

RV(Yt) = FP
z=0

�
Y

F ∗t (x)zF ∗t (dAYt)

d

dt
RV(Yt)

∣∣∣
t=0

= FP
z=0

�
Y

zxz−1ẋdAY + FP
z=0

�
Y

xz(φ̇HY )dAY

=

�
γ

[ẋ
√

det g|Y ](m)dAγ

6



We also compute
ẋ = dx(Ḟ ) = dx(φ̇ν) = −φ̇dx(ν)

Via some work

dx(ν) = xux(1 + even up to xm)

= x(2u2x+ 4u4x
3 + odd +mumx

m−1 + (m+ 1)um+1x
m + . . . )(1 + even up to xm)

φ̇ = φ̇0x
−1 + φ̇2x+ · · ·+ φ̇mx

m−1 + φ̇m+1x
m + . . .√

det g|Y = 1 + ( even ) +O(xm)

and so (Notice that by parity, the only order m term comes from (m+ 1)um+1x
m combined with 0th order

terms for everything else):

[ẋ
√

det g|Y ](m) = −(m+ 1)um+1φ̇0

=⇒ RV′ =

�
γ

−(m+ 1)φ̇0um+1

In particular, we’ve gleaned this formula by investigating the following geometric terms, ẋ, ν, dx(ν), etc.

6 Future Work
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