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1 To Do

� Needs to be updated with final remarks from Rafe

� For every theorem, go in and add notes for how to prove

2 Topic 1: Riemannian Geometry

� Fermi Coordinates - definition for internal coordinates, fermi coordinates off a higher codimension submanifold,
metric in these coordinates, vanishing of christoffel symbols, gauss lemma, Laplacian in Fermi coordinate codim
1

� Geodesics - Existence via energy, Hopf-Rinow theorem, cut-locus, PDE for geodesics in coordinates, Jacobi
equation for family of geodesics
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� Curvature - Myers theorem, Bishop-Gromov inequality, Bochner formula, comparison theorem for distance
functions (∆ρ)

� Submanifolds - Gauss-Codazzi equations, first and second variation of area, gauss-bonnet theorem

� Minimal Submanifolds - Definition, statement of regularity for n ≤ 8, Examples in R3, non-existence of stable
minimal submanifolds when ambient Ricg ≥ 0, Barta theorem on stable minimal

2.1 Fermi Coordinates

(Lee Smooth manifolds)

2.1.1 Riemann Normal Coordinates

� Internally, we have
F (~v) = expp,g(~v) = γv(1)

where γv(t) is the geodesic with γv(0) = 0 and γ̇v(0) = v.

� The exponential map is smooth and

d(expp)0 : T0(TpM) ∼= TpM → TpM

is the identity map of TpM with the normal identification of T0(TpM) with TpM . This follows because

d(expp)0(v) =
d

dt
(expp ◦τ)(t)

∣∣∣
t=0

=
d

dt
expp(tv)

∣∣∣
t=0

= v

where τ(t) = tv is a curve in TpM starting at 0 with initial velocity v

� Note that this immediately implies that the coordinate basis is orthonormal since if we have {ei} an ONB for
Rn, we can identify this as a basis for TpM via some linear map B, and then

d(expp)0 : T0TpM → TpM

and with the identification of {ei} ∼ {B(ei)}, we know that

d(expp)0(ei) = ei

since the exponential map is the identity. Moreover this makes the metric at the point δij since we’re writing
the metric at TpM in terms of the pull back via the exponential map (and a linear identification of the basis,
B) to Rn, i.e.

gij = gp((d expp)0(ei), (d expp)0(ej)) = gp(ei, ej)

but we’ve chosen {ei} to be an orthonormal basis (with respect to gp! Considered as a metric on Rn), so we
get gij = δij

� To clarify about B, every ONB {bi} for TpM (w.r.t gp) determines a linear map

B : Rn → TpM, B(x1, . . . , xn) = xibi

and then
d expp(B∗(∂i)) = bi

so for the composite map ϕ = exp ◦B, which is the actual chart, we have that the pushed-forward coordinate
basis is orthonormal at p.

� The christoffels also vanishes, since we’ve pulled back the metric. Consider a geodesic in Rn, which in these
normal coordinates, we write as

ẍk + Γkij ẋ
iẋj = 0

In normal coordinates, we have
x(t) = t~v
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so the above is
0 + Γkij(x(t))vivj = 0

and by choosing ~v = ei and ~v = ei ± ej we can conclude Γkij = 0. Note also that christoffels can be computed
in terms of the metric and derivatives of the metric, and this can be inverted to give derivatives of the metric
in terms of the christoffels. So ∂kgij = 0 at p as well Note: we can make ~v arbitrary and still glean
info about Γkij only when t = 0. For t non-zero, the same tricks don’t work since changing ~v will make us

evaluate Γkij at different points.

2.1.2 Fermi Coordinates

� We can also do this to get a tubular neighborhood: Let P ↪→ M being a submanifold. We can look at
expp : Np(P )→M . Tubular neighborhoods are of the form

U = expp ({(x, v) ∈ NP : |v|g < δ(x))

for some continuous δ. For P compact, we can get a tubular neighborhood of radius ε

� We have similar results where we can formulate a map

ϕ : U0 →M

where U0 ⊆ Rn and we should imagine ϕ(U0) as a tubular neighborhood of P p ⊆Mn. In particular if {Ei} is
an ONF for N(P )p, V ⊆ NP an open subset and U = E(V ) a normal neighborhood of P , then

ϕ : E(q, viEi) 7→ (x1(q), . . . , xp(q), v1, . . . , vn−p)

� In these coordinates we have

– P ∩ U0 = {xp+1 = · · · = xn = 0}
– For all q ∈ P ∩ U0, the metric splits and

gij =

{
0 1 ≤ i ≤ p, p+ 1 ≤ j ≤ n
δij p+ 1 ≤ i, j ≤ n

– For all q ∈ P ∩ U0, For v = viEi ∈ NqP , the geodesic starting at q with velocity v has the coordinate
expression

γv(t) = (x1(q), . . . , xp(q), tv1, . . . , tvn−p)

– For all q ∈ P ∩ U0, the christoffels vanish, Γkij = 0 for p+ 1 ≤ i, j ≤ n
– For all q ∈ P ∩ U0, We also have ∂igjk = 0 for p+ 1 ≤ i, j, k ≤ n

Note that we can choose to parameterize q via riemann normal coordiantes on P , which will make the metric
nicer but the christoffels will be non-trivial, since they record the second fundamental form, which can’t be
flattened at a point via coordinate transformation (Note: This might be useful for Renormalized Volume
formula for S̈i - handle those pesky second fundamental form terms)

2.1.3 Gauss Lemma

(Lee, section 6.9)

� Kind of a cool proof

� Work in GNC so that

∂r

∣∣∣
q

=
qi

b
∂xi

where b = r(q) =
√∑

i(q
i)2

� We want to prove
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Theorem 2.1. Let (M, g) an RM, U a geodesic ball centered at p ∈ M and ∂r radial vector field on U\{p}
then ∂r is unit vector field and orthogonal to geodesic spheres

Proof: From the above, we have that

g(∂r, ∂r) =
1

b2

∑
(qi)2 = 1

(note that q is some point away from our base point, p) since g(∂xi , ∂xi) = 1. Now consider a geodesic sphere,
which corresponds to

Σt = {s |
∑
i

xi(s)2 = t2}

for any w ∈ TΣt at q. we want to show that g(w, ∂r

∣∣∣
q
) = 0. Choose σ(s) a curve in Σt with σ(0) = q and

σ′(0) = w, then form

Γ(s, t) =
t

b
~σ(s)

for fixed s, this is a geodesic corresponding to initial velocity Γ′s(0) = ~σ(s)/b which is unit speed since σ ∈ Σt.
Now let S = Γ∗(∂s) and T = Γ∗(∂t), then

S(0, 0) = 0, T (0, 0) = v = ~q/b, S(0, b) = w, T (0, b) = γ′v(b) = ∂r

∣∣∣
q

here, we’ve noted that q = γbv(1) for some v ∈ TpM but since |q| = b we have the v = q/b is unit length

We have that 〈S, T 〉 = 0 at (s, t) = (0, 0) and equal to 〈w, ∂r
∣∣∣
q
〉 when (s, t) = (0, b) so it suffices to prove

that
d

dt
〈S, T 〉 = 0

for all t and s = 0. We see this as

d

dt
〈S, T 〉 = 〈∇TS, T 〉+ 〈S,∇TT 〉

= 〈∇ST, T 〉+ 0

=
1

2
∂s|T |2 = 0

since T has unit speed and using that S and T are push forwards of coordinate vectors and therefore commute

2.1.4 Laplacian in Fermi Coordinates, codim 1

� The set up is that we choose fermi coordinates over Pn ⊆Mn+1. Moreover, our coordinates parameterizing P
are riemann normal coordinates so that

gij = δij

∣∣∣
p

and more generally
gaν ≡ 0, gνν ≡ 1

where a denotes index for coordinates on P and ν the coordinate on P . We’ll let ∂i+1 = ν be the normal for
brevity

� We compute this as
∆f = gab(D2f)(a, b)

using that
(D2f)(a, b) = Hess f(∂a, ∂b) = ∇∂a∇∂bf −∇∇∂a∂bf

we know that
1 ≤ a, b ≤ n, ∇∂a∂b = (∇∂a∂b)‖ + (∇∂a∂b)⊥ = (∇∂a∂b)‖ +A(∂a, ∂b)

∇νν = 0
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because the metric is diagonal in these coordinates, this is all we need to compute, i.e.

∆f = gij(D2f)(i, j)

= gab(D2f)(a, b) + gνν(D2f)(ν, ν)

= gab(fab − (∇∂a∂b)‖(f)−Aabfν) + gνν [fνν − (∇νν)(f)]

= ∆P,z(f)−H(z)fν + fνν

where z is the distance from P

2.2 Geodesics

2.2.1 Existence

� Existence of Geodesics via Energy

Try to minimize

L(γ) =

� 1

0

gijγ′iγ
′
j =

� 1

0

F (γ′)

(note that a minimizer of this is the same as a minimizer of the length,
� √

gij(γ′, γ′))

Notice that becuase g is a metric, we have that

F (γ′) ≥ κ||γ′||2

(where ||v||2 is now the standard euclidean norm), and also

L(γ′) ≥ κ′||γ′||2L2

(Note this is like 8.2 in Evans, “Existence of Minimizers” except here our w(x) is a system ~γ(t)).

Because L(γ) is essentially ||γ′||L2 , we see that if we have

γ
W 1,2

−−−→ γ∗ =⇒ L(γ)
W 1,2

−−−→ L(γ∗)

i.e. convergence in H1 gives convergence of the functional. All we need is weakly lower semicontinuity though
for the record.

Finally, note that
F (p, z, x) = gijpipj

is convex in p in the sense that ∑
i,j

Fpipj (w, v, x)ξiξj =
∑
ij

gijξiξj ≥ κ||ξ||2

so we do have convexity. This in turn gives us lower-semi continuity of the functional, i.e.

uk ⇀ u =⇒ L(u) ≤ lim inf
k

L(uk)

I guess this is evident again since the functional is essentially the L2 norm up to coefficients. Now conclude
with existence and uniqueness of minimizers, which is

Theorem 2.2. Assume that F is coercive and convex in the variable p, suppose also that the admissible set of
functions, A is non-empty. Then there exists a minimizer of L in A

� Existence via PDE

In coordinates, we have that
~x(t) = (x1(t), . . . , xn(t))

and the geodesic equation becomes
∇ẋẋ = ẍk + Γi,j ẋiẋj = 0

This is a second order PDE so existence and uniqueness gives this the existence of a geodesic locally through a
point (with some prescribed velocity vector of course). You can also see here. (Petersen also has stuff on this)

6
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2.2.2 Hopf-Rinow

Statement (See Petersen)

Theorem 2.3. TFAE

1. M is geodescially complete, i.e. all geodesics defined for all time

2. M is geodesically complete at some given p

3. M satisfies the Heine-Borel property, i.e. all closed bounded sets are compact

4. M is metrically complete

Proof: 1 =⇒ 2 is trivial, 3 =⇒ 4 is easy since any given convergent sequence is bounded. Take its closure and
you’ll get a convergent sequence to a limit point (maybe we assume that M is topologically closed from the start,
being either a closed manifold or manifold with boundary). 4 =⇒ 1, suppose that 1 was not true. The claim is that
γ : [0, b)→M must leave every compact set (for if it stayed in some compact subset of M , it could be extended by
local existence of a geodesic, given the point and velocity). But by taking {γ(b− εn)}, we generate a cauchy sequence
of points (cauchy since γ is unit speed and hence distance isn’t blowing up!) with no limit point, a contradiction to
metric completeness.

For 2 =⇒ 3, the idea that a set, K being bounded means that its a finite distance, D from our point p (due
to triangle inequality and geodesic completeness), so it suffices to show that K is contained in a larger compact
subset (since closed subset of compact is compact). But the exponential map is a diffeomorphism so

expp(B(0, D)) = S

is a closed compact set and S ⊃ K finishing the proof (Petersen shows that exp(B(0, r)) = BM (p, r) for all r, which
takes a bit). This finishes the chain of implications

2.2.3 Cut-Locus

(See Petersen)

� A curve σ is a segment from p→ q is `(σ) = d(p, q)

� We define the segment domain:

seg(p) = {v ∈ TpM : expp(tv) : [0, 1]→M is a segment}

Hopf-Rinow implies that when M is complete M = expp(seg(p)). Moreover seg(p) is a closed star-shaped
domain

� We define the “interior” of seg(p) as

seg0(p) = {sv : s ∈ [0, 1), v ∈ seg(p)}

� In Petersen, the cut locus is defined as seg(p)− sego(p), which is all points (really, all starting vectors v, with
associated points γ(1) of γ(t) = expp(tv)) that can be reached via a distance minimizing path, but cannot be
extended onward. I.e. sego(p) is the interior of all points attainable from p via a geodesic, but because this is
the interior, they can be extended a bit with still a distance minimizing curve. The boundary of seg(p) is then
all points such that a geodesic from p→ z cannot be extended further. The classification of this is:

Theorem 2.4. If v is in the cut locus, seg(p)− sego(p), then either

– ∃w 6= v such that expp(v) = expp(w) or

– D expp

∣∣∣
v

is singular

The idea is that being inside the cut locus is where r(x) = d(x, p) is smooth

7



Proof: Let γ(t) = expp(tv). For t > 1, find length minimizing curves such that σt(1) = γ(t) and σt(0) = p.
Since γ(t) is not a segment (i.e. length minimizer) the initial velocity can’t match up, e.g. σ̇t(0) is not
proportional to γ̇(0). Take a sequence tn ↓ 1 and set

w = lim
n→∞

σ̇tn(0)

Then |w| = |γ̇(0)| because this is simply the length from p → γ(1). If w 6= γ̇(0), we have the first case. If
w = γ̇(0), then D expp is singular: if not D expp is non-singular, and hence an embedding near v (in particular
an embedding for tv for t close to 1). But note that by definition of segment:

expp(σ̇tn(0)) = expp(tnγ̇(0))

and injectivity of expp near γ̇(0) = v means that σ̇tn = tnv, a contradiction because then γ(t) could’ve been
extended [0, 1]→ [0, tn] for some tn > 1.

I guess the general idea is: go a bit past expp(v) = x and find a distance minimizer to points past γ(1) = x.
Bring these points back close to x and get a w as the starting velocity from the limit of paths coming back to
x = γ(1). If w 6= v, then we’re done. If w = v, and D expp is non-singular then taking that limit of paths past
x and then back to it wasn’t so bad and we could’ve extended γ(t) a bit so v 6∈ cut(p).

Figure 1

� We also have the injectivity radius which is the largest ε such that (See Petersen)

expp : B(0, ε)→ B(p, ε)

is injective. The main lemma is

Lemma 2.5. Suppose v in the cut locus and |v| = inj(p), then either

– There is precisely one other vector w with

expp(w) = expp(v)

and
d

dt

∣∣∣
t=1

expp(tw) = − d

dt

∣∣∣
t=1

expp(tv)

or

– x = expp(v) is a critical value for expp : seg(p) → M (i.e. some v′ in the preimage of x under the

exponential map has a singlar map D expp

∣∣∣
v′

)

The proof is that if we’re at a regular value, then we find two paths to x. If they are not negatives of each
other, then we find some w with g(w, γ̇1(1)) < 0, g(w, γ̇2(1)) < 0 and we can use w to find a point a little away
from x that has two geodesics going to it. This is a contradiction to the injectivity of the exponential map on
seg0(p).

8



Figure 2

2.2.4 Jacobi Fields

(See Petersen)

� There are a few variations of this: the Jacobi field for the distance function r is given by

∇∂r∇∂rJ = −R(J, ∂r)∂r

This is a consequence of the first order jacobi equation

L∂rJ = 0

where L· is the lie derivative. This essentially tells us that [∂r, J ] = 0. These are important since they give
vector fields which are in some sense independent along integral curves of the distance function.

� Another important Jacobi equation is that if we have

H : [0, 1]2 →M, H(s, t) =: γ(s, t)

a one parameter family of geodesics. Then

0 =
∂3γ

∂s∂2t
=⇒ 0 = R(∂sγ, ∂tγ)∂tγ + ∂2

t ∂sγ

(This comes from Synge’s formula for the second variation of the energy of a geodesic) (remember that deriva-
tives do not commute if the connection is non-trivial!). Setting J = ∂γ

∂s we see that

J̈ +R(J, γ̇)γ̇ = 0

J is determined by J(0) and J̇(0) given the above

� When J(0) = 0, we can construct
H(s, t) = expp(t(γ̇(0) + sJ̇(0)))

which by differentiating in s, we can check gives J(0) = ∂γ
∂s (0, 0) = 0

� The main ideas are that

J(t) =
∂γ

∂s
(0, t) = D expp

∣∣∣
γ̇(0)

(tJ̇(0))

so jacobi fields reflect the differential of the exponential map - in particular if D expp is nonsingular then we
can construct a jacobi field with prescribed end point J(1). In particular, note that we’re evaluating at t 6= 0,
i.e. we get the differential along the path away from the starting point!

� The other idea is that for L the length functional, and f the distance from an initial point p, one can show
that

f(γ(s, 1)) = L(γs) :=
1

2

(� 1

0

|∂tγ(s, t)|
)2

df(J(s, 1)) = g(J(s, 1), γ̇s(1))

Hess f(J(1), J(1)) = g(J̇(1), J(1))

9



2.3 Curvature

2.3.1 Myers Theorem

(See Otis’ Notes/Peterson)

Theorem 2.6. (M, g) a complete RM with
Ric ≥ (n− 1)k > 0

then diam(M, g) ≤ π/
√
k, furthermore M has finite fundmantal group

Proof: The idea is that we can create variations along any geodesic γ : [0, `]→M . Write it as

Vi(t) = sin(πt/`)Ei(t), i = 2, . . . , n

where {γ̇, E2, . . . , En} from an ONB along Tγ(t)M . Recall the energy functional
�
g(γ̇, γ̇)

Geodesics are stationary points of energy since they minimize. Thus we can use this in contrast to the following
computation:

n∑
i=2

d2E

ds2
(Vi) =

n∑
2

� l

0

|V̇i|2dt−
� l

0

R(Vi, γ̇, γ̇, Vi)

= (n− 1)
(π
l

)2
� l

0

cos2
(π
l
t
)
−

n∑
i=2

� l

0

sin2
(π
l
t
)

sec(Ei, γ̇)

= (n− 1)
(π
l

)2
� l

0

cos2
(π
l
t
)
dt−

� l

0

sin2(πt/l)Ric(γ̇, γ̇)

< 0

So one of the variations must have had d2E
ds2 (Vi) < 0, which is a contradiction to stability of a geodesic. Here, sec

denotes sectional curvature. Recall that the second variation formula is� l

0

[g(∂stγ, ∂stγ)−R(∂sγ, ∂tγ, ∂tγ, ∂sγ)]dt+ g(∂2
sγ, ∂tγ)

∣∣∣l
0

(note that the curvature term comes from differentiating γ enough times and knowing that

∂s∂tγ = ∇γ∗(∂s)∇γ∗(∂t)γ

and then commuting terms at the cost of a curvature term)

Main Idea: Construct a specific variation

Vi(t) = sin(πt/`)Ei(t)

where Ei(t) is a basis along γ(t) complementing γ′(t). Note that by summing over a basis, we can go from Riemann
curvature to Ricci. We also use the formula for the second variation of energy

2.3.2 Bishop-Gromov inequality

� Mostly Peterson p. 265, Schoen-Yau is also okay

� Decompose the volume form into polar coordinates (after pulling back via the exponential map)

dV ol = λ(r, ~θ)dr ∧ dvoln−1

Then we have that
∂rλ = λ(∆r)

For constant curvature k, we have that λk = snn−1
k (r), where snk is a solution to

ϕ̈+ kϕ = 0

for k positive or negative (e.g. sin or sinh).

10



� We have the following lemma

Lemma 2.7. Suppose that (M, g) has Ric ≥ (n− 1) · k for k ∈ R, then

∆r ≤ (n− 1)
sn′k(r)

snk(r)

dvol ≤ dvolk

Proof: I take the following proof from Lee: we know that

∂r(∆r) +
(∆r)2

n− 1
≤ −(n− 1)k

This is the traced Riccati equation (see Lee section) (The original riccati equation is

DtHr +Hr +Rγ′ = 0

where γ is a unit speed geodesic along a path and Hr(w) = ∇w∂r so that

g(Hr(w), v) = (∇2r)(w, v)

the proof is to evaluate this on both ∂r and vectors in the tangent space of r = r0 along some radial geodesic.)
Dividing by n− 1 this gives

∂r

(
∆r

n− 1

)
+

(
∆r

n− 1

)2

≤ −k = ∂r(λk) + λ2
k

immediately, we have

∂r

(
∆r
n−1

)
k +

(
∆r
n−1

)2 ≤
∂rλk
k + λ2

k

to see this, note that the RHS is −1, and then we can clear denominators and get the Riccati bound. Thus

F (λ(r)) ≤ F (λk(r)) + C

where λ(r) = ∆r/(n − 1) and F (x) = 1
k tanh(x/k). Since tanh is increasing, we want to conclude that

λ(r) ≤ λk(r), but we have to ground this inequality at a point. Note that

∆r = ∂r log(rn−1
√

det g)

This is Lee (Lemma 11.13), and follows from computing the laplacian in geodesic normal coordinates. In
particular, if we write

√
det g = c0 +O(r), then

∆r =
(n− 1)

r
+
O(1)

1 + r

as r → 0. As a result, we see that ∆r diverges like (n − 1)/r for r small. This holds for any Riemannian
manifold, so we see that as r → 0, (∆r)/(n− 1)→∞, so that F (λ(r))→ 1

k . Thus, both F (λ(r)) and F (λk(r))
will agree as r → 0, i.e. λ(r), λk(r)→ +∞. As a result, we can choose C = 0, and get

F (λ(r)) ≤ F (λk(r))

and using monotonicity of F , we have
λ(r) ≤ λk(r)

For the second inequality, we want to show that if

dV ol = λ(r, θ)dr ∧ dθ

then
∂rλ = λ∆r

11



Here, we’ve decomposed the metric into fermi geodesic normal coordinates with r the radial coordinate and
∇∂rθi = 0, i.e. these are coordinates given by the exponential map pulled back to polar coordinates. Then
λ =
√

det g in the usual representation of dV ol =
√

det gdx1 ∧ · · · dxn. We have

∆r =
1

λ
∂α(gαβλ∂β(r))

=
1

λ
∂α(gαrλ · 1)

=
1

λ
∂r(g

rrλ)

=
1

λ
λr

having used that grθi = 0 and grr ≡ 1. With this, we know that

∂rλ = (∆r)λ ≤ (n− 1)
sn′k(r)

snk(r)
λ

while

∂rλk = (n− 1)
sn′k(r)

snk(r)
λk

just by computation of the metric on the appropriate sized sphere/euclidean space/hyperbolic space. Moreover
by choice of normal coordinates, we know that g = gk at p because everything is orthonormal there. Therefore,
the volume form agrees at p, being the determinant of the metric. Thus

lim
r→0

(λ− λk) = 0

∂r(λ− λk) ≤ (n− 1)
sn′k(r)

snk(r)
(λ− λk)

and so we see that λ ≤ λk for all r, meaning that dV olg ≤ dV olgk

� Comparison theorem:

Theorem 2.8 (Bishop-Gromov Volume Inequality). Suppose (M, g) complete RM with Ric ≥ (n−1) ·k. Then

r 7→ vol(B(p, r))

v(n, k, r)

is non-increasing in r with limit 1 as r → 0

Proof: Move to exponential coordinates where

dV olM = λdr ∧ dθ

and λk is the prefactor in the model case of Ric = (n− 1)k. Now compute

vol(B(p,R))

v(n, k,R)
=

� R
0

�
Sn−1 λdr ∧ dθ� R

0

�
Sn−1 λkdr ∧ dθ

differentiate wrt R and get

d

dR

(
vol(B(p,R))

v(n, k,R)

)
=

1

v(n, k,R)2

[�
Sn−1

λ(R, θ) ·
� R

0

�
Sn−1

λk(r, θ)dr ∧ dθ −
�
Sn−1

λk(R, θ) ·
� R

0

�
Sn−1

λ(r, θ)dr ∧ dθ

]

=
1

v(n, k,R)2

[� R

0

(�
Sn−1

λ(R, θ) ·
�
Sn−1

λk(r, θ)

)
dr −

� R

0

(�
Sn−1

λk(R, θ) ·
�
Sn−1

λ(r, θ)

)
dr

]
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so to show non-increasing, it suffices to check that the integrand is non-increasing, i.e. it suffices to check
�
Sn−1 λ(r, θ)dθ�
Sn−1 λk(r, θ)dθ

=
1

ωn−1

�
Sn−1

λ(r, θ)

λk(r, θ)
dθ

is non-increasing in r (note equality holds since λk(r, θ) is independent of θ). Differentiate λ/λk and we get
this result via

∂r

(
λ

λk

)
=
λk∂rλ− λ∂rλk

λ2
k

≤
λk(n− 1)

sn′k
snk

λ− λ(n− 1)
sn′k
snk

λk

λ2
k

= 0

which follows from previous lemmas about λk.

2.3.3 Bishop-Gromov V.2

� Many theorems, e.g. the Hessian of the distance function, Jacobi Field, Metric comparison - all depend on
sectional curvature bounds, but can’t be upgraded to holding for Ricci bounds

� Surprisingly, can get bounds on laplacian of distance function, conjugate point theorem, and volume comparison

� Riccati equation (To be done)

� Riccati Comparison theorem

� Laplacian Comparison

Theorem 2.9 (11.15). Let (M, g) a Riemannian manifold and suppose there is c such that RicM (v, v) ≥ (n−1)c
for any unit vector v. Given p ∈M , let U be a normal neighborhood of p and let r the radial distance function
on U . Then the following holds:

∆r ≤ (n− 1)
s′c(r)

sc(r)

where

sc(t) =


t c = 0

R sin(t/R) c = 1
R2 > 0

R sinh(t/R) c = − 1
R2 < 0

and U0 = U if c ≤ 0, while U0 = {q ∈ U : r(q) < πR} if c = 1
R2 > 0

Proof: Let q ∈ U0\{p} arbitrary. Consider γ : [0, b] → U0 unit speed raidal geodesic from p → q. We show
that bound at γ(t) for all 0 ≤ t ≤ b. Recall the Riccati for Hr (hessian of r)

DtHr +H2
r +Rγ′ = 0

where H2
r and Rγ′ are endormorphisms thought of as H2

r (w) = Hr(Hr(w)) and Rγ′(w) = R(w, γ′)γ′ using
duality. Note also (11.2) that

Hr(w) := ∇w∂r =⇒ g(Hr(v), w) = (∇2r)(v, w)

Then by taking trace (which commutes with covariant derivatives)

d

dt
∆r + tr(H2

r ) + tr(Rγ′) = 0

In an ONF we have
trRγ′ = giig(Rγ′(Ei), Ei) = giiR(Ei, γ

′, γ′, Ei) = Ric(γ′, γ′)

For the H2
r term, write

H̊r = Hr −
∆r

n− 1
πr

13



where πr is the projection onto the level set of r and the above is traceless. Then

tr(H̊2
r ) = tr(H2

r )− ∆r

n− 1
[tr(Hr ◦ πr) + tr(πr ◦Hr)] +

(∆r)2

(n− 1)2
tr(π2

r)

Now note that
tr(π2

r) = tr(πr) = n− 1

and also Hr(∂r) = ∇∂r∂r = 0 and so Hr ◦ πr = Hr and by definition of Hr/Gauss Lemma, we also have
g(Hr(w), ∂r) = 0 so πr ◦Hr = Hr. Thus, we have

tr(H̊2
r ) = tr(H2

r )− (∆r)2

n− 1

Which at the original equation for ∆r gives

d

dt

(
∆r

n− 1

)
+

(
∆r

n− 1

)2

+
tr(H̊2

r ) + Ric(γ′, γ′)

n− 1
= 0

Now let H(t) = s′c(t)/sc(t) so that
H ′(t) +H(t)2 + c = 0

for any c. Now by a Riccati Comparison Theorem, we have that for

S̃(t) =
tr(H̊2

r ) + Ric(γ′, γ′)

n− 1
≥ c

that we can conclude

H̃(t) =
∆r

n− 1
≤ H(t) =

s′c(t)

sc(t)

all along γ(t).

� Conjugate Point Comparison

Theorem 2.10 (11.16). Let (M, g) a Riemannian n-manifold and suppose there is c = 1
R2 such that Ric(v, v) ≥

(n− 1)c for all unit v. Then evey geodesic segment of length at least πR has a conjugate point

Proof: Let U normal neighborhood. Laplacian comparison shows

∂r log(rn−1
√

det g) = ∆r ≤ (n− 1)
s′c(r)

sc(r)
= ∂r log(sc(r)

n−1)

where r < πR. Since rn−1
√

det g/sc(r)
n−1 → 0 as r ↓ 0, we get that

rn−1
√

det g

sc(r)n−1
≤ 1,

√
det g ≤ sc(r)

n−1

rn−1

Suppose U has q where r ≥ πR and let γ : [0, b] → U be the unit speed radial geodesic there. Because
sc(πR) = 0, the above shows that

det g(γ(t))→ 0

as t ↑ πR, so by continuity det g = 0 at γ(b) a contradiction. I.e. no normal neighborhood can have point
where r ≥ πR.

Now suppose γ : [0, b] → M a unit speed geodesic with b ≥ πR and assumse for contradiction that γ has
no conjugate points. Let p = γ(0), v = γ′(0) and γ(t) = expp(tv). Because γ has no conjugate points, we can
find W ⊂ TPM containing

L = {tv : 0 ≤ t < b0} ⊆ TpM

on which expp is a local diffeo. Let g̃ be the puled-back metric on exp∗p g on W , which as the same curvature
estimates as g. Then g̃(t) = tv is a radial g̃-geodesic in W of length greater than or equal to πR, a contradiction
to the preceeding paragraph.
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� Injectivity radius comparison:

Corollary 2.10.1 (11.17). Let (M, g) an n-manifold and suppose c = 1/R2 such that Ric ≥ (n − 1)c. Then
for every point p ∈M , we have inj(p) ≤ πR.

Proof: Follows from the previous theorem, since every radial geodesic segment in a geodesic ball is minimizing,
but the previous t heorem shows that no geodesic segment of length πR or greater is minimizing. Thus no
geodesic ball has radius greater than πR

� Bishop-Gromov

Theorem 2.11. Let (M, g) an n-manifold and suppose Ric ≥ (n− 1)c. Let p ∈M given and for every δ > 0,
let Vg(δ) denote the volume of Bδ(p) in (M, g). Let Vc(δ) = V ol(Bδ(0), gc), where gc is the metric on euclidean
space, hyperbolic space, or sphere with constant sectional curvature c (euclidean for c = 0, hyperbolic for c < 0
and sphere for c > 0). Then for all 0 ≤ δ ≤ inj(p), we have

Vg(δ) ≤ Vc(δ)

furthermore

F (δ) =
Vg(δ)

Vc(δ)

is a non-increasing function of δ such that limδ→0+ F (δ) = 1. If (M, g) complete, the above is true for all
δ > 0, not just δ ≤ inj(p). If Vg(δ) = Vc(δ), then g has constant sectional curvature on the entire metric ball
Bδ(p)

Proof: Just do the petersen proof

2.3.4 Bochner Formula

� Really not that bad - the formula is

1

2
∆|∇u|2 = |D2u|2 + 〈∇∆u,∇u〉+ Ric(∇u,∇u)

� To prove this, we compute
∆∇u

in an ONB,

∆∇u = g(∇Ei∇Ei∇u,Ej)Ej
g(∇Ei∇Ei∇u,Ej) = g(∇Ei∇Ej∇u,Ei)

= R(Ei, Ej ,∇u,Ei) + g(∇Ej∇Ei∇u,Ei)
= R(Ei, Ej ,∇u,Ei) + Ejg(∇i∇u,Ei)

since ∇EjEi = 0 at a given point. In the second line, we used that

g(∇Ei∇Ei∇u,Ej) = Eig(∇Ei∇u,Ej)
= Eig(∇Ej∇u,Ei)
= g(∇Ei∇Ej∇u,Ei)

since the hessian of a function is symmetry, i.e.

g(∇V∇u,W ) = Hess u(V,W ) = Hess u(W,V )

(This is the main trick!) Tracing over i, we get

Ric(Ej ,∇u) + Ej∆u

and so
∆∇u = ∇∆u+ Ric(∇u, ·)

And so

1

2
∆|∇u|2 =

1

2
∆〈∇u,∇u〉

=
1

2
〈∆∇u,∇u〉+ 〈D2u,D2u〉

= 〈∇∆u,∇u〉+ Ric(∇u,∇u) + |D2u|2
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2.3.5 Comparison theorem for distance functions

� Source: Schoen-Yau

� Tbh probably should’ve been up earlier in this

� I want to prove two theorems

� Laplacian Comparison

Theorem 2.12. Let (M, g) with Ric ≥ −(n − 1)k2 and n dimensional manifold (k ≥ 0). Let N be the n-
dimensional simply connected space of constant sectional curvature −k2. Let ρM and ρN be distance functions
on M and N (with respect to some fixed points on M and N respectively). If x ∈ M and ρM differentiable at
x, then for any y ∈ N with ρN (y) = ρM (x), we have

∆ρM (x) ≤ ∆ρN (y)

The proof of this is the Hessian comparison theorem

� Hessian comparison

Theorem 2.13. Let M1, M2 two n-dim complete RMs. Assume γi : [0, a]→Mi are two geodesics parameter-
ized by arc length and γi does not intersect cut locus of γi(0). Let ρi the distance function from γi(0) on Mi

and Ki the secontional curvature of Mi. Assume that at γ1(t) and γ2(t) for 0 ≤ t ≤ a, we have

K1

(
X1,

∂

∂γ1

)
≥ K2

(
X2,

∂

∂γ2

)
for Xi any unit vector in TγiMi perpendicauly to ∂

∂γi
. Then

H(ρ1)(X1, X1) ≤ H(ρ2)(X2, X2)

where Xi ∈ Tγi(a)Mi is unit norm and perpendicalur at a, e.g.

〈Xi,
∂

∂γi
〉(γi(a)) = 0

Proof: Let {Eik} an ONB of vector fields parallel along γi with Ein = ∂/∂γi. Then

H(ρi)(Xi, Xi) =

� a

0

[
∣∣∣ ∂
∂γi

X̃i

∣∣∣2 −Ri(X̃i,
∂

∂γi
,
∂

∂γi
, X̃i)]dt

where X̃i is a jacobi field along γi with X̃i(γi(0)) = 0 and X̃i(γi(a)) = Xi. Since

g(Xi,
∂

∂γi
) = 0 =⇒ g(X̃i, E

i
n) = 0 ∀p ∈ γi

Set

X̃2 =

n−1∑
j=1

λj(t)E
2
j

Now choose {E1
j } so that

X1 = X̃1(a) =

n−1∑
j=1

λj(a)E1
j (γ1(a))

(note this is possible since all of X1, X̃1, X2, and X̃2 are all unit norm). Define

Z(t) =

n−1∑
j=1

λj(t)E
1
j
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then Z has the same value as X̃1 at t = 0 and t = a and

|∇∂/∂γ2
X̃2| = |

∑
j

λ′j(t)E
2
j | = |

∑
j

λ′j(t)E
1
j | = |∇∂/∂γ1

X|, |Z| = |X̃2|

Since Jacobi fields minimize the Index form among all vector fields with the same boundary
values, (by integration by parts, this is essentially just plugging in the Jacobi equation, see here for more), we
get

H(ρ1)(X1, X1) = Ia0 (X̃1) ≤ Ia0 (Z)

=

� a

0

∣∣∣∇∂/∂γ1
Z
∣∣∣2 −R(Z,

∂

∂γ1
,
∂

∂γ1
, Z)

=

� a

0

∣∣∣∇∂/∂γ2
X̃2

∣∣∣2 −K1(Z,
∂

∂γ1
)

≤
� a

0

∣∣∣∇∂/∂γ2
X̃2

∣∣∣2 −K2(X̃2,
∂

∂γ1
)

= Ia0 (X̃2) = H(ρ2)(X2, X2)

� I guess the idea of this proof is: Extend X1 and X2 to Jacobi fields, and simultaneously, find a parallel ONF
on γ1(t), γ2(t). Compare the extensions X̃1, X̃2, by using the coefficients from X̃2 w.r.t. E2

j and attach to E1
j .

Now use the condition of being a Jacobi field to say

H(ρ1)(X1, X1) = Ia0 (X̃1) ≤ Ia0 (Z) ≤ Ia0 (X̃2) = H(ρ2)(X2, X2)

� Proof of Index form: for p ∈M let σ a minimal geodsic joining p and x. Let X ∈ TxM such that g(∂r, X) = 0.
Extend X → X̃ a Jacobi field along σ so that X̃(σ(0)) = 0, X̃(σ(r)) = X and [X̃, ∂r] = 0. Then

H(ρ)(X,X) = X̃X̃ρ− (∇X̃X̃)ρ

= X̃g(X̃, ∂r)− g(∇X̃X̃, ∂r)
= g(X̃,∇X̃∂r)
= (X̃,∇∂rX̃)

Having used the commutator relation for the last. But then

H(ρ)(X,X) =

� r

0

d

dt
g(X̃,∇∂rX̃)dt

=

� r

0

|∇∂rX̃|2 + g(X̃,∇∂r∇∂rX̃)dt

=

� r

0

|∇∂rX̃|2 + g(R(X̃, ∂r)∂r, X̃)dt

having used the Jacobi equation in the last line.

� Now the laplacian comparison theorem follows from tracing the hessian comparison

� We can use the above idea: e.g. Jacobi fields tell us about the Hessian of the distance function, to compute
∆ρ: For any X ∈ γ(ρ), we can take the parallel extension along γ : [0, ρ]→M . Then the Jacobi field with the
boundary conditions Y (0) = 0 and Y (ρ) = X will be

Y (t) = snk(t)X(t)

Using this, we compute

∆ρ =

n−1∑
i=1

H(ρ)(Xi, Xi) = (n− 1)k coth kρ

� As a corollary
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Theorem 2.14. Let M an n-dimensional complete RM with Ric(M) ≥ −(n−1)k2 and ρ any distance funtion
on M . Then

∆ρ ≤ n− 1

ρ
(1 + kρ)

wherever ρ is smooth

� This follows because
∆ρ ≤ (n− 1)k coth kρ

and
kρ coth kρ ≤ 1 + kρ

2.4 Submanifolds

2.4.1 Gauss-Codazzi Equations

(Lee Intro to Riemannian Manifolds, chapter 8)

� So the Gauss formula is just the splitting of the connection, e.g. if we have (M, g) ↪→ (M̃, g̃), then

∇̃XY = ∇XY +A(X,Y )

This isn’t exactly true, because we would need to show that

∇XY = (∇̃XY )‖

where ∇ is the Levi-Civita connection on M as a submanifold with the induced metric. To show this agreement,
we can actually show that ∇̃‖ is symmetric, i.e.

∇̃‖XY − ∇̃
‖
YX = [X,Y ]

and compatible with the metric, i.e

Xg(Y, Z) = g((∇̃XY )‖, Z) + g((∇̃XZ)‖, Y )

We’ll prove this latter fact. We know that for X,Y, Z ∈ TM , we have

Xg(Y,Z) = X̃g̃(Ỹ , Z̃) = g̃(∇̃X̃ Ỹ , Z̃) + g̃(X̃,∇X̃ Z̃)

= g̃(∇̃X Ỹ , Z̃) + g̃(∇̃X Z̃, Ỹ )

since we’re evaluating on M where X ∈ TM . But

g̃(∇̃X Ỹ , Z̃) = g̃((∇̃X Ỹ )⊥, Z̃) + g̃((∇̃X Ỹ )‖, Z̃)

but Z̃ = Z ∈ TM on M , so
g̃(∇̃X Ỹ , Z̃) = g̃((∇̃X Ỹ )‖, Z) = g((∇̃X Ỹ )‖, Z)

but now
(∇̃X Ỹ )‖ = (∇̃XY )‖

because since X ∈ TM , we only need to know an extension of Y that lies in M , i.e. the extension to N(M)
doesn’t matter so we can replace Ỹ → Y when taking the connection. Thus

g̃(∇̃X Ỹ , Z̃) + g̃(∇̃X Z̃, Ỹ ) = g((∇̃XY )‖, Z) + g((∇̃XZ)‖, Y )

� Also have the Weingarten map: for N ∈ N(M) and M ↪→ M̃ , we define

X,Y ∈ TM, g(WN (X), Y ) = AN (X,Y ) = g(N, II(X,Y ))

(remember N is arbitrary element of the normal bundle!

� We have the Weingarten equation
(∇̃XN)‖ = −WN (X)
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� And from this, we have the Gauss equation

Theorem 2.15. For M ↪→ M̃ and W,X, Y, Z ∈ TM , we have

R̃(W,X, Y, Z) = R(W,X, Y, Z)− g(A(W,Z), A(X,Y )) + g(A(W,Y ), A(X,Z))

Proof: The proof for this is lengthy but straight forward: start with

R̃(W,X, Y, Z) = g(∇̃W ∇̃XY,Z)− g(∇̃X∇̃WY, Z)− g(∇̃[W,X]Y,Z)

Now decompose ∇̃XY = ∇XY +A(X,Y ) and note that

g(∇̃W II(X,Y ), Z) = Wg(II(X,Y ), Z)− g(II(X,Y ), ∇̃WZ) = −g(II(X,Y ), II(W,Z))

and proceed

� We can also define a connection on the normal bundle for tangential vector fields, given by

X ∈ TM, N ∈ NM
∇⊥XN = (∇̃XN)⊥

� Now define F →M the bundle with fiber being bilinear maps TpM×TpM → NpM , like the second fundamental
form. Then we can define ∇F on smooth sections of F (call it B), given by

(∇FXB)(Y,Z) = ∇⊥X(B(Y, Z))−B(∇XY, Z)−B(Y,∇XZ)

which is just what would happen from the product rule

� The Codazzi equations with the above, we have

Theorem 2.16. For M ↪→ M̃ , W,X, Y ∈ TM , we have

(R̃(W,X)Y )⊥ = (∇FWA)(X,Y )− (∇FXA)(W,Y )

Proof: you just compute this using the definition of ∇F .

2.4.2 First and Second variation of area

(Colding Minicozzi)

� The first variation is relatively easy to compute. We use that

d

dt

√
{(gt)ij}

∣∣∣
t=0

= trg(ġ)

where
(gt)ij = g((Ft)∗(∂i), (Ft)∗(∂j))

then we have that
gij∂tg((Ft)∗(∂i), (Ft)∗(∂j)) = divΣFt

we can decompose this as
divΣFt = divΣ(Ft)

⊥ + divΣ(Ft)
‖

When integrating the latter part, we hope that the manifold is closed so that stokes theorem gets rid of it. For
the first term, we have

divΣ(Ft)
⊥ = −〈Ft, H〉

by computing, so

ν(t) =
√

det(g(Ei(t), Ej(t)))

=⇒ ν′(0) = trg({∂tg(Ei(t), Ej(t))})

= −〈Ft, H〉+ divΣF
‖
t

integrating (and assuming compact variation or no boundary of Σ) gives

d

dt
V ol(F (Σ, t)) = −

�
Σ

〈Ft, H〉
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� For the second variation we need to use that

ν(t) = det(gij(t))

=⇒ d2

dt2
ν(t) =

1

2

[
tr(g̈)− tr(ġ2) +

1

2
tr(ġ))2

]
for Σ minimal, the last term vanishes, so it suffices to compute the first two. We have

g̈ij = g(∇Ft∇FtEi, Ej) = g(∇Ft∇EiFt, Ej) + 2g(∇FtEi,∇FtEj)
= R(Ft, Ei, Ft, Ej) + g(∇Ei∇FtFt, Ej) + g(∇FtEi,∇FtEj)

tracing over, we get
tr(g̈) = Ric(Ft, Ft) + divΣ(Ftt) + 2|〈A(·, ·), Ft〉|2 + 2|∇NΣFt|2

We already know that
ġij = −2〈A(Ei, Ej), Ft〉

and so
tr(ġ2) = 4|〈A(·, ·), Ft〉|2

and in sum, we have

d2

dt2
ν(t) = −|〈A(·, ·), Ft〉|2 + |∇NΣFt|2 − Ric⊥(Ft, Ft) + divΣ(Ftt)

which is the desired result (Pretty sure I can rederive this on the spot

2.4.3 Gauss-Bonnet Theorem

(See Lee, chapter 9)

� Statement

Theorem 2.17. Suppose (M, g) oriented, 2-dim RM. Suppose γ positively oriented curved polygon in M and
Ω is the interior. Then �

Ω

KdA+

�
γ

κNds+

k∑
i=1

εi = 2π

where K is Gaussian curvature of g, dA volume form, εi are the exterior angles of γ, and κN is the geodesic
curvature of γ

Proof: We know from The rotation index theorem (really work with closed curves, or like winding numbers
but in the metric setting) that for a closed curve γ : [a, b]→M , we have θ : [a, b]→ R a tangent angle function
and

2π = θ(b)− θ(a) =

k∑
i=1

εi +

k∑
i=1

� ai

ai−1

θ′(t)dt

here, {ai} is some admissible partition of [a, b] such that θ is C1 on (ai, ai+1). Again, this is essentially the
winding number theorem from complex analysis but with geometry.

From here, we want to show that

k∑
i=1

� ai

ai−1

θ′(t)dt =

�
Ω

KdA+

�
γ

κNdγ

Let {E1, E2} positively oriented g-orthonormal frame in the interior and along γ (we get this by assuming that
Ω can be mapped into some euclidean chart, and then doing Graham-Schmidt there). Then

γ′(t) = cos(θ(t))E1

∣∣∣
γ(t)

+ sin(θ(t))E2

∣∣∣
γ(t)

N(t) = − sin(θ(t))E1

∣∣∣
γ(t)

+ cos(θ(t))E2

∣∣∣
γ(t)
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Differentiating, we get
Dtγ

′ = ∇γ′γ′ = θ′N + cos(θ)∇γ′E1 + sin(θ)∇γ′E2

for v ∈ TΩ, define
ω(v) = g(E1,∇vE2)

then one can show that
∇vE1 = −ω(v)E2, ∇vE2 = ω(v)E1

Moreover by definition of geodesic curvature:

κN = (Dtγ
′, N) = θ′ − ω(γ′)

as one can check. And so
k∑
i=1

� ai

ai−1

θ′(t)dt =

k∑
i=1

� ai

ai−1

[κN (t) + ω(γ′)]dt

note that � ai

ai−1

ω(γ′)dt =

�
γ

ω

and so it suffices to show that �
γ

ω =

�
Ω

KdA

By stokes, it suffices to show that
dω = KdA

evaluate the right hand side on an ONB, we get

KdA(E1, E2) = K = R(E1, E2, E2, E1)

= (work from computation and using definition of riemann curvature and ω)

= E1(ω(E2))− E2(ω(E1))− ω([E1, E2])

= dω(E1, E2)

The last equality is just a theorem in differential forms/definition of the exterior derivative of a 1 form

2.5 Minimal Submanifolds

2.5.1 Definition

In aribtrary codimension, a Riemannian submanifold (Y, h) ↪→ (M, g) (for h = g
∣∣∣
Y

) is minimal if the mean curvature

vector vanishes, e.g.
hab(∇gvavb)

⊥ = 0 ∈ N(Y )

2.5.2 Statement of regularity for n < 8

� Minimal hypersurfaces inside of Rn for n < 8 are smooth

� When n = 8, we know that the Simon’s cone is minimal but has a singular point at the origin

S = {x ∈ R8 | x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8}

see here for a proof - there is no short proof for minimality it’s a length computation so i’ll omit

� A more beefed up version from Otis’ notes

Proposition. If E ⊆ (Mn, g) is a local minimizer of perimeter for 3 ≤ n ≤ 7, then after changing E by a set
of measure 0, the topological boundary of E, ∂E, is a smooth hypersurface
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2.5.3 Examples of Minimal Surfaces in R3

(see Colding-Minicozzi, know how to compute a few at least)

� Helicoid
(x, y, z) = (t cos s, t sin s, s)

it’s complete, embedded, simply connected, singly-periodic. Also the only (nonflat) ruled sminimal surface, i.e.
it can be written as

X(s, t) = β(t) + sδ(t)

� Catenoid, given by
{(x, y, z) | x2

1 + x2
2 = cosh2(z)}

tbh, better to write it in polar coordinates as

r = cosh(z)

because then we have
(ζ, τ) 7→ (cosh(ζ), τ, ζ) = (r, θ, z)

and so
Fζ = sinh(ζ)∂r + ∂z

Fτ = ∂τ

so that using the cylindrical coordinate metric of

g = dr2 + r2dθ + dz2

we get that the induced metric is

hζζ = sinh2(ζ) + 1 = cosh2(ζ), hζτ = 0, hττ = r2 = cosh2(ζ)

one can further show by noting that the only non-trivial christoffels are

∇∂r∂θ = r−1∂θ, ∇∂θ∂θ = −1

r
∂r

As always, this follows from the Koszul formula

g(∇XY,Z) =
1

2
[Xg(Y,Z) + Y g(X,Z)− Zg(X,Y ) + (commutators)]

that we get
Fζζ = cosh(ζ)∂r

Fζτ = ∇FζFτ =
sinh(ζ)

r
∂θ = tanh(ζ)∂θ

Fττ = −r∂r = − cosh(ζ)∂r

Furthermore, we have

ν =
∂r − sinh(ζ)∂z√

1 + sinh2
= sech(ζ)∂r − tanh(ζ)∂z

and so the second fundamental form is given by

Aζζ = 1, Aζτ = 0, Aττ = −1

which tells us that
habAab = hζζAζζ + hττAττ = sech2 · 1− sech2 · 1 = 0

showing minimality!

� Plane - proof: the second fundamental form is trivial since we can just take a coordinate parameterization for
which the connection is trivial
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2.5.4 Non-existence of STABLE minimal submanifolds with Ricg ≥ 0

(this should be in Otis’ allen-Cahn notes)

� This follows from the Jacobi operator, where

d2

dt2
V (Σt) =

�
Σ

ϕJ(ϕ)

where
J(ϕ) = −[∆Σ + (|AΣ|2 + Ric(ν, ν))]ϕ

� Integration by parts gives
d2

dt2
V (Σt) =

�
Σ

|∇Σϕ|2 − [|AΣ|2 + Ric(ν, ν)]ϕ2

now let ϕ = 1, then the above quantity is ≤ 0 when Ric ≥ 0. In fact, we must have |AΣ|2 ≡ 0, so either Σ
was flat from the start, i.e. a plane. If |AΣ|2 doesn’t vanish somewhere or Ric(ν, ν) > 0, then we have that the
above integral is < 0, a contradiction to stabiliy

2.5.5 Barta theorem on stable minimal hypersurfaces

� Statement

Proposition. A 2 sided minimal hypersurface Σn → (Mn+1, g) is stable ⇐⇒ there is u ∈ C∞(Σ\∂Σ) with
u > 0 on Σ\∂Σ so that LΣu ≤ 0

Here LΣ is the negation of the Jacobi operator, i.e.

LΣ = ∆Σ + |AΣ|2 + Ric(ν, ν)

� Proof: (→) Suppose Σ stable. If compact, then the first eigenfunction of LΣ satisfies

LΣϕ = (−λ)ϕ, λ ≥ 0

The sign of λ comes from the stability condition and integration by parts. Moreover ϕ > 0, else |ϕ| would also
be an eigenfunction everywhere, contradicting uniqueness of the soltuion.

If Σ non-compact, choose p ∈ Ω1 ⊂ Ω ⊂ · · · ⊂ Σ, an exhaustian by comapct regions with smooth bound-

ary. Let ϕi the first eigenfunction of LΣ

∣∣∣
Ωi

normalized so that ϕi(p) = 1. Because the domains are getting

larger, we use the variational characterization of λ, i.e.

λ = inf

f∈C∞(Σ)\{0}f
∣∣∣
∂Σ

=0

�
Σ
|∇f |2 − V f2�

Σ
f2

to see that
0 ≤ λ(Ωi+1) ≤ λ(Ωi)

This tells us that
λi

i→∞−−−→ λ∗ ≥ 0

Moreover, locally we have
LΣϕi + λ(Ωi)ϕi = 0

We now note that the Harnack inequality tells us that the value of ϕi at points away from p is connected to
the distance to p, e.g.

sup
K
ϕi ≤ Cϕi(p) = C

so for K compact, we get that ϕi

∣∣∣
K

is bounded. Because the λ(Ωi) is converging, we use schauder theory to

get
||ϕi||Ck,α(K) ≤ C

=⇒ ϕi
C∞loc−−−→ ϕ∗
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where the second line is via arzela ascoli. This gives us that

LΣϕ
∗ + λ∗ϕ∗ = 0

everywhere and ϕ∗(p) = 1. Thus, the maximum principle tells us that ϕ∗ > 0 on Σ\∂Σ. This finishes one
direction of the proof
(Main idea: Use first eigenfunctions which have the right sign. Then use stability condition to figure out
Lϕ ≤ 0. If non-compact, use exhaustion by compact sets, along with harnack inequality and schauder theory
and Arzela-Ascoli to get convergence in the limit)

� Proof: (←) Now assume a positive function u > 0 with LΣu ≤ 0. Then we want to show that λ(Ω) ≥ 0 for
any Ω ⊂⊂ Σ\∂Σ, as this will give us the stability condition by exhausting by compact sets (corresponding to
only using function with comapct support.

Let w = log(u), then

∇w =
∇u
u

∆w =
∆u

u
− |∇w|2 ≤ −V − |∇w|2

where we’ve written
LΣ = ∆Σ + V

Take the above inequality and multiply by f ∈ C∞c (Ω) and get

�
Ω

V f2 + |∇w|2f2 ≤
�

Σ

−(∆w)f2

=

�
Σ

〈∇w,∇f2〉

≤
�

2|f ||∇f ||∇w|

≤ |∇w|2f2 + |∇f |2

Thus taking the top and bottom line, we get

�
|∇f |2 − V f2 ≥ 0

which is stability. (This feels like a trick of looking at log(u) the given function and then computing
�
V f2 +

|∇w|2f2 and then peter-paul)

3 Topic 2: PDE

3.1 Microlocal Analysis

Comes from: Chapter 2 in Andras/Melrose’s notes + Rafe Elliptic theory of edge operators

3.1.1 Symbol Calculus

� See here, section II on Pseudo-Differential calculus (in particular, Chapter 6 on symbolic calculus) is quite good

� Can also see Melroses’ notes chapter 2, which is where I’ll be taking most of this from

� Symbols:

Definition 3.1. The space Sm∞(Rp,Rn) of symbols of order m consist of funtions a ∈ C∞(Rp,Rn) such that

|Dα
zD

β
ξ a(z, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|

where Cα,β works for all points in Rp × Rn, and such constants exist for any α ∈ Np, β ∈ Nn
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This is also extended for Sm∞(Ω;Rn) where we have the estimate for the interior.

� Define the following norm

||a||N,m = sup
z∈int(Ω)
ξ∈Rn

max
|α|+|β|≤N

(1 + |ξ|)−m+|β||Dα
zD

β
ξ a(z, ξ)| <∞

this makes Sm∞(Ω;Rn) into a frechet space

� Note the following symbol calculus properties:

Sm∞(Ω;Rn) ↪→ Sm
′

∞ (Ω;Rn) ∀m′ ≥ m

Sm∞(Ω;Rn) · Sm
′

∞ (Ω;Rn) ⊂ Sm+m′

∞ (Ω;Rn)

Dα
z : Sm∞(Ω;Rn)→ Sm∞(Ω;Rn)

Dβ
ξ : Sm∞(Ω;Rn)→ Sm−|β|∞ (Ω;Rn)

� We can also invert up to trivial error

Lemma 3.2. If a ∈ Sm∞(Ω;Rn) elliptic, then there exists b ∈ S−m∞ (Ω;Rn) such that

ab− 1 ∈ S−∞∞ (Ω;Rn)

Recall that a(z, ξ) is elliptic if

|a(z, ξ)| ≥ ε(1 + |ξ|)m, ∀|ξ| ≥ Cε, ε > 0

and also
S∞∞(Ω;Rn) = ∪mSm∞, S∞∞ = ∩mSm∞

Proof: Let φ be a radial bump function on Rn, and define

b(z, ξ) =

{
1−φ(ξ/2C)
a(z,ξ) |ξ| ≥ C

0 |ξ| ≤ C

Then b ∈ C∞, and the symbol estimates follow by noting

|ξ| ≥ C =⇒ Dα
zD

β
ξ = a−1−|α|−|β|Gαβ

for Gαβ a symbol of order (|α|+ |β|)m− |β|. This is proved by induction. Finally, we have that

b · a =

{
1− φ(ξ/2C) |ξ| ≥ C
0 |ξ| < C

so since φ is a bump function (i.e. compactly supported), this clearly satisfies the symbol decay estimates

3.1.2 Pseudodifferential operators

� We consider
a(x, y, ξ) = (1 + |x− y|2)w/2ã(x, y, ξ), ã ∈ Sm∞(R2n

(x,y),R
n
ξ )

for some w.

� If a ∈ C∞, then a ∈ (1 + |x− y|2)w/2Sm(R2n;Rn) if and only if

|Dα
xD

β
yD

γ
ξ a(x, y, ξ)| ≤ Cα,β,γ(1 + |x− y|)w(1 + |ξ|)m−|γ|, ∀α, β, γ

in particular, if m < −n, then a(x, y, ξ)u(y) is absolutely integrable for any u Schwartz. Thus, we can define

A : S (Rn)→ (1 + |x|2)w/2C0
∞(Rn)

A(u) = (2π)−n
�
ei(x−y)·ξa(x, y, ξ)u(y)dydξ
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Proposition. The map defined for m < −n given by

a 7→ (2π)−n
�
ei(x−y)·ξa(x, y, ξ)dξ ∈ (1 + |x|2 + |y|2)w/2C0

∞(R2n)

extends by continuity to
I : (1 + |x− y|2)w/2Sm∞(R2n;Rn)→ S ′(R2n)

for each w,m ∈ R using the topology of Sm
′

∞ (R2n;Rn) for m′ > m

I(a) is the schwartz kernel

Proof: It suffices to show that

|I(a)(φ)| ≤ C||ã||N,m||φ||k ∀φ ∈ S (R2n)

where a = (1 + |x− y|2)w/2ã and ã ∈ S−∞∞ (R2n;Rn). This follows by integration by parts, noting that

(1 + ξDx)ei(x−y)·ξ = (1 + |ξ|2)ei(x−y)·ξ

(1− ξDy)ei(x−y)·ξ = (1 + |ξ|2)ei(x−y)·ξ

� Finally, we have the following lemma

Lemma 3.3. If a ∈ (1+|x−y|2)w/2Sm∞(R2n;Rn), then the operator A, with Schwartz kernel I(a), is continuous
as a map A : S (Rn)→ S (Rn)

Proof: We compute

Au(ψ) =

� � �
ei(x−y)·ξa(x, y, ξ)u(y)ψ(x)dξdydx

=

� � �
(1 + |ξ|2)−2q(1− ξDy)2qei(x−y)·ξa(x, y, ξ)u(y)ψ(x)dξdydx∑

|γ|≤2q

� � �
ei(x−y)aγD

γ
yu(y)ψ(x)dξdydx

(Note: ψ doesn’t matter even though initially we have to pair it with ψ) where aγ consists of derivatives of a
coming from integration by parts of (1 − ξDy)2q, as well as the prefactor of (1 + |ξ|2)−2q. Taking −q + m <
−n− |w|, we get that Au is given by the convergent integral

Au(x) =
∑
|γ|≤2q

� �
ei(x−y)·ξaγ(x, y, ξ)Dγ

yu(y)dξdyA : S (Rn)→ (1 + |x|2)w/2C0
∞(Rn)

(note: C0
∞ is banach space of bounded continuous function on Rn). Moreover

DxjAu(x) = (2π)−n
∑
|γ|≤2q

� �
ei(x−y)·ξ(ξj +Dxj )aγ ·Dγ

yu(y)dyd

xjAu(x) = (2π)n
∑
|γ|≤2q

� �
ei(x−y)·ξ(−Dξj + yj)aγD

γ
yu(y)dydξ

and so by the same arguments, we get

xαDβ
xAu ∈ (1 + |x|2)w/2C0

∞(Rn), ∀α, β ∈ Nn

which gives Au ∈ S (Rn).

� Let Ψm
∞(Rn) be the space of linear operators A : S (Rn)→ S (Rn) corresponding to

(1 + |x− y|2)−w/2a ∈ Sm∞(R2n;Rn)

for some w. These are pseudodifferential operators of the traditional type, of type ‘1,0’
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3.1.3 Edge operators

� Chapter 1

� Set up is as follows: X compact manifold with boundary. ∂X is total space of fibration

F q ∂X

Y k

π

where F q is compact fibre.

� Ve smooth vector fields unrestricted in the interior and lie tangent at the boundary to the leaves of the
fibration

� Edge operators: generated by Ve and C∞(X). Locally with coords (x, y, z), x defining function for ∂X, y
coordinates on ∂X lifted from Y , and z coordinates on ∂X from the fiber F ,

L =
∑

j+|α|+|β|≤m

aj,α,β(x, y, z)(x∂x)j(x∂y)α∂βz

i.e. either the operator vanishes at the boundary, or is of the form aβ(0, y, z)∂βz on the boundary

� For hyperbolic space, the fiber is empty, and Y k = ∂X = Rn in Hn+1

� L is elliptic, if it is elliptic as a combination of x∂x, x∂yα , ∂zβ . If y terms absent - totally characteristic. If
z terms absent - uniformily degenerate

� Example: scalar laplacian on Hn+1 is

∆Hn+1 = x2∂2
x + (2− n)x∂x + x2∆Rn

which is elliptic under the edge operator characterization

� Chapter 2

– Not much new in this section, except we denote Diff∗e(X) as “differential operators of edge type” which
consists of

L ∈ Diff∗e(X) ⇐⇒ L =
∑

j+|α|+|β|≤m

aj,α,β(x, y, z)(x∂x)j(x∂y)α∂βz

and also the symbol map

eσm(L)(x, y, z; ξ, η, ζ) =
∑

j+|α|+|β|=m

aj,α,β(x, y, z)ξjηαζβ

and L elliptic if the above is non-zero whenever (ξ, η, ζ) 6= 0.

� Polyhomogeneity (Appendix 2A) :

– Vb is space of b-operators spanned by {x1∂x1
, . . . , xk∂xk , ∂yα} - here {xk} gives a set of boundary defining

functions for the (multiple) boundary hypersurfaces {Mi1 , . . . ,Mik} and also y is a set of coordinates for
the intersecting corner. Then Vb is spanned by these guys and the conormal space is:

A0(X) = {u : V1 · · ·V`u ∈ L∞(X), ∀Vi ∈ Vb, ∀`}

– In practice with hyperbolic space, there is no corner, so there’s only one xi and one boundary, and y is still
the coordinate on Rn = ∂Hn+1, so the b operators are essentially {x∂x, ∂y}, which differs from the edge
operators which use x∂y (since edge operators are only tangent with respect to the fiber on the boundary).

– For {si} ⊆ C, {pi} ⊆ N0, we have

As,p(X) = xs(log(x))pA0(X)

For one boundary and one codimension, then xs(log x)pa(y) ∈ As,p(X) if s is complex, p ∈ N0 and a(y)
smooth
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– A∗phg(X) consists of all conormal distributions admitting asymptotic expansions of the form

u ∈ A∗phg(X) ⇐⇒ u ∼
∑

<(sj)→∞

pj∑
p=0

xsj (log x)paj,p(x, y), aj,p ∈ C∞

(by taylor expansion, we can just make aj,p = aj,p(y))

� Edge calculus

– Won’t give the full description but the edge calculus is a ring of pseudodifferential operators withDiff∗e (X)
as a subring.

– Small calculus: PsiDos with kernels vanishing to all orders at the side boundary faces B10(X2
e ) and

B01(X2
e )

– Large calculus: PsiDos with kernels having polyhomogeneous conormal singularities at these faces

– Consider lifts of elements of Diff∗e (X) to X2
e , e.g. the identity map (multiply by 1). Schwartz kernel is

KI = δ(x− x̃)δ(y − ỹ)δ(z − z̃)µ, µ =
√
dxdydzdx̃dỹdz̃

where µ is a half density (i.e. something that when inner producted with something else gives a measure)

– Recall β2 : X2
e → X2 which is the projection in spherical coordinates and the identity on X2\S. Then

β∗2KI = δ(θ0 − θk+1)δ(θ′)δ(z − z̃)r(−k+1)/2ν, ν =
√
drdθdỹdzdz̃

– We define the small calculus

Ψ∗e(X; Ω1/2) := AEphgI
∗(X2

e ; ∆e; r
−(k+1)/2Ω1/2)

where E = (∅, ∅, (0, 0))

– Recall that E is an index set indicating vanishing behavior at the boundary. Also ∆e is the embedding of
the diagonal in X2

e . The point is: Every A ∈ Ψ∗e corresponds, after factoring out the singular half-
density, to a distribution κA conormal along the lifted diagonal of X2

e , vanishing to infinite
order at the side boundaries and smooth at the front face

– By standard parametrix construction and symbol theory

Theorem 3.4 (3.8). If A ∈ Ψm
e elliptic then there exists B ∈ Ψ−me such that AB − I ∈ Ψ−∞e and

BA− I ∈ Ψ−∞e . This parametrix B is well defined up to an element of Ψ−∞e .

I won’t prove this but its important to note that the remainder terms in Ψ−∞e are not compact operators
because their schwartz kernels are smooth only on X2

e and not on X2. They are smooth on the interior
though

3.1.4 Theory of parameterices (in the large calculus)

(Chapter 5 in Rafe’s paper)

� Context: L ∈ Diff∗e (X), so an edge operator

� N(L) - This is the restriction of the lift through the left of L to X2
e

� Background on X2
e (Chapter 2)

– Constructed from X2 = X ×X, except we blow up around a submanifold S and

X2
e = (X2\S) t (N+(S)/R+)

this has 3 boundary hypersurfaces, given by the left and right boundaries corresponding to boundaries
of each copy of X, as well as the front face, which is the spherical normal bundle (quotiented)

– Picture should be two planes in R3 intersecting in a line, except you replace the line with a quarter of a
cylinder (line blows up to a cylinder). Front face then looks like boundary of cylinder
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– In particular, if we have

F ∂X

Y

with coordinates (x, y, z) (x bdf for X, y coordinates on Y lifted to ∂X, z fibre coordinates for F ), then
we define coordinates (x, y, z) and (x̃, ỹ, z̃) on each of the copies of X. Moreover

S := {x = x̃ = 0, y = ỹ}

– We have non-singular coordinates

r =
√
x2 + x̃2 + |y − ỹ|2, θ = (x, y − ỹ, x̃)/r = (θ0, θ

′, θk+1)

Smooth and independent when lifted to X2
e

– Near front face, X2
e locally diffeomorphic to R+×Sk−1

++ ×Fz×∂Xỹ,z̃ (Sk−1
++ is the quarter sphere, (θ0, θk+1 ≥

0), so when F is trivial and the projection is the identity map, then it really looks the hyperbolic case,
i.e. radial coordinate and angular coordinate restricted to quarter sphere)

– Blow down map
β(2) : X2

e → X2

given by
β(2)((r, θ, ỹ, z, z̃)) = (rθ0, ỹ + rθ′, z, rθk+1, ỹ, z̃)

– If we compose the above with the map

βL : (rθ0, ỹ + rθ′, z, rθk+1, ỹ, z̃)→ (x, y, z)

βR : (rθ0, ỹ + rθ′, z, rθk+1, ỹ, z̃)→ (x̃, ỹ, z̃)

then these are the left and right blow downs.

– Also have projective coordinates (s, u, x̃, ỹ, z, z̃) and (x, y, t, v, z, z̃)

s = x/x̃, u =
y − ỹ
x̃

t = x̃/x, v =
ỹ − y
x

top row is smooth away from B01 and bottom smooth away from B10. In both systems, x̃ = 0 and x = 0
define the front face, because x = s · x̃ in the first and x̃ = x · t in the second. Also

x∂x = s∂s = x∂x − t∂t − v∂v
x∂y = s∂u = x∂y − ∂v

� Front face, B11(X2
e ) fibres over ∂X (E.g. think of this as a sphere over a point) (Still a bit confused about

this), N(L) restricts to an elliptic operator on the interior of each leaf of this fibration. The leaves are
diffeomorphic to Sk+1

++ × F (checks out in the two half plane case)

� Chapter 2: Define N(L) as the restriction of L to the front face of B11 of the lift of L to X2
e

L =
∑

j+|α|+|β|≤m

aj,α,β(sx̃, ỹ + x̃u, z)(s∂s)
j(s∂u)α∂βz

then
N(L) =

∑
j+|α|+|β|≤m

aj,α,β(0, ỹ, z)(s∂s)
j(s∂u)α∂βz

� We define the dual normal operator

ˆN(L) =
∑

j+|α|+|β|≤m

aj,α,β(s∂s)
j(isη)α∂βz

29



now for t = s|η| and η̂ = η/|η| ∈ S∗ỹY , we rewrite the above as

L0 =
∑

j+|α|+|β|≤m

aj,α,β(t∂t)
j(itη̂)α∂βz

This is a family of b-operators on R+ × F depending smoothly on (ỹ, η̃) ∈ S∗Y

� We characterize these operators as

Definition 3.5. (5.3) L0 ∈ Diffmb (R+ × F ) is said to be of Bessel type if it has the form

L0 =
∑

j+|α|+|β|≤m

aj,α,β(z)(t∂t)
j(it)α∂βz

and is called elliptic if the associated symbol ∑
j+`+|β|=m

aj,α,β(z)τ jσ`ζβ

is elliptic

� The prototypical example is on R+ is L0 = (t∂t)
2 − t2, with generic behavior of exponential growth/decay as

t→∞

� Define
Hr,δ,` = {u : φ(s)u ∈ tδHr, (1− φ(t))u ∈ t−`Hr}

where Hr is normal L2 sobolev space in the t, z variables and φ(t) ∈ C∞0 (R+) equals 1 near t = 0.

� Recall the set Λ

– Formally,

Λ = {<(ζ) +
1

2
: ζ ∈ specb(L)}

– Note that specb(L) is the set of ζ ∈ C for which Iζ(L) fails to be invertible on L2(F ) for some y ∈ Y
– Recall the definition of Iζ(L)

Definition 3.6. The indicial family Iζ(L) of L ∈ Diff∗e (X) is the family of operators given by

L(xζ(log x)pf(x, y, z)) = xζ(log x)pIζ(L)f(0, y, z) +O(xζ(log x)p−1), ∀f ∈ C∞(X), ζ ∈ C, p ∈ N0

– For example, if we take L to be the hyperbolic laplacian, then

L = ∆ = x2∂2
x + (2− n)x∂x + x2∆Rn−1 = (x∂x)2 + (1− n)(x∂x) + x2∆Rn−1

and so for p = 0

L(xζf(x, y, z)) = L(xζf(0, y, z) +O(xζ+1) = [ζ2 + (1− n)ζ]f(0, y, z) +O(xζ+1)

i.e. the indicial operator is ζ2 + (1− n)ζ, which has roots of ζ = 0, n− 1.

– Lemma on Fredholmness

Lemma 3.7 (5.5). The map
L0 : Hr+2,δ,` → Hr,δ,`−m

for L0 of Bessel type and elliptic is Fredholm provided δ 6∈ Λ

Proof: For δ 6∈ Λ, we prove Fredholm properties by constructing right and left parametrices for L0,
which are bounded on the appropriate spaces, and which are inverses up to compact error. It suffices
to construct a right parametrix since the left parameterix will differ by compact error as in the normal
pseudodifferential case (i.e. same procedure works).

Paramtrix constructed by patching together local parametrices near t = 0 and t = ∞. Near t = 0,
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only the b-structure is relevant, and we have a parametrix via existence in the small calculus (won’t go
into details, too long. Though the gist is that its the standard parametrix construction being careful of
the faces and degeneracy there) so that G : tδHr

b → tδHr+m
b is bounded (recall that Hb is the sobolev

space with basis of derivatives {x∂x, ∂z1 , . . . , ∂zq}).

Near t =∞, we use ellipticity so that the principal symbol

σ̃(L0) = im(am,0,0t
mτm + a0,m,0t

m) +
∑
|β|=m

a0,0,β∂
β
z

where τ is dual to t and the above satisfies

〈σ̃(L0)u, u〉 ≥ Ctm(1 + τm)||u||2

for all t ≥ s0 for some s0. Hence the operator norm of σ̃(L0)−1 is bounded by Ct−m(1 + τ)−m. Define
the parametrix near ∞ by

H∞(u) =

�
eitτ σ̃(L0)−1û(τ, z)dz

(I guess the idea is that t behaves as a distinguished coordinate on R+×F , so we just transform over the
fiber F ) where û is the fourier transform. By choice of φ, we have that

(1− φ(t))H∞ : Hr,δ,`−m → Hr+m,δ,`

is bounded (since we have sufficient decay on the symbol). Patching H∞ to the parametrix near 0 via a
bump function, we obtain H such that

LH = I −K

for some error K. K is a finite sum of terms, booth smooth of order at least one, decaying like t−1 as
t → ∞ and like tε for some ε > 0 as t → 0 (this must be in the proof of the small calculus parametrix
on Hr

b , for the parametrix away, note the prefactor of (1− φ(t)) and the fact that φ(0) = 1). Hence both
maps in

K : Hr,δ,` → Hr+1,δ+ε,`+1 ↪→ Hr,δ,`

are bounded. Since the second inclusion is compact, K itself is compact, completing the proof.

(Chapter 4 - parametrices of b operators)

– Extremal cases of edge theory: when either Y , the base, or F , the fiber, is a point. Ve then consists of
either vector fields tangent to ∂X or vanishing on ∂X, denoted by Vb or Vo. We consider Vb and a trivial
base (this fits the paradigm of Hn+1 = Rn × R+)

– Recall
Vb = {x∂x, ∂z1 , . . . , ∂zq}

– Note that specb(L) is automatically discrete and so for L ∈ Diffmb (X) elliptic, we consider

L : xδH`+m
b (X,Ω1/2X)→ xδH`

b(X,Ω
1/2X)

– Also define
Λ = {Re(ζ) + 1/2 : ζ ∈ specb(L)}

– We have that L is fredholm away from the spectrum:

Theorem 3.8 (4.4). For δ 6∈ Λ,

L : xδH`+m
b (X,Ω1/2X)→ xδH`

b(X,Ω
1/2X)

is Fredholm

We’ll prove this by constructing parametrices which are inverses up to comapct error.

– Proof of (4.4)
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* We have
L =

∑
j+|β|≤m

aj,β(x, z)(x∂x)j∂βz

* Using theory of the small calculus, we find a parametrix: The lift of L through the left to X2
b is

tranversally elliptic to the lifted diagonal ∆b. Thus, factoring out the singualr half-density, we
get

A0 ∈ Ψ−mb (X) s.t. LA0 ≡ I mod Ψ−∞b (X)

i.e.
LA0 − I = R0 s.t. R0 ∈ Ψ−∞b (X)

* R0 is not compact since it does not vanish on the front face, so we have to modify it. Note that

A0 : xδH`−m → xδH`
b

is bounded for every ` and δ (this is some corollary), while

R0 : xδH`
b → xδHs

b

for every `, s, δ.

* We now modify our parametrix and solve for A1 ∈ Ψ∞,∗b such that

L(A0 +A1) = I −R1

such that R1 ∈ Ψ−∞,Fb where F is a collection of index sets with F ∈ F =⇒ F11 = 1, i.e. R1

vanishes to first order at the front face of X2
b . This is accomplished by solving

(LA1)
∣∣∣
B11

= I(L)(A1

∣∣∣
B11

) = R0

∣∣∣
B11

* This is solved via the Mellin transform (won’t go in detail, too specific)

* We now have A1 which is bounded and is a right inverse with error R1 which vanishes simply on B11.
We can find a left parametrix similarly, A2 so that

L(A0 +A1 +A2) = I −R2

where R2 again vanishes to first order on the front face. This vanishing implies that R2 is compact,
so L is Fredholm! (Again, note that our error always vanishes on the front face, not the side faces,
the left vs. right issue is just left vs. right parametrix)

– One can also do a modified neumann series to make it so that R2 vanishes to infinite order on either the
left or right face - this is what let’s us deduce a polyhomogeneous expansion (Again, details too much)

3.1.5 Construction of parametrics for elliptic pseudodifferentialoperators

� Elliptic

Definition 3.9. We say A ∈ Ψm
∞(Rn) elliptic if it is invertible modulo an error in Ψ−∞∞ (i.e. symbol is ∈ S−∞∞ )

with the approximate inverse of order −m, i.e.

∃B ∈ Ψ−m∞ (Rn) s.t. A ◦B − Id ∈ Ψ−∞∞ (Rn)

� Recall the quotient space of symbols

Sm−[1]
∞ (Rn;Rn) = Sm∞(Rn;Rn)/Sm−1

∞ (Rn;Rn)

along with the principle symbol map

σm : Ψm
∞ → Sm−[1]

∞

σm(A) = [σL(A)] = [σR(A)]

where σL, σR are the left and right symbol maps which give an x (respectively, y) independent symbol to the
pseudodifferential operator A
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� Recall the notion of asymptotic summation for symbols a ∈ Sm, i.e.

a ∈ Sm, a ∼
∞∑
j=0

aj ⇐⇒ ∀N ≥ 0, a−
N−1∑
j=0

aj ∈ Sm−N∞

the actual sum
∑∞
j=0 aj may not converge, but we’re saying that the partial expansion holds

� We have the following theorem

Theorem 3.10. TFAE for A ∈ Ψm
∞(Rn)

1. A elliptic

2. ∃[b] ∈ S−m−[1] such that
σm(A) · [b] ≡ 1 ∈ S0−[1]

∞

3. ∃b ∈ S−m∞ (Rn;Rn) such that
σL(A) · b− 1 ∈ S−∞∞ (Rn;Rn)

4.

∃ε > 0 s.t. |σL(A)(x, ξ)| ≥ ε(1 + |ξ|)m, ∀ |ξ| > 1

ε

Proof: We now the equivalence of the last two by constructing inverse of elliptic symbols. Now since the
symbol map is multiplicative

A ◦B − Id ∈ Ψ−∞∞ =⇒ σm(A) · σ−m(B) ≡ 1 ∈ S0−[1]
∞

which is 1 =⇒ 2. Assume 2, and recall σm(A) = [σL(A)]. Find a rep of the equivalence class b1 such that

σL(A) · b1 = 1 + e1, e1 ∈ S−1
∞

Now define
b = b1 · “(1 + e1)−1”

where
(1 + e1)−1 ∼

∑
j≥0

(−1)jej1

i.e. we can find an f that has the asymptotic expansion of

f ∼
∑
j≥1

(−1)jej1

so that
σL(A) · b1(1 + f) = 1 + e∞

for e∞ ∈ S−∞ and b = b1(1 + f) ∈ S−m∞ . Then

σL(A) · b1(1 + f) = 1 + e∞

which proves (3). Moreover, since e∞ ∈ S−∞∞ , we have that

∀N, sup(1 + |ξ|N )|e∞| <∞

and in particular |e∞| < 1
2 for all |ξ| > C for some C. And so

|σL(A)| ≥ |σL(A)b1(1 + f)||b1(1 + f)|−1 ≥ 1

2
(1 + |ξ|)m

since b = b1(1 + f) is a symbol of order −m. But this gives the first condition on ellipticity!

Now suppose that (3) holds, i.e. ∃b s.t. σL(A) · b− 1 ∈ S−∞∞ . Then for B1 = qL(b), we have

σ0(A ◦B1) = [qm(A)] · [b] ≡ 1 =⇒ A ◦B1 − Id = E1 ∈ Ψ−1
∞
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doing the same trick of

F ∼
∑
j≥1

Ej1(−1)j

we see that (Id+ F ) ∈ Ψ0
∞ and

A ◦B1 ◦ (Id+ F ) ∈ Ψ−∞∞

so that B = B1 ◦ (Id+ F ) ∈ Ψ−m∞ , giving (1).

� This is kind of a lengthy proof, but the idea is to use the definition of a symbol, definition of ellipticity, and
then the neumann series trick for inverting (1 + ε).

� The above theorem also shows how to construct a parametric when your symbol is elliptic

� Left vs. Right parametrix doesn’t matter:

Lemma 3.11. A ∈ Ψm
∞(Rn) elliptic if and only if there exists B′ ∈ Ψ−m∞ (Rn) such that

B′ ◦A = Id+ E′, E′ ∈ Ψ−∞∞

and if B satisfies the above as well, then B −B′ ∈ Ψ−∞∞

Proof: Certainly, if we have an inverse then σ−m(B′) · σm(A) ≡ 1, and by the previous lemma, we know that
A is elliptic. If A elliptic, then taking the b such that

b · σL(A) = 1 ∈ S0−[1]
∞

we can take B = qL(b) and get
B ◦A− Id = E1 ∈ Ψ−1

∞

and do the same trick, i.e.

(1 + F ) ∼
∑
j≥0

(−1)jEj1

and so for B′ = (Id+ F ′) ◦B, we have

B′ ◦A = (Id+ F ′)B ◦A ∈ Ψ−∞∞

Now if we take B the original inverse, we get

B′ ◦A ◦B = B′(Id+ E), E ∈ Ψ−∞∞

but also
B′ ◦A ◦B = (Id+ E′)B, E ∈ Ψ−∞∞

taking the difference of the two, we see that B −B′ ∈ Ψ−∞∞

3.2 Calculus of Variations

Existence of minimizers, Euler-Lagrange equation, Noether’s theorem (Chapter 8, Evans)

3.2.1 Existence of Minimizers

� Need a few conditions

� Coercivity: there exist constants α > 0, β ≥ 0 such that

L(p, z, x) ≥ α|p|q − β

i.e.
I[w] ≥ δ|Dw|qLq − γ

where γ = β|U |, which hints at defining I[w] for functions in W 1,q(U)
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� Define
A = {w ∈W 1,q(U) | w

∣∣∣
∂U

= g (in trace sense)}

as the admissible set of functions for I. Remember that to make sense of w
∣∣∣
∂U

, we take a sequence of

functions {wi} ⊆ C∞(U) which converge to w in W 1,q norm. Then the limit of their boundary values gives
the trace

� Lower semicontinuity: though we work in W 1,q, we note that u,Du ∈ Lq(U), so using that Lq is reflexive
(Banach-Alaoglu), we get a sequence of {uk} such that Duk ⇀ Du and uk ⇀ u in Lq, i.e. uk ⇀ u in W 1,q.

But now we need that I is continuous w.r.t. the weak topology, else a minimizing sequence won’t converge to
the minimizing value. Instead, we ask

I[u] ≤ lim inf
j→∞

I[ukj ]

for some weakly convergent subsequence. This is sufficient to get that u is a minimizer.

Definition 3.12. We say that I[·] is (sequentially) weakly lower semicontinuous on W 1,q(U) provided that

I[u] ≤ lim inf
k→∞

I[uk]

whenever uk ⇀ u in W 1,q(U)

� Convexity: A consequence of having a minimizer is

Lpipj (Du, u, x)ξiξj ≥ 0

for all ξ ∈ Rn and all x ∈ U . I.e. this is necessary. This suggests that convexity in p is useful, i.e.

Theorem 3.13. Assume L smooth, bounded below, and in addition

p 7→ L(p, z, x)

is convex for all z, x. Then I[·] is weakly lower semicontinuous on W 1,q(U)

Proof: suppose uk ⇀ u ∈ W 1,q and l = lim infk I[uk]. Then we want I[u] ≤ l. By passing to a subsequence,
we can assume

l = lim
k
I[uk]

We have

I[u] =

�
L(Du, u, x) =

�
[L(Du, u, x)− L(Duk, u, x)] + [L(Duk, u, x)− L(Duk, uk, x)] + L(Duk, uk, x)

So

I[u]− I[uk] =

�
[L(Du, u, x)− L(Duk, u, x)] + [L(Duk, u, x)− L(Duk, uk, x)]

Intuitively, we use convergence in Lq of both Duk and uk to get that this difference tends to 0, and we’ve
assumed that L is smooth so this seems okay. However, since U is open (potentially the L estimates drop off as
we approach the boundary), we need some uniform continuity. Let Gε ⊂ U a subset so that uk → u uniformily
on Gε, |U −Gε| < ε and

x ∈ Gε =⇒ |u(x)|+ |Du(x)| < 1

ε

by Egorov’s theorem and that u ∈W 1,q, such a set exists. Then

I[uk] =

�
U

L(Duk, uk, x)dx

≥
�
Gε

L(Duk, uk, x)dx

≥
�
Gε

L(Du, uk, x)dx+

�
Gε

DpL(Du, uk, x) · (Duk −Du)
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here, we’ve assumed that L ≥ 0 (else we could shift L up by a constant. And the last inequality is true for
general convex functions, i.e. f convex means that

f(y) ≥ f(x) +Df(x) · (y − x)

see theorem 1.2.3 here. Now we know that

lim
k→∞

�
Gε

L(Du, uk, x)dx =

�
Gε

L(Du, u, x)dx

since we have uniform convergence since L is smooth, and u→ uk uniformly and uk, Duk are bounded on Gε
(this is what allows us to pass the limit through the integral). Moreover

lim
k→∞

�
Gε

DpL(Du, uk, x) · (Duk −Du) = 0

since again DpL(Du, uk, x) is bounded and Duk −Du in Lq. This tells us that

l = lim
k
I[uk] ≥

�
Gε

L(Du, u, x)

and sending ε→ 0 we get l ≥ I[u].

Note that since uk → u ∈ Lq strongly (this is Rellich) we didn’t need any convexity assumption about L
in the middle variable

� Existence of minimizer:

Theorem 3.14. Assume L satisfies coercivity, and is convex in p, and A, the admissible set is non-empty.
Then there is at least one u ∈ A with

I[u] = min
w∈A

I[w]

Proof: Set m = infw I[w]. If m is finite, select a minimizing sequence. WLOG assume L ≥ 0, and so

I[w] ≥ α
�
U

|Dw|q

By this, we get that supk ||Duk||Lq ≤ C. We want to show that {uk} is bounded in W 1,q, so it suffices to
bound ||u||Lq . Now fix w ∈ A, then

||uk||Lq ≤ ||uk − w||Lq + ||w||Lq
≤ C||Duk −Dw||Lq + ||w||Lq
≤ C||Duk||+ C||Dw||+ ||w||
≤ C ′

having used Poincare inequality since uk

∣∣∣
∂U

= w
∣∣∣
∂U

by deifnition of admissible set (i.e. same boundary condi-

tions). Thus we have {uk} is bounded in W 1,q.

By our work before, we can find a subsequence, also called {uk}, which converges weakly in W 1,q to some
u. We show that u ∈ A. Note the boundary condition is preserved, and we can consider uk − w ∈ W 1,q

0 .
W 1,q

0 ⊆W 1,q is a closed linear subspace, so it is weakly closed (Mazur’s theorem), and hence u−w ∈W 1,q
0 (U),

i.e. the trace is correct. Also via our previous theorem

I[u] ≤ lim inf
k

I[uk] = m =⇒ I[u] = m

� Uniqueness

Theorem 3.15. Suppose that

1. L = L(p, x) does not depend on z
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2. There exists θ > 0 such that
Lpipjξ

iξj ≥ θ|ξ|2

i.e. uniform convexity for p 7→ L(p, x)

Then a minimizer u ∈ A of I is unique

Proof: Suppose u, ũ both minimizers. Then consider u+ũ
2 = v ∈ A. By uniform convexity, we have

L(p, x) ≥ L(q, x) +DpL(q, x) · (p− q) +
θ

2
|p− q|2

setting q = Dv and p = Du, we get

I[v] +

�
U

DpL(Dv, x) ·
(
Du−Dũ

2

)
+
θ

8

�
U

|Du−Dũ|2 ≤ I[u]

repeating this with q = Dv and p = ũ, we get

I[v] +

�
U

DpL(Dv, x) ·
(
Dũ−Du

2

)
+
θ

8

�
U

|Du−Dũ|2 ≤ I[ũ]

so that

I[v] +
θ

8

�
U

|Du−Dũ|2 ≤ I[u] + I[ũ]

2

i.e. I[v] does strictly better unless Du ≡ Dũ. Since the boundary conditions are the same, we have that u ≡ ũ
a.e.

(Idea: the average does better than either individual function. Now use convexity to get

L(p, x) ≥ L(q, x) +DpL(q, x) · (p− q) +
θ

2
|p− q|2

and set p = Du/p = Dũ and q = Dv )

3.2.2 Euler-Lagrange Equation

� Suppose we have a functional
L : Rn ×R× U → R

(p, z, x) 7→ L(p, z, x) ∈ R

I[w] :=

�
U

L(Dw(x), w(x), x)

for smooth functions w : U → R satisfying a boundary condition like

w
∣∣∣
∂U

= g

� Suppose we have u, a minimizer of I subject to the boundary condition. Then by the usual calculus of variations
equation, we get

Lz(Du, u, x) =
∑
i

∂xi(Lpi(Du, u, x))

which I guess we can write as
∂zL(Du, u, x) = (divx∇pL)(Du, u, x)

� Great examples

I(u) =

�
|∇u|2 ↔ ∆u = 0

I(u) =

�
1

2
aijuxiuxj − uf ↔ ∂xi(a

ijuxj ) + f = 0 = div(aijuxj ) + f

I(u) =

� √
1 + |Du|2 ↔ div

(
∇u√

1 + |Du|2

)
= 0

Respectively, these are Laplace’s equation, diverence form inhomogenous elliptic PDE, and minimal surface
equation
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3.2.3 Noether’s theorem

� We define a domain variation as follows: let ϕ : Rn × R → Rn be ϕ(x, τ) a smooth family of vector fields
satisfying ϕ(x, 0) = x. Then for small |τ |, ϕ(x, t) is smooth diffeo. We also define

v(x) = ϕt(x, 0), U(t) = ϕ(U, t)

� Given u : Rn → R smooth, consider smooth function variations w : Rn × R→ Rn, w(x, t) such that

w(x, 0) = u(x)

we write
m(x) = wt(x, 0)

and call it a multiplier

� We define

Definition 3.16. We say I[·] is invariant under the domain variations ϕ, and the function variations w
provided that �

U

L(Dw(x, t), w(x, t), x)dx =

�
U(t)

L(Du, u, x)dx

for all small |t| and all open sets U ⊆ Rn

The idea is to make w some function of ϕ∗(u).

� Noether’s theorem

Theorem 3.17. Suppose I[·] invariant under ϕ and w corresponding to some u smooth, then

∑
i

∂xi(mLpi(Du, u, x)− L(Du, u, x)vi) = m

(∑
i

d

dxi
(Lpi(Du, u, x))− Lz(Du, u, x)

)
for v = ϕ̇(x) and m = ẇ(x).

If u is a crit point of I[·], and hence solve −divx(DLp) + Lz = 0, then we have the other divergence iden-
tity

[
∑
i

∂xi(mLpi(Du, u, x)− L(Du, u, x)vi) = 0

i.e. multiply by m converts the Euler-lagrange PDE into a true divergence form PDE

Proof: Differentiate �
U

L(Dw(x, t), w(x, t), x)dx =

�
U(t)

L(Du, u, x)dx

w.r.t. time, and get �
U

DpL ·Dm+ Lzmdx =

�
∂U

Lv · νdS

now integrate by parts the LHS of the desired equation for u, using the above identity.

� Examples

1. (Translation invariance) If L = L(p, z) then we can set

ϕ(x, t) := x+ tek, w(x, t) := u(x+ tek)

where v = ek and m = uxk . Then for u a critical point, we get∑
i

(Lpi(Du, u, x)uxk − L(Du, u, x)δik)xi = 0

i.e.
div(Lpi · uxk) = L(Du, u, x)xk

for each k
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2. (Scaling invariance), consider

I[w] =

�
u

|Dw|pdx

whose minimizers solve
div(|Du|p−2Du) = 0

which is the p-laplacian equation. This is invariant for

ϕ(x, t) = etx, w(x, t) = et(n−p)/pu(etx)

then

v = x, m = Du · x+
n− p
p

u

and we get the corresponding divergence identity for u

div

([
Du · x+

n− p
p

u

]
p|Du|p−2∇u− |Du|p~x

)
= 0

3.3 Functional Analysis

Lax-Milgram, Fredholm Alternative, existence of weak solutions to 2nd order elliptic equations (Section 6.2 of Evans)

3.3.1 Lax-Milgram

Theorem 3.18. Suppose H real hilbert space and

B : H ×H → R
(i) |B(u, v)| ≤ α||u|| ||v||

(ii) β||u||2 ≤ B(u, u)

Let f : H → R bounded linear functional on H, then there exists a unique element u ∈ H such that

B(u, v) = f(v)

for all v ∈ H

Proof: As always, our main tool is Riesz-Representation (aka Hahn-Banach). For each u ∈ H, Riesz gives us a
w ∈ H such that

B(u, v) = (w, v)

Write Au = w, so
B(u, v) = (Au, v)

we claim that A : H → H is a bounded linear operator. Linearity is easy, boundedness follows by (i) used as

||Au||2 = (Au,Au) = B(u,Au) ≤ α||u|| ||Au|| =⇒ ||Au|| ≤ α||u||

We now prove: A is one to one and R(A), the range is closed. These follow from (ii):

β||u||2 ≤ B(u, u) = (Au, u) ≤ ||Au|| · ||u||
=⇒ ||Au|| ≥ β||u||

We now show R(A) = H, if not, then there exists an orthogonal complement, i.e. let S = R(A)⊥, then for all u ∈ H
and z ∈ S, we have

(Au, z) = B(u, z) = 0 =⇒
but now set u = z and use (ii). This completes the proof that A : H → H is bounded linear bijection.

Now take f ∈ H∗. Riesz tells us that f = w for some w ∈ H, i.e.

f(u) = (w, u) ∀u ∈ H

Let z = A−1(w), then
f(u) = (Az, u) = B(z, u)

and so z is the element we want. Uniqueness of z follows from (ii)
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3.3.2 Fredholm-Alternative (+ weak existence to elliptic solutions)

� Let
L = −aij(x)∂xi∂xj + bi(x)∂xi + c(x)

be a space dependent linear operator and

B(u, v) =

�
U

∑
i,j

aijuxivxj +
∑
i

viuiv + cuv

be the corresponding bilinear form

� Definitions

Definition 3.19. (i) The operator L∗, the formal adjoint of L is

L∗v = −(aijvxj )xi − bivxi + [c− bixi ]v

(ii) The adjoint bilinear form
B∗ : H1

0 ×H1
0 → R

is defined by
B∗(v, u) = B(u, v)

for all u, v ∈ H1
0 .

(iii) v ∈ H1
0 is a weak solution of the adjoint problem

L∗v = f ∈ U
v = 0 ∈ ∂U

provided
B∗(v, u) = (f, u), ∀u ∈ H1

0

� Energy Estimates

Theorem 3.20. For

B(u, v) =

�
U

aijuivj + biuiv + cuv

the operator corresponding to L, there exist constants such that

|B(u, v)| ≤ α||u||H1
0
||v||H1

0

β||u||H1
0
≤ B(u, u) + γ||u||2L2

∀u, v ∈ H1
0

Proof: The first estimate we can prove manually using that the coefficients are in L∞. For the second
condition, bound �

U

|Du|2 ≤ B(u, u) + C||u||2L2

via simple bounds: peter-paul inequality to put more weight on ||u||2L2 , and then use poincare inequality, i.e.
||Du||L2 ∼ ||u||2

H1
0
.

Note: this does not satisfy the conditions of Lax-Milgram, so often we consider modified operator Lγ = L+ γ
and Bγ(u, v) = B(u, v) + γ(u, v)

� First existence for weak solution of elliptic PDE

Theorem 3.21. There is γ ≥ 0 such that ∀µ ≥ γ and each f ∈ L2, we can find u ∈ H1
0 solving

Lu+ µu = f ∈ U
u = 0 ∈ ∂U
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Proof: Define Bµ as above. Then Bµ satisfies the hypotheses of Lax-Milgram. Fix f ∈ L2, and define
v 7→ (f, v) is a bounded linear functional on L2 and H1

0 . Lax-Milgram gives us u ∈ H1
0 such that

Bµ(u, v) = (f, v) ∀v ∈ H1
0

and so u is our weak solution.

� Existence for weak solutions (Fredholm alternative)

Theorem 3.22. Precisely one of the following holds:

1. For each f ∈ L2, there exists a unique weak solution of the boundary problem (*)

Lu = f ∈ U
u = 0 ∈ ∂U

or else, a weak solution u 6≡ 0 of the homogenous problem (**)

Lu = 0 ∈ U
u = 0 ∈ ∂U

If the homogenous problem has the solution, the dimension of solutions (call this space N) is finite and equals
the dimension of N∗, the weak solutions of

L∗u = 0 ∈ U
u = 0 ∈ ∂U

By contrast, Lu = f with 0 dirichlet data has a weak solution

(f, v) = 0, ∀v ∈ N∗

The dicotomy between the nontrivial dirichlet problem and the homogenous problem is called the Fredholm
Alternative

Proof: Choose γ so that Lax-Milgram applies to Bγ . Then for each g ∈ L2, we have a u ∈ H1
0 such that

Bγ(u, v) = (g, v) ∀v ∈ H1
0 (U)

now write u = L−1
γ (g) when the above holds.

Note that if we have a solution of (*), the boundary value problem Lu = f , if and only if

Bγ(u, v) = (γu+ f, v) ∀v ∈ H1
0 ⇐⇒ u = L−1

γ (γu+ f)

This is because Bγ(u, v) = (Lγu, v) after integration by parts. Write this as

u−Ku = h, Ku = γL−1
γ u, h = L−1

γ (f)

We now want to show that K : L2 → L2 is bounded, compact, linear operator and then apply the functional
analytic Fredholm alternative. We compute

β||u||2H1
0
≤ Bγ(u, u) = (g, u) ≤ ||g||L2 ||u||H1

0

so
||Kg||H1

0
≤ C||g||L2

but H1
0 ⊂⊂ L2 is a compact embedding by Rellich so we deduce that K is compact.

Now apply the functional analytic Fredholm Alternative, framing our original problem as

u−Ku = h

or u−Ku = 0
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In the former case, u is unique and defined for any h ∈ L2, in the latter, the space of solutions is finite
dimensional and the Fredholm alternative (for compact operators) says it is equal to the dimension of the dual
space of solutions to

v −K∗v = 0

Unravelling the definitions, we get our first two claims in the theorem.

For the last claim, we want to solve
u−Ku = h

which by the functional fredholm alternative, tells us

(h, v) = 0 ∀v s.t. v −K∗v = 0

but unravelling the definitions again, we have

0 = (h, v) =
1

γ
(Kf, v) =

1

γ
(f,K∗v) =

1

γ
(f, v)

which is what we wanted to prove

� Functional Analytic Fredholm Alternative (see Brezis)

Theorem 3.23. Let T : E → E be a compact operator, then

1. ker(I − T ) is finite dimensional

2. Ran(I − T ) is closed, and more precisely Ran(I − T ) = ker(I − T ∗)⊥

3. ker(I − T ) = {0} ⇐⇒ Ran(I − T ) = E

4. dim ker(I − T ) = dim ker(I − T ∗)

Remark The adjoint can be defined on a dense subset D(T ∗) ⊆ E and exists by Hahn-Banah. It satisfies the
fundmantel relationship

〈v, Tu〉E∗,E = 〈T ∗v, u〉E∗E , ∀u ∈ D(T ), ∀v ∈ D(T ∗)

3.4 Eigenvalues of the laplacian

Cheeger theorem for lower bounds, orthogonality of eigenfunctions on closed manifold, Faber-Kahn theorem on lower
bound for first eigenvalue for Ω ⊆ Rn, Statement of variation of first eigenvalue of laplacian with respect to the
domain , co-area formula and usage in proof

3.4.1 Cheeger theorem for lower bounds

(Schoen Yau, Chapter 3)

� Dirichlet Eigenvalue problem: Let the domain be H1
0 (M) and eigenvalues

0 < λ1 < λ2 ≤ λ3 . . .

along with functions {φi} such that

∆φi = −λφi, φi

∣∣∣
∂M

then {φi} forms an ONB for H1
0

� Neumann Eigenvalue problem: Let the domain by H1(M), with eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . .

and {φi} the corresponding eigenfunctions which forms an ONB for H1 with

∆φi = −λiφi,
∂φi
∂ν

∣∣∣
∂M

= 0, φi ∈ C∞(M)
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� Rayleigh quotient characterization

λ1 = inf
{� |∇f |2�

|f |2
∣∣∣ f ∈ H}

in particular

∀C ∈ R, C ≤ λ1 ⇐⇒
�
|∇f |2 ≥ C

�
|f |2, ∀f ∈ H

where H is the relevant set of functions we consider for the Neumann/Dirichlet problem

� Let M be compact RM

Definition 3.24. If ∂M 6= ∅, define

hD(M) = inf{V ol(∂Ω)

V ol(Ω)
| Ω ⊂⊂M}

If ∂M = ∅, define

hN (M) = inf
{ V ol(H)

min(V ol(M1), V ol(M2))
| H, hypersurface dividing M into M1,M2 with ∂M1 = ∂M2 = H

}
� Cheeger theorem

Theorem 3.25. Let M compact RM. In the Dirichlet case, λ1 ≥ 1
4h

2
d(M), in the Neumann case λ1 ≥ 1

4h
2
N (M)

Proof: Let f eigenfunction for λ1, then WLOG f > 0. Integrating

−f∆f = λf2

by parts and using f
∣∣∣
∂M

= 0, we have �
M

|∇f |2 = λ1

�
f2

Suppose that for some µ > 0

�
M

|∇ϕ| ≥ µ
�
|ϕ|, ∀ϕ ∈ C∞(M) s.t. ϕ

∣∣∣
∂M

= 0

then λ1 ≥ 1
4µ

2. This follows by holder inequality with ϕ = f2. Now by Co-Area

�
M

|∇ϕ| =
�
R

(

�
ϕ=σ

1)dσ

=

�
R

Area(ϕ = σ)dσ

=

�
R

Area(ϕ = σ)

Vol(ϕ ≥ σ)
Vol(ϕ ≥ σ)dσ

≥ inf
σ

Area(ϕ = σ)

Vol(ϕ ≥ σ)

�
R

Vol(ϕ ≥ σ)dσ

= inf
σ

Area(ϕ = σ)

Vol(ϕ ≥ σ)

�
M

|ϕ|

≥ hD(M)

�
M

|ϕ|

where the last inequality follows from the definition of hD(M).

Neumann Case: In this case, the second eigenfunction has 2 nodal domains (this is courant’s nodal domain
theorem, which is sharp for the second eigenvalue since if there was only one domain, f restricted
to the boundary would be 0 and the neumann derivative would be 0, meaning that f is 0. But
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2 is an upper bound by Courant, so it must be exactly 2) M+ and M− on which f is positive and
negative. Assume M+ has smaller volume. Then

hD(M+) ≥ hN (M)

Since f does not change sign and f
∣∣∣
∂M+

= 0, f is the eigenfuction w.r.t. dirichlet boundary conditions and

first eigenvalue λ1. But then

λ1 ≥
1

4
h2
D(M+) ≥ 1

4
h2
N (M)

which ends the proof.

Seems like the trick is using
�
|∇ϕ| ≥ µ

�
|ϕ then λ1 ≥ 1

4µ
2 and then doing co-area to get a bound on µ.

For Neumann, using courant nodal domain and reducing it to Dirichlet

3.4.2 Orthogonality of eigenfunctions on closed manifolds

� I guess the idea is that for dirichlet eigenfunctions
�
ϕ1ϕ2 =

�
1

λ1
(−∆ϕ1)ϕ2 =

1

λ1

�
ϕ1(−∆ϕ2) =

λ2

λ1

�
ϕ1ϕ2

which means that λ1 = λ2 or
�
ϕ1ϕ2 = 0

3.4.3 Faber-Kahn theorem for lower bound for first eigenvalues

� The idea is to use the co-area formula and isoperimetric inequality, which we restate

� Isoperimetric inequality

Theorem 3.26. Let M be a RM Ω a domain with compact closure in M , then there exists a constant C
independent of Ω such that

C(V ol(Ω))(n−1)/n ≤ V ol(∂Ω)

� Co-Area Formula

Theorem 3.27. Let M compact RM with boundary, f ∈ W 1,1(M), then for any nonnegative measurable
g : M → R, we have �

M

g =

�
R

(�
f=σ

g

|∇f |

)
dσ

� Note that for M compact, the sobolev inequality follows from the isoperimetric inequality and the co-area
formula

� Now we use these to prove Faber-Kahn

Theorem 3.28. Let Ω ⊂ Rn a domain, B(R) a ball in Rn of radius R such that V ol(Ω) = vol(B(R)). Then
we have λ1(Ω) ≥ λ1(B(R))

Proof: Let f the first eigenfunction with dirichlet conditions on Ω, i.e. ∆f = −λ1(Ω)f and f > 0. Construct
g : B(R)→ R+ such that

V ol(f ≥ C) = V ol(g ≥ C) ∀C > 0

g can be chosen to be radial, such that g(R) = 0. From this, we get
�

Ω

f2 =

�
R+

V ol(f2 ≥ C)dc =

�
R+

V ol(g2 ≥ C) =

�
B(R)

g2

we now show
�

Ω
|∇f |2 ≥

�
B(R)

|∇g|2 which by dividing and using the rayleigh quotient characterization of the

first eigenvalue will prove it. To show this, we comput

V ol(g = c) =

�
g=c

1 =

(�
g=c

|∇g|
�
g=c

1

|∇g|

)1/2
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by the isoperimetric inequlity, and Holder’s inequality

�
f=c

|∇f |
�
f=c

1

|∇f |
≥
(�

f=c

1

)2

= (V ol(f = c))2 ≥ (V ol(g = c))2

=

�
g=c

|∇g|
�
g=c

1

|∇g|

And now by Co-area, we have

−dV ol(f > c)

dc
=

�
f=c

1

|∇f |

−dV ol(g > c)

dc
=

�
g=c

1

|∇g|

Obviously the two expressions are equal since V ol(g > c) = V ol(f > c) for all c, which when combined gives

�
f=c

|∇f | ≥
�
g=c

|∇g|

and applying Co-area again, we get

�
Ω

|∇f |2 =

�
R+

(�
f=c

|∇f |
)
dc ≥

�
R+

(�
g=c

|∇g|
)
dc =

�
B(R)

|∇g|2

which by rayleigh quotient characterization finishes it.

The idea is to construct g radial such that V ol(g > c) = V ol(f > c). Then compare their rayleigh quo-
tients by comparing L2 norms and L2 norms of ∇f and ∇g. Note that

�
Ω
f2 =

�
R+ V ol(f

2 ≥ c) should follow
by co-area? Unsure but it makes sense though, could be a fubini theorem trick

� Note that equality will only hold if Ω = B(R), since this requires equality in the isoperimetric inequality.

3.4.4 Variation of first eigenvalue w.r.t. domain

� Idea is that we have Φ : [0, 1]× Ω→ Rn such that Φ(0, ·) = Id
∣∣∣
Ω

, and for small t, Φ(t) is a diffeo, e.g.

Φ(t) = I + tV

Let Ωt = Φ(t,Ω) and λk(t) = λk(Ωt) the kth dirichlet eigenvalue of the laplacian on Ωt. Let ut be the associated
eigenfunction so that ||ut||H1

0 (Ωt) = 1

Theorem 3.29. Let Ω bounded open set, assume λk(Ω) simple. Then t 7→ λk(t), t 7→ ut ∈ L2 are differentiable
with

λ′k(0) = −
�

Ω

div(|∇u|2V )dx

If, moreover, Ω is C2, then

λ′k(0) = −
�
∂Ω

(
∂u

∂n

)2

〈V, n〉dσ

Proof: Consider a C1 extension of u : Ω→ R to ũ : Rn → R. Define

G(t) :=

�
Ωt
|∇ũ|2dA�

Ωt
ũ2dA

Then we have that
G(t) ≥ λ1(t), G(0) = λ1(0) =⇒ G′(0) = λ′1(0)

because G− λ1 is a smooth function, positive, which achieves 0 (global min) at t = 0. We compute

Φt(x) = x+ tV +O(t2), Φ−1
t (x) = x− tV +O(t2)
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we compute

G′(0) =
(∂t

�
Ωt
|∇ũ|2dA)

∣∣∣
t=0
· 1−

�
Ω
|∇u|2 · ∂t

(�
Ωt
ũ2dA

)
(
�

Ωt
ũ2dA)2

G′(0) = (∂t

�
Ωt

|∇ũ|2dA)
∣∣∣
t=0

here we’ve used that

∂t

�
Ωt

ũ2dA =

�
∂Ω

ũ2div(V ) = 0

since u vanishes on ∂Ω. By the same reasoning, we have

�
Ωt

|∇ũ|2dA =

�
Ω

∑
i

ui(Φt)
2Φ∗t (dA)

=⇒ ∂t

�
Ωt

|∇ũ|2dA
∣∣∣
t=0

=

�
Ω

2uiV (ui)dA+

�
Ω

u2
idiv(V )dA

=

�
Ω

u2
n〈V, n〉

after integrating by parts. This gives the desired answer!

3.4.5 Co-Area formula

� Statement (Otis’ Math 258 notes)

Theorem 3.30. For (M, g) an RM and u : M → R locally lipschitz and h a measurable function, then

�
M

h|∇u| =
�
R

(�
u−1(s)

h

)
ds

Proof: Suppose ∇u 6= 0, choose coordinates so that u(x) = xn (i.e. run an implicit function theorem argument
by choosing a direction to have non-zero gradient, e.g. uxi 6= 0, and then we can replace xi → u(x)). Let this
transformation be F , then we have

g(F∗(∂xn), F∗(∂xn)) = g(du, du) = |∇u|−2

g(F∗(∂xn), F∗(∂xj )) = 0, j < n

g(∂xj , ∂xi) = δij , i, j < n =⇒ dµg = |∇u|−1dµu−1(s)ds

=⇒
�
M

w =

�
R

(
w|∇u|−1dµu−1(s)

)
ds

� There feels like some there are some holes in this proof, Not totally complete, but good enough (See here) (See
Leon’s updated lectures on geometric measure theory, or Evans Gariepy, “Measure theory and Fine properties
of functions)

� So we’re not really pushing forward ∂xi by the map (x1, . . . , xn−1)→ (x1, . . . , xn1 , u) or anything. Really we’re
just saying the coordinates are

(x1, . . . , xn−1, u)

where {x1, . . . , xn−1} are on level sets u = c. Not sure how g(∂xn , ∂xn) = |∇u|−2 comes about

3.5 Schauder Estimates

Statement of estimates, Simon’s proof of estimates by scaling, applications (e.g. regularity of harmonic functions),
Improved estimates for functions orthogonal to kernel
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3.5.1 Statement of Estimates

� The main ones I’ll be considering are first and second order estimates

Theorem 3.31. Suppose Ω ⊆ Rn open subset and u ∈ C2,α(Ω) a bounded solution of

Lu = aijuij + bkuk + cu = f

for f ∈ Cα, with coefficients in Cα and aij positive definite. Then

||u||∗C2,α ≤ K(||u||C0(Ω) + ||f ||(2)
Cα,Ω

here,
||u||∗C2,α := max(1, d2+α)||u||C2,α(Ω)

and

||f ||(2)
Cα = sup

x∈Ω
d2
x|f(x)|+ sup

x,y∈Ω
d2+α
x,y

|f(x)− f(y)|
|x− y|α

where dx is the distance from x to the boundary.

� We also want first order estimates

Theorem 3.32. Suppose Ω ⊆ Rn open subset and u ∈ C2,α(Ω) a bounded solution of

Lu = aijuij + bkuk + cu = div(V )

for f ∈ Cα, with coefficients in Cα and aij positive definite. Then

||u||∗C1,α ≤ K(||u||C0(Ω) +
∑
i

||Vi||(1)
Cα,Ω

3.5.2 Schauder Estimates by scaling

� Instead of proving the first two estimates, we will prove Simon’s estimate by scaling (skipping some details)

� Simon’s estimate is a bit strong because he only requires the semi-norm on f , e.g. [f ]α as opposed to ||f ||Cα .
Simon’s estimate certainly implies the classical estimates but its a bit curious because

∆u = 1

would give
||u||C2,α ≤ K||u||C0

when we use [f ]α and
||u||C2,α ≤ K(||u||C0 + 1)

when we use ||f ||α (Otis is also uncertain about the strength of the schauder estimate with the semi-norm vs.
the full Cα norm. Should probably just leave it for now)

� First note the interpolation inequality (not proven)

ρ|γ| sup
x∈Bρ(x0)

|Dγu| ≤ ερ2n+α[D2u]α,Bρ(x0) + C sup
x∈Bρ(x0)

(|u|)

where 0 ≤ γi ≤ 2. The proof will not be stated, but it is similar to one dimensional interpolation inequalities

� By the above, it suffices to prove
[D2u]α ≤ [Lu]α

for then, adding the above bounds for all values of γ, we get

||u||C2,α ≤ K[D2u]α + C||u||C0 ≤ K[Lu]α + C||u||C0

� We will prove this for our particular case of an elliptic second order differential operator, first with constant
coefficients
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Theorem 3.33. Suppose L = aij∂i∂j is the homogenous second order differential operator with elliptic coeffi-
cients. Then

[D2u]α,Rn ≤ C[Lu]α,Rn

Proof: This relies on the following lemma

�

Lemma 3.34. If L is a κ-homogeneous operator of order |k| = m, elliptic, and Lu = 0 in Rn, and if there are
constants such that

sup
BR(0)

|u| ≤ CRq ∀R ≥ 1

then u is a polynomial

Proof: For Ω̃ ⊂⊂ Ω and Lu = 0 inside, then we have

sup
Ω̃

|Dku| ≤ C(k, L,Ω, Ω̃)

�
Ω

|u|2, k ≥ 1

This follows by the closed graph theorem for the graph {(f,Bf)} where B : ker(L) → C0(Ω̃) given by

Bw = Dδw
∣∣∣
Ω̃

. The bound follows.

Now by homogeneity, we have

sup
BR/2

|Dγu|2 ≤ C(L, n, γ)R−2|γ||BR(y)|−1

�
BR(y)

|u|2

Sending R→∞, we see that Dγu = 0 for all k = |γ| sufficiently large, which implies that u is a polynomial.

� Proof of theorem:

Suppose the bound is false, then after normalizing, we have a sequence of function {uk} such that [D2uk]α = 1
and

[Lu]α < k−1

Find some β such that |β| = 2, along with points xk and precisions, hk, such that

h−αk |D
βuk(xk + hkei)−Dβuk(xk)| ≥ 1

4n

i.e. we point pick so that the finite holder difference is non-trivial. We can shift xk → 0 and also rescale uk’s
so that to get a new sequence {u∗k} such that

[D2u∗k]α = 1, |Dβu∗k(ei)−Dβu∗k(0)| ≥ C, [Lu∗k]α ≤ k−1

Now the idea is to define
ũk = u∗k − (its second order taylor polynomial)

Since L is homogeneous of order 2, we know that

Lũk = Lu∗k + C

for some constant C, and so
[Lũk]α = [Lu∗k]α

By Arzela ascoli, get a sequence of ũk → v converging in C2 such that v ∈ C2,α (Never thought about this,
but it is true by triangle inequality)

Dβv(ei) 6= 0, Dβv(0) = 0, [Lv]α = 0, [D2v]α ≤ 1

But [Lv]α = 0 implies that v is a constant. By construction of the ũk’s, we see that

Lv(0) = lim
k→∞

Lũk(0) = lim
k→∞

0 = 0
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(since we’ve subtracted off the second order taylar polynomial and are applying a second order operator). Thus
Lv ≡ 0, and by the lemma v is a polynomial. But now

sup
t∈R\{0}

|Dβv(tei)−Dβv(0)|
tα

= sup
t∈R\{0}

|Dβv(tei)|
tα

=∞

since α < 1 and Dβv(tei) is a non-constant polynomial in t. This contradicts [D2v]α <∞, so the initial bound
must hold!

(Ellipticity only comes in here via the lemma! From melrose)

� We now prove the slight generalization to lower order terms and variable coefficients

� First note that local estimates follow very similarly, and we have

Theorem 3.35. Suppose L is 2-homogeneous, L is elliptic, and the 2nd order taylor series of u exists (with
remainder term). Then

[D2u]Cα(Bθρ(0)) ≤ C
(
[Lu]Cα(Bρ(0)) + ρ−2n−α||u||L∞(Bρ(0))

)
where C depends only on n, θ, and L

I will not prove this in full since its essentially a modification of the original lemma on Rn with the following
lemma. The idea is to prove

[D2u]Cα(Bδσ(y)) ≤ ε[D2u]Cα(Bσ(y)) + C[Lu]Cα(Bσ(y))

i.e. for any σ, ε > 0, y ∈ Rn, there exists some δ = δ(ε) ∈ (0, 1) and C = C(ε). This is proved using the same
techniques as the Rn estimates. Now note that

[D2u]Cα(Bθσ(y)) ≤ ε[D2u]Cα(Bσ(y)) + C([Lu]Cα(Bσ(y)) + σ−2n−α||u||L∞(Bσ(y)))

for every θ ∈ (0, 1) and every Bσ(y) ⊂ Bρ(0) where C = C(ε, θ). This follows via interpolation by looking
at the quotient |h|−α|Dγu(x + hei) − Dγu(x)| and breaking it into the cases where 0 < |h| < δ(1 − θ)σ and
|h| ≥ δ(1− θ)σ. Note that the latter case is what gives the ||u||L∞ term.

Now the proof follows from the following lemma:

Lemma 3.36. If S is a monotone subadditive function on convex subsets of a ball B = Bρ0(y0) (i.e. so that
S(A) ≤

∑
j S(Aj) whenever A1, . . . , AN are given convex subsets of B with A ⊂ ∪Nj=1Aj) and if θ0 ∈ (0, 1

2 ],
k > 0 are given constants, then there is ε = ε(θ0, k) ∈ (0, 1) such that if E ≥ 0 a constant and

σkS(Bθ0σ(y)) ≤ εσkS(Bσ(y)) + E

for all balls Bσ(y) ⊂ B then for any Bρ(y)B, we have

ρkS(Bθρ(y)) ≤ CE

for each θ ∈ (0, 1) where C = C(n, θ0, θ, k)

Indeed, we let S be the holder semi-norm on some ball and E = C([Lu] + ρ−2n−α||u||L∞) and we conclude

� Variable coefficients and lower order terms:

Theorem 3.37. If L = aij(x)∂i∂j + bk(x)∂k(x) + c(x)u, then

[D2u]Cα(Bθρ(0)) ≤ C
(
[Lu]Cα(Bρ(0)) + ρ−2n−α||u||L∞(Bρ(0))

)

49



Proof: The idea is to write

L = Py +Ry =
(
aij(y)∂i∂j

)
+
(
[aij(x)− aij(y)]∂i∂j + bk(x)∂k + c(x)

)
for any y ∈ Bρ(0). Immediately, we have the estimate for Py since locally its a constant coefficient homogeneous
operator. Note that for each η ∈ (0, 1), (Honestly, no idea why this holds for all η, seems like you can just send
η → 0 and kill the [D2u]α term we have

[Ryu]Cα(Bσ(y)) ≤ CΛηα[D2u]Cα(Bσ(y)) + CΛ

1∑
i=0

σ|δ|−2n−α sup
Bσ(y)

|Dδu|

where Λ ≥ |aij(x)|, |bk(x)|, |c(x)| for all x. Now for η sufficiently small and using Pyu = Lu−Ryu, we have

[D2u]Cα(Bσ/2(y)) ≤ ε[D2u]Cα(Bησ(y)) + C([Lu]Cα(Bρ(y)) + σ−|γ| sup
Bρ(y)

|Dγu|)

Now interpolation gives

[D2u]Cα(Bσ/2(y)) ≤ ε[D2u]Cα(Bσ(y)) + C([Lu]Cα(Bρ(y)) + σ−2n−α sup
Bρ(y)

|u|)

but this is the same type of inequality as in the local estimates, so we can use the monotone subadditive
functional lemma to conclude the bound we want.

3.5.3 Applications

� Harmonic equations
∆u = 0

We can get regularity quite easily from this: Assuming that u ∈ C0 (or really, just L∞) then we have on the
interior

||u||C2,α ≤ K(||∆u||Cα + ||u||C0) =⇒ ||u||C2,α ≤ K||u||C0

So really, u ∈ L∞ lets us upgrade to u ∈ C2,α. Differentiate this equation (say we’re in the euclidean setting),
let’s us do

∆uxi = 0

and so repeating the schauder argument with ||uxi ||C2,α ≤ K||uxi ||C0 lets us conclude regularity for higher
derivatives. Repeating this ad infinitum tells us that u is smooth.

� Another application would be: for a family of solutions to some elliptic linear PDE, L, then we can use Schauder
estimates + Arzela-Ascoli + uniform boundedness of C0 norms lets us construct a subsequence which converges
to some limiting function

� Cool source for more applications

� Regularity of eigenfunctions
(∆ + λ)u = 0, L = ∆ + λ

so eigenfuntions will be regular by the same argument as above

� Regularity of Allen-Cahn solutions: we know that solutions to Allen-Cahn satisfy |u| < 1 everywhere by the
maximum principle. We use the C1,α interior schauder estimate to get

||u||C1,α ≤ K(||Lu||C0 + ||u||C0)

here we reframe the semi-elliptic PDE as a linear operator:

∆u− u(u2 − 1) = 0, L = ∆ + (1− u2)

and so Lu = 0 (since our coefficients are in L∞) and we get that

||u||C1,α ≤ K(||u||C0) ≤ K

we can differentiate Allen-Cahn and repeat this process, e.g.

∆uxi −W ′′(u)uxi = 0, L1 = ∆ + (1− 3u2)

and now we can use C2,α estimates on uxi since (1− 3u2) ∈ Cα. This gives

||uxi ||C2,α ≤ K||uxi ||C0 ≤ K||u||C1,α ≤ K2

repeating this with more derivatives gives smoothness of solutions to Allen-Cahn
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3.5.4 Improved Estimates

The idea is that suppose we have the standard Schauder interior estimate for functions u : Rn → R and an elliptic
operator L

||u||C2,α ≤ K(||Lu||Cα + ||u||C0)

Suppose that L has no kernel on whatever space we’re working on (could be C2,α or some subset thereof). Then we
can prove

||u||C2,α ≤ K||Lu||Cα

by contradiction.

Proof: It suffices to prove that
||u||C0 ≤ K||Lu||C0

Suppose not, then we have a sequence of functions {uj} such that

1

j
||uj ||C0 ≥ ||Luj ||C0

By linearity, normalize each uj so that ||uj ||C0 = 1 and there exist {pj} so that |uj(pj)| ≥ 1
2 . This tells us that

||Luj ||C0 → 0 and schauder estimates also give

||uj ||C2,α ≤ K
(

1 +
1

j

)
||uj ||C0 ≤ 2K

so we have uniform C2,α bounds. The same holds for ũj(p) = uj(p+ pj). Then we have uniform C2,α bounds which
means we get convergence in C2 (by Arzela-Ascoli) along a subsequence to some

u∞(p) = lim
j→∞

ũj(p)

Moreover, we see that |u∞(0)| ≥ 1
2 by definition of ũj(p). Then we have that

{ũj}
C2

−−→ u∞ =⇒ Lũj
C2

−−→ Lu∞ = 0

and so we’ve found u∞ ∈ ker(L) but u∞ 6= 0. This is a contradiction to the fact that u∞(p) 6= 0!

Sometimes we work on domains with boundary (i.e. the domain of {uj} lacks translation invariance by arbitrary
pj), in which case we need to be worried that the point picking argument doesn’t give |pj | → ∞. Then we need
something like the maximum principle to tell us that if |uj(pj)| > 1/2 then pj is bounded.

3.5.5 Schauder Estimates Via Green’s Function

Here, I’ll talk a little bit about how Schauder estimates for harmonic functions can be derived from the green’s
formula.

� Define the fundamental solution

Γ(x− y) = Γ(|x− y|) =

{
1

n(2−n)ωn
|x− y|2−n, n > 2

1
2π log |x− y|, n = 2

� We compute

DiΓ =
1

nωn
(xi − yi)|x− y|−n

DijΓ =
1

nωn
[|x− y|2δij − n(xi − yi)(xj − yj)]|x− y|−n−2

And we can bound

|DiΓ(x− y)| ≤ 1

nωn
|x− y|1−n

|DijΓ(x− y)| ≤ 1

nωn
|x− y|−n

|DβΓ(x− y)| ≤ C|x− y|2−n−|β|, C = C(n, |β|)
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� We have

u(y) =

�
∂Ω

(
u
∂Γ

ν
(x− y)− Γ(x− y)

∂u

∂ν

)
ds+

�
Ω

Γ(x− y)∆udx, y ∈ Ω

This follows from the general formula of

�
Ω

v∆u− u∆v =

�
∂Ω

v
∂u

∂ν
− u∂u

∂ν

and then noting that ∆Γ = δy

� We get the following on u harmonic just by differentiating

|Du(y) ≤ n

dy
sup

Ω
|u|

where dy = dist(y, ∂Ω). This also follows from the mean value property for ui, which are harmonic

ui(y) =
1

ωnRn

�
B

ui(x)dx =
1

ωnRn

�
B

〈∇u,∇xi〉dx =
1

ωnRn

�
∂B

u〈ei, ν〉 ≤
C

R
sup
∂B
|u|

� In general, we have (either by differentiating the green’s function or doing the mean value trick)

Theorem 3.38. Let u be harmonic in Ω and Ω′ any compact subset, then for any multi-index α, we have

sup
Ω′
|Dαu| ≤

(
n|α|
d

)|α|
sup

Ω
|u|

4 Topic 3: Miscellaneous

� The Allen-Cahn equation - 1-D solution, BV functions, Modica-Mortola result for BV compactness, Stability
operator, Stable solutions on R2, Modica Inequality, Monotonicity formula for E(BR(0), u), kernel classification
of L∗ = ∆g−W ′′(g), Exponential decay of solutions away from nodal set, Solutions on Sn (nodal set is equator,
two parallels), Γ-convergence of nodal sets to minimal hypersurfaces

� Wave equation - solution to linear wave equation, fundamental solution, Finite speed of propogation, mono-
tonicity of energy functional, existence of solutions to linear wave equation, uniqueness of solutions to linear
wave equation

� Ginzburg Landau - Comparison to Allen-Cahn, canonical 2D solutions, convergence of {uε} → u∗ an S1 valued
function, dependence of u∗ on dirichlet data, harmonic functions in C(Ω\{pi}ni=1, S

1)

� Poincare-Einstein metrics - graham normal form, boundary defining functions, evenness of metric, correspon-
dence between conformal infinity and einstein metric to the interior, Examples of PE spaces

4.1 Allen-Cahn Equation

4.1.1 1-D solution

For ε = 1, it is the heteroclinic given by
f ′′(t) = f(f2 − 1)

and for non-zero ε, just replace f(t)→ f(t/ε), where

f(t) = tanh(t/
√

2)

how to prove this? Note that if we frame

f ′′(t) = W ′(f(t))

=⇒ f ′′f ′ = W ′f ′

=⇒ 1

2
(f ′)2 = W (f) + C
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when C = 0, the above is equivalent to

f ′ = ± 1√
2

(1− f2)

which gives the solution. We can fix the sign by assuming that f ′(t) > 0 for all t (note: f ∈ [−1, 1] by energy
arguments, and we want f to be an energy minimizer, also if f = ±1, then maximum principle tells us f ≡ 1, so f ′

has a definitive sign). Then f(t) = tanh(t/
√

2) can be checked to be a solution (or integration). When C 6= 0, one
can show that f(t) has infinite energy by noting that the Allen-Cahn integration is given by

�
1

2
(f ′)2 +W (f)dt =

if energy is finite, then there exist points such that (f ′)2

2 +W (f)→ 0, but then from (f ′)2 = 2W (f) +C, we see that
C → 0, so C = 0.

4.1.2 BV functions

� For Ω ⊆ (M, g), a BV function is u ∈ L1(Ω) such that Du is a TM -valued Radon measure, i.e. for any
X ∈ C1

c (Ω;TM) �
Ω

udivg(X) = −
�

Ω

g(X,Du)

Then |Du| is a usual Radon measure defined by

�
Ω′
|Du| = sup{

�
Ω′
udivg(X)dµg : X ∈ C1

c (Ω′;TM), ||X||L∞ ≤ 1}

for any Ω′ ⊆ Ω, and we have the norm

||u||BV (Ω) = ||u||L1(Ω) +

�
Ω

|Du|

4.1.3 Modica-Mortola result for BV compactness/Γ-convergence of nodal sets to minimal hypersur-
faces

The main result is this proposition from Otis’ notes:

Proposition. For Ω ⊆ (M, g) a precompact open set, suppose {uε} satisfy Eε(uε; Ω) ≤ C. Then there is a subse-
quence εk → 0 and u0 ∈ BVloc(Ω) with u0 ∈ {±1} a.e. and

uεk → u0

in L1
loc(Ω). Moreover

σP ({u0 = 1}; Ω′) ≤ lim inf
k→∞

Eεk(uεk ; Ω′)

where σ = Φ(1)− Φ(−1) =
� 1

−1

√
2W (s)ds for any Ω′ compactly contained in Ω

Proof: We sketch the proof as follows:

1. Define

Φ(t) =

� t

0

√
2W (s)ds

One can compute that
|Φ(t)| ≤ α+ βW (t)

and so uniform energy bounds imply that
||Φ(uε)||L1 ≤ C

We also have

Eε(u; Ω) ≥
�

Ω

|∇gΦ(uε)|dµg
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and so Φ(uε) is in W 1,1. By BV compactness, we find v0 ∈ BVloc(Ω) so that a subsequence of Φ(uε) convergens
in L1

loc to v0 and �
Ω′
|Dv0| ≤ lim inf

k→∞
Eεk(uεk ; Ω′)

The function Φ is invertible (needs to be checked) and Φ−1 is uniformily continuous. Moreover W (t) ≥ ct4 for
t sufficiently large, so we get that

||uε||4L4 =

�
Ω

u4
ε ≤

�
Ω∩{uε<t0}

u4
ε +

�
Ω∩{uε≥t0}

u4
ε

The first integral is bounded and for the second one

�
Ω∩{uε≥t0}

u4
ε ≤ c−1

�
Ω∩{uε≥t0}

W (uε) ≤ C

and so uε ∈ L4 with uniform bounds coming from |Ω| and C, the energy bound. It suffices (because we
only care about our results up to a subsequence) to find a further subsequence from our original so that
uεk → u0 := Φ−1(v0) with convergence in L1

loc(Ω) and that u0 ∈ BVloc(Ω) with u0 = ±1 a.e. in Ω. The fact
that u0 = ±1 a.e. follows from Chebyshev:

δ2

4
µ{x ∈ Ω′ : |uεk(x)2 − 1| > δ} ≤

�
Ω′
W (uε) ≤ Cε

(remember the energy is ε|∇u|2/2 + 1
εW (u)) and the above holds for any δ > 0. Now compute

Φ(u0) = Φ(1)χu0=1 + Φ(−1)χu0=−1

= [Φ(1)− Φ(−1)]χu0=1 + Φ(−1)[χu0=−1 + χu0=−1]

= [Φ(1)− Φ(−1)]χu0=1 + Φ(−1)χΩ

a.e. in Ω, hence

�
Ω′
|DΦ(u0)| = (Φ(1)− Φ(−1))P (χu0=1; Ω′) = (Φ(1)− Φ(−1))

�
Ω′
|Du0|

which completes the proof

2. Details:
Below is the content of exercise 3.1 in the notes

� We show |Φ(t)| ≤ α+ βW (t). Note that it suffices to show this for t > 1

Φ(t) =

� t

0

√
2W (s)ds =

1√
2

� t

0

|1− s2|ds = C +
1√
2

� t

1

(s2 − 1) = C +
1√
2

(
t3

3
− t
)

but clearly a cubic is less than a quadratic (e.g. W (t)) for t large, so this is fine

� We note that Φ is continuous and increasing away from its critical points. Thus it is invertible. For
refernce, the derivative is

Φ′(t) =
√

2W (t) =
1√
2
|1− t2|

Hence

(Φ−1)′
∣∣∣
Φ(t)

=
1

|1− t2|
away from t = ±1, this is bounded above, so we have a uniform lipschitz bound. Near ±1, note that
Φ−1 is still continuous, so we can just take some δ which works as a modulus of continuity about a small
neighborhood of ±1 and then we compare this with the uniform bound we get elsewhere.
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� We want to show that that uεk → u0 =: Φ−1(v0) in measure on Ω. Recall that convergence in measure is
given by

lim
k→∞

µ(|uεk − u0| ≥ δ) = 0

for any δ ≥ 0. Set
vk = Φ−1(uεk), v0 = Φ−1(u0)

then by uniform continuity of Φ−1, we have

|uεk − u0| ≥ δ =⇒ |vk − v0| ≥ δ′(δ)

i.e.
{|uεk − u0| ≥ δ} ⊆ {|vk − v0| ≥ δ′(δ)}

but we know that (up to a subsequence

lim
k→∞

µ{|vk − v0| ≥ δ′(δ)} = 0

by convergence in BV . Thus we get convergence in measure

� We show that if (X,µ) a finite measure space, if {fi} measureable functions converging to f in measure
and ||fi||Lp(X) ≤ C for some C > 0, p > 1, then fi → f ∈ L1

Note that uniform Lp estimates for p > 1 immediately give uniform L1 estimates (call the bound C)
for fi, just by dividing X into the set where |fi| > 1 and |fi| ≤ 1. We now compute

�
X

|fi − f | =

(�
X∩|fi|≥k, or |f |≥k

+

�
X∩|fi|≤k, and |f |≤k

)
|f − fi| = I1 + I2

Note that by uniform L1 estimates, we have

µ{|fi| > k} ≤ C

k

which tends to 0 with k large. Call the first set A and the second set above B. We know that

|A| ≤ 2Cµ(X)

k
=⇒ I1 ≤

�
A

|f |+ |fi| =
�
|f |χA +

�
|fi|χA ≤ ||f ||p||χA||q + ||fi||p||χA||q ≤ C̃ · k−1/q

so I1 is negligible. For I2 we decompose B into |f − fi| ≥ δ and |f − fi| ≤ δ. On the first set, we know
that its measure is small, say less than ε for i large, and also

|f − fi| ≤ 2K

so the integrand of I2 over the first set is less than ε2K → 0. For the second set, it’s less than δµ(X)
which can also be sent to 0 with δ → 0. Thus we get L1 convergence

� We now conclude that uεk → u0 in L1(Ω′) and thus (after passing to a further subsequence via diagonal
argument) a.e. in Ω. The latter fact follows because convergence in Lp for p ≥ 1 gives a pointwise
convergent subsequence a.e. The former fact follows because we have uniform L4 bounds on {uεk}, as well
as convergence in measure of uεk → u0, so we get L1 convergence

� Note that |u0| = ±1 a.e. because we have that uεk → u0 and the convergence in measure of u2
εk
→ 1. This

is because L1 convergence implies convergence in measure from Chebyshev’s inequality and the triangle
inequality. To see that u0 ∈ BVloc, we know that u0 ∈ L1. Moreover, to show boundedness of Du as a
TM -valued Radon measure, we write

u0 = Φ−1(v0)

= 1χv0=Φ(1) + (−1)χv0=Φ(−1)

= 2χv0=Φ(1) − 1

= 1− 2χv0=Φ(−1)
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we use the last two expressions as follows: using the first, we have

�
u0divg(X) =

�
v0=Φ(1)

2divg(X) =
2

Φ(1)

�
v0=Φ(1)

v0divg(X)

�
u0divg(X) =

�
v0=Φ(−1)

−2divg(X) =
−2

Φ(−1)

�
v0=Φ(−1)

v0divg(X)

okay but now note that Φ(1) = −Φ(−1) from the definition, so we add the two lines and get

2

�
u0divg(X) =

2

Φ(1)

(�
v0=Φ(1)

+

�
v0=Φ(−1)

)
v0divg(X)

=
2

Φ(1)

�
Ω

v0divg(X)

the last expression is bounded by 2
Φ(1) ||Dv||L1 , so we see that u0 has a bounded BV norm! This was tricky

and not obvious (Another way to note this is that u0 = 1
Φ(1)v0 a.e. since we know u0 = ±1 everywhere

corresponding to when v0 = Φ(±1))

We also have the following proposition, which I will sketch

Proposition. If E ⊆ Ω set of finite perimeter, then there is a sequence uε ∈ H1(Ω) ∩ L4(Ω) with

σP (E; Ω) = lim
ε→0

Eε(uε; Ω)

and uε → χε − χΩ\E in L1(Ω)

Proof: When ∂E is smooth, basically we just paste in the heteroclinic, gε(t) cutoff to be ± outside of some
finite distance range K. Then the standard fermi computation does it, i.e. let uε = ϕ(ε−1t) where ϕ is the cut off
heteroclinic at the normal scale and cut off outside of (k ln(ε),−k ln(ε)). Then

Eε(uε; Ω) =

�
Ω

1

2ε
(ϕ′)2 + ε−1W (ϕ)dµg

=

� −kε ln(ε)

kε ln(ε)

�
Σt

(· · · )dµΣtdt

=

� −kε ln(ε)

kε ln(ε)

�
Σt

(· · · )(µ(Σ) +O(t))dt

=

� −k ln(ε)

k ln(ε)

�
Σt

(· · · )µ(Σ)dt+O(ε)

= (σ +O(εk))µ(Σ) +O(ε)

so this works. Here Σ is ∂E and σ is the energy of the heteroclinic on R, and we note that as ε → 0, the energy of
our cut-off heteroclinic converges to the energy of the heteroclinic itself (log cutoff in 1-D is okay). The first O(ε)
comes from changing coordinates t→ t/ε

4.1.4 Stability operator

For uε a solution to the ε dependent AC-equation, we have

Quε(ψ,ψ) =

�
M

(
ε|∇ψ|2 +

1

ε
W ′′(uε)ψ

2

)
dµg

Main proposition:

Proposition. If uε stable solution to AC, then

�
|∇uε|6=0

(|∇ψ|2|∇uε|2 − ((|D2uε|2 − |∇|∇uε||2) + Ricg(∇uε,∇uε))ψ2)dµg ≥ 0
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Proof: The way to prove this is to use a bochner formula for uε, plug in ψ
√
|∇uε|2 + δ2 into stability, and send

δ → 0.

Corollary 4.0.1. Suppose (Mn, g) with positive ricci curvature. Then there are no non-trivial stable solution to
allen-cahn

Proof: Note that
|∇|∇uε||2 ≤ |D2u|2

when |∇u| 6= 0. Now plug in ψ = 1 (I would prove this by computing ∇|∇uε|2 = |∇uε|(∇|∇uε|))

4.1.5 Stable solutions on R2

We have the following theorem (we work with ε = 1 since we can rescale on R2):

Theorem 4.1 ( Ghoussoub-Gui, 98). Suppose u ∈ C2(R2) a stable solution to AC with |u| ≤ 1. Then

u(x) = H(〈a, x〉 − b)

for some a ∈ S1 and b ∈ R2, where H is the heteroclinic

Proof: First note that stability implies (by the previous proposition and RicR2 ≡ 0)

�
Rn
|∇ϕ|2|∇u|2 ≥

�
|B|2ϕ2|∇u|2

where
|B|2 = |∇u|−2(|D2u|2 − |∇|∇u||2)

when |∇u| 6= 0 and |B|2 = 0 when |∇u| = 0. This is the enhanced second fundamental form, since we can think of
(−ux,−uy, 1)/

√
1 + |∇u|2 as the normal.

Now there are a few steps to show: the heteroclinic is the unique stable solution on Rn with vanishing
enhanced second fundamental form

1. Note a solution to AC cannot have ∇u = 0, else it is the constant ±1.

2. When ∇u 6= 0, |D2u|2 − |∇|∇u||2 ≥ 0 (to see this, try computing ∇|∇u|2 = |∇u|∇|∇u| in two ways!) (Here’s
the computation: It suffices to show that

|∇|∇u|2|2 ≤ 4|∇u|2 |D2u|2

Simply because the LHS is
|∇|∇u|2|2 = |2|∇u| ∇|∇u||2 = 4|∇u|2 |∇|∇u||2

and so if we’re allowed to divide by |∇u| then this is clearly equivalent to the original statement. We compute

∇|∇u|2 =
∑
i,j

2uiuijej

=⇒ |∇|∇u|2|2 = 4
∑
i,j,k

ujukuijuik = 4〈∇u ◦ (∇u)T , (D2u ◦D2u)〉

≤ 4|∇u ◦ (∇u)T ||D2u ◦D2u|

but now note that
|∇u ◦ (∇u)T | ≤ |∇u|2, |D2u ◦D2u| ≤ |D2u|2

and so
|∇|∇u|2|2 ≤ 4|∇u|2 |D2u|2

)
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3. If |B|2 = 0 on all of Rn, then ∇u
|∇u| is a parallel vector field on {∇u 6= 0}, which can be seen by computing∣∣∣D ( ∇u|∇u|) ∣∣∣.

4. By unique continuation, a solution to AC with |B|2 = 0 on all of Rn must be

u(x) = ũ(〈a, x− x0〉)

for some one dimensional function ũ.

5. If in addition to |B|2 = 0, we also assume that u is stable then ũ must be the heteroclinic (So for 1-D, solutions
to Allen-Cahn are either heteroclinic or periodic (Poincare-Bendixson). Look at the first order ODE to get
this. Periodic solutions cannot be stable. Take AC and differentiate it

u′′ = W ′(u)→ u′′′ = W ′′(u)u′

This is a homogeneous ODE i.e. even though u depends on time t, we see that both side just depend on u and
its derivatives, hence poincare-bendixson applies. Suppose u′ on some interval has 3 zeros (u′ always has zeros
because u periodic, so just choose interval large enough to have 3 zeros), then u′ is in ker(L) for L = ∂2

t −W ′′(u)
, but stability would then say that u′ is the lowest eigenfunction (on an interval which we’re periodic on), but
this can’t be the case, if u′ has 3 zeros, because first eigenfunctions are always positive on the interior. Thus
u′ can’t be periodic and we have to have that its the heteroclinic

this finishes our classification of stable solutions with vanishing second fundamental form.

Also note that by schauder estimates, because |u| ≤ 1, we have |∇u| ≤ C on Rn for C = C(n) for any AC so-
lution.

Now when n = 2, we consider cutoff functions {ϕi} such that ϕi → 1 pointwise on R2 and
�
R2 |∇ϕi|2 → 0.

We do this with a log-cutoff, ϕR. But now we use stability

lim inf
R→∞

�
R2

|∇ϕR|2|∇u|2 ≤ C2 lim inf
R→∞

�
R2

|∇ϕR|2 = 0

Moreover, because ϕR → 1 pointwise and by fatou, we have (by stability)
�
R2

|∇ϕ|2|∇u|2dµ ≥
�
R2

|B|2ϕ2|∇u|2dµ

=⇒
�
R2

|B|2|∇u|2 ≤ 0

so |B|2 ≡ 0, which tells us that the solution is one dimensional.

4.1.6 Modica Inequality

(Problem 1 in appendix B of Otis notes)

We want to show that
P = |∇u|2 − 2W (u) ≤ 0

for u ∈ C2
loc(Rn). We proceed as follows:

1. Show that infRn |∇u| = 0 - if not then we could find a path via gradient flow, call it γ(t), such that γ′ = ∇u
at any given point, and then

u(γ(t2))− u(γ(t1)) =

� t2

t1

d

dt
u(γ(t)) =

� t2

t1

∇u · γ′ =

� t2

t1

|∇u|2 ≥ (t2 − t1)C2

which would tend to infinity as t2 − t1 →∞. But then we’d get that |u| > 1 in finite time, a contradiction

2. We show that

|∇u|2∆P ≥ 1

2
|∇P |2 +W ′(u)∇u · ∇P

this just comes from computing the laplacian of P and using a bochner formula for u along with ∆u = W ′(u)
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3. We prove that P ≤ 0 if supRn P is attained somewhere in Rn. Assume supRn P = P (0) > 0. Then the laplacian
must be negative so

0 ≥ |∇u|2∆P >
1

2
|∇P |2 +W ′(u)∇u · ∇P

but ∇P = 0 at the critical point, we have
0 > 0

a contradiction. (It’s actually a bit more refined than this. Instead of direct comparison, frame this as a second
order operator on P , then use maximum principle to conclude that P is locally constant. Take care to handle
cases when |∇u| 6= 0 and |∇u| = 0. Good solution in my notes

4. If P does not attain its supremum, we still have P ≤ 0. THe idea is take {xi} such that P (xi)→ supRn P > 0.
Consider ui(x) = u(x−xi), which all have uniform C2,α bounds by schauder estimates, the allen-cahn equation,
and |ui| ≤ 1. Then by arzela-ascoli, we get convergence to some u∞ on Rn, such that P∞(0) is the maximum
of P∞

This finishes the proof. Note that if P = 0 somewhere, then we have |∇u|2 = 2W (u) at that point. Note that W (u)
is always non-zero, since |u| 6= 1 by maximum principle. Thus |∇u| 6= 0 locally and we have

0 ≥ −|∇u|2∆P +
1

2
|∇P |2 +W ′(u)∇u · ∇P

Thus the maximum principle applies (note −|∇u|2 is uniformily elliptic coefficient in a small nbd of p) and we
conclude that P = 0 locally. Clearly P = 0 is an open condition from this argument, but it’s also a closed condition
so P ≡ 0 everywhere. Now define

ϕ = H−1(u)

Then we compute

∇u = H ′(ϕ)∇ϕ =
1√
2

(1−H2)∇ϕ

and so

|∇u|2 = 2W (u) ⇐⇒ 1

2
(1−H(ϕ)2)2|∇ϕ|2 =

1

2
(1−H(ϕ)2)2 =⇒ |∇ϕ| ≡ 1

everywhere. Moreover, note that

∆u = H ′′(ϕ)|∇ϕ|2 +H ′(ϕ)∆ϕ = W ′(H(ϕ)) · 1 +H ′(ϕ)∆ϕ

=⇒ ∆u = W ′(u) +H ′(ϕ)∆ϕ

=⇒ ∆ϕ ≡ 0

so ϕ is a harmonic function with bounded derivatives. Moreover the derivatives are harmonic themselves. By liou-
ville’s theorem for bounded harmonic functions onRn (applied to the derivatives), we have that ϕi must be constant
functions, i.e. ϕ is linear! This gives us that u is the heteroclinic potentially shifted.

Note that for a manifold, and ε dependent allen-cahn, we define

P = ε|∇u|2 − 2ε−1W (u)

and one can show that if Ricg ≥ 0 then P ≤ 0. In general, even without the Ric constraint, we can prove P ≤ C.

4.1.7 Monotonicity formula for E(BR(0), u)

(Still part of problem 1 in the appendix)

We show that the energy functional

ER(u) := R1−n
�
BR(0)

(
1

2
|∇u|2 +W (u)

)
satisfies a monotonicity formula. We compute

dER(u)

dR
= −(n− 1)R−1ER +Rn

�
∂BR(0)

e(u)〈x, ν〉dµ
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where e(u) is the energy density and of course 〈x, ν〉 = 1, but we put it this way to integrate by parts and get

dER
dR

= R−n
�
BR(0)

(−P )dµ+R1−n
�
∂BR(0)

(∂νu)2

but since −P ≥ 0, we see that
dER
dR
≥ 0

which is the monotonicity. (Again, there’s more nuance to this but I do this in the minimal surface reading notes)

4.1.8 Kernel classification of L∗ = ∆g −W ′′(g)

(Problem 2 in Summer school notes)

The short is that ker(L∗) = ġ(t) where
L∗ = ∆Rn+1 −W ′′(g(t))

on Rn+1 coordinatized as (s1, . . . , sn, t). I’ll sketch the proof

1. First note that L∗(ġ) = 0 since

g̈ = W ′(g) =⇒ ˙̈g = W ′′(g)ġ = ∆Rn+1(ġ)

2. The claim is true for n = 1 - Don’t really understand Otis’ hint. The proof from Del-Pino, Kowalczyk, and
Wei is to write

w(t) = ρ(t)ġ

Then we compute �
L∗(w)w =

�
|w′|2 +W ′′(g)w2 =

�
ρ̇2ġ2

where the equality comes from integration by parts. Thus the left most is 0 if and only if ρ̇ = 0 everywhere
since ġ2 is always non-zero. Thus ρ = c. (Actually need to apply a cutoff because the second integration by
parts involves terms with ρ̇, and a priori, not sure we can integrate things like ρρ̇ġg̈ - see Otis’ email)

Otis answer: Consider f = (log(H(t))′′ and multiply by u(t)2 (an arbitrary function with compact support).
Conclude that � ∞

−∞
u′(t)2 +W ′′(H(t))u(t)2 dt =

� ∞
−∞

(H′(t)−1H′′(t)u(t)− u′(t))2 dt

0 =

� ∞
−∞

W ′′(H(t))u(t)2 −H′(t)−2H′′(t)2u(t)2 + 2H′(t)−1H′′(t)u(t)u′(t)

=

� ∞
−∞

u′(t)2 +W ′′(H(t))u(t)2 −H′(t)−2H′′(t)2u(t)2 + 2H′(t)−1H′′(t)u(t)u′(t)− u′(t)2

=

� ∞
−∞

u′(t)2 +W ′′(H(t))u(t)2 − (H′(t)−1H′′(t)u(t)− u′(t))2

Choose u(t) = w(t)ϕR where ϕR cuts off from R to 2R. Letting R→∞, conclude that

w′(t) = w(t)H′(t)−1H′′(t)

� ∞
−∞

ϕ′(t)2w(t)dt =

� ∞
−∞

(H′(t)H′′(t)ϕ(t)w(t)− ϕw′(t)− w(t)ϕ′(t))2 dt

(For what it’s worth, I think my solution replacing w = ρġ → wR = ρġϕR with ϕR a cut off at ±(R + 1)
decaying linearly with derivatives ≤ 2 works fine)
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3. When n = 1, there exists µ > 0 so that if
�
u(t)ġ = 0, then

� ∞
−∞

(u′)2 +W ′′(g)u(t)2 ≥ µ
� R

−∞
u2

To see this, note that the left hand side is �
R
L∗(u)u

by integration by parts. We actually want to prove

〈L∗(u), u〉 ≥ K||u||2H1

Suppose not. Then we get a sequence of uj each orthogonal to ġ such that

〈L∗(uj), uj〉 ≤
1

j
||uj ||2H1

normalize by ||u||2H1 and get

〈L∗(uj), uj〉 ≤
1

j

Since uj is bounded in H1, it is in particular bounded in L2 and by duality and banach alaoglu, we get weakly
convergent subsequences, u′j → g and uj → f each converging in L2. By choosing another subsequence, we get

g = f ′. Moreover, because this convergence happens in L2, we get that ||f ||H1 = 1. However,

〈L∗(f), f〉 = 0

But also if we write f(t) = ρ(t)ġ(t), then we get that ρ ≡ c 6= 0, and so

〈f, ġ〉 =

�
fġ = cσ0

but then
0 = lim

j→∞
〈uj , ġ〉 = cσ0

so c = 0 and f ≡ 0, but ||f ||H1 6= 0 a contradiction. THus the bound holds

4. For n ≥ 2, we can write
w(s, t) = c(s)ġ(t) + w(s, t)

where

c(s) = − 1

σ0
〈w(s, ·), ġ〉L2(t)

so that 〈w,w〉L2 = 0. We show that c is bounded and harmonic. This follows by writing our L∗(w) = 0

L∗ = ∂2
t + ∆Rn−1 −W ′′(g)

L∗(w) = ġ∆Rn−1c+ ∆Rn−1w + (∂2
t −W ′′(g))w = 0

multiply the above by ġ and integrate, and use that

�
(∂2
t −W ′′(g))(w)ġ = 0

�
∆Rn−1(w)ġ = 0

we see that
∆Rnc = 0

Since w is a bounded function, we have that c(s) is a bounded function as well. Thus c must be a constant.
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5. Now we prove that w = 0. Consider σ ∈ (0,
√

2), δ ∈ (0, 1), and η > 0. Define

γ(s, t) = e−σt + η cosh(δt)

n−1∑
i=1

cosh(δsi)

Then we compute

L∗(γ) = (σ2
0 −W ′′(g))e−σt + η[2δ2 −W ′′(g)] cosh(δt)

n−1∑
i=1

cosh(δsi)

we see that the above is < 0 since W ′′(g)→ 2 for |t| large, e.g. |t| > Λ > 0 for some Λ > 0.

Note that L∗(w) = 0 as well. This tells us that on t > Λ, we get

|w| ≤ ||w||L∞(eσ(Λ−t) + η cosh(δt)
∑
i

cosh(δsi))

which follows by the maximum principle applied to

w − ||w||L∞(eσ(Λ−|t|) + η cosh(δt)
∑
i

cosh(δsi))

which we see is ≤ 0 on |t| = Λ. Sending η → 0, we get

|w(s, t)| ≤ Ce−σt

By Schauder estimates, we get the same decay in t for |∇w|.

6. Consider

V (s) =

�
R
w(s, t)2dt

This integral converges uniformily in s, so we can differentiate under the integral sign, and get

∆Rn−1V =

�
R

2[(∆sw)w + |∇sw|2]

Note that we have
[∂2
t + ∆Rn−1 −W ′′(g)]w = 0

so that the above becomes

∆Rn−1V =

�
R
[−w′′w +W ′′(g)w2 + |∇sw|2]

=

�
R
(w′)2 +W ′′(g)w2 + |∇sw|2

okay but now we use the second part of this problem to get�
R
(w′)2 +W ′′(g)w2 ≥ µ

�
R
w2

and so

∆Rn−1V − µV ≥
�
|∇sw|2 ≥ 0

7. Now applying the maximum principle to V as follows: we know V is bounded since w has uniform decay. If V
achieves its maximum on Rn, call it α, then this is a contradiction to the maximum principle, since maxima can
only be attained on the boundary of a set. If V doesn’t achieve this, take translates {xi} such that V (xi)→ α,
and consider Vi(x) := V (x+xi). By schauder estimates applied to V and Arzela-ascoli, we get C2 convergence
to some V∞ which achieves its max at 0 and satisfies

∆Rn−1V∞ − µV∞ ≥ 0

so its maximum on any ball must be achieved on the boundary. But the maximum is achieved at 0, a
contradiction. Thus V∞ ≡ 0, which tells us that V ≡ 0, and so w ≡ 0
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4.1.9 Exponential decay of solutions away from nodal set

See Guaraco, “Min-Max for the Allen-Cahn equation and other topics (Princeton 2019)”

The idea is to use the same function listed above but in an ε-dependent way

γε(t) = e−σt/ε + b cosh(t/ε)

and then send b→ 0. Note that t is the signed distance from {u = 0} which we assume is a hypersurface with some
regularity. Moreover, we can do this in some small neighborhood around the level set, say |t| < −kε ln(ε).

A bit more formally following the exercise: Suppose we work on the positive side of u, then consider v = u−1, which
satisfies

0 = ε2∆g(v)− cv
L = ε2∆− c, c = u(u+ 1)

Then we have that

L(γε) = σ2ae−σt/ε + b cosh(t/ε)−Ht(−σaεe−σt/ε + εb cosh(t/ε))− c(ae−σt/ε + b cosh(t/ε))

= [σ2 +Htε− c]ae−σt/ε + [1− ε− c]b cosh(t/ε)

It is clear that because 0 < c < 2 and limt→0 εHt = 0, then we have that L(γε) > 0 as long as σ >
√

2. Thus if we
take L(γε − (u− 1)) we see that this is positive, and so the maximum must be achieved on the boundary, i.e.

γε − (u− 1) ≤

(Very confused about this... Seems like the signs don’t work out). (This paper has a good proof - lemma 4.1 and 4.2
though the way its written is a bit confusing here)

Here’s an alternate proof: I’ll first prove the following

Lemma 4.2. Given δ ∈ (0, 1) there exists ρδ > 0 such that for any solution of Allen-Cahn with |u| < 1 we have

B(x, 2ρδ) ⊆ Rn − u−1(0) =⇒ |u2 − 1| ≤ δ in B(x, ρδ)

Proof: Let φR the first eigenfunction to −∆ pn BR(0) with dirichlet conditions. Normalize so that φR(0) =
supB(0,R) φR = 1. Recall that the associated eigenvalue is λR = λ1/R

n. For δ ∈ (0, 1), chose R0 > 0 such that

−W ′(t)Rn0 ≥ λ1t

for all t ∈ [0, 1− δ]. Assume that R > R0 and B(x, 2R) ⊆ Rn−u−1(0). Also assume WLOG that u > 0 in B(x, 2R).

We claim that u ≥ 1 − δ in B(x,R). If not, there we’d find x ∈ B(x,R) such that u(x) < 1 − δ. In this case,
we deifne ε > 0 to be the largest positive real such that

u ≥ εφR(· − x)

in B(x,R). We have ε ≤ 1− δ by definition and we can find a point z ∈ B(x,R) such that

u(z) = εφR(z − x) ≤ 1− δ

By construction of R, we have

−ε∆φR =
λ1

Rn
εφR < W ′(εφR)

and since ∆u = W ′(u), we conclude

−∆(εφR − u) < 0

(Actually there’s a sign error here that I don’t know how to correct).

With this, we prove exponential decay
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Lemma 4.3. There exist constants C > 0 and α > 0 such that for any AC solution with |u| < 1 we have

|u2 − 1|+ |∇u|+ |D2u| ≤ Ce−αdist(x,u
−1(0))

Proof: Fix α > 0 such that α2 < W ′′(1) and choose δ ∈ (0, 1) close to 1 so that W ′′(t) ≥ α2 for all t ∈ [1− δ, 1].
Accordinag to the above, we know that

∀R > R0, u ≥ 1− δ ∀z ∈ B(x,R) s.t. B(x, 2R) ⊆ Rn − u−1(0)

(if u < 0 then replace the above with u ≤ δ − 1). Therefore, we have

−∆(1− u) = −W
′(u)−W ′(1)

u− 1
(1− u) ≤ −α2(1− u)

However, we also have

(∆ + α2)e−α
√

1+r2 ≥ 0

for r = |x−x|. This with the maximum principle gives the exponential decay of (1−u2) away from the zero set.

4.1.10 Solutions on Sn (nodal set is equator, two parallels)

Exercise 19 in Marco’s notes:

Consider Aτ = Sn ∩ {|xn+1| < τ}, and Sn\Aτ = D+
τ ∪ D−τ . We can take energy minimizers with dirichlet con-

ditions on xn+1 = τ - choose the ones which are positive on D±τ and negative on Aτ . Moreover, by symmetry of the
equation and domain, these solutions will only depend on xn+1 (if not, could reflect the solutions about hypersur-
faces and get another energy minimizer, contradicting uniqueness). In particular, this tells us that if uτ is the pasted
solution, then

∇uτ
∣∣∣
xn+1=τ

= Cτν

i.e. no variation along the latitude. Furthermore, we have�
Aτ

W ′(uτ ) = ε2
�
Aτ

∆uτ = ε2
�
xn+1=±τ

〈∇uτ , ν〉 = ε2Cτ |∂Aτ |

Note that |∂Aτ | is continuous in n − 1 dimensional measure, so we use this to leverage that the neumann data is
continuous in τ . In particular, we have

Cτ − Cσ =
1

|∂Aτ |

�
Aτ

W ′(uτ )− 1

|∂Aσ|

�
Aσ

W ′(uσ)

=
1

|∂Aτ |

[�
Aτ

W ′(uτ )−W ′(uσ)

]
+

1

|∂Aτ |

[(�
Aτ

−
�
Aσ

)
W ′(uσ)

]
+

(
1

|∂Aτ |
− 1

|∂Aσ|

) �
Aσ

W ′(uσ)

again, W ′(uτ ) is always bounded in magnitude by 1 so we can bound the second and third term by L|τ − σ| in
absolute value. For the first term, suppose that ||uτ −uτ+h||L1 6→ 0 as h→ 0 (say on the domain Aτ ). Then we’d get
a subsequence such that ||uτ −uτ+hi ||L1 ≥ c > 0. All of these function satisfy uniform C2,α estimates since ε is fixed,
so by Arzela-ascoli, we can find a uniformily convergent subseuqnece of uτ+hi → uτ in C2. But this contradicts the
lack of L1 convergence, since our functions are bounded and on a bounded domain. Thus

||uτ − uτ+h||L1
h→0−−−→ 0

and in particular [�
Aτ

W ′(uτ )−W ′(uσ)

]
→ 0

as σ → τ . Thus the neumann data is continuous in τ .

Fix ε small so that u1/2 is non-zero on both A1/2 and D±1/2. This is an eigenvalue issue which gives existence.

We know that for τ → 1, the minimizers on D±τ = 0, so uτ goes from being negative on Aτ to 0 on D±τ , meaning
that the neumann derivative is positive if you move towards the disks. Similarly for τ close to 0, the minimizer on
Aτ will be 0, in which case the neumann derivative is negative if you start from Aτ and move towards to the disks.
By continuity of the neumann derivative w.r.t. τ , which gives continuity of the “jump” along ∂Aτ , we conclude that
there exists some τ such that the neumann data match up.

More details here: from Surim
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4.2 Wave Equation

4.2.1 Solution to linear wave equation

� Recall that the linear wave equation is

�m = −∂2
t +

∑
i

∂2
xi

applied to functions φ : I × Rn → R

� We are interested in studying the system {
�φ = 0

(φ, ∂tφ)
∣∣∣
t=0

= (φ0, φ1)

� Assume that (φ0, φ1) ∈ C∞c (Rn)× C∞c (Rn), then we fourier transform the wave equation and get

−φ̂tt − 4π2|ξ|2φ̂ = 0

which has a general solution of

φ̂(t, ξ) = A(ξ) sin(2πt|ξ|) +B(ξ) cos(2πt|ξ|)

A(ξ) =
φ̂1(ξ)

2π|ξ|
, B(ξ) = φ̂0(ξ)

which comes from evaluating φ̂(0, ξ) and also ∂tφ̂(0, ξ) and using the initial conditions or rather their fourier
transforms

� More generall,y we just require

(φ0, φ1) = (φ, ∂tφ)
∣∣∣
t=0
∈ H1(Rn)× L2(Rn)

4.2.2 Fundamental solution

Still Jonathan’s notes

� The fundamental solution is a distribution E ∈ D ′(Rn) such that

�mE = δ0

We also have the forward fundamental solution, E+, which in addition to the above, also satisfies

supp(E+) ⊆ {(t, x) ∈ R× Rn : 0 ≤ |x| ≤ t}

� Uniqueness of forward fundamental solution

Proposition. A forward fundamental solution on Rn+1, if it exists, is unique.

Proof: Let E+ and E both be fundamental solutions. Then

E = E ∗ δ0 = E ∗ (�E+) = (�E) ∗ E+ = δ0 ∗ E+ = E+

note that this doesn’t use the fact of the supports being forward, but actually we need this to make sense of
�E ∗ E+ as a meaningful distribution, i.e. their supports have to be compatible

� Lemma

Lemma 4.4 (3.4, (3)). Let u1, u2 ∈ D′(Rn). If (−supp(u1)) ∩ (supp(u2) +K) is compact for any compact set
K, then there exists a unique distribution u such that

u ∗ ϕ = u1 ∗ (u2 ∗ ϕ)

for every ϕ ∈ C∞c (Rn)
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Note that if E and E+ have the same support restriction in the previous proposition, then −supp(E) ∩
[supp(E+) +K] will be compact since it is at most K shifted (if K is 0 the intersection is just (x, t) = (0, 0))

� We can now use the forward fundamental solution to construct the solution to the linear wave equation

Proposition. Let E+ be a forward fundamental solution to the linear wave equation on Rn+1. Then if
(φ0, φ1) ∈ C∞(Rn)× C∞(Rn), the unique solution to �φ = 0 is given by

φ(t, x) = −E+ ∗ (φ1δ{t=0})− (∂tE+) ∗ (φ0δ{t=0})

More generally, for �φ = F for F ∈ C∞(Rn), for F ∈ C∞(Rn), φ is given for t ≥ 0 by the following formula

φ(t, x) = −E+ ∗ (φ1δ{t=0})− (∂tE+) ∗ (φ0δ{t=0}) + (F1{t≥0}) ∗ E+

Proof: Just compute manually

φ1{t≥0} = (φ1{t≥0}) ∗ δ0 = (φ1{t≥0}) ∗ (�E+) = (φ1{t≥0}) ∗ (∂2
tE) + (∆φ1{t≥0}) ∗ E+

= (φ1{t≥0}) ∗ (−∂2
tE) + (∂2

t φ1{t≥0}) ∗ E+

= −(∂tφ1{t≥0}) ∗ (∂tE+)− (φδ{t=0}) ∗ (∂tE) + (∂2
t φ1{t≥0}) ∗ E+

= −(∂tφδt=0) ∗ E+ − (φδ{t=0}) ∗ (∂tE+)

here, we’ve noted that
∂t(φ1{t≥0}) = φt1{t≥0} + φδ{t=0}

and similarly with other terms.

� Here’s what the forward fundamental solution actually is

Proposition (Forward Fundamental Expression). The unique forward fundamental solution is given by

E+(t, x) = −π
(1−n)/2

2
1{t≥0}χ

−(n−1)/2
+ (t2 − |x|2)

Before we prove this, we need to recall the following:

� Recall the function

χa+(x) =
xa+

Γ(a+ 1)

which is an extension of
xa+ = 1{x≥0}x

a

for a ∈ C. Note furthermore that
d

dx
χa+(x) = χa−1

+ (x)

and also the following holds

Lemma 4.5. 1. For any k ∈ N, we have

χ−k+ (x) = δ
(k−1)
0 (x)

2. For any k ∈ N, we have

χ
−1/2−k
+ (x) =

1√
π

(
d

dx

)k(
1

x
1/2
+

)
where we understand the derivatives as distributional derivatives

� Now we partial prove lemma “Forward Fundamental Expression”:
Proof: Support properties are fine. We now show that �E+ = cnδ0 for some constant cn 6= 0, which essentially
captures the behavior we want.
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Away from 0, we have as a distribution in D ′(Rn\{0}) that

�
(
1{t≥0}χ

−(n−1)/2
+ (t2 − |x|2)

)
= 1{t≥0}�

(
χ
−(n−1)/2
+ (t2 − |x|2)

)
because we’re away from 0. Using the chain rule, we get

1{t≥0}�
(
χ
−(n−1)/2
+ (t2 − |x|2)

)
= 1{t≥0}

(
−∂t[2tχ−(n−1)/2

+ (t2 − |x|2)]− 2

n∑
i=1

∂xi

[
xiχ
−(n−1)/2
+ (t2 − |x|2)

])
= 1{t≥0}

(
−2(n+ 1)χ

−(n+1)/2
+ (t2 − |x|2)− 4(t2 − |x|2)χ

−(n+3)/2
+ (t2 − |x|2)

)
= 0

having used the chain rule and also
d

dx
χa+(x) = χa−1

+ (x)

The last equality holds since

xχa+ =
xxa+

Γ(a+ 1)
= (a+ 1)

xa+1
+

Γ(a+ 2)
= (a+ 1)χa+1

+

This tells us that �E+ is supported at {0}. Since it is a distribution and bounded in a distributional sense it
is a linear combination of δ and finitely many derivatives. By scaling, we claim that it is only a multiple of δ0,
e.g. no derivatives.

To see this, for any λ ∈ R and ϕ define ϕλ(t, x) = ϕ(λt, λx), then we have that

〈�E+, ϕλ〉 = 〈�E+, ϕ〉

This just comes from the scaling properties of E+ with its own definition (i.e. χ{t≥0} isn’t affected by scaling
and χα+(t2 − |x2|) scales like λ2α but this is exactly the extra scaling needed to cancel out the volume form
scaling).However

〈∂αδ0, ϕλ〉 = λ|α|〈∂αδ0, ϕλ〉
and so �E+ = cnδ0 and not a combination of any of its derivatives. To see that cn 6= 0 (Not sure about this,
maybe I’ll do it later)

4.2.3 Finite speed of propogation

� Two proofs, one using fundamental solution, one using energy

Proposition. Suppose φ ∈ C∞(Rn+1) is a solution to the linear wave equation with data (φ0, φ1) = (0, 0) in
{y ∈ Rn : |x− y| ≤ t} then φ(t, x) = 0

Note that what this is saying is if we fix a (t, x), then get that information about φ0(y) and φ1(y) for those
such y, then we have that φ(t, x) = 0.

Proof: Using the fundamental solution, we note that because supp(E+) ⊆ {(t, x) : 0 ≤ |x| ≤ t}, then

φ(t, x) = −E+ ∗ (φ1δ{t=0})− (∂tE+) ∗ (φ0δ{t=0})

the first integral is �
|y|≤t

E+(y)φ1(x− y)δ{t=0}

so if φ1(z) = 0 when |z − x| ≤ t, i.e. |y| ≤ t, then clearly we have the statement. Same holds for the second
integral.

Proof: (Energy) By energy methods, we have that

E(t;x,R) :=
1

2

�
B(x,R−t)

[(∂tφ)2 +
∑
i

(∂iφ)2](t, y)dy
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Suppose we’re given a (t, x). Let R = t, and note that�
B(x,t)

[(∂tφ)2 +
∑
i

(∂iφ)2](0, y)dy = 0

Then for any s < t, we have
1

2

�
B(x,t−s)

[(∂tφ)2 +
∑
i

(∂iφ)2](s, y)dy = 0

which means that ∇φ ≡ 0 on this cone about x, but with initial condition of φ0 = 0 and φ1 = 0 on this cone
as well. This means that φ(s, y) = 0 for any y ∈ B(x, t − s) for any s < t, and by continuity, φ(t, x) = 0 as
well.

4.2.4 Monotonicity of energy functional

� Energy functional is given by

E(t) =
1

2

�
Rn

[
(∂tφ)2 +

∑
i

(∂xiφ)2

]
(t, x)dx

� If we integrate φ�φ = 0, then we’ll see that energy is conserved. Alternatively, take the above, compute the
fourier transform, and then compute explicitly using the formula for φ̂ and we’ll see that the energy is time
independent

� We also have the following improved estimate

Proposition. Define, for 0 ≤ t ≤ R, the functional

E(t;x,R) :=
1

2

�
B(x,R−t)

[(∂tφ)2 +
∑
i

(∂iφ)2](t, y)dy

then E(t;x,R) is non-increasing as a function of t

Proof: The idea is to start with ∂tφ�φ = 0, and then integrate by parts to the future of {t1}×B(x,R) and to
the past of {t2}×B(x,R−t2)

⋃
({s×∂B(x,R−s)}. You can imagine this as a trapezoid in some sense, where the

flat sides give E(t1, x,R) and E(t2, xR). The slanted sides, e.g. integration over
⋃
s∈[t1,t2]({s} × ∂B(x,R− s))

has a definite sign, e.g.
� t2

t1

�
B(x,R−t)

(∂tφ�φ) (t, y)dydt

= −E(t2, x,R) + E(t1, x,R)− 1

2

� t2

t1

�
∂B(x,R−t)

[
(∂tφ)2 +

∑
i

(∂iφ)2 − 2∂tφ
∑
i

(y − x)i
|y − x|

∂iφ

]
By Cauchy schwarz, the last term is positive and so we get

E(t2, x,R) ≤ E(t1, x,R)

4.2.5 Existence of solutions to linear wave equation

� So we’ve shown existence by the fourier method (i.e. transform the linear equation and then plug in the
solution)

� Have also shown existence by convolving with fundamental solution

4.2.6 Uniqueness of solutions to linear wave equation

� Have also shown this via fourier method, and fundamental solution

� Note also that we can use energy methods to show that given 2 solutions Φ and Ψ to the linear wave equation
with the same initial conditions, (φ0, φ1), then Φ = Ψ for all (t, x). This follows by noting that Φ − Ψ has 0
initial conditions, and energy is conserved so ∇(Φ−Ψ) ≡ 0 everywhere
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4.3 Ginzburg-Landau

Main source will be Betheul-Brezis-Helein. Tbh I think I can talk about whatever with this. Maybe mention some
results by Pigati Stern on approximating minimal surfaces

4.3.1 Comparison to Allen-Cahn

� Ginzburg-Landau Functional is given by

Eε(u) =

�
G

1

2
|∇u|2 +

1

4ε2
(|u|2 − 1)

for u ∈ H1(G;C), where G is some domain

� We often want a boundary condition like
g(x) = x

on ∂G. And set H1
g the subset of complex valued functions on D with this boundary condition

� Let u be such that
min
u∈H1

g

Eε(u)

is achieved. Then {
ε2∆ = uε = uε(|uε|2 − 1) in G

uε = g on ∂G

� Main difference is that uε is complex valued, so normal PDE techniques do not work since we now have a
system of PDEs, from the above equation and decomposing

u(p) = v(p) + iw(p), v, w ∈ R

� From Pigati-Stern, if we define

Fε(v) =
1

| log ε|

�
|dv|2 +

1

4ε2
(1− |v|2)2

on complex valued maps v : M → C, then one can show that v−1(0) converges to nontrivial, stationary,
rectifiable (n− 2)-varifolds, but it is not known as of 2019 whether we can find integral varifolds this way

� Integrality is nice since its a closer analogue to finding codimension 2 hypersurfaces

4.3.2 convergence of {uε} → u∗ an S1 valued function

� The inspiration for Ginzburg-Landau was to regularize the following problem:

Given some boundary data g : ∂G → S1, can we find a minimizer of the dirichlet energy over S1 valued
functions with the right boundary data, i.e.

min
u∈H1

g(G;S1)

�
G

|∇u|2

� These are called harmonic maps, and their existence/regularity is heavily dependent on

d = deg(g, ∂G)

i.e. how much the boundary data winds

� Minimizer solves
−∆u0 = u0|∇u0|2

And when d = 0, the solution is given by
u0 = eiϕ0

for ϕ0 a real harmonic function (unique mod 2πZ) and eiϕ0 = g on ∂G
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� In this case, our solutions to the Ginzburg Landau functional converge in some sense, e.g. ||uε − u0|| → 0 in
various norms

� When d 6= 0, we have

H1
g (G;S1) = {u : G→ S1 | u

∣∣∣
∂G

= g} = ∅

for if not, then a minimizer of the energy exists, and is smooth up to ∂G. Thus there would be u ∈ C(G;S1).
But then degree theory tells us that if we have this extension to the interior, then g can be homotopied in S1

to a constant, a contradiction to the fact that d = deg(g, ∂G) 6= 0 (i.e. if G is start shaped, then WLOG x = 0

is the central point, we could define something like H(t, x) = u(tx). This is the a homotopy of g = H(1, x)
∣∣∣
∂G

to u(0) )

� The idea is to extend our domain of functions to

H1
g (G;C)

and still search for functions which are almost harmonic but we regularize (i.e. add a penalty) to force |u| to
be close to 1, e.g.

1

ε2

�
G

(|u|2 − 1)2

which make u want to be S1 valued in the limit

� We are lead to look at solutions uε which minimizer Eε as before, the issue is that
�
G

|∇uε|2 → +∞

as ε→ 0. Since otherwise if this energy was bounded, we could find a weakly convergent subsetqence uε → ũ ∈
H1
g , impossible since H1

g = ∅.

� However, for a subsequence εn, we can define

u∗(x) = lim
n
uεn(x), a.e. x ∈ G

which can be viewed as a generalized solution of finding an S1 valued harmonic map with prescribed boundary
data

� The main theorem is:

Theorem 4.6 (0.1). Assume G starshaped and d = deg(g, ∂G). Then this is a subsequence εn → 0 and exactly

d points {a1, . . . , ad} in G and a smooth harmonic map u∗ from G\{a1, . . . , ad} into S1 with u∗

∣∣∣
∂G

= g on ∂G

such that
uεn → u∗ in Ckloc(G\ ∪i {ai}) ∀k and in C1,α(G\ ∪i {ai}), ∀α < 1

In addition each singularity has degree +1 and there exist complex constants {αi} with |αi| = 1 such that∣∣∣u∗(z)− αi (z − ai)|z − ai|

∣∣∣ ≤ C|z − ai|2
4.3.3 Dependence of u∗ on dirichlet data

� In the previous section, we’ve seen how u∗ depends on g - u∗ converges to a function smooth away from the
boundary and d singularities.

� We can also prescribe the location of the singularities and minimizer of that class

� Let {b1, . . . , bd} be distinct points in G. Define

Gρ = G\ (tiB(bi, ρ))

and consider
Ep = {v ∈ H1(Gρ;S

1) s.t. v
∣∣∣
∂G

= g, deg(v, ∂B(bi, ρ)) = 1}
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then there exists a unique minimizer of

min
u∈Ep

�
Gρ

|∇u|2

and �
Gρ

|∇u|2 = πd| log ρ|+W (b) +O(ρ)

for W (b) = W (b1, . . . , bd) a renormalized energy for the configuration {b1, . . . , bd} (That I won’t define)

� As ρ→ 0, uρ converges to some u0 that has the following properties:

– u0 is a smooth harmonic map in G\ ∪i {bi}
– u0 = g on ∂G

– We have ∣∣∣u0(z)− βi
(z − bi)
|z − bi|

∣∣∣ ≤ C|z − bi|
as z → bi for all bi

– There is an explicit formula for u0 given by

u0(z) = eiϕ(z)
d∏
i=1

(z − bi)
|z − bi|

where ϕ solves {
∆ϕ = 0 in G

ϕ = ϕ0 on ∂G

and ϕ0 is define by

eiϕ(z0) = g(z)

d∏
i=1

|z − bi|
(z − bi)

4.3.4 canonical 2D solutions

� As indicated in the previous section, the canonical 2-D solution looks like (in the small ε limit)

uε ≈ eiϕ(z)
d∏
i=1

(z − bi)
|z − bi|

where {bi} are either prescribed points and we take minimizers on G\ ∪i B(bi, ρ)

� Or,

uε ≈ αi
(z − ai)
|z − ai|

near each ai, of which there are only finitely many. Here, αi is some set of constants in S1

4.3.5 Harmonic functions in C(Ω\{pi}ni=1, S
1)

� Essentially covered in the previous section, but the point is that harmonic functions mapping into C satisfies

−∆u0 = u0|∇u0|2

� If we prescribe the singularities {p1, . . . , pn}, then

u0(z) = eiϕ(z)
n∏
i=1

z − pi
|z − pi|

where ϕ(z) solves {
∆ϕ = 0 in G

ϕ = ϕ0 on ∂G
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and if we prescribe boundary data for u0 on ∂G, called g(z), then

g(z) = eiϕ0(z)
n∏
i=1

z − pi
|z − pi|

, z ∈ ∂G

which defines ϕ0

4.4 Poincare-Einstein Metrics

� See Rafe’s first paper on RV or Graham-Witten

� A metric on a manifold (or rather the Riemannian manifold itself) is said to be Poincare-Einstein if M is a
manifold with boundary, g = ρ−2g where ρ is a boundary defining function for ∂M , g is a smooth metric on
M and non-degenerate up to the boundary, and g is einstein. Recall that g being einstein means that

Ricg = κg

for κ a scalar value.

� The space of all PE metrics (with some fixed regularity) on the interior of a given manifold with boundary is
a banach manifold

� The conformal infinity map from the space of PE metrics on the interior to the space of conformal structures
on ∂M (which is also a banach manifold) is Fredholm degree 0.

4.4.1 Graham normal form/Evenness of PE metrics

� Few sources for this: Witten-Graham is good, so is Graham-Lee which says a bit technically but was probably
the first to do this. Fefferman-Graham is the most thorough but also the most technical, just read the section
on Poincare-Einstein metrics

� Most of what I wrote is from “The ambient metric”, Fefferman-Graham

� We get the definition fo asymptotically hyperbolic metrics (which Poincare-Einstein metrics are)

Definition 4.7. An asymptotically hyperbolic metric g+ is said to be in normal form relative to a metric g
in the conformal class if

g+ = r−2(dr2 + gr)

where gr is a 1-parameter family of metrics on ∂M such that g0 = g.

� We also have the following theorem on evenness

Theorem 4.8. Let (∂M, [g]) a smooth manifold of dimension ≥ 2 equipped with a conformal class. Then there
exists an even Poincare metric for (∂M, [g]). If g1

+ and g2
+ are two even Poincare metrics for (∂M, [g]) defined

on Mo, then there are subsets U1, U2 ⊆ Mo containing ∂M , and an even diffeomorphism φ : U1 → H2 such

that φ
∣∣∣
∂M

is the identity map and

– If n = dim ∂M is odd, then g1
+ − φ∗g2

+ vanishes to infinite order at the boundary

– If n = dim ∂M is even then g1
+ − φ∗g2

+ = O(rn−2)

(This is saying that given a conformal class on the boundary we can find a PE metric on the interior that agree
up to high order up to diffeomorphism). Similarly, we also have

Theorem 4.9. Let M a smooth manifold of dimension n ≥ 2 and g a smooth metric on M

– There exists an even PE metric, g+, for (∂M, [g]) which is in normal form relative to g

– Suppose that g1
+, g2

+ are even PE metrics for (M, [g]) both of which are in normal form relative to g. If n
odd, then g1

+ − g2
+ vanishes to infinite order at every point of ∂M . If n even, then g1

+ − g2
+ = O(rn−2)

Eveness of metrics
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� The idea is that the Einstein condition is second order, and very roughly, we have

∆gg = κg + l.o.t

The actual proof of this is difficult, but because ∆g is second order (though for asymptotically hyperbolic, we
expect it to look like ∆g = (r∂r)2 + w(r∂r) + l.o.t) and so we can solve for g in an even manner

� Actually I won’t prove this but just leave it at a statement, the proof is quite long

4.4.2 Boundary defining functions

� Given Mn with boundary N = ∂N , and a conformal class of metrics [k], the conformal infinity on N

� M is conformally compact, if M is a manifold with compact boundary and

∃ρ : M → R≥0 s.t. {ρ = 0} = ∂M

Moreover, we define g := ρ2g, the compactified metric so that g is a metric on all of M and

∇gρ
∣∣∣
∂M
6= 0

� ρ is called a boundary definition function (bdf)

� Note that if ϕ : M → R+, then ρ∗ = ϕρ is also a bdf, so these aren’t special

� A bdf is special if

||d log(ρ)||2g =
||dρ||2g
ρ2

= 1

� Proposition:

Proposition. For M conformally copmact and a choice of representative k0 ∈ [k], there exists a unique special
bdf for M such that

g
∣∣∣
N

= k0

Proof: The proof of this is in Witten-Graham (Lemma 2.1) - Consider ρ any defining function. Let g0 = r2
0g

and r = r0e
ω so that g = e2ωg0 and

dr = eω(dr0 + r0dω)

Then
||dr||2g = ||dr0||2 + 2r0g0(dr0, dω) + r2

0||dω||2g0

Setting this equal to 1, we get

2g0(dr0, dω) + r0||dω||2g0
=

1− ||dr0||2g0

r0

This is a first order PDE so there is a solution near the boundary with any prescribed data of ω
∣∣∣
N

4.4.3 (Statement of ) Correspondence between conformal infinity and einstein metric to the interior

Taking most of this from “Conformal invariants” by Fefferman-Graham. But I think a lot of this is in “The ambient
metric” as well

� Let Mn a manifold with conformal structure [g] and M+ = M × [0, 1]. Identify M with M × {0}. We want to
find a Poincare-metric g+ such that

– g+ has [g] as conformal infinity

– Ric(g+) = −ng+

– If we decompose
g+ = r−2

[
dr2 + g+

ij(x, r)dx
idxj

]
for r a defining function, then we also require g+

ij an even function of r
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� We have the following existence theorem

Theorem 4.10. Let n be the dimension of M

1. If n is odd, then up to diffeomorphism fixing M , there is a unique power series solution to g+ satisfying
the above constraints. If [g] is real analytic, then the power series converges so that g+ exists and r2g+ is
analytic up to the boundary

2. If n even, then there are conformal structures for which there is no formal power series solution of our
constraints

3. If Ric(g+) = −ng+ is replaced with Ric(g+) + ng+ vanish to order n − 2, then there is a formal power
series solution for g+ uniquely determined up to order n−2 and up to diffeomorphism fixing the boundary
(M is the boundary in M × [0, 1] = M+)

4.4.4 Examples of PE spaces

See this paper by Anderson “Boundary regularity, uniqueness and non-uniqueness for AH Einstein metrics”

� Hyperbolic space in the ball model. The metric is

g =
geuc

(1− r2)2

and one can check that a bdf is given by

ρ = 2
1− r
1 + r

by imposing the condition
ρ−2||dρ||2g = ∂r(log(ρ))grr = 1

� AdS-Schwarzschild metric: Let M = R2 × S2, and consider the metric

gm = V −1dr2 + V dθ2 + r2gS2(1)

for

V = 1 + r2 − 2m

r

The mass is m > 0 and r ∈ [r+,∞) where r+ is the largest root of V (r) = 0. Moreover, the θ parameter is
restricted to [0, β] such that

lim
r→r+

V 1/2 d(V 1/2)

dr
β = 2π

otherwise, the metric has a cone singularity along and normal to Σ = {r = r+}. It follows that gm smooth
everywhere when

β =
4πr+

1 + 3r2
+

As always, schwarzschild metrics are einstein, and the conformal infinity is given by S1(β) × S2(1), coming
from the restriction of our domain in the R2 component

� The above can also be done is S2 → Σg a surface of genus g ≥ 2. Then again, we have M = R2 × Σ is the
starting space with the metric

gm = V −1dr2 + V dθ2 + r2gΣg

and θ ∈ [0, β) but this time

β =
4πr+

−1 + 3r2
+

to give smoothness. The conformal infinity is given by S1(β)×Σ (Would be nice to find a bdf for this, probably
r − r+ works but then that would make the other parts of the metric degenerate at the boundary? Ask Otis)
(r = r+ is a coordinate singularity, so not the actual boundary - the actual boundary corresponds to r →∞, so
need to think about the compactification there) (First change coordinates to get rid of coordinate singularity
in the potential) (Actually bdf corresponds to r → +∞)
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