Math 258 Fall 2022: Ricci Flow with Yi Lai

Jared Marx-Kuo

Contents

1 Lecture 1: 9-27-22 3
1.1 Riemannian Geometry 3
1.2 Space of algebraic curvature tensors 4
1.3 Decomposition of Curvature Tensors 4
1.4 Einstein Equation + Ricci Flow 5
1.5 Symmetries of Ricci FLow 6
1.6 Short time existence and uniqueness 6
2 Lecture 2: 9-29-22 7
2.1 Diffeomorphism Invariance 7
2.2 Some Operators 7
2.3 Ricci DeTurk Flow 8
2.4 Harmonic Map Heat Flow 9
2.5 Solving non-linear strongly parabolic PDEs 10
3 Lecture 3: 10-4-22 10
3.1 Solving non-linear strongly parabolic PDEs 11
3.2 Evolution of Lengths 12
3.3 Distance Distortions 13
4 Lecture 4: 10-6-22 15
4.1 Uhlenbeck's trick 15
4.2 Applications of $\tilde{\nabla}$: Gradients of heat flow 16
4.3 Application 2: Evolution of Riemann Curvature Tensor 17
5 Lecture 5: 10-11-22 19
5.1 Evolution of Ric 19
5.2 Evolution of R 20
5.3 Scalar Weak maximum principle 20
5.4 Scalar Strong maximum principle 22
6 Lecture 6: 10-13-22 24
6.1 Application of WMP and SMP 24
6.2 In 2-dimension 26
6.2.1 Lower Bound 26
6.2.2 Normalized Volume 26
6.2.3 Solitons 26
6.3 Evolution of Curvature tensor 27
6.4 Curvature derivative estimates 28
7 Lecture 7: 10-18-22 29
7.1 Curvature derivative estimate 29
7.2 Shi's derivative estimates (local bounds on $\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right|$) 31
7.3 Maximal Existence Time 31
7.4 Vector valued maximum principle 33
8 Lecture 8: 10-20-22 33
8.1 Vector valued maximum principle 33
8.1.1 Application of Weak Maximum Principle 34
8.2 Linear Support Functions 36
9 Lecture 9: 10-25-22 38
9.1 Application of theorem to RF 39
10 Lecture 10: 10-27-22 42
10.1 More preserved curvature condition in $n=3$. 42
11 Lecture 11: 11-1-22 47
11.1 Hamilton's Ric >0 theorem 47
11.2 Hamilton-Ivey Pinching 48
11.3 Preserved curvature conditions for $n \geq 3$ 50
12 Lecture 12: 11-3-22 50
12.1 Generalization of WMP 50
12.2 Geometric Compactness Theorem 52
12.2.1 Examples of G-H convergence 53
13 Lecture 13: 11-10-22 54
13.1 Smooth Cheeger-Gromov Convergence 57
14 Lecture 14: 11-15-22 58
14.1 Smooth Cheeger-Gromov Convergence 58
14.2 Compactness of RF/Smooth Cheeger-Gromov-Hamilton Convergence 62
15 Lecture 15: 11-17-22 63
15.1 Application of compactness in blow-ups 63
15.2 Solitions (Revisit) 63
16 Lecture 16: 11-29-22 68
16.1 \mathcal{F}-functional and λ-invariants 68
16.2 Heat Kernels 69
16.3 \mathcal{F}-functional 71
16.4λ-invariant 73
16.4.1 Existence of minimizer and regularity 73
17 Lecture 17: 12-1-22 74
17.1 \mathcal{W}-functional 74
17.2μ-functional 75
17.3 Example: The gaussian shrinker 76
17.4 Example: $\mathbb{R}^{2} / \mathbb{Z}_{k}$ 77
17.5 No local collapsing theorem 77
18 Lecture 18: 12-6-22 79
18.1 Nash Entropy 80
$18.2 H_{n}$-center 82
19.1 Turn a RF to a metric flow . 86

Introduction

These are notes from Professor Yi Lai's Math 258 taught in Fall 2022 at Stanford. Thank you to her for a great class! In addition, thank you to Yujie Wu and Shuli Chen for their comments and pictures incorporated into these notes. These notes are not perfect, but may serve as an instructive reference for advanced ideas in Ricci Flow. Professor Lai also has a hand written version of these notes on her website.

1 Lecture 1: 9-27-22

Schedule

- RF short time existence
- Basic RF identities
- Maximum principles
- RIcci solitons
- Perelman's \mathcal{F}, \mathcal{W}, functionals
- Perelman's no-local collapsing theorem
- Bamler's compactness theory of Ricci Flows

Today: Review Riemannian Geometry - ricci curvature and its linearization

1.1 Riemannian Geometry

- Riemannian curvature tensor

$$
\begin{aligned}
X & =X^{i} \partial_{x_{i}} \\
R(X, Y) Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \\
& =R_{i j k}^{\ell} X^{I} Y^{j} Z^{k} \frac{\partial}{\partial x^{\ell}} \\
& =R_{i j k \ell} g^{\ell s} X^{i} Y^{j} Z^{k} \frac{\partial}{\partial x^{s}}
\end{aligned}
$$

We note that in the third line, Rm is a $(1,3)$ tensor, while in the fourth line it is a $(0,4)$ tensor.

- Identities

$$
\begin{gathered}
R_{i j k l}=-R_{j i k l}=-R_{i j k l}=R_{k l i j} \\
R_{i j k l}+R_{k i j l}+R_{j k i l}=0 \quad \text { (first bianchi identity) } \\
\nabla_{i} R_{j k l m}+\nabla_{j} R_{k i l m}+\nabla_{k} R_{i j l m}=0 \quad \text { second bianchi identity }
\end{gathered}
$$

- Ricci curvature

$$
\begin{gathered}
\operatorname{Ric}(X, Y)=\operatorname{Tr} R m(\cdot, X) Y=\operatorname{Ric}_{i j} X^{i} Y^{j} \\
\operatorname{Ric}_{i j}=R_{s i j}^{s}=g^{s t} R_{s i j t} \\
\operatorname{Ric}_{i j}=\operatorname{Ric}_{j i}, \quad \operatorname{Ric} \in S^{2}\left(T_{*} M\right)
\end{gathered}
$$

- Scalar Curvature

$$
\begin{gathered}
R=\operatorname{tr}_{g} \mathrm{Ric}=g^{i j} \operatorname{Ric}_{i j}=g^{i j} g^{s t} R_{s i j t} \\
g^{s t} \nabla_{s} \operatorname{Ric}_{t i}=\frac{1}{2} \nabla_{i} R \quad \text { second contracted Bianchi identity }
\end{gathered}
$$

1.2 Space of algebraic curvature tensors

Let (V, g) Euclidean vector space $n=\operatorname{dim} V<\infty\left(\right.$ e.g. $\left.T_{p} M, g_{p}\right)$. Let $\left\{e_{i}\right\}$ an onb, $S^{2}\left(\wedge_{2} V\right)=\left\{\right.$ symmetric 2 -forms on \wedge_{2} $V\}$. Define

$$
S_{B}^{2}(\wedge V)=\left\{\operatorname{Rm}=R_{i j k l}\left(e_{i} \wedge e_{j}\right) \otimes\left(e_{k} \wedge e_{l}\right) \mid R_{i j k l}\right. \text { satisfies * }
$$

(here $*$ denotes the curvature symmetries and the first bianchi identity. In fact the B subscript stands for Bianchi).

We have an algebraic curvature operator

$$
\begin{aligned}
R m & : \wedge_{2}(V) \rightarrow \wedge_{2}(V) \\
e_{i} & \wedge e_{j} \rightarrow-\frac{1}{2} R_{i j k l} e_{k} \wedge e_{l}
\end{aligned}
$$

Example: Standard sphere, $\left(S^{n}, K=1\right)$, then $\forall p \in S^{n}, R m \in S_{B}^{2}\left(\wedge_{2} T_{p} S^{n}\right)$, and

$$
R m=\mathrm{Id}
$$

because sphere has constant curvature

$$
\begin{aligned}
\operatorname{Rm}\left(e_{1} \wedge e_{2}\right) & =-\frac{1}{2} R_{12 k l} e_{k} \wedge e_{l} \\
& =-\frac{1}{2} R_{1212} e_{1} \wedge e_{2}=e_{1} \wedge e_{2} \\
& =-\frac{1}{2} R_{1221} e_{2} \wedge e_{1}
\end{aligned}
$$

1.3 Decomposition of Curvature Tensors

We have

$$
S_{B}^{2}\left(\wedge_{2} V\right)=\langle I d\rangle \oplus\langle\text { Ric }\rangle \oplus\langle\text { Weyl }\rangle
$$

Note that if K is constant then $R m=K I d$, and hence $R m \in\langle I d\rangle$

$$
R_{i j k l}=k\left(\delta_{j k} \delta_{i l}-\delta_{i k} \delta_{j l}\right)
$$

e.g. spacetime curvature (i.e. riemannian manifolds with $K=k \in \mathbb{R}$).

Now suppose that $R m \in\langle\operatorname{Ric}\rangle$, suppose Ric $=(n-2) A$, then $\operatorname{tr}(A)=0$ and

$$
R_{i j k l}=A_{i l} \delta_{j k}+A_{j k} \delta_{i l}-A_{i k} \delta_{j l}-A_{j l} \delta_{i k}
$$

If $R m \in\langle\mathrm{Weyl}\rangle$, we have $\operatorname{Ric}(R m)=0$. (Would be good to get projection maps, presumably something like

$$
R m=R g \otimes g+g \otimes(\text { Ric }-R g)+\text { else }
$$

or something).
When $n=2, S_{B}^{2}\left(\wedge_{2} V\right)=\langle I d\rangle$, e.g. 2-dimensional riemann manifold.
When $n=3$

$$
S_{B}^{2}\left(\wedge_{2} V\right)=\langle I d\rangle \oplus\langle\text { Ric }\rangle
$$

choose an onb $\left\{e_{i}\right\}$ such that

$$
\operatorname{Ric}=\left[\begin{array}{lll}
\rho_{1} & & \\
& \rho_{2} & \\
& & \rho_{3}
\end{array}\right]
$$

So the curavture operator is also diagonal and

$$
R m=\left[\begin{array}{lll}
k_{1} & & \\
& k_{2} & \\
& & k_{3}
\end{array}\right]
$$

where the rows and columns are $e_{2} \wedge e_{3}, e_{3} \wedge e_{1}, e_{2} \wedge e_{1}$, and $\rho_{1}=k_{2}+k_{3}, \rho_{2}=k_{1}+k_{3}, \rho_{3}=k_{1}+k_{2}$.
Also

$$
k_{1}=K\left(e_{2} \wedge e_{3}\right), \quad k_{2}=K\left(e_{1} \wedge e_{3}\right), \quad k_{3}=K\left(e_{1} \wedge e_{2}\right)
$$

Corollary 1.0.1. $\left(M^{3}, g\right)$ Riemannian manifold. $K \geq 0 \Longleftrightarrow R m \geq 0$
Note that $R m \geq 0$ always gives $K \geq 0$ by definition of sectional curvature. The other direcion is only true when $n \leq 3$

1.4 Einstein Equation + Ricci Flow

Let $\left(M^{n}, g\right)$ a riemannian manifold

$$
\operatorname{Ric}=\lambda g
$$

$\lambda \in \mathbb{R}$ - can prove via Schur's lemma that if λ is a scalar function (not necessarily constant), then it has to be constant everywhere.

We define Ricci Flow (Hamilton, 1982), $\left(M^{n},\left(g_{t}\right)_{t \in I}\right)$ such that

$$
\partial_{t} g_{t}=-2 \operatorname{Ric}_{g_{t}}
$$

Ex: If Ric $=\lambda g$, then

$$
g_{t}=\left\{\begin{array}{lll}
-2 \lambda t g, & t>0, & \text { if } \lambda<0 \\
g & t \in \mathbb{R}, & \text { if } \lambda=0 \\
-2 \lambda t g & t<0 & \text { if } \lambda>0
\end{array}\right.
$$

As an example, Yi draws pictures corresponding to a 2-hold torus with $K=-1$ (expanding surface), a torus with $K=0$ (Constant), and a sphere with $K=1$ (round, shrinking sphere) 1 Example: If ($\left.M_{i},\left(g_{i, t}\right)_{t \in I}\right)_{i=1,2}$

Figure 1
are ricci flows (RFs) then $\left(M_{1} \times M_{2},\left(g_{1, t}+g_{2, t}\right)_{t \in I}\right)$ is a ricci flow.
Example:

$$
S^{n} \times \mathbb{R}^{m}, \quad g_{t}=-2(n-1) t g_{S^{n}}+g_{\mathbb{R}^{m}}, \quad t<0
$$

See here 2

Figure 2

1.5 Symmetries of Ricci FLow

- Time-shift

$$
g_{t}^{\prime}=g_{t-t_{0}}, \quad t \in I+t_{0}
$$

is also a ricci flow

- Parabolic rescaling

$$
g_{t}^{\prime}=\wedge^{2} g_{\lambda-2} t \quad t \in \lambda^{2} I
$$

Check that Ricci flow equation is

$$
\partial_{t} g_{t}^{\prime}=-2 \operatorname{Ric}_{g_{\lambda-2_{t}}}=-2 \operatorname{Ric}_{\lambda^{2} g_{\lambda-2}}=-2 \operatorname{Ric}_{g_{t}^{\prime}}
$$

- Diffeomorphism invariance: If $\phi: M \rightarrow N$ diffeo, then

$$
\left(N, g_{t}\right) \mathrm{RF} \Longleftrightarrow\left(M, \phi^{*} g_{t}\right) \mathrm{RF}
$$

- Under rescaling $g_{t}^{\prime}=r^{2} g_{r^{-2} t}$, we say the scale of quantity is k if it changes by r^{k} under the rescaling.

Then for any function f, vector V, we have

$k=2$	$k=1$	$k=0$	$k=-1$	$k=-2$
$g_{i j}$	$\|V\|$	Ric		$g^{i j}$
$\|V\|^{2}$	\sqrt{t}	$\Gamma_{i j}^{k}$		$R_{i j k l}$
t		$R_{i j k}^{l}$		$\|R m\|,\|\operatorname{Ric}\|, R$
		$\nabla^{2} f, d f$		$\left\|\nabla^{2} f\right\|$
		$\nabla^{k} h$		$\nabla f=(d f)^{\sharp}$

1.6 Short time existence and uniqueness

Initial Value problem: Given (M, g), find $T>0$, and $\left(g_{t}\right)_{t \in[0, T)}$ such that

$$
\begin{gather*}
\partial_{t}=-2 \operatorname{Ric}_{g_{t}} \tag{1}\\
g_{0}=g
\end{gather*}
$$

Theorem 1.1 (Hamilton). Suppose M compact

- Existence: The above system (1) has solution for some $T>0$
- Uniqueness: If $\left(g_{i, t}\right)_{t \in\left[0, T_{i}\right)}$ with $g_{i, 0}=g$ for $i=1,2$ both RFs, then

$$
g_{1, t}=g_{2, t} \quad \forall t \in\left[0, \min \left(T_{1}, T_{2}\right)\right)
$$

This tells us that there exists a maximal Ricci Flow on each (M, g) compact, which will be unique by the above

2 Lecture 2: 9-29-22

Goal:

- Analytic Properties of Ricci Flow
- Ricci-DeTurk Flow, Harmonic map heat flow

2.1 Diffeomorphism Invariance

$$
\operatorname{Ric}_{\phi^{*} g}=\phi^{*} \operatorname{Ric}_{g}
$$

If we assume we have a flow ϕ_{s} associated to a vector field X, then

$$
\left(D\left(\operatorname{Ric}_{g}\right)\right)\left(\mathcal{L}_{X} g\right)=\frac{d}{d s}\left(\operatorname{Ric}_{\phi_{s}^{*} g}\right)=\frac{d}{d s}\left(\phi_{s}^{*} \operatorname{Ric}_{g}\right)=\mathcal{L}_{X}(\operatorname{Ric})
$$

Note that on the left hand side, we have a priori 3 derivatives of X, since we have to differentiate the metric twice to get the ricci curvature. On the right most side, we have 0 derivatives of X. In sum,

$$
D\left(\operatorname{Ric}_{g}\right)(h)=\frac{d}{d s} \operatorname{Ric}_{g+s h}
$$

One can use these two equations to derive the second contracted bianchi identity!

2.2 Some Operators

Recall: A linear differential operator, L, is elliptic if the principal symbol, $\sigma(L)(\xi)$ is an isomorphism for all $\xi \in T^{*} M$.

Ex: $L=\Delta_{g}: C^{\infty}(M) \rightarrow C^{\infty}(M),\left(M^{n}, g\right)$. Then in local coordinates we have

$$
\begin{gathered}
\Delta_{g}=g^{i j} \partial_{i} \partial_{j} \\
\sigma[\Delta](\xi)=g^{i j} \xi_{i} \xi_{j}=|\xi|_{g}^{2} \neq 0
\end{gathered}
$$

We also have the Lie Derivative:

$$
\delta^{*}: C^{\infty}\left(T^{*} M\right) \rightarrow C^{\infty}\left(S_{2} T * M\right)
$$

given by

$$
\delta^{*} W=\frac{1}{2} L_{W^{\sharp}} g
$$

where W^{\sharp} dual to W. In local coordinates, we have

$$
\left(\delta^{*} W\right)_{j k}=\frac{1}{2}\left(\nabla_{j} W_{k}+\nabla_{k} W_{j}\right)=\frac{1}{2}\left(\partial_{j} W_{k}+\partial_{k} W_{j}\right)
$$

(I guess in geodesic normal coordinates at least) so that

$$
\sigma\left[\delta^{*}\right](\xi)=\frac{1}{2}\left(\xi_{j} W_{k}+\xi_{k} W_{j}\right)
$$

The dual to δ^{*} is called the divergence,

$$
\begin{gathered}
\delta: C^{\infty}\left(S_{2} T^{*} M\right) \rightarrow C^{\infty}\left(T^{*} M\right) \\
(\delta h)_{k}=-g^{i j} \nabla_{i} h_{j k}
\end{gathered}
$$

Note that

$$
\begin{aligned}
(D \operatorname{Ric})\left(\mathcal{L}_{X} g\right) & =\mathcal{L}_{X} \operatorname{Ric} \\
X=W^{\sharp} \Longrightarrow(D \operatorname{Ric})\left(\mathcal{L}_{W^{\sharp}} g\right) & =\mathcal{L}_{W^{\sharp}} \operatorname{Ric} \\
\left((D \operatorname{Ric}) \circ \delta^{*}\right)(W) & =\frac{1}{2} \mathcal{L}_{W^{\sharp}} \operatorname{Ric} \\
0 & =\sigma\left[(D \operatorname{Ric}) \circ \delta^{*}\right](\xi)=\sigma[D \operatorname{Ric}](\xi) \circ \sigma\left[\delta^{*}\right](\xi)
\end{aligned}
$$

the last line follows since again it seems that D Ric $\circ \delta^{*}$ is a 3rd order operator, but we showed that because of the third line, this is actually first order, so $\sigma\left[D \operatorname{Ric} \circ \delta^{*}\right]=\sigma_{3}\left[D \operatorname{Ric} \circ \delta^{*}\right]=0$ since its actually first order. In particular, this tells us that

$$
\operatorname{Im}\left(\sigma\left[\delta^{*}\right](\xi)\right) \subseteq \operatorname{ker} \sigma[D \operatorname{Ric}](\xi)
$$

the left hand side is dimension n, so this says that D Ric is not elliptic. We now show

Lemma 2.1.

$$
D(-2 \operatorname{Ric})(h)_{j k}=\Delta_{j k}+g^{p q}\left(\nabla_{j} \nabla_{k} h_{q p}-\nabla_{q} \nabla_{j} h_{k p}-\nabla_{q} \nabla_{k} h_{j p}\right)
$$

This follows by computing the formula for the first variation of the christoffel symbol. Rewrite this as

$$
\begin{aligned}
D(-2 \operatorname{Ric})\left(h_{j k}\right) & =\Delta h_{j k}+g^{p q}\left(\nabla_{j} \nabla_{k} h_{q p}-\nabla_{j} \nabla_{q} h_{k p}-\nabla_{k} \nabla_{q} h_{j p}\right) \\
& +g^{p q}\left(2 R_{q j k}^{r} h_{r p}-R_{j p} h_{k q}-R_{k q} h_{j q}\right. \\
& =\Delta_{L} h_{j k}+g^{p q}\left(\nabla_{j} \nabla_{k} h_{q p}-\nabla_{j} \nabla_{q} h_{k p}-\nabla_{k} \nabla_{q} h_{j} p\right) \\
& =\Delta_{L} h_{j k}+\nabla_{j} \nabla_{k} g^{p q} h_{q p}-\nabla_{j} g^{p q} \nabla_{q} h_{k p}-\nabla_{k} g^{p q} \nabla_{g} h_{j p} \\
& =\Delta_{L} h_{j k}-\nabla_{j} \nabla_{k} \operatorname{tr}(h)-\nabla_{j}(\delta h)_{k}-\nabla_{k}(\delta h)_{j} \\
& =\Delta_{L} h_{j k}-\nabla_{j} \nabla_{k} \operatorname{tr}(h)-2 \delta^{*}(\delta h)_{j k}
\end{aligned}
$$

where

$$
\Delta_{L}=\Delta_{g}+g^{p q}\left(2 R_{q j k}^{r} h_{r p}-R_{j p} h_{k q}-R_{k q} h_{j q}\right.
$$

is the Lichnerowicz laplacian, and in the fourth line we've used that the metric is compatible with the connection (torsion free or something) to commute connection with metric coefficients. We also have
Proposition 1. Choose a background metric \bar{g}, and let

$$
W_{j}=g_{j k} g^{p q}\left(\Gamma_{p q}^{k}-\bar{\Gamma}_{p q}^{k}\right)
$$

then

$$
D\left(-2 \text { Ric }+\nabla_{i} W_{j}+\nabla_{j} W_{i}\right)(h)=\Delta_{L} h+\text { first order terms in } h
$$

i.e. the operator on the left is strongly elliptic

Proof: We compute

$$
\begin{aligned}
D\left(W_{j}\right)(h) & =g_{j k} g^{p q} D\left(\Gamma_{p q}^{k}\right)(h)+\text { zero order terms in } h \\
& =g_{j k} g^{p q} \cdot \frac{1}{2} g^{k l}\left(\nabla_{q} h_{l p}+\nabla_{p} h_{l q}-\nabla_{l} h_{p q}\right) \\
& =\frac{1}{2} g^{p q}\left(\nabla_{q} h_{j p}+\nabla_{p} h_{j q}-\nabla_{j} h_{p q}\right)+\text { z.o.t } \\
& =(\delta h)_{j}-\frac{1}{2} \nabla_{j} \operatorname{tr}(h)+\text { z.o.t }
\end{aligned}
$$

where z.o.t. denotes "zeroth order terms." This tells us that

$$
D\left(\nabla_{i} W_{j}+\nabla_{j} W_{i}\right)(h)=\nabla_{i}(\delta h)_{j}+\nabla_{j}(\delta h)_{i}-\nabla_{i} \nabla_{j} \operatorname{tr}(h)+(\text { first order terms })
$$

2.3 Ricci DeTurk Flow

Choose a background metric \bar{g}. Then a metric, \tilde{g}, satisfies Ricci-DeTurk Flow if

$$
\left(\partial_{t} \tilde{g}_{t}\right)_{i j}=-2\left(\operatorname{Ric}_{\tilde{g}_{t}}\right)_{i j}+\nabla_{i} W_{j}+\nabla_{j} W_{i}
$$

where the connections are taken w.r.t. \tilde{g}_{t} and where

$$
\left(W_{t}\right)_{l}=\tilde{g}_{l k} \tilde{g}^{i j}\left(\tilde{\Gamma}_{i j}^{k}-\bar{\Gamma}_{i j}^{k}\right)
$$

where the t subindex denotes time. Note that the Ricci-DeTurk Flow equation is a strongly elliptic PDE, so it should satisfy short time existence and uniqueness.

We now want to compare Ricci flow and Ricci-DeTurk flow. Recall for $\chi:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ a map between two riemannian manifolds, we have that

$$
\Delta_{g_{1}, g_{2}} \chi=\sum_{i=1}^{n}\left(\nabla_{d \chi\left(e_{i}\right)}^{g_{2}} d \chi\left(e_{i}\right)-d \chi\left(\nabla_{e_{i}}^{g_{1}} e_{i}\right)\right)
$$

where $\left\{e_{i}\right\}$ is an onb on M_{1}. Now consider (M, g) and $\left(M, \tilde{g}_{t}\right)$, let

$$
W^{\sharp}:=\Delta_{\tilde{g}_{t}, g} I d
$$

then

$$
\partial_{t} \tilde{g}_{t}=-2 \operatorname{Ric}_{\tilde{g}_{t}}+\mathcal{L}_{W^{\sharp}} \tilde{g}_{t}
$$

2.4 Harmonic Map Heat Flow

Let $\left\{\chi_{t}\right\}$ a family of diffeos such that $\chi_{0}=I d$. Then we say that χ_{t} satisfies the harmonic map heat flow if

$$
\partial_{t} \chi_{t}=\Delta_{g_{t}, \bar{g}} \chi_{t}
$$

when $\left\{g_{t}\right\}$ is a Ricci Flow. We now connect the Harmonic Map Heat Flow to Ricci De Turk Flow 3

Figure 3

Proposition 2. If $\left(M, g_{t}\right)$ is a Ricci Flow and $\left\{\chi_{t}\right\}$ a harmonic map heat flow w.r.t. $\left\{g_{t}\right\}$, then $\left(M, \tilde{g}_{t}=\right.$ $\left.\left(\chi_{t}\right)_{*} g_{t}\right)$ is a Ricci De Turk Flow, and vice versa, i.e. if \tilde{g}_{t} a Ricci-De-Turk Flow and $\left\{\chi_{t}\right\}$ a harmonic map heat flow (still w.r.t. $\left\{g_{t}\right\}$) then $g_{t}=\left(\chi_{t}\right)^{*} \tilde{g}_{t}$ is a Ricci Flow

A natural question, if $\left\{\chi_{t}\right\}$ is always defined w.r.t $\left\{g_{t}\right\}$, then how can we go from \tilde{g}_{t}, a RDTF to $\left\{g_{t}\right\}$ a RF without having $\left\{g_{t}\right\}$ in the first place? To resolve this, we compute

$$
\begin{aligned}
\partial_{t} g_{t} & =\partial_{t}\left(\chi_{t}^{*} \tilde{g}_{t}\right)=\chi_{t}^{*}\left(\partial_{t} \tilde{g}_{t}\right)+\chi_{t}^{*}\left(\mathcal{L}_{\partial_{t} \chi_{t}} \tilde{g}_{t}\right) \\
& =\chi_{t}^{*}\left(\partial_{t} \tilde{g}_{t}\right)+\chi_{t}^{*}\left(\mathcal{L}_{\Delta_{\tilde{g}_{t}, \bar{g}} I d} \tilde{g}_{t}\right) \partial_{t} \chi_{t} \\
& =\Delta_{g_{t}, \bar{g}} \chi_{t} \\
\partial_{t} \chi_{t} \circ \chi_{t}^{-1} & =\left(\Delta_{g_{t}, \bar{g}} \chi_{t}\right) \circ \chi_{t}^{-1}=\Delta_{\tilde{g}_{t}, \bar{g}} I d
\end{aligned}
$$

where the last line follows from the diffeomorphism invariance of the laplacian. But now plugging this identity into the second line (and using the definition of RDTF flow), we get

$$
\partial_{t} g_{t}=\chi_{t}^{*}\left(-2 \operatorname{Ric}\left(\tilde{g}_{t}\right)\right)=-2 \operatorname{Ric}\left(\chi_{t}^{*} \tilde{g}_{t}\right)=-2 \operatorname{Ric}_{g_{t}}
$$

This tells us that given the correspondence between $\left\{g_{t}\right\} \leftrightarrow\left\{\tilde{g}_{t}\right\}$, the harmonic map heat flow, $\left\{\chi_{t}\right\}$ actually satisfies both of

$$
\begin{align*}
& \partial_{t} \chi_{t}=\left(\Delta_{\tilde{g}_{t}, \bar{g}} I d\right) \circ \chi_{t}, \quad \tilde{g}_{t} \text { a RDTF } \tag{2}
\end{align*}
$$

i.e. $\left\{\chi_{t}\right\}$ satisfying either of the above is equivalent.

We now show existence of Ricci Flow: If we solve for \tilde{g}_{t} a Ricci flow, then use the above to solve for $\left\{\chi_{t}\right\}$ a harmonic map heat flow, we have via our proposition

$$
g_{t}:=\chi_{t}^{*} \tilde{g}_{t}
$$

is a Ricci Flow. This gives short time existence.

Uniqueness: Essentially the same idea, but we formulate it in full: given $\left\{g_{t}^{i}\right\}$ ricci flows for $i=1,2$ and g_{0}^{1}, g_{0}^{2}, use (2) to solve for χ_{t}^{i}. Then via our proposition,

$$
\tilde{g}_{t}^{i}:=\left(\chi_{t}^{i}\right)_{*} g_{t}
$$

are RDTF flows with $\tilde{g}_{0}^{1}=\tilde{g}_{0}^{2}$. But now uniqueness of RDTF flow tells us that

$$
\tilde{g}_{t}^{1}=\tilde{g}_{t}^{2}
$$

for all t in our maximal interval. But then by (3), we have that

$$
\chi_{t}^{1}=\chi_{t}^{2}
$$

for all t because the harmonic map heat flow is strongly parabolic. Finally, this gives

$$
g_{t}^{1}=g_{t}^{2}
$$

for all t.

2.5 Solving non-linear strongly parabolic PDEs

We have a few non-linear strongly parabolic PDES: RDTF (Ricci De Turk Flow), HMHF (Harmonic Map Heat Flow).

Let (M, g) compact Riemannian Manifold, (E, h) euclidean (real?) Vector Bundle over M with metric connection (e.g. $S^{2} T_{*} M$). Moreover, let $\left(U_{t}\right)_{t \in[0, \tau)}$ smooth family of sections of E, (RDTF: $\left.\tilde{g}_{t}\right)$. Want to solve

$$
\begin{aligned}
\partial_{t} u_{t} & =a^{i j}\left(u_{t}, x, t\right) \nabla_{i j}^{2} u_{t}+f\left(u_{t}, \nabla u_{t}, x, t\right) \\
u_{0} & =\tilde{u}
\end{aligned}
$$

Assume

$$
a^{i j} \geq C g^{i j}
$$

for some uniform $C>0$. We have short time existence and uniqueness
Theorem 2.2. The above system has a unique solution for some $\tau>0$

3 Lecture 3: 10-4-22

Today's goals:

- Non-linear parabolic PDE
- Evolution of length, distance
- Evolution of volume form

3.1 Solving non-linear strongly parabolic PDEs

We have

$$
\begin{gather*}
\partial_{t} u_{t}=a^{i j}\left(u_{t}, x, t\right) \nabla_{i j}^{2} u_{t}+f\left(u_{t}, \nabla u_{t}, x, t\right) \tag{4}\\
u_{0}=\tilde{u}
\end{gather*}
$$

for \tilde{u} given. We have ellipticity

$$
a^{i j} \geq c g^{i j}
$$

for some $c>0$. Then
Theorem 3.1. System (4) has a unique solution for some small $\tau>0$.
Proof: Let

$$
U_{\tau}:=\left\{u \in C^{2 m+2,2 \alpha ; m+1, \alpha}(M \times[0, \tau] ; E) \mid u(\cdot, 0)=0\right\}
$$

where $C^{k, \beta ; k^{\prime}, \beta^{\prime}}$ denotes regularity separately in spatial and time directions. Here, E is some bundle, e.g. bundle of symmetric 2 -forms. Similarly

$$
V_{\tau}=C^{2 m, 2 \alpha ; m, \alpha}(M \times[0, \tau], E)
$$

for some τ small and determined later. We now consider the differential map

$$
\begin{gathered}
F_{\tau}: U_{\tau} \rightarrow V_{\tau} \\
u \mapsto \partial_{t}-a^{i j}\left(u_{t}, x, t\right) \nabla_{i j}^{2} u_{t}-f\left(u_{t}, \nabla u_{t}, x, t\right)
\end{gathered}
$$

Our goal is to find a u such that $F(u)=0$ and $u \in U_{\tau}$. Of course, we do this by some implicit function

Figure 4
theorem or contraction map. Let

$$
\bar{u}_{t}=t f(0,0, x, t)
$$

Then we see that

$$
F_{t}\left(\bar{u}_{t}\right)(\cdot, t=0)=0
$$

So

$$
\lim _{\tau \rightarrow 0}\left\|F_{\tau}\left(\bar{u}_{t}\right)\right\|=0
$$

we now want to show that F_{τ} is non-degenerate as τ goes to 0 so we can truly find a zero. Consider the linearization of F_{τ} at $u=\bar{u}=\bar{u}_{\tau}$

$$
\begin{aligned}
& L_{\tau}=\left(D F_{\tau}\right)_{\bar{u}}=\partial_{t}-a^{i j}(\bar{u}, x, t) \nabla_{i j}^{2}-b^{i} \nabla_{i}-C \\
& L_{\tau}: U_{\tau} \rightarrow V_{\tau}
\end{aligned}
$$

parabolic schauder estimate $\Longrightarrow\|\hat{u}\|_{U_{\tau}} \leq C\left(\left\|L_{\tau} \hat{u}\right\|_{V^{\tau}}+\|\hat{u}\|_{C^{0}}\right)$
here C is independent of τ. But now we claim that

$$
\|\hat{u}\|_{C^{0}} \leq C\left\|L_{\tau} \hat{u}\right\|_{V^{\tau}}
$$

Proof: Denote $A=\left\|L_{\tau} \hat{u}\right\|_{V_{\tau}}$. Then

$$
\begin{gathered}
\partial_{t} \hat{u}-a^{i j} \nabla_{i j} \hat{u}-b^{i} \nabla_{i} \hat{u}-c \hat{u} \leq\left\|L_{\tau} \hat{u}\right\|_{C^{0}} \leq A \\
\left(\partial_{t}-a^{i j} \nabla_{i j}-b^{i} \nabla_{i}\right) \hat{u} \leq A+c \hat{u} \leq A+C\|\hat{u}\|_{C^{0}} \\
\text { maximum principle } \Longrightarrow \hat{u}(\cdot, t) \leq\left(A+C\|\hat{u}\|_{C^{0}}\right) \cdot t
\end{gathered}
$$

This last line follows by comparing \hat{u} with the following function

$$
u \text { s.t. } \partial_{t} u=A+C\|\hat{u}\|_{C^{0}}=\tilde{C}
$$

i.e. $\partial_{t} u$ is a constant. This is a bit opaque, but I guess the idea is to

$$
\begin{gathered}
\left(\partial_{t}-a^{i j} \nabla_{i j}-b^{i} \nabla_{i}\right) \hat{u} \leq A+C\|\hat{u}\|_{C^{0}} \\
\partial_{t} u=A+C\|\hat{u}\|_{C^{0}}
\end{gathered}
$$

and to subtract the two or something. Now choose τ very small such that $c \cdot \tau \leq \frac{1}{2} \Longrightarrow \hat{u}_{t} \leq C \cdot A$.
We now do the same argument but with the reverse sign, i.e.

$$
\hat{u}_{t} \geq-C A
$$

to get that $\left\|\hat{u}_{t}\right\| \leq C \cdot A$, which means that

$$
\begin{gathered}
\|\hat{u}\|_{V^{\tau}} \leq C\left\|L_{\tau} \hat{u}\right\|_{V_{\tau}} \\
\Longrightarrow\left\|L_{\tau}^{-1}\right\| \leq C
\end{gathered}
$$

Seems like the crux of this proof is the parabolic maximum principle.
We also need to check

$$
\left\|D^{2} F_{\tau}\right\| \leq C
$$

But Yi asks that we do it on our own. Once we have this, the Inverse function theorem implies that F_{τ} is invertible on

$$
S=B_{U_{\tau}}\left(\bar{u}, r_{0}\right) \subseteq U_{\tau}
$$

where r_{0} is independent of τ. But now the invertibility of L_{τ} says that balls of a given radius in U_{τ} will yield balls of comparable radius under L_{τ}, i.e.

$$
F_{\tau}\left(B_{U_{\tau}}\left(\bar{u}, r_{0}\right)\right) \supseteq B_{V_{\tau}}\left(F_{\tau}(\bar{u}), c r_{0}\right)
$$

for some $c>0$ independent of τ. But now, note that for τ sufficiently small, we have $F_{\tau}\left(\bar{u}_{t}\right) \rightarrow 0$ as $\tau \rightarrow 0$, so if we choose τ small so that $\left\|F_{\tau}(\bar{u})\right\| \leq \frac{1}{2} c r_{0}$, then we're done.

3.2 Evolution of Lengths

Let $\gamma:[a, b] \rightarrow M$, a C^{1} curve then

$$
\frac{d}{d t} \ell_{t}(\gamma)=\frac{d}{d t} \int_{a}^{b}|\dot{\gamma}(s)|_{g_{t}} d s=-\int_{a}^{b} \frac{\operatorname{Ric}(\dot{\gamma}(s), \dot{\gamma}(s))}{|\dot{\gamma}(s)|} d s
$$

assuming that $\left\{g_{t}\right\}$ is a Ricci Flow

Figure 5

3.3 Distance Distortions

Let $x, y \in M$ compact, $t_{0} \in I$. Let γ be a minimizing geodesic (w.r.t. $g_{t_{0}}$) parameterized w.r.t. arclength from $x \rightarrow y$. Then

$$
d_{t}(x, y) \leq \ell_{t}(\gamma)
$$

The right hand side is an upper barrier of $d_{t}(x, y)$ at t_{0}, with equality holding at $t=t_{0}$.
Now by the same argument as in viscosity solutions, we have that

$$
\begin{aligned}
& \left.\frac{d}{d t^{-}}\right|_{t=t_{0}} d_{t}(x, y) \geq\left.\frac{d}{d t}\right|_{t=t_{0}} \ell_{t}(\gamma)=\int_{0}^{d=d_{t_{0}}(x, y)}-\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) d s \\
& \left.\frac{d}{d t^{+}}\right|_{t=t_{0}} d_{t}(x, y) \leq\left.\frac{d}{d t}\right|_{t=t_{0}} \ell_{t}(\gamma)=\int_{0}^{d=d_{t_{0}}(x, y)}-\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) d s
\end{aligned}
$$

having used that the geodesics are unit speed parameterized w.r.t. $g_{t_{0}}$. Then
Theorem 3.2. If $k_{1} g_{t} \leq \operatorname{Ric} \leq k_{2} g_{t}$ for all $t \in I$, then for $t_{1}<t_{2}$ we have

$$
e^{-k_{2}\left(t_{2}-t_{1}\right)} d_{t_{1}}(x, y) \leq d_{t_{2}}(x, y) \leq e^{-k_{1}\left(t_{2}-t_{1}\right)} d_{t_{1}}(x, y)
$$

Remark $k_{1}, k_{2} \in \mathbb{R}$ arbitrary, i.e. not necessarily positive nor negative. But if $k_{1}>0$, then we essentially have a shrinker and is $k_{2}<0$ we have an expander.
Proof: Integrate our left and right hand derivative bounds.

We also have
Theorem 3.3 (Hamilton, distance shrinking estimate). If $\operatorname{Ric}_{g_{t}} \leq r^{-2} g_{t}$ on $B_{t}(x, r) \cup B_{t}(y, r)$, then

$$
\frac{d}{d t^{-}} d_{t}(x, y) \geq-c_{n} r^{-1}
$$

where c_{n} is a dimensional constant but not dependent on the ambient manifold.
Corollary 3.3.1. If Ric $\leq k g$ in $B_{t}(x, r) \cup B_{t}(y, r)$ then for $t_{1}<t_{2}$, we have

$$
d_{t_{2}}(x, y) \geq d_{t_{1}}(x, y)-c_{n} \sqrt{k}\left(t_{2}-t_{1}\right)
$$

We now prove the Hamilton theorem
Proof: Choose $\gamma:[0, d] \rightarrow M$, a minimizing geodesic paramterized w.r.t. arclength between x, y, w.r.t. g_{t}. Case 1: $d_{t}(x, y) \leq 2 r$. Then

Figure 6

$$
\frac{d}{d t^{-}} d_{t}(x, y) \geq-\int_{0}^{d} \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) d s \geq-r^{-2} d_{t}(x, y) \geq-2 r^{-1}
$$

by using our assumption of $-\operatorname{Ric}_{g_{t}} \geq-r^{-2} g_{t}$.
Case 2: $d_{t}(x, y)>2 r$, then define $\left\{\gamma_{u}(s)\right\}, u \in(-\epsilon, \epsilon)$, a variation of $\gamma=\gamma_{0}(s)$, such that $\gamma_{u}(0)=x$ and $\gamma_{u}(1)=y$. We now look at the variational vector field

Figure 7

$$
V(s)=\left.\frac{d}{d u}\right|_{u=0} \gamma_{u}(s), \quad \text { s.t. } \quad V(0)=V(d)=0
$$

because γ_{0} is a minimizing geodesic, then we compute

$$
E(u)=\frac{1}{2} \int_{0}^{d}\left|\gamma_{u}^{\prime}(s)\right|^{2} d s
$$

In particular

$$
0 \leq\left.\frac{d^{2}}{d u^{2}}\right|_{u=0} E(u)=\int_{0}^{d}\left[\left|V^{\prime}(s)\right|^{2}-R(V(s), \dot{\gamma}, \dot{\gamma}, V)\right] d s
$$

from the second variation formula. Now we use this to derive our result, in particular, choose a parallel orthornormal frame $\left\{e_{1}(s), \ldots, e_{n}(s)\right\}$, with $e_{1}(s)=\dot{\gamma}(s)$. Let $\varphi:[0, d] \rightarrow[0,1]$, a bump function with $\varphi \equiv 1$ on $[r, d-r]$ and $\left|\varphi^{\prime}\right| \leq \frac{10}{r}$

Now let $V(s)=\varphi(s) e_{i}(s)$ for $i=2, \ldots, n$. Then

$$
0 \leq \int_{0}^{d}\left[|\dot{\varphi}|^{2}-\varphi^{2} R\left(e_{i}, e_{1}, e_{1}, e_{i}\right)\right] d s
$$

Figure 8
sum over $i=2, \ldots, n$. Then we have that

$$
\begin{aligned}
& 0 \leq \int_{0}^{d}(n-1)\left|\varphi^{\prime}(s)\right|^{2}-\varphi(s)^{2} \operatorname{Ric}\left(e_{1}, e_{1}\right) d s \\
\Longrightarrow & \int_{0}^{d} \varphi^{2}(s) \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) d s \leq(n-1) \int_{0}^{d}\left|\varphi^{\prime}(s)\right|^{2} d s
\end{aligned}
$$

But also by construction of the bump function we have

$$
\begin{aligned}
\int_{0}^{d}\left(1-\varphi^{2}(s)\right) \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) d s & =\int_{[0, r] \cup[d-r, d]}\left(1-\varphi^{2}(s)\right) \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) d s \\
& \leq 2 r r^{-2}=\frac{2}{r} \\
\Longrightarrow \int_{0}^{d} \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) d s & \leq \frac{100(n-1)}{r}+\frac{2}{r}=\frac{c_{n}}{r} \\
\Longrightarrow \frac{d}{d t^{-}} d_{t}(x, y) & \geq \frac{-c_{n}}{r}
\end{aligned}
$$

Ending the proof.
We now show how volume changes under ricci flow:
Theorem 3.4. For a ricci flow, $\frac{d}{d t} d V o l_{g_{t}}=-R d V o l_{g_{t}}$
Proof: Use the ricci flow equation

$$
\partial_{t} g_{t}=-2 \operatorname{Ric}_{g_{t}}
$$

4 Lecture 4: 10-6-22

Today:

- Uhlenbeck's trick
- Gradient of heat flows
- Evolution of curvature tensor

4.1 Uhlenbeck's trick

Let $\left\{e_{i}\left(t_{0}\right)\right\}_{i=0}^{n}$ onb of $\left(T_{p} M,\left(g_{t_{0}}\right)_{p}\right)$ such that

$$
\frac{d}{d t} e_{i}(t)=\operatorname{Ric}_{t}\left(e_{i}(t)\right), \quad e_{i}\left(t_{0}\right)=e_{i}\left(t_{0}\right)
$$

where we make sense of Ric_{t} : Vectors \rightarrow Vectors by sharping it we note that

$$
\frac{d}{d t} g_{t}\left(e_{i}(t), e_{j}(t)\right)=-2 \operatorname{Ric}_{t}\left(e_{i}(t), e_{j}(t)\right)+\operatorname{Ric}_{t}\left(e_{i}(t), e_{j}(t)\right)+\operatorname{Ric}\left(e_{i}(t), e_{j}(t)\right)=0
$$

so $\left\{e_{i}(t)\right\}$ is an onb of $\left(T_{p} M,\left(g_{t}\right)_{p}\right)$ for some small interval in time about t_{0}.
This inspires us to look at the geometry of M in this time dependent but orthornormal frame. We define

$$
\begin{aligned}
& \operatorname{proj}_{M}: M \times I \rightarrow M \\
& \operatorname{proj}_{I}: M \times I \rightarrow I \\
& T^{\text {spat }}(M \times I)=\operatorname{proj}^{*}(T M)=\operatorname{ker}(d t) \subseteq T(M \times I)
\end{aligned}
$$

$\left\{\right.$ time-dependent vector field on $\left.M,\left\{X_{t}\right\}_{t \in I}\right\} \stackrel{1-1}{\leftrightarrow}\left\{X \in \Gamma\left(T^{\text {spat }}(M \times I)\right):\right.$ section of $\left.T^{\text {spat }}(M \times I)\right\}$

Figure 9
the idea is that X_{t} just a vector field on M, so it cannot have ∂_{t} components but it still has time dependence so we can lift it to $T(M \times I)$ with 0 component on $T I$ (see fig 9 For $X \in \Gamma\left(T^{\text {spat }}(M \times I)\right.$), define a connection $\tilde{\nabla}$ by

$$
\begin{aligned}
\tilde{\nabla}_{v} X & =\nabla_{v}^{g_{t}} X=\nabla_{v} X \in T_{(p, t)}^{s p a t}(M \times I) \\
\tilde{\nabla}_{\partial_{t}} X & =\partial_{t} X-\operatorname{Ric}_{t}(X) \\
\tilde{\nabla}_{\partial_{t}} e_{i}(t) & =0
\end{aligned}
$$

Here, I believe $\partial_{t} X$ means differentiate the coefficients of X at a fixed point $p \in M$.

Theorem 4.1. $\tilde{\nabla}$ is a metric connection on $\left(T^{\text {spat }}(M \times I), \operatorname{proj}_{M}^{*} g_{t}\right)$
Proof: Let $\left\{X_{t}\right\}_{t \in I},\left\{Y_{t}\right\}_{t \in I} \in \Gamma\left(T^{s p a t}(M \times I)\right)$. Then

$$
\begin{aligned}
\frac{d}{d t} g_{t}\left(X_{t}, Y_{t}\right) & =-2 \operatorname{Ric}_{t}\left(X_{t}, Y_{t}\right)+g_{t}\left(\partial_{t} X_{t}, Y_{t}\right)+g_{t}\left(X_{t}, \partial_{t} Y_{t}\right) \\
& =g_{t}\left(\tilde{\nabla}_{\partial_{t}} X_{t}, Y_{t}\right)+g_{t}\left(X_{t}, \tilde{\nabla}_{\partial_{t}} Y_{t}\right)
\end{aligned}
$$

Corollary 4.1.1. We have

$$
\begin{aligned}
\tilde{\nabla}_{v}(X \otimes Y) & =\left(\tilde{\nabla}_{v} X\right) \otimes Y+X \otimes\left(\tilde{\nabla}_{v} Y\right) \\
\left(\tilde{\nabla}_{v} \alpha\right)^{\sharp} & =\text { tilde } \nabla_{v}\left(\alpha^{\sharp}\right)
\end{aligned}
$$

where α is a 1 -form

4.2 Applications of $\tilde{\nabla}$: Gradients of heat flow

Let $u \in C^{2}(M \times I)$ and

$$
\partial_{t} u_{t}=\Delta_{g_{t}} u_{t}
$$

implicitly coupled with Ricci flow. Then

$$
\partial_{t} d u_{t}=d \partial_{t} u_{t}=d \Delta_{g_{t}} u_{t}=\Delta_{g_{t}} d u_{t}+\operatorname{Ric}\left(d u_{t}\right)
$$

where the last equality is by Bochner's formula. Here d is the exterior derivative on just the spatial component.
Note:

$$
\begin{aligned}
\left(\tilde{\nabla}_{\partial_{t}} \alpha_{t}\right)(v) & =\partial_{t}\left(\alpha_{t}(v)\right)-\alpha_{t}\left(\tilde{\nabla}_{\partial_{t}} v\right) \\
& =\partial_{t}\left(\alpha_{t}(v)\right)-\alpha_{t}\left(\partial_{t}(v)-\operatorname{Ric}_{t}(v)\right) \\
& =\left(\partial_{t} \alpha_{t}\right)(v)+\operatorname{Ric}\left(\alpha_{t}\right) \\
\Longrightarrow \tilde{\nabla}_{\partial_{t}} \alpha_{t} & =\partial_{t} \alpha_{t}+\operatorname{Ric}\left(\alpha_{t}\right)
\end{aligned}
$$

Applying this for $\alpha=d u_{t}$, we get

$$
\begin{aligned}
& \tilde{\nabla}_{\partial_{t}} d u_{t}=\partial_{t}\left(d u_{t}\right)+\operatorname{Ric}_{t}\left(d u_{t}\right) \\
\Longrightarrow & \tilde{\nabla}_{\partial_{t}} d u_{t}=\Delta_{g_{t}} d u_{t}
\end{aligned}
$$

Next we reduce

$$
\begin{aligned}
\tilde{\nabla}_{\partial_{t}}\left(\nabla u_{t}\right) & =\tilde{\nabla}_{\partial_{t}}\left(d u_{t}\right)^{\sharp} \\
& =\left(\tilde{\nabla}_{\partial_{t}} d u_{t}\right)^{\sharp} \\
& =\left(\Delta_{g_{t}} d u_{t}\right)^{\sharp} \\
& =\Delta_{g_{t}} \nabla_{g_{t}} u \\
& =\Delta \nabla u
\end{aligned}
$$

where we've applied commutativity of the connection and sharping multiple times. Now we note

$$
\begin{aligned}
\partial_{t}|\nabla u|^{2} & =2\left\langle\tilde{\nabla}_{\partial_{t}} \nabla u, \nabla u\right\rangle_{g_{t}} \\
& =2\langle\Delta \nabla u, \nabla u\rangle_{g_{t}} \\
& =\Delta|\nabla u|^{2}-2\left|\nabla^{2} u\right|^{2}
\end{aligned}
$$

where the last line probably follows by a bochner formula. We also compute

$$
\begin{aligned}
\partial_{t}|\nabla u|^{2} & =2|\nabla u| \partial_{t}|\nabla u| \\
\Delta|\nabla u|^{2} & =2(\Delta|\nabla u|)|\nabla u|+\left.2|\nabla| \nabla u\right|^{2} \\
\partial_{t}|\nabla u| & =\Delta|\nabla u|+2\left(|\nabla| \nabla u \|^{2}-\left|\nabla^{2} u\right|^{2}\right)
\end{aligned}
$$

by Kato's inequality, we have

$$
|\nabla| \nabla u\left|\left.\right|^{2}-\left|\nabla^{2} u\right|^{2} \leq 0\right.
$$

which follows from $|\nabla| u||\leq|\nabla u|$. This implies that

$$
\partial_{t}|\nabla u| \leq \Delta|\nabla u|
$$

as a consequence of the above, if $|\nabla u|(\cdot, 0) \leq C$, then by the maximum principle, we have

$$
|\nabla u(\cdot, t)| \leq C
$$

4.3 Application 2: Evolution of Riemann Curvature Tensor

First, choose X, Y, Z time independent vector fields on M that commute with each other and ∂_{t}, i.e.

$$
0=\partial_{t} X=\partial_{t} Y=\partial_{t} Z=[X, Y]=[Y, Z]=[X, Z]=\left[\partial_{t}, X\right]=\left[\partial_{t}, Y\right]=\left[\partial_{t}, Z\right]
$$

(I think last three are superfluous requirements?) Moreover, at (p_{0}, t_{0}), we want

$$
\nabla^{g_{t_{0}}} X=\nabla^{g_{t_{0}}} Y=\nabla^{g_{t_{0}}} Z=0
$$

We compute the curvature of $\tilde{\nabla}$

$$
\begin{aligned}
\left\langle R\left(\partial_{t}, X\right) Y, Z\right\rangle & =\left\langle\tilde{\nabla}_{\partial_{t}} \tilde{\nabla}_{X} Y-\tilde{\nabla}_{X} \tilde{\nabla}_{\partial_{t}} Y, Z\right\rangle \\
& =\left\langle\partial_{t}\left(\nabla_{X} Y\right)-\operatorname{Ric}\left(\nabla_{X} Y\right)-\tilde{\nabla}_{X}\left(\partial_{t} Y-\operatorname{Ric}_{t}(Y)\right), Z\right\rangle
\end{aligned}
$$

at (p_{0}, t_{0}, we know that $\nabla_{X} Y=0$, and also use time independence to get

$$
\begin{aligned}
\left\langle R\left(\partial_{t}, X\right) Y, Z\right\rangle & =\left\langle\partial_{t} \nabla_{X} Y+\nabla_{X}(\operatorname{Ric}(Y)), Z\right\rangle \\
& =\frac{1}{2} \partial_{t}(X\langle Y, Z\rangle+Y\langle X, Z\rangle-Z\langle X, Y\rangle)+\nabla_{X} \operatorname{Ric}(Y, Z)
\end{aligned}
$$

Note that even though $\nabla_{X} Y=0$ and $\partial_{t} X=\partial_{t} Y=0, \partial_{t} \nabla_{X} Y$ may be non zero since $\nabla=\nabla^{g_{t}}$ is a time dependent connection. In the last line, we used the Koszul formula and also the fact that $\nabla_{X} Y=\nabla_{X} Z=0$ and comptability of the connection to get $\left(\nabla_{X} \operatorname{Ric}\right)(Y, Z)=\nabla_{X}(\operatorname{Ric}(Y, Z))$.

Now we use the Ricci flow equation and get

$$
\begin{aligned}
\left\langle R\left(\partial_{t}, X\right) Y, Z\right\rangle & =\frac{1}{2} \partial_{t}(X\langle Y, Z\rangle+Y\langle X, Z\rangle-Z\langle X, Y\rangle)+\nabla_{X} \operatorname{Ric}(Y, Z) \\
& =-X \operatorname{Ric}(Y, Z)-Y \operatorname{Ric}(X, Z)+Z \operatorname{Ric}(X, Y)+\nabla_{X} \operatorname{Ric}(Y, Z) \\
& =-\nabla_{X} \operatorname{Ric}(Y, Z)-\nabla_{Y} \operatorname{Ric}(X, Z)+\nabla_{Z} \operatorname{Ric}(X, Y)+\nabla_{X} \operatorname{Ric}(Y, Z) \\
& =-\nabla_{Y} \operatorname{Ric}(X, Z)+\nabla_{Z} \operatorname{Ric}(X, Y)
\end{aligned}
$$

now we take $\left\{e_{i}\right\}$ an orthonormal basis with $\nabla e_{i}=0$ at $\left(p_{0}, t_{0}\right)$. Then

$$
\begin{aligned}
\left\langle R\left(\partial_{t}, X\right) Y, Z\right\rangle & =-\nabla_{Y} \operatorname{Ric}(X, Z)+\nabla_{Z} \operatorname{Ric}(X, Y) \\
& =\sum_{i=1}^{n}-\nabla_{Y} R\left(X, e_{i}, e_{i}, Z\right)+\nabla_{Z} R\left(X, e_{i}, e_{i}, Y\right) \\
& =\sum_{i=1}^{n}-\nabla_{e_{i}} R\left(X, e_{i}, Y, Z\right) \quad \text { 2nd Bianchi Identity }
\end{aligned}
$$

2nd Bianchi identity is

$$
\nabla_{i} R_{j k l m}+\nabla_{j} R_{k i l m}+\nabla_{k} R_{i j l m}=0
$$

In sum, this tells us that

$$
\tilde{R}\left(\partial_{t}, X\right) Y=\sum_{i=1}^{n}-\left(\nabla_{e_{i}} R\right)\left(X, e_{i}\right) Y
$$

Now we recall the definition of the covariant derivative of a tensor, still for X, Y, Z, nice time-independent vectors with our initial assumption:

$$
\begin{aligned}
\left(\tilde{\nabla}_{\partial_{t}} R\right)(X, Y) Z & =\tilde{\nabla}_{\partial_{t}}(R(X, Y) Z)-R\left(X, \tilde{\nabla}_{\partial_{t}} Y\right) Z-R(X, Y) \tilde{\nabla}_{\partial_{t}} Z \\
& =\tilde{\nabla}_{\partial_{t}}\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z\right)+R(\operatorname{Ric}(X), Y) Z+R(X, \operatorname{Ric}(Y)) Z+R(X, Y) \operatorname{Ric}(Z) \\
& =\nabla_{X} \tilde{\nabla}_{\partial_{t}} \nabla_{Y} Z+\tilde{R}\left(\partial_{t}, X\right) \nabla_{Y} Z-\nabla_{Y} \tilde{\nabla}_{\partial_{t}} \nabla_{X} Z-\tilde{R}\left(\partial_{t}, Y\right) \nabla_{X} Z \\
& +[R(\operatorname{Ric}(X), Y) Z+R(X, \operatorname{Ric}(Y)) Z+R(X, Y) \operatorname{Ric}(Z)] \\
& =\nabla_{X}\left(\nabla_{Y} \tilde{\nabla}_{\partial_{t}} Z+\tilde{R}\left(\partial_{t}, Y\right) Z\right)-\nabla_{Y}\left(\nabla_{X} \tilde{\nabla}_{\partial_{t}} Z+\tilde{R}\left(\partial_{t}, X\right) Z\right) \\
& +[R(\operatorname{Ric}(X), Y) Z+R(X, \operatorname{Ric}(Y)) Z+R(X, Y) \operatorname{Ric}(Z)]
\end{aligned}
$$

now we use $\tilde{\nabla}_{\partial_{t}} Z=\operatorname{Ric}(Z)$ for our time independent vector field, and we get

$$
\begin{aligned}
\left(\tilde{\nabla}_{\partial_{t}} R\right)(X, Y) Z & =\nabla_{X}\left(\tilde{R}\left(\partial_{t}, Y\right) Z\right)-\nabla_{Y} \tilde{R}\left(\partial_{t}, X\right) Z+R(\operatorname{Ric}(X), Y) Z+R(X, \operatorname{Ric}(Y)) Z \\
& =-\nabla_{X}\left(\nabla_{e_{i}} R\right)\left(Y, e_{i}\right) Z+\nabla_{Y}\left(\nabla_{e_{i}} R\right)\left(X, e_{i}\right) Z+R(\operatorname{Ric}(X), Y)+R(X, \operatorname{Ric}(Y)) Z
\end{aligned}
$$

But now

$$
\begin{aligned}
-\nabla_{X}\left(\nabla_{e_{i}} R\right)\left(Y, e_{i}\right) Z & =\nabla_{e_{i}}\left(\nabla_{X} R\right)\left(Y, e_{i}\right) Z-\left(R\left(X, e_{i}\right) R\right)\left(Y, e_{i}\right) Z \\
& =\nabla_{e_{i}}\left(\nabla_{X} R\right)\left(Y, e_{i}\right) Z-R\left(X, e_{i}\right)\left(R\left(Y, e_{i}\right) Z\right) \\
& +R\left(R\left(X, e_{i}\right) Y, e_{i}\right) Z+R\left(Y, R\left(X, e_{i}\right) e_{i}\right) Z+R\left(Y, e_{i}\right) R\left(Y, e_{i}\right) Z
\end{aligned}
$$

where we now interpret $R\left(X, e_{i}\right)$ as a curvature tensor acting on tensors, e.g. R itself in $\left(R\left(X, e_{i}\right) R\right)$. Finally, we sum over i, and do the same expansion for

$$
\begin{aligned}
\nabla_{Y}\left(\nabla_{e_{i}} R\right)\left(X, e_{i}\right) Z & =\nabla_{e_{i}}\left(\nabla_{Y} R\right)\left(X, e_{i}\right) Z-R\left(Y, e_{i}\right)\left(R\left(X, e_{i}\right) Z\right)+R\left(R\left(Y, e_{i}\right) X, e_{i}\right) Z \\
& +R\left(X, R\left(Y, e_{i}\right) e_{i}\right) Z+R\left(X, e_{i}\right) R\left(Y, e_{i}\right)
\end{aligned}
$$

subtracting these two, we get

$$
\begin{aligned}
-\nabla_{X}\left(\nabla_{e_{i}} R\right)\left(Y, e_{i}\right) Z+\nabla_{Y}\left(\nabla_{e_{i}} R\right)\left(X, e_{i}\right) Z & =\nabla_{e_{i}}\left(\left(\nabla_{e_{i}} R\right)(X, Y) Z\right)+2\left[R\left(X, e_{i}\right), R\left(Y, e_{i}\right)\right] Z \\
& -R\left(R\left(X, e_{i}\right) Y, e_{i}\right) Z-R\left(R\left(Y, e_{i}\right) X, e_{i}\right) Z
\end{aligned}
$$

where we've noted that

$$
-R\left(X, e_{i}\right)\left(R\left(Y, e_{i}\right) Z\right)+R\left(Y, e_{i}\right) R\left(X, e_{i}\right) Z=\left[R\left(X, e_{i}\right), R\left(Y, e_{i}\right)\right] Z
$$

This tells us that

$$
\left(\tilde{\nabla}_{\partial_{t}} R\right)(X, Y)(z)=\Delta R(X, Y) Z+Q(R)
$$

where $Q(R)$ denotes quadratic terms in R. In general

$$
\tilde{\nabla}_{\partial_{t}} R=\Delta R+Q(R)
$$

5 Lecture 5: 10-11-22

Goal for today

- Evolution of Ric and R
- Scalar weak/strong maximum principle

Recall that

$$
\begin{aligned}
\nabla_{\partial_{t}} R m & =\Delta R m+Q(R m) \\
Q(R m)_{i j k l} & =-R_{i j s t} R_{s t k l}+2 R_{i s t l} R_{j s t k}-2 R_{j s t l} R_{i s t k}
\end{aligned}
$$

Here, ∇ is the special connection we constructed from last time using Uhlenbeck's trick.
For general evolution of metrics $\left\{g_{t}\right\}$ (i.e. not necessarily Ricci flow), we have

$$
\begin{aligned}
\partial_{t} R_{i j k l} & =\nabla_{i}\left(\partial_{t} \Gamma_{j k}^{l}\right)-\nabla_{j}\left(\partial_{t} \Gamma_{i k}^{l}\right)+(\text { lower order terms }) \\
\frac{d}{d t} g_{i j}(t) & :=h_{i j} \\
\partial_{t} R_{i j k l} & =\frac{1}{2}\left(\nabla_{i} \nabla_{k} h_{j l}+\nabla_{i} \nabla_{j} h_{k l}-\nabla_{i} \nabla_{l} h_{k l}\right)+\cdots+(\text { lower order terms }) \\
& \stackrel{(h=-2 \text { Ric })}{=} \frac{1}{2} \nabla_{i} \nabla_{k} \operatorname{Ric}_{j l}+\cdots \\
& =\Delta R m
\end{aligned}
$$

in a loose sense. I guess the point is that we can see the evolution equation from the normal formula for variation of curvature tensor under a family of metrics.

5.1 Evolution of Ric

We have that

$$
\begin{aligned}
Q(R m)_{i j k i} & =2 \operatorname{Ric}_{s t} R_{j s t k}=2 R m(\operatorname{Ric})_{j k} \\
\Longrightarrow \nabla_{\partial_{t}} \operatorname{Ric} & =\Delta \operatorname{Ric}+2 R m(\text { Ric })
\end{aligned}
$$

Another way to obtain this is recall that

$$
\begin{aligned}
D(-2 \operatorname{Ric})(h)_{j k} & =\Delta_{L} h_{j k}+\nabla_{j} \nabla_{k} \operatorname{Tr}(h)+\nabla_{j}(\delta h)_{k}+\nabla_{k}(\delta h)_{j} \\
& =\Delta_{L} h_{j k}+\nabla_{j}(\delta E h)_{k}+\nabla_{k}(\delta E h)_{j} \\
E(h)_{i j} & =h_{i j}-\frac{1}{2} \operatorname{Tr}(h) g_{i j} \\
\delta^{*}: \text { Lie derivative } & =\Delta_{L} h_{j k}+\left(\delta^{*}(\delta E h)\right)_{j k} \\
\delta E(\operatorname{Ric}) & =\delta\left(\operatorname{Ric}_{i j}-\frac{1}{2} R g_{i j}\right)=\left(\delta \operatorname{Ric}-\frac{1}{2} d R\right)_{i j} \\
& =0 \quad \text { (second contracted Bianchi identity) }
\end{aligned}
$$

here, Δ_{L} is the Lichnerowicz laplacian, $E(h)$ is the einstein operator. This tells us tbhat

$$
\begin{aligned}
& D(-2 \text { Ric })(-2 \text { Ric })=\Delta_{L}(-2 \text { Ric })+0=-2 \Delta_{L} \text { Ric } \\
& \quad \Longrightarrow \partial_{t}(\text { Ric }) \Delta_{L} \text { Ric }
\end{aligned}
$$

because $D(-2$ Ric $)(-2$ Ric $)=\partial_{t}(-2$ Ric $)$. This follows from work we did on previous days for computing D (Ric)

5.2 Evolution of R

We have

$$
\begin{aligned}
R m(\operatorname{Ric})_{i i} & =R_{i k l i} \operatorname{Ric}_{k l}=\operatorname{Ric}_{k l} \operatorname{Ric}_{k l}=\operatorname{Ric}_{k l}^{2} \\
\Longrightarrow \nabla_{t} R & =\partial_{t} R=\Delta R+2 R m(\operatorname{Ric})_{i i} \\
\Longrightarrow \partial_{t} R & =\Delta R+2|\operatorname{Ric}|^{2}
\end{aligned}
$$

In two dimensions, we know that

$$
\operatorname{Ric}=\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]
$$

for K the scalar curvature, so $|\operatorname{Ric}|^{2}=2 k^{2}$ and $R=2 k$, which tells us that

$$
\begin{aligned}
\partial_{t} R & =\Delta R+R^{2} \\
& =2 \Delta K+4 k^{2}
\end{aligned}
$$

For M closed

$$
\begin{aligned}
\partial_{t} \int R d g_{t}=\int\left(\partial_{t} R\right) d g_{t}+\int R\left(d_{t} g_{t}\right) & \\
& =\int \Delta R+R^{2}-R \cdot R \\
& =\int \Delta R \\
& =0
\end{aligned}
$$

by closedness. This tells us that $\int R_{t} d g_{t}$ is an invariant on 2D ricci flow - i.e. genus can't change

5.3 Scalar Weak maximum principle

Theorem 5.1. Let M a compact, $\left\{g_{t}\right\}_{t \in[0, T)}$ any smooth family of Riemannian metrics. Moreover, suppose we have

$$
f ; \mathbb{R} \times[0, T) \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
\left(X_{t}\right)_{t \in[0, T)} & : \text { vector fields } \\
u & \in C^{\infty}(M \times[0, T)) \\
\bar{u} & \in C^{\infty}([0, T))
\end{aligned}
$$

Figure 10

If

$$
\begin{align*}
\partial_{t} u_{t} & \leq \Delta u_{t}+X_{t} \cdot \nabla u_{t}+f\left(u_{t}, t\right) \tag{5}\\
\text { and } u_{t} & \leq \bar{u} \quad \text { on } \quad \partial(M \times[0, T))=\partial M \times[0, T] \cup M \times\{0\} \tag{6}\\
\text { and } \partial_{t} \bar{u}(t) & \geq f(\bar{u}(t), t), \quad \text { then } \tag{7}\\
u_{t} & \leq \bar{u} \quad \text { everywhere }
\end{align*}
$$

Proof:
Case 1, Assume (7), (6) have strict inequality. Let

$$
t^{*}=\max \left\{t \in[0, T) \mid u_{t} \leq \bar{u} \text { on }[0, t]\right\}
$$

then by (??) and M compact, we have $t^{*}>0$, then there exists an $x^{*} \in \operatorname{Int}(M)$ such that $u\left(x^{*}, t^{*}\right)=\bar{u}\left(t^{*}\right)$. THis implies

$$
\Longrightarrow \partial_{t} u\left(x^{*}, t^{*}\right) \geq \partial_{t} \bar{u}\left(t^{*}\right), \quad \nabla u\left(x^{*}, t^{*}\right)=0, \quad \Delta u\left(x^{*}, t^{*}\right) \leq 0
$$

so at $\left(x^{*}, t^{*}\right)$, we have

$$
\begin{aligned}
\partial_{t} \bar{u}\left(t^{*}\right)-f\left(\bar{u}\left(t^{*}\right), t^{*}\right) & \leq \partial_{t} u\left(x^{*}, t^{*}\right)=f\left(u\left(x^{*}, t^{*}\right), t^{*}\right)+X_{t} \cdot \nabla u \\
& \leq \Delta u_{t} \\
& \leq 0
\end{aligned}
$$

since $\nabla u\left(x^{*}, t^{*}\right)=0$ and $\Delta u\left(x^{*}, t^{*}\right)=\Delta u_{t^{*}}\left(x^{*}\right) \leq 0$. Here, $u_{t}=u(\cdot, t)$.
Case 2, here we handle non-strict inequality by creating a perturbation. Let

$$
\bar{u}_{\epsilon}(t)=\bar{u}(t)+\epsilon t+\epsilon^{2}
$$

then (??) and (??) will have strict inequality. For (??) its evident, for (??), we have

$$
\begin{aligned}
\partial_{t} \bar{u}_{\epsilon} & =\partial_{t} \bar{u}+\epsilon \\
f\left(\bar{u}_{\epsilon}(t), t\right)-f(\bar{u}(t), t) & \leq C\left|\bar{u}_{\epsilon}(t)-\bar{u}(t)\right| \\
& =C\left(\epsilon t+\epsilon^{2}\right) \leq \frac{1}{2} \epsilon+C \epsilon^{2} \\
& \leq \frac{3}{4} \epsilon^{2}
\end{aligned}
$$

here C is a bound on the gradient of f, and we choose τ such that for $t \leq \tau$, we have

$$
C t \leq C \tau \leq \frac{1}{2}
$$

which allows the last line to hold, assuming ϵ sufficiently small. So by case 1 , we have $u_{t} \leq \bar{u}_{\epsilon}(t)$, now let $\epsilon \rightarrow 0$, then we have

$$
u_{t} \leq \bar{u}(t) \quad \text { on } \quad t \in[0, \tau]
$$

now extend to $[0, T]$ for T maximal by an open-closed argument and potentially repeating this construction.

5.4 Scalar Strong maximum principle

Lemma 5.2. Let M be a compact manifold with boundary, $\left\{g_{t}\right\},\left\{X_{t}\right\}$ as before, $u \in C^{\infty}(M \times[0, T])$. If $u \geq 0$ and

$$
\partial_{t} u \geq \Delta u_{t}+X_{t} \cdot \nabla u_{t} \quad \forall t \in[0, T]
$$

(Note this is a homogeneous inequality with no 0 order terms) and if $\exists x_{0} \in \operatorname{Int}(M)$ such that $u\left(x_{0}, T\right)=0$, then there exists a neighborhood of x_{0}, U, and $\epsilon>0$ such that $u \equiv 0$ on $U \times[T-\epsilon, T]$.
Corollary 5.2.1. Same assumption and set up as the above but $u \equiv 0$ on $M \times[0, T]$, by an open closed argument
"Proof: " - WLOG, assume M is covered by a coordinate chart. Consider

$$
V:=\{(x, t) \in M \times[0, T]: u(x, t)\}
$$

then use the above lemma to show that

$$
V \cap(M \times\{t\})=M
$$

which makes sense if M is connected. For the time component, repeat the lemma but considering everything on $[0, T-\epsilon]$, i.e. replace $T \rightarrow T-\epsilon$, should be a similar openness argument but in the time direction.

Proof of Lemma: Suppose that no such neighborhood existed, then

$$
\exists\left(x^{*}, t^{*}\right) \text { near }\left(x_{0}, T\right), u\left(x^{*}, t^{*}\right)>0
$$

Claim: $\exists \varphi^{\infty}\left(M \times\left[t^{*}, t\right]\right)$ such that

$$
\begin{align*}
\varphi & \geq 0 \tag{8}\\
u_{t^{*}} & \geq \varphi_{t^{*}} \tag{9}\\
\varphi & \equiv 0 \quad \text { on } \quad \partial M \times\left[t^{*}, T\right] \tag{10}\\
\varphi\left(x_{0}, T\right) & >0 \tag{11}\\
\partial_{t} \varphi_{t} & \leq \Delta \varphi_{t}+X_{t} \cdot \nabla \varphi_{t} \tag{12}
\end{align*}
$$

This φ is a barrier function. Assume the claim is true, then

$$
\partial_{t}\left(u_{t}-\varphi_{t}\right) \geq \Delta\left(u_{t}-\varphi_{t}\right)+X_{t} \cdot \nabla\left(u_{t}-\varphi_{t}\right)
$$

then the weak maximum principle tells us that

$$
u\left(x_{0}, T\right)-\varphi\left(x_{0}, T\right) \geq 0 \Longrightarrow u\left(x_{0}, T\right)>0
$$

a contradiction, since we've assumed that $u\left(x_{0}, T\right)=0$.
Now the point is to construct such a barrier function, φ, which satisfies the claim. Note that (8), (9), (10), and (11) can be satisfied easily by constructing a bump function about x^{*}, t^{*} and scaling it by $\frac{1}{2} u\left(x^{*}, t^{*}\right)$. Thus, the work is in showing (12).

Proof of claim: Let

$$
\varphi(x, t)=e^{-A(t+1)} \phi\left(\left|x-x^{*}\right|-s\left(t-t^{*}\right)\right)
$$

where $A, S \in \mathbb{R}$, and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is decreasing and ϕ is a smoothed heaviside function with $\phi(t) \equiv 1, \quad t \leq 0$ and $\phi(t) \equiv 0, \quad t \geq \epsilon\left|x_{0}-x^{*}\right|$. Moreover, on $\left[0, \epsilon\left|x_{0}-x^{*}\right|\right]$, we require that

$$
-\phi^{\prime \prime} \leq C \phi, \quad\left(\phi^{\prime}\right)^{2} \leq C \phi^{\prime} \leq C \phi
$$

Figure 11

Yi says that we can do this by inserting quadratic transitions at $t=0, t=1$ and then smooth appropriately.
Assume WLOG that $B\left(x_{0}, 2\left|x_{0}-x^{*}\right|\right) \subseteq \operatorname{Int}(M)$. Choose

$$
s \in\left(\left[1-\frac{1}{2} \epsilon\right] \frac{\left|x_{0}-x^{*}\right|}{T-t^{*}},(2-\epsilon) \frac{\left|x_{0}-x^{*}\right|}{T-t^{*}}\right)
$$

Then

$$
\begin{aligned}
\phi\left(\left|x_{0}-x^{*}\right|-s\left(T-t^{*}\right)\right) & >0 \\
\phi\left(\left|x-x^{*}\right|-s\left(t-t^{*}\right)\right) & =0, \quad \forall x \in \partial M, \forall t \in\left[t^{*}, T\right] \\
& \Longrightarrow \varphi=0 \quad \text { on } \partial M \times\left[t^{*}, T\right]
\end{aligned}
$$

Now to enforce $u_{t^{*}} \geq \varphi_{t^{*}}$, we take A to be very large and $\epsilon \ll 1$. Now to verify (12), we have

$$
\begin{aligned}
\partial_{t} \varphi & =e^{-A(t+1)}\left(-s \phi^{\prime}-A \phi\right) \\
|\nabla \varphi| & =e^{-A(t+1)} C\left|\phi^{\prime}\right| \\
\Delta \varphi & \geq e^{-A(t+1)} \phi^{\prime \prime} \\
12 \mid & \Longleftrightarrow \partial_{t} \varphi_{t} \leq \Delta \varphi_{t}+X_{t} \cdot \nabla \varphi_{t} \\
& \Longleftrightarrow C \phi^{\prime}-A \phi \leq \phi^{\prime \prime}-C\left|\phi^{\prime}\right| \\
& \Longleftrightarrow C\left|\phi^{\prime}\right|-\phi^{\prime \prime} \leq A \phi
\end{aligned}
$$

so taking $A \gg 1$, this is true, and we get 12 finishing the proof of the lemma.
We now state the Scalar Strong Maximum Principle
Theorem 5.3. Suppose M connected (not necessarily compact), $\left\{g_{t}\right\}, X_{t}, u, \bar{u}, f$, all as before. Suppose that

$$
u_{t}(x) \leq \bar{u}(t) \quad \forall t \in[0, T]
$$

and

$$
u\left(x_{0}, T\right)=\bar{u}(T), \quad \text { for some } x_{0} \in \operatorname{Int}(m)
$$

then $u_{t} \equiv \bar{u}(t)$ everywhere on M.

Proof: , let

$$
Z=\{(x, t) \in M \times[0, T] \mid u(x, t)=\bar{u}(t)\}
$$

Let

$$
\begin{aligned}
v_{t} & =\bar{u}_{t}-u_{t} \geq 0 \\
\partial_{t} v_{t} & \geq \Delta v_{t}+X_{t} \cdot \nabla v_{t}+f(\bar{u}(t), t)-f\left(u_{t}, t\right) \\
& \geq \Delta v_{t}+X_{t} \cdot \nabla v_{t}-C v_{t}
\end{aligned}
$$

Now let

$$
\begin{aligned}
\tilde{v}_{t} & =e^{C t} v_{t} \\
\Longrightarrow \partial_{t} \tilde{v}_{t} & \geq \Delta \tilde{v}_{t}+X_{t} \cdot \nabla \tilde{v}_{t} \\
\stackrel{\text { Cor }}{\Longrightarrow} \tilde{V}_{t} & =0 \quad \text { on } M \times[0, T] \\
v_{t} & =0 \\
u_{t} & =\bar{u}_{t} \quad \text { everywhere }
\end{aligned}
$$

6 Lecture 6: 10-13-22

Goal:

- Application of weak and strong maximum principles
- Curvature derivative estimates
- Maximal existence time

6.1 Application of WMP and SMP

Let $\left(M, g_{t}\right)$ a ricci flow. Then we have

$$
\begin{equation*}
\partial_{t} R=\Delta R+2|\mathrm{Ric}|^{2} \geq \Delta R \tag{13}
\end{equation*}
$$

where R is the scalar curvature. If we assume that we can diagonalize the Ricci curvature (always true I think?)

$$
\operatorname{Ric}=\left(\begin{array}{lll}
\rho_{1} & \cdots & \cdots \\
& \cdots & \\
\cdots & \cdots & \rho_{n}
\end{array}\right) \Longrightarrow R=\rho_{1}+\cdots+\rho_{n}
$$

which implies that

$$
2 \mid \text { Ric }\left.\right|^{2} \geq \frac{2}{n} R^{2}
$$

by AM-GM or something. Then we have
Theorem 6.1. For $t_{1} \leq t_{2} \in I$ and any $T \in \mathbb{R}$, we have

1. If $R\left(\cdot, t_{1}\right) \geq A \quad \Longrightarrow \quad R\left(\cdot, t_{2}\right) \geq A$

Proof: (apply WMP to $\bar{R}(t)=\bar{A}, \partial_{t} \bar{R}(t)=0$
2. If $R\left(\cdot, t_{1}\right) \geq \frac{n}{2\left(T-t_{1}\right)}$, then $R\left(\cdot, t_{2}\right) \geq \frac{n}{2\left(T-t_{2}\right)}$

Proof: (apply WMP to $\bar{R}(t)=\frac{n}{2(T-t)}$, so that $\partial_{t} \bar{R}(t)=\frac{2}{n} \bar{R}^{2}(t)$, and use our statement about bounding $2 \mid$ Ric $\left.\right|^{2}$)

Figure 12
3. If $T \in I$, then $R(\cdot, t) \geq \frac{n}{2(T-t)}$ for all $t>T$

Proof: Let $\left\{t_{i}\right\} \downarrow T$, then we know that $R\left(\cdot, t_{i}\right) \geq-C$ just because I is compact, so we get uniform lower bounds on scalar curvature. This tells us that

$$
R\left(\cdot, t_{i}\right) \geq-C \geq \frac{n}{2\left(T-t_{i}\right)}
$$

where i is very large, i.e. when $T-t_{i} \rightarrow 0^{-}$. Now apply the previous statement
4. If g_{t} is defined on $\left(-\infty, t_{0}\right.$] (ancient flow), then $R \geq 0$.

Proof: Let $T \downarrow-\infty$ in the previous statement
5. If $R\left(\cdot, t_{0}\right) \geq \frac{n}{2 T}>0$, then $t_{0}+T \notin I$ (the solution cannot exist up to $t_{0}+T$)

Proof: If the above holds, then our second statement tells us that

$$
R\left(\cdot, t_{0}\right) \geq \frac{n}{2\left(T+t_{0}-t\right)}
$$

ad the above tends to infinity as $t \rightarrow t_{0}+T$ from below
Now we do applications of the strong maximum principle
Theorem 6.2. Assume M is connected but possibly non-compact

1. Assume $I=[0, T], R \geq 0$ everywhere. If $R\left(x_{0}, T\right)=0$ for some $x_{0} \in M$, then Ric $\equiv 0$ for all $t \in[0, T]$ Proof: The strong maximum principle plus $\partial_{t} R \geq \Delta R \Longrightarrow R \equiv 0$. But now come back to evolution equation

$$
\partial_{t} R=\Delta R+2|\operatorname{Ric}|^{2} \Longrightarrow \operatorname{Ric} \equiv 0
$$

since both $\partial_{t} R=\Delta R=0$
2. If M is compact, $I=(-\infty, \infty)$ (eternal flow), then Ric $\equiv 0$ (and $\frac{d}{d t} g_{t}=-2 \operatorname{Ric}=0$ so $g_{t}=g_{0}$)

Proof: First, eternal flow \Longrightarrow ancient $\stackrel{\text { compact }}{\Longrightarrow} R \geq 0$.
Claim EIther $R \equiv 0$ or $R>0$ everywhere. This should follow from the strong maximum principle. Assuming the claim is true, then if $R \equiv 0$, then by the previous computation, we have Ric $\equiv 0$. If $R>0$ everywhere (M compact means a positive lower bound on R) then by a previous statement, it can only exist for a finite time, contradicting that this is an eternal flow.

Proof of claim: Suppose not, then $\exists R\left(x_{1}, t_{1}\right)>0$ and $R\left(x_{2}, t_{2}\right)=0$. By our first statement in this theorem, if we have $R\left(x_{2}, t_{2}\right)=0$, then

$$
\begin{aligned}
& \Longrightarrow \text { Ric }=0 \quad \forall t \leq t_{2} \\
& \Longrightarrow g_{t}=g_{t_{2}} \quad \forall t \geq t_{2} \Longrightarrow \text { Ric }=0
\end{aligned}
$$

The second line follows since the Ricci flow equation will be constant on $\left(-\infty, t_{2}\right)$

6.2 In 2-dimension

6.2.1 Lower Bound

In two dimensions, we have

$$
\partial_{t} R=\Delta R+R^{2}
$$

in this case. We note that $R \leq 0$ is preserved by Ricci flow in this dimension. To see this, apply weak maximum principle to the comparison function

$$
\bar{R}(t)=0, \quad \partial_{t} \bar{R}(t)=\bar{R}^{2}(t)
$$

so that 0 is an upper barrier. Note that this is not true in dimension $n \geq 3$, since $R^{2} \neq|\operatorname{Ric}|^{2}$ in general

6.2.2 Normalized Volume

For $\left(M, g_{t}\right), M$ compact, $I=[0, \infty)$ (immortal flow), we define the normalized volume $\bar{V}(t)=t^{-n / 2} V(t)$ (The scaling is supposed to be intuitive since $t \sim r^{2}$ since we have a parabolic flow, i.e. $t^{-n / 2} \sim r^{-n}$ and $\left.V(t) \sim r^{n}\right)$. Thus, normalized volume is a scaling invariant and

$$
\begin{aligned}
\frac{d}{d t} \bar{V}(t) & =t^{-n / 2}\left(-\frac{n}{2 t} V(t)+V^{\prime}(t)\right) \\
& =t^{-n / 2} \int\left(-\frac{n}{2 t}-R\right) d V o l_{t}
\end{aligned}
$$

The second line follows since

$$
V^{\prime}(t)=\frac{1}{2} \operatorname{tr}(\dot{g}) d V o l
$$

and

$$
\dot{g}=-2 \operatorname{Ric} \Longrightarrow \operatorname{tr}(\dot{g})=-2 R
$$

Recall that $R \geq-\frac{n}{2 t}$ holds for $t \in(0, \infty)$, so that

$$
\frac{d}{d t} \bar{V}(t) \leq 0
$$

thus $\bar{V}(t)$ is non-increasing and positive, so it has a limit as $t \rightarrow \infty$

$$
\bar{V}_{\infty}=\lim _{t \rightarrow \infty} \bar{V}(t)
$$

6.2.3 Solitons

Let (M, g), and $\operatorname{Ric}_{g}=\mathcal{L}_{X} g+\lambda g$ for $\lambda \in \mathbb{R}$ and X some smooth vector field. We have

$$
g(t)=\left\{\begin{array}{llll}
(-2 \lambda t) \phi_{-t}^{*}(g) & \lambda>0, & t \in(-\infty, 0) \quad \text { (shrinking) } \\
\phi_{-t}^{*}(g) & \lambda=0, & t \in(-\infty, \infty) \quad \text { (steady) } \\
(-2 \lambda t) \phi_{-t}^{*}(g) & \lambda<0, & t \in(0, \infty) \quad \text { (expanding) }
\end{array}\right.
$$

Where ϕ_{t} is the flow corresponding to X and $\phi_{0}=I d$. Then g_{t} satisfies a ricci flow!! This is a soliton

Theorem 6.3. A compact steady soliton must be Einstein (i.e. with $\lambda=0 \Longrightarrow$ Ric $\equiv 0$)
Proof: g_{t} is an eternal compact Ricci flow, so Ric $\equiv 0$
Theorem 6.4. A compact expanding solution must be Einstein.
Proof: $\bar{V}\left(g_{t}\right)$ is a constant in the expanding case because

$$
\bar{V}\left(g_{t}\right)=\bar{V}\left((-2 \lambda t) \phi_{-t}^{*} g\right)=\bar{V}\left(\phi_{-t}^{*} g\right)=\bar{V}(g)
$$

Thus

$$
0=\frac{d}{d t} \bar{V}\left(g_{t}\right)=t^{-n / 2} \int\left(-\frac{n}{2 t}-R\right) d V o l_{t}
$$

we know that

$$
-\frac{n}{2 t}-R \leq 0
$$

so for the derivative to be exactly 0 , we have

$$
R=\frac{-n}{2 t}
$$

everywhere. Now plugging this into the evolution of scalar curvature, we have

$$
\partial_{t} R=\Delta R+2|\operatorname{Ric}|^{2}=0+2|\operatorname{Ric}|^{2}+\frac{2}{n} R^{2}
$$

but

$$
\partial_{t} R=\frac{n}{2 t^{2}}=\frac{2}{n} R^{2}
$$

so we see that

$$
\text { Ric } \equiv 0
$$

which implies that

$$
\operatorname{Ric}=\frac{R}{n} g_{t}
$$

which is einstein. Now plugging in R, we have

$$
\operatorname{Ric}=-\frac{1}{2 t} g_{t} \quad \forall t
$$

6.3 Evolution of Curvature tensor

We have

$$
\begin{aligned}
\partial_{t}|R m|^{2} & =2\left\langle\nabla_{\partial t} R m, R m\right\rangle=2\langle\Delta R m+Q(R m), R m\rangle \\
& =\Delta|R m|^{2}-2|\nabla R m|^{2}+2\langle Q(R m), R m\rangle \\
& \leq \Delta|R m|^{2}-2|\nabla R m|^{2}+C|R m|^{3} \\
& \leq \Delta|R m|^{2}+C|R m|^{3}
\end{aligned}
$$

Now we want to apply the weak maximum principle. Consider the comparison equation

$$
\begin{aligned}
\partial_{t} \bar{u}(t) & =C \bar{u}(t)^{3 / 2} \\
\Longrightarrow \bar{u}(t) & =\frac{1}{\left(\frac{C}{2}(T-t)\right)^{2}}
\end{aligned}
$$

so if $|R m|^{2}(\cdot, 0) \leq A$, then the weak maximum principle gives

$$
|R m|^{2}(\cdot, t) \leq \frac{1}{\left(\frac{C}{2}\left(\frac{2}{C \sqrt{A}}-t\right)\right)^{2}}
$$

Exercise Study the equation of $|R m|$, then if

$$
|R m|(\cdot, 0) \leq A
$$

we have that

$$
|R m|(\cdot, t) \leq \frac{1}{A^{-1}-\frac{C}{2} t}
$$

(this is a little different than just taking the square root of the previous bound)
Theorem 6.5. Let $\left(M, g_{t}\right)$ a Ricci flow, M compact, then either

- $\sup _{M \times[0, T)}|R m|<\infty$ OR
- $\lim _{t \uparrow T} \max _{M}|R m|(\cdot, t)=\infty$ and

$$
\max _{M}|R m|(\cdot, t) \geq \frac{C_{n}}{T-t}
$$

(exercise, which should be an application of previous exercises)

6.4 Curvature derivative estimates

Let $\left(M, g_{t}\right)_{t \in[0, T)}$ a ricci flow, M compact. Then

$$
\begin{aligned}
\nabla_{\partial_{t}} \nabla R m & =\nabla \nabla_{\partial_{t}} R m+\tilde{R}\left(\partial_{t}, \cdot\right) R m=\nabla \nabla_{\partial_{t}} R m+\nabla R m * R m \quad=\nabla(\Delta R m+Q(R m))+\nabla R m * R m \\
& =\Delta \nabla R m+R m * \nabla R m+\nabla R m * R m \\
& =\Delta \nabla R m+R m * \nabla R m
\end{aligned}
$$

here

$$
(A * B)_{j l}=g^{i k} A_{i j} B_{k l}
$$

so for example

$$
R m(\mathrm{Ric})=R m * R m
$$

Moreover, we'll use that

$$
|A * B| \leq C|A||B|
$$

where the norm is some tensor bound.
We also have

$$
\begin{aligned}
\partial_{t}|\nabla R m|^{2} & =2\left\langle\nabla{\partial_{t}} \nabla R m, \nabla R m\right\rangle=2\langle\Delta \nabla R m+\nabla R m * R m, \nabla R m\rangle \\
& \leq \Delta|\nabla R m|^{2}-2\left|\nabla^{2} R m\right|+\nabla R m * \nabla R m * R m \\
& \leq \Delta|\nabla R m|^{2}+C|\nabla R m|^{2} \cdot|R m|
\end{aligned}
$$

Now our goal is to derive bounds on $|\nabla R m|$ in terms of bounds on $|R m|$.
Suppose $|R m| \leq A$ on $M \times[0, T)$. Define

$$
F=|R m|^{2}+t|\nabla R m|^{2}
$$

then we have

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) F & \leq|\nabla R m|^{2}+t\left(C|\nabla R m|^{2}|R m|\right)+\left(-2|\nabla R m|^{2}+C|R m|^{3}\right) \\
& \leq|\nabla R m|^{2}+C t A|\nabla R m|^{2}-2|\nabla R m|^{2}+C|R m|^{3} \\
& \leq C|R m|^{3} \leq C A^{3} \\
F(\cdot, 0) & =|R m|^{2} \leq A^{2}
\end{aligned}
$$

having used our bounds on both $|R m|^{2}$ and $|\nabla R m|^{2}$. In the second to third line, we chose t small so that $C t A<1$ to cancel the first 3 terms (or rather, bound above by 0). Now the weak maximum princple on the function $F(\cdot, t)$ gives

$$
F(\cdot, t) \leq C A^{2} \quad \forall t \in\left[0, \frac{1}{A}\right]
$$

Now taking a square root, we get

$$
|\nabla R m| \leq \frac{\sqrt{C} A}{\sqrt{t}}, \quad \forall t \in\left[0, \frac{1}{A}\right]
$$

so if the curvature norm has a bound, then $|\nabla R m|$ also has some bound in a small interval. Here, we've chosen

$$
\bar{F}(t)=C A^{3} t+A^{2}
$$

7 Lecture 7: 10-18-22

Today's goals

- Curvature derivative estimates
- Maximal existence time
- Vector-valued maximum principle

7.1 Curvature derivative estimate

Theorem 7.1. Let $\left(M,\left\{g_{t}\right\}_{t \in[0, T)}\right)$ compact ricci flow. Suppose $|R m| \leq A$ on $t \in[0, T)$, then

$$
\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right| \leq \frac{C_{k, \ell} A}{t^{\ell+k / 2}}
$$

on $t \in[0,1 / A]$. Here ∇ denotes the Uhlenbeck connection
Proof: Step 1: Assume $\ell=0$. Last time we did $k=1$. Prove by induction, so assume this is true for k. Then

$$
\nabla_{\partial_{t}} \nabla^{k} R m=\Delta \nabla^{k} R m+\sum_{i+j=k} \nabla^{i} R m * \nabla^{j} R m
$$

(this formula can also be proved by induction).

$$
\begin{aligned}
\nabla_{\partial_{t}} \nabla^{k+1} R m & =\nabla \nabla_{\partial_{t}} \nabla^{k} R m+\left(\tilde{R}(\cdot, \cdot) \cdot \nabla^{k} R m\right) \\
& =\nabla\left(\Delta \nabla^{k} R m+\sum_{i+j=k} \nabla^{i} R m * \nabla^{j} R m\right)+\nabla R m * \nabla^{k} R m \\
& =\Delta \nabla^{k+1} R m+R m * \nabla^{k+1} R m+\sum_{i+j=k} \nabla^{i} R m * \nabla^{j} R m \\
& =\Delta \nabla^{k+1} R m+\sum_{i+j=k+1} \nabla^{i} R m * \nabla^{j} R m
\end{aligned}
$$

where in the second to third line we apply Bochner's formula. Using this, we have

$$
\partial_{t}\left|\nabla^{k} R m\right|^{2} \leq \Delta\left|\nabla^{k} R m\right|^{2}-2\left|\nabla^{k+1} R m\right|^{2}+C \sum_{i+j=k}\left|\nabla^{i} R m\right| \cdot\left|\nabla^{j} R m\right| \cdot\left|\nabla^{k} R m\right|
$$

Now using a similar trick to last time, we note the negative sign in front of $2\left|\nabla^{k+1} R m\right|^{2}$, and construct a barrier of

$$
F=t\left|\nabla^{k+1} R m\right|+\left|\nabla^{k} R m\right|
$$

This implies that the theorem is true for $k+1$. Jere, we've used

$$
\nabla_{\partial_{t}} \nabla \nabla^{k} R m=\nabla \nabla_{\partial_{t}} \nabla^{k} R m+\tilde{R} * \nabla^{k} R m
$$

where \tilde{R} is the curvature for $\tilde{\nabla}_{\partial_{t}}$, but also equals $\nabla R m$.
Now we induct on ℓ. After rescaling, assume $A=1$. Under this, we define

Figure 13

$$
\tilde{g}_{t}=A g_{t / A}
$$

Under this flow, we have $|R m| \leq 1$ and $t \in(0,1]$, so we want to show

$$
\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right| \leq \frac{C_{k, \ell}}{t^{\ell+k / 2}} \quad t \in(0,1]
$$

By another rescaling, it suffices to prove it at $t=1$ - assume we want to show this at time $t \in(0,1]$. We choose another rescaling of the form above but by $1 / t$, which sends $t \rightarrow 1$ and $1 \rightarrow 1 / t$. So that

$$
|R m| \leq t \leq 1, \quad\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right|(\cdot, 1) \leq C
$$

Now note that

$$
\nabla_{\partial_{t}} \nabla^{k} R m=\Delta \nabla^{k} R m+\sum_{i+j=k} \nabla^{i} R m * \nabla^{j} R m
$$

so $\nabla_{\partial_{t}} \nabla^{k} R m$ is the $*$-composition of $\nabla^{i} R m$. So

$$
\left|\left(\nabla_{\partial_{t}} \nabla^{k} R m\right)(\cdot, 1)\right| \leq C_{1, k}
$$

which shows it for $(\ell, k)=(1, k)$ with $K \in \mathbb{N}$. By induction, we have

$$
\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m=\nabla_{\partial_{t}} \nabla_{\partial_{t}}^{\ell-1} \nabla^{k} R m
$$

now write $\nabla_{\partial_{t}}^{\ell-1} \nabla^{k} R m$ as a $*$-composition of $\nabla^{i} R m$. Thus

$$
\left|\left(\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right)(\cdot, 1)\right| \leq C_{\ell, k}
$$

which finishes the theorem.

Corollary 7.1.1. Suppose $|R m| \leq r^{-2}$, on $\left[0, r^{2}\right]$ i then

$$
\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right|\left(\cdot, r^{2}\right) \leq \frac{C_{k, \ell}}{r^{2 \ell+k+2}}
$$

Proof: Take $A=r^{-2}$ in theorem.
Note that this corollary gives a scale invariant bound since $\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right|\left(\cdot, r^{2}\right)$ is order $r^{-(2 \ell+k+2)}$. This means that we'll get such an inequality up to any order on the interval $\left[0, r^{2}\right]$

7.2 Shi's derivative estimates (local bounds on $\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right|$)

THe previous section worked for $\left(M,\left\{g_{t}\right\}\right)$ a ricci flow with M compact. In this setting, we assume $\left(M,\left\{g_{t}\right\}_{t \in[0, T)}\right)$ a ricci flow, but not necessarily compact.
Theorem 7.2. For $\left(M, g_{t}\right)$ a Ricci flow (not necessarily compact). Choose $x_{0} \in M$ and $r^{2} \leq t_{0}<T$ so that $B_{t_{0}}(x, r) \subset \subset M$ (i.e. relatively compact). Assume

$$
|R m| \leq r^{-2} \quad \text { on } \quad B_{t_{0}}\left(x_{0}, r\right) \times\left[t_{0}-r^{2}, t_{0}\right]
$$

Then

$$
\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right| \leq \frac{C_{k, \ell}}{t^{2 \ell+k+2}}
$$

Figure 14
Note that

$$
B_{t_{0}}(x, r) \times\left[t_{0}-r^{2}, t_{]}=: P\left(x_{0}, t_{0} ; r,-r^{2}\right)\right.
$$

is called the "backward parabolic neighborhood centered at x_{0} of scale r "

7.3 Maximal Existence Time

Lemma 7.3 (Equivalence of Metrics). Suppose $\left(M,\left\{g_{t}\right\}\right)$, RF, not necessarily compact, \mid Ric $\mid \leq k$ everywhere, then $\forall t_{1} \leq t_{2} \in I$, we have

$$
e^{-K\left(t_{2}-t_{1}\right)} g_{t_{1}} \leq g_{t_{2}} \leq e^{K\left(t_{2}-t_{1}\right)} g_{t_{1}}
$$

i.e. this says that $C^{-1} g_{1} \leq g_{2} \leq C g_{1}$.

Proof: Exercise, should probably just use ricci flow equation and integrate and use bound.
RemarkThis gives us that

$$
d_{t_{1}}(x, y) e^{-K\left(t_{2}-t_{1}\right)} \leq d_{t_{2}}(x, y) \leq e^{K\left(t_{2}-t_{1}\right)} d_{t_{1}}(x, y)
$$

We now show a theorem

Theorem 7.4. If $\left(M,\left\{g_{t}\right\}_{t \in[0, T)}\right)$ a Rf, not necessarily compact, $T<\infty$. Assume $\sup _{M \times[0, T)}|R m|<\infty$. Then g_{t} can be extended smoothly onto $M \times[0, T]$

Figure 15
i.e. we can find g_{T} such that $g_{t} \rightarrow g_{T}$ smoothly.

Proof: Shi's estimate gives that for any compact subset $U \subseteq M_{i}$ there exists a $C_{\ell, k}(U)$ such that

$$
\left|\nabla_{\partial_{t}}^{\ell} \nabla^{k} R m\right| \leq C_{\ell, k}(U)
$$

on U. Let $p \in M,\left(U,\left\{x^{i}\right\}\right)$ a set of local coordinates about p, so

$$
\begin{aligned}
g_{t} & =g_{i j}(x, t) d x^{i} d x^{j} \\
\text { Lemma } \Longrightarrow C^{-1} g_{s} & \leq g_{t} \leq C g_{s} \quad \forall t, s \in I
\end{aligned}
$$

We also have

$$
\left|\partial_{t} g_{i j}\right|=2\left|\operatorname{Ric}_{i j}\right| \leq C
$$

so there exists $g_{i j}(\cdot, T)$ such that

$$
g_{i j}(\cdot, t) \xrightarrow{C^{0}} g_{i j}(\cdot, T)
$$

Note that the $C^{-1} g_{s} \leq g_{t} \leq C g_{s}$ comparison guarantees that $g_{i j}(\cdot, T)$ is a metric. Now we look at

$$
\begin{aligned}
\left|\partial_{t} \Gamma_{i j}^{k}(\cdot, t)\right| & \leq C|\nabla \mathrm{Ric}| \\
& \leq C
\end{aligned}
$$

by our formula for the christoffel symbols, and then using the ricci flow equation. In the second line, we use Shi's estimates. This tells us that

$$
\left|\Gamma_{i j}^{k}\right| \leq C
$$

for all t uniformily in t. We also compute

$$
\left(\nabla_{k} \operatorname{Ric}\right)_{i j}=\partial_{k}\left(\operatorname{Ric}_{i j}\right)-\Gamma_{k i}^{\ell} \operatorname{Ric}_{i \ell}-\Gamma_{k j}^{\ell} \operatorname{Ric}_{j \ell}
$$

But again ∇ Ric is bounded, so the above gives

$$
\left|\partial\left(\operatorname{Ric}_{i j}\right)\right| \leq C
$$

Now we note that

$$
\left|\partial_{t} \partial_{k} g_{i j}\right|=2\left|\partial_{k} \operatorname{Ric}_{i j}\right| \leq C
$$

so we can integrate in time and get

$$
\left|\partial_{k} g_{i j}\right| \leq C
$$

uniformily in time. Now by induction, we can show that

$$
\left|\partial_{t}^{q} \partial_{k_{1}} \cdots \partial_{k_{p}} g_{i j}\right| \leq C_{p, q, i, j}
$$

which allows us to upgrade our convergence of $g(\cdot, t) \rightarrow g(\cdot, T)$ from C^{0} convergence to smooth convergence. Thus we have smooth convergence locally about any point, so we have global smooth convergence (though not uniformily).
Corollary 7.4.1. We have $\left(M,\left\{g_{t}\right\}_{t \in[0, T)}\right)$ with M compact and $T<\infty$ maximal, then

$$
\max _{M}|R m|(\cdot, t) \xrightarrow{t \uparrow T} \infty
$$

As an interesting application, we have the following example:

Example:

For $\left(M^{2},\left\{g_{t}\right\}_{t \in[0, T)}\right)$, compact, if $K_{g_{0}} \leq 0$, then $T=\infty$
Proof: Recall that our assumption gives

$$
K_{g_{t}} \leq 0
$$

by curvature bounds. Moreover,

$$
|R m| \leq C|K|
$$

but we know that

$$
\inf K \leq 0
$$

because scalar/gaussian curvature is non-decreasing in RF.

7.4 Vector valued maximum principle

For $\left(M,\left\{g_{t}\right\}_{t \in[0, T)}\right)$ a family of smooth metrics. Let E be a vector bundle on M, rank $k<\infty$. Then $E \times[0, T]$ is a vector bundle on $M \times[0, T]$. Let ∇ a connection on $E \times[0, T]$ compatible with the induced horizontal metric on $E \times[0, T]$.

Remark In the above, we note that the Uhlenbeck connection is a such a connection on $E \times[0, T]$
Now let $C \subseteq E \times[0, T)$ closed such that

$$
C_{x, t}:=C \cap \pi^{-1}(x, t) \text { is convex } \forall(x, t) \in M \times[0, T]
$$

- For all $t, C_{x, t}$ are parallel (fixed t) (i.e. $\forall \gamma(s)$ a curve in $M \times\{t\}$, if $e(0) \in C_{\gamma(0, t}$ and $\nabla_{\dot{\gamma}(s)} e(s)=0$ then $e(s) \in C_{\gamma(s), t}$

8 Lecture 8: 10-20-22

8.1 Vector valued maximum principle

Our set up is as follows: we have $\left(M,\left\{g_{t}\right\}_{t \in[0, \tau)}\right)$ smooth family of metrics, and E a vector bundle on $\pi: E \rightarrow M . \nabla$ is a connection on $E \times[0, T]$ compatible with the space time metric (i.e. just metric on M plus $d t^{2}$) induced by π.
$C \subseteq E \times[0, T]$ closed, such that

1. $C_{x, t}:=C \cap \pi^{-1}(x, t)$ is convex for all $(x, t) \in M \times[0, T]$

Figure 16
2. $\forall t, C_{x, t}$ are parallel

Now let ϕ : a smooth vector field on $E \times[0, T]$, parallel to the fiber of E. Suppose C is preserved by the flow of $\nabla_{\partial_{t}} u=\phi(u)$. This means that if $u(t) \in \pi^{-1}(x, t)$ for x fixed, if $u\left(t_{0}\right) \in C_{x, t_{0}}, \nabla_{\partial_{t}} u(t)=\phi(u(t))$, then $u(t) \in C_{x, t}$ for all $t \geq t_{0}$.

Then for $u \in C^{\infty}(M \times[0, T] ; E \times[0, T])$, suppose we have

$$
\nabla_{\partial_{t}} u=\Delta u+\phi(u)
$$

The weak vector-valued maximum principle is
Theorem 8.1 (WMP). Suppose $u(x, t) \in C_{x, t}$, for all $(x, t) \in \partial_{p a r}(M \times[0, T])$, then $u(x, t) \in C_{x, t}$ for all $(x, t) \in M \times[0, T]$
where $\partial_{\text {par }}$ denotes the parabolic boundary, i.e.

$$
\partial_{p a r}(M \times[0, T])=(\partial M) \times[0, T] \cup M \times\{0\} T
$$

We also have the strong vector-valued maximum principle
Theorem 8.2 (SMP). Suppose $u(x, t) \in C_{x, t}$, for all $(x, t) \in M \times[0, T]$, and $u\left(x_{0}, t_{0}\right) \in \partial C_{x_{0}, t_{0}}$ for some $x_{0} \in M, t_{0}>0$, then $u(x, t) \in \partial C_{x, t}$ for all $(x, t) \in M \times\left[0, t_{0}\right]$

8.1.1 Application of Weak Maximum Principle

Suppose ($M,\left\{g_{t}\right\}_{[0, T]}$ a Ricci flow. Let M compact and $E: S_{B}\left(\wedge_{2} \mathbb{R}^{n}\right) \rightarrow M$ be the bundle of algebraic curvature tensors over M. Let ∇ be the uhlenbeck connection on $E \times[0, T]$. Let

$$
u=R m
$$

Then the relevant ODE is

$$
\nabla_{\partial_{t}} F=Q(F)
$$

and the relevant PDE which is satisfied by $R m$ itself, is

$$
\partial_{t} R m=\Delta R m+Q(R m)
$$

Now let C be given by $C_{x, t} \cong C_{t} \subseteq S_{B}\left(\wedge_{2} \mathbb{R}^{n}\right)$ some closed convex subset preserved by the ODE.

With this, we have the following:

Theorem 8.3. If $\left(M^{3},\left\{g_{t}\right\}_{t \in[0, T]}\right.$ a Ricci Flow, M compact. Then

1. $\sec _{g_{0}} \geq 0 \Longrightarrow \sec _{g_{t}} \geq 0, \forall t \geq 0$
2. $\operatorname{Ric}_{g_{0}} \geq 0 \Longrightarrow \operatorname{Ric}_{g_{t}} \geq 0, \forall t \geq 0$

Similarly
Theorem 8.4. If $\left(M^{3},\left\{g_{t}\right\}_{t \in[0, T]}\right)$ a Ricci flow with $\partial M=\emptyset$, then

1. $\sec _{g_{t}} \geq 0, \sec _{g_{T}} \ngtr 0 \Longrightarrow \sec _{g_{t}} \ngtr 0, \forall t \in[0, T]$
2. $\mathrm{Ric}_{g_{t}} \geq 0, \mathrm{Ric}_{g_{T}} \ngtr 0 \Longrightarrow \mathrm{Ric}_{g_{t}} \ngtr 0, \forall t \in[0, T]$

Here, we write $\sec _{g_{t}}>0$ if $\sec _{g_{t}}>\lambda(t) g_{t}$ for some $\lambda(t)>0$. So $\sec _{g_{T}}$ can be ≥ 0 but not strictly greater than 0 (i.e. \ngtr) if its 0 along one direction, but not the others (i.e. non-zero but lacks positive definiteness). In this case, the tensor splits.

Proof: For $\left(x_{0}, t_{0}\right) \in M \times[0, T]$ we can choose an o.n.b. $\left\{e_{i}\right\}$ in $\left(T_{x_{0}} M, g_{t_{0}}\right)$ such that

$$
R m=\left[\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & k_{2} & 0 \\
0 & 0 & k_{3}
\end{array}\right], \quad \text { Ric }=\left[\begin{array}{ccc}
\rho_{1} & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right]
$$

using the fact that the dimension is 3 . Here,

$$
\begin{aligned}
\rho_{1} & =k_{2}+k_{3} \\
\rho_{2} & =k_{1}+k_{3} \\
\rho_{3} & =k_{1}+k_{2}
\end{aligned}
$$

We also compute

$$
Q(R m)=2\left[\begin{array}{ccc}
k_{1}^{2}+k_{2} k_{3} & 0 & 0 \\
0 & k_{2}^{2}+k_{1} k_{3} & 0 \\
0 & 0 & k_{3}^{2}+k_{1} k_{2}
\end{array}\right]
$$

Now extend $\left\{e_{i}\right\}$ to be an o.n.b. in a neighborhood of x_{0} such that

$$
\nabla e_{i}=0=\Delta e_{i}
$$

at x_{0} and evolve e_{i} by $\nabla_{\partial_{t}} e_{i}=0$. Thus, the ODE of $\nabla_{t} R m=\phi(R m)$ becomes

$$
\partial_{t}\left(R m\left(e_{i}, e_{j}\right)\right)=\left(\nabla_{\partial_{t}} R m\right)\left(e_{i}, e_{j}\right)=Q(R m)\left(e_{i}, e_{j}\right)
$$

so we compute

$$
\begin{aligned}
& \partial_{t} k_{1}(t)=2\left(k_{1}^{2}+k_{2} k_{3}\right) \\
& \partial_{t} k_{2}(t)=2\left(k_{2}^{2}+k_{1} k_{3}\right) \\
& \partial_{t} k_{3}(t)=2\left(k_{3}^{2}+k_{1} k_{2}\right)
\end{aligned}
$$

If $k_{1}\left(x_{0}, 0\right), k_{2}\left(x_{0}, 0\right), k_{3}\left(x_{0}, 0\right) \geq 0$, then evolving by the above gives

$$
k_{1}\left(x_{0}, t\right), k_{2}\left(x_{0}, t\right), k_{3}\left(x_{0}, t\right) \geq 0
$$

for all t. Choose

$$
C_{x, t}=C_{t}=\left\{R m \in S_{b}\left(\wedge_{2} \mathbb{R}^{n}\right), R m \geq 0\right\}
$$

(here $R m$ is just denoting some arbitrary tensor, not the actual Riemann curvature tensor). Then $C_{x, t}$ is preserved by the ODE, so $R m \geq 0$ is preserved by Ricci Flow. This proves the sectional curvature statement.

For Ric ≥ 0, choose $C_{x, t}=C_{t}=\{R m:$ Ric $\geq 0\}$. Recall that

$$
\partial_{t} \operatorname{Ric}=\Delta \operatorname{Ric}+2 R m(\operatorname{Ric})
$$

for our specific manifold and Ricci flow. Moreover, for every element $F \in C_{t}$, we have that the following ODE is satisfied

$$
\partial_{t} F=2 R m(F)
$$

where $R m$ is again the curvature tensor associated to our Ricci flow $\left\{g_{t}\right\}$.

8.2 Linear Support Functions

Definition 8.5. For $C \subseteq \mathbb{R}^{k}$, closed, convex, a linear support function for C is an affine linear function

$$
\begin{aligned}
& \alpha: \mathbb{R}^{k} \rightarrow \mathbb{R} \\
& v \mapsto \vec{a} \cdot v+b
\end{aligned}
$$

such that $|\vec{a}|=|\nabla \alpha|=1$ and $C \subseteq\{\alpha \geq 0\}$ and $C \cap \operatorname{ker} \alpha \neq \emptyset$.

Figure 17
Now we have
Lemma 8.6. The signed distance is given by

$$
\operatorname{dsigned}(p, C)=\inf _{\alpha: L S F} \alpha(p)
$$

and the infinum can be achieved by a linear support function α such that if $q \in \partial C$ is the closest point to p then $\alpha(p) \nabla \alpha=p-q$
here, LSF is "Linear Support Function" and

$$
\operatorname{dsigned}(p, C):= \begin{cases}d\left(p, \mathbb{R}^{k} \backslash C\right) & p \in C \\ -d(p, C) & p \notin C\end{cases}
$$

Note that when ∂C smooth, dsigned is the signed distance to ∂C in the usual sense. With this we prove the

Figure 18
vector valued WMP and SMP's:

Proof: Let

$$
s(x, t)=\operatorname{dsigned}\left(u(x, t), C_{x, t}\right)
$$

Here the WMP holds if and only if: $s(\cdot, 0) \geq 0$, then $s(\cdot, t) \geq 0$ for all $t \geq 0$
The SMP holds if and only if: $s(x, t) \geq 0$ for all $(x, t) \in M \times[0, T]$ and $s\left(x_{0}, T\right)=0$, then $s(x, t) \equiv$ $0, \forall(x, t) \in M \times[0, T]$

To show this, we want to prove the following lemma
Lemma 8.7. $\exists C>0$ such that $\left(\partial_{t}-\Delta\right) s \geq-C \cdot s$
Note that if this is true, then the WMP and SMP hold by comparing $s(x, t)$ to 0 .
Proof of Lemma: Assume for simplicity that $s(x, t)$ is smooth. Let α be an LSF such that $q \in \operatorname{ker}(\alpha), q$ is the closest point to $p=u\left(x_{0}, t_{0}\right)$. Let $\Omega_{t_{0}}=\{\alpha \geq 0\} \subseteq E_{x_{0}, t_{0}}$. Then

$$
s\left(x_{0}, t_{0}\right)=\operatorname{dsigned}\left(u\left(x_{0}, t_{0}\right), C_{x_{0}, t_{0}}\right)=\alpha\left(u\left(x_{0}, t_{0}\right)\right)
$$

Let $\left\{\Omega_{t}\right\}$ be the flow of $\Omega_{t_{0}}$ by the $\operatorname{ODE} \nabla_{\partial_{t}} u=\phi(u)$. Then $C_{x_{0}, t} \subseteq \Omega_{t}$ for all $t \leq t_{0}$. Then

$$
\left[x_{0, t} \subseteq \Omega_{t_{0}}=\{\alpha \geq 0\}\right.
$$

Figure 19

$$
s\left(x_{0}, t\right) \leq \operatorname{dsigned}\left(u\left(x_{0}, t\right), C_{x_{0}, t}\right) \leq \operatorname{dsigned}\left(u\left(x_{0}, t\right), \Omega_{t}\right)
$$

and equality holds at $t=t_{0}$. This tells us that

Figure 20

$$
\left.\frac{d}{d t}\right|_{t=t_{0}} s\left(x_{0}, t\right) \geq\left.\frac{d}{d t}\right|_{t=t_{0}} \operatorname{dsigned}\left(u\left(x_{0}, t\right), \Omega_{t}\right)=\alpha\left(\nabla_{\partial_{t}} u-\phi(q)\right)
$$

were the last equality is an exercise. Now we fix t_{0}, and extend α to be a LSF on $C_{x, t_{0}}$ by radially parallel transport. Then

$$
\alpha\left(u\left(x, t_{0}\right)\right) \geq \operatorname{dsigned}\left(u\left(x, t_{0}\right), C_{x, t_{0}}\right)=s\left(x, t_{0}\right)
$$

with equality holding at $x=x_{0}$. Then we have

$$
\begin{aligned}
\Delta \alpha\left(u\left(x, t_{0}\right)\right. & \geq \Delta s\left(x, t_{0}\right) \quad \text { at } \quad x=x_{0} \\
\alpha\left(\Delta u\left(x, t_{0}\right)\right) & \geq \Delta s\left(x, t_{0}\right) \quad \text { at } \quad x=x_{0} \\
\left(\partial_{t}-\Delta\right) s\left(x_{0}, t_{0}\right) & \geq \alpha\left(\nabla_{\partial_{t}} u-\phi(q)-\Delta u\right)\left(x_{0}, t_{0}\right) \\
& =\alpha(\phi(u)-\phi(q))\left(x_{0}, t_{0}\right) \\
& \geq-C\left|u\left(x_{0}, t_{0}\right)-q\right|=-C s\left(x_{0}, t_{0}\right)
\end{aligned}
$$

which proves the lemma

9 Lecture 9: 10-25-22

Today

- Rigidity of the SMP (strong maximum principle)

Theorem 9.1. We have $\left(M,\left\{g_{t}\right\}_{t \in[0, T]}\right)$ and

$$
\nabla_{\partial_{t}} u=\Delta u+\phi(u), \quad u(x, t) \in C_{x, t} \quad \forall t \in[0, T]
$$

where $C_{x, t}$ is convex, parallel, and preserved by the ODE. Suppose $u\left(x_{0}, t_{0}\right) \in \partial C_{x_{0}, t_{0}}$ for $t_{0}>0$. Let α be a linear support function for $C_{x_{0}, t_{0}}$ and $\alpha\left(u\left(x_{0}, t_{0}\right)\right)=0$. Then

Figure 21

$$
\nabla_{v} u, \nabla_{v, v}^{2} u, \nabla_{\partial_{t}} u-\phi(u) \in \operatorname{ker}(\alpha)
$$

for any $v \in T_{x_{0}} M$, when the above is evaluated at $\left(x_{0}, t_{0}\right)$.
Let $\Omega_{t_{0}}=\{\alpha \geq 0\}$, and define $\left\{\Omega_{t}\right\}$ to be the paralell transport of $\Omega_{t_{0}}$.
Proof: We have $u\left(x_{0}, t_{0}\right) \in C_{x_{0}, t} \subseteq \Omega_{t}$. Moreover

$$
d_{\text {signed }}\left(u\left(x_{0}, t\right), \Omega_{t}\right) \geq 0
$$

and equality holds at $t=t_{0}$. Thus

$$
\begin{aligned}
0 \geq\left.\frac{d}{d t}\right|_{t=t_{0}} d_{\text {signed }}\left(u\left(x_{0}, t\right), \Omega_{t}\right) & =\alpha\left(\nabla_{\partial_{t}} u-\phi(q)\right) \\
& =\alpha\left(\nabla_{\partial_{t}} u-\phi(u)\right) \\
& =\alpha(\Delta u) \quad \text { at }\left(x_{0}, t_{0}\right)
\end{aligned}
$$

here, $q \in \partial C_{x_{0}, t_{0}}$ is the closest point of $u\left(x_{0}, t_{0}\right)$ and $q=u\left(x_{0}, t_{0}\right)$.
Now fix t_{0}, extend α by parallel transport, then

$$
u\left(x_{0}, t_{0}\right) \in C_{x, t_{0}} \subseteq\{\alpha \geq 0\}, \quad \alpha\left(u\left(x, t_{0}\right)\right) \geq 0
$$

and equality in the right hand equation holds at $x=x_{0}$. Now

$$
\begin{aligned}
0 & =\partial_{v}\left(\alpha\left(u\left(\cdot, t_{0}\right)\right)\right)=\alpha\left(\nabla_{v} u\left(x_{0}, t_{0}\right)\right) \Longrightarrow \nabla_{v} u \in \operatorname{ker} \alpha \\
0 & \leq \partial_{v, v}^{2}\left(\alpha\left(u\left(\cdot, t_{0}\right)\right)\right)=\alpha\left(\nabla_{v, v}^{2} u\left(x_{0}, t_{0}\right)\right) \Longrightarrow 0 \leq \alpha\left(\Delta u\left(x_{0}, t_{0}\right)\right) \leq 0 \\
& \Longrightarrow \alpha(\Delta u)=0
\end{aligned}
$$

where $\alpha(\Delta u) \leq 0$ comes from the viscosity argument and differentiating with respect to t from before.

Theorem 9.2. With the same set up as in the previous theorem: Moreover if $C_{x_{0}, t}$ is parallel in t and if one of the following conditions is satisfied

1. $\partial C_{x_{0}, t_{0}}$ is smooth at $u\left(x_{0}, t_{0}\right)$
2. $t_{0}<T$

Then $\nabla_{v} u, \nabla_{v, v}^{2} u, \nabla_{\partial_{t}} u, \phi(u) \in \operatorname{ker}(\alpha)$
Proof: If 1 is true, then by SMP $u\left(x_{0}, t\right) \in \partial C_{x_{0}, t}$ for all $t \leq t_{0}$, so

$$
\left.\nabla_{\partial_{t}}\right|_{t=t_{0}} u\left(x_{0}, t\right) \in T_{u\left(x_{0}, t_{0}\right)} \partial C_{x_{0}, t}=\operatorname{ker} \alpha
$$

use

$$
\nabla_{\partial_{t}} u-\phi(u) \in \operatorname{ker}(\alpha) \Longrightarrow \phi(u) \in \operatorname{ker}(\alpha)
$$

If 2 is true, then $\alpha\left(u\left(x_{0}, t\right)\right) \geq 0$ in $\left(t_{0}-\delta, t_{0}+\delta\right)$ for some $\delta>0$ and equality holds at $t=t_{0}$, this implies that

$$
\left.\partial_{t}\right|_{t=t_{0}} \alpha\left(u\left(x_{0}, t\right)\right)=0=\alpha\left(\nabla_{\partial_{t}} u\left(x_{0}, t_{0}\right)\right)
$$

finishing the proof

9.1 Application of theorem to RF

Let $n=3,\left(M^{3},\left\{g_{t}\right\}_{t \in[0, T]}\right)$ RF, not necessarily compact. Let $u=R m$ and

$$
\nabla_{\partial_{t}} R m=\Delta R m+Q(R m)
$$

and

$$
C_{x, t}=C_{t}=C=\left\{R m \in S_{B}\left(\wedge_{2} \mathbb{R}^{3}\right): \operatorname{Ric}(R m) \geq 0\right\}
$$

Suppose $\operatorname{Ric}_{g_{t}} \geq 0$ everywhere, but Ric >0 fails at $\left(x_{0}, t_{0}\right)$, t_{0} (i.e. has null direction). Then $\left(M,\left\{g_{t}\right\}\right)$ is either flat or locally splits off a line $\forall t \in\left[0, t_{0}\right]$ (we'll prove this!). First note that by the SMP for Ric ≥ 0,
if Ric >0 fails at $\left(x_{0}, t_{0}\right)$ then it fails at all $(x, t), t \leq t_{0}$.
Proof: Let α be defined by

$$
\alpha: R m \in S_{B}\left(\wedge_{2} \mathbb{R}^{3}\right) \mapsto \operatorname{Ric}(R m)(e, e) \in \mathbb{R}
$$

where $0 \neq e \in T_{x_{0}} M$ is a vector such that $\operatorname{Ric}_{x_{0}, t_{0}}(e, e)=0$ (i.e. $\left.\operatorname{Ric}(e, \cdot)=0\right)$. Then α is a linear support function on C and $\alpha\left(\operatorname{Rm}\left(x_{0}, t_{0}\right)\right)=0$. We have that

$$
0=\nabla_{\partial_{t}} \operatorname{Ric}(e, e)=2 R m * \operatorname{Ric}(e, e)
$$

This is because our theorem gives

$$
\nabla_{v} u, \nabla_{v, v}^{2} u, \phi(u), \nabla_{\partial_{t}} u \in \operatorname{ker}(\alpha)
$$

and we've set $u=R m$. We also know that (just from Ricci flow properties)

$$
\begin{aligned}
& \nabla_{\partial_{t}} R m=\Delta R m+Q(R m) \\
& \xrightarrow{\operatorname{tr}} \nabla_{\partial_{t}} \text { Ric }=\Delta \text { Ric }+2 R m * \text { Ric }
\end{aligned}
$$

Now at $\left(x_{0}, t_{0}\right)$ choose an o.n.b. $e=e_{1}, e_{2}, e_{3}$ such that

$$
\text { Ric }=\left[\begin{array}{ccc}
\rho_{1} & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \rho_{2} & 0 \\
0 & 0 & \rho_{3}
\end{array}\right]
$$

Moreover

$$
\begin{gathered}
0=\frac{d}{d t} \rho_{1}=\rho_{1}\left(\rho_{2}+\rho_{3}\right)+\left(\rho_{2}-\rho_{3}\right)^{2} \Longrightarrow \rho_{2}=\rho_{3} \\
\Longrightarrow \text { Ric }=\left[\begin{array}{lll}
0 & & \\
& \rho_{2} & \\
& & \rho_{2}
\end{array}\right]
\end{gathered}
$$

The first equation comes from

$$
\nabla_{\partial_{t}} \operatorname{Ric}(e, e)=\Delta \operatorname{Ric}(e, e)+2 R m * \operatorname{Ric}(e, e)
$$

and then using $\operatorname{Ric}(e, e)=0$. This tells us that the nullity of Ric is either 1 or 3 .
Case 1: If $\operatorname{null}(\mathrm{Ric})=3$, then $R\left(x_{0}, t_{0}\right)=0$. The strong maximum principle applied to R gives that $R(x, t)=0$ for all $x, t \leq t_{0}$. Moreover Ric $\equiv 0$, and in three dimensions this means that $R m \equiv 0$. Thus $\left(M, g_{t}\right)=\left(M, g_{0}\right)$ and g_{0} is flat.
Case 2: If $\operatorname{null}($ Ric $)=1$, we can assume that this is the case everywhere (i.e. $\forall(x, t)$)
Proof: So there exists a smooth, unit vector field, e, such that $\operatorname{Ric}(e, e)=0, \operatorname{Ric}(e, \cdot)=0$. Recall that

$$
\nabla_{v, v}^{2} \operatorname{Ric}(e, e)=0=\nabla_{v} \operatorname{Ric}(e, e)
$$

Goal: $\nabla e=0$ (e is a parallel vector field). Then

$$
0=\partial_{v}\left(\nabla_{v} \operatorname{Ric}(e, e)\right)=\nabla_{v, v}^{2} \operatorname{Ric}(e, e)+2 \nabla_{v} \operatorname{Ric}\left(\nabla_{v} e, e\right)
$$

but we know that

$$
\nabla_{v, v}^{2} \operatorname{Ric}(e, e)=0
$$

which implies that

$$
\nabla_{v} \operatorname{Ric}\left(\nabla_{v} e, e\right)=0
$$

but now we can compute

$$
0=\partial_{v}\left(\operatorname{Ric}\left(e, \nabla_{v} e\right)\right)=\nabla_{v} \operatorname{Ric}\left(e, \nabla_{v} e\right)+\operatorname{Ric}\left(\nabla_{v} e, \nabla_{v} e\right)+\operatorname{Ric}\left(e, \nabla_{v, v}^{2} e\right)
$$

but we know that the first and last term are 0 , so

$$
\begin{gathered}
\operatorname{Ric}\left(\nabla_{v} e, \nabla_{v} e\right)=0 \Longrightarrow \nabla_{v} e=\lambda e \\
|e|=1 \Longrightarrow \nabla_{v} e=0, \quad \forall v \in T_{x_{0}} M \Longrightarrow \nabla e=0
\end{gathered}
$$

Now as an exercise: If we have $\nabla_{\partial_{t}} e=\partial_{t} e=0$, then the splitting of our space is preserved by the flow.

Corollary 9.2.1. If $\left(M^{3}, g\right)$ compact and $\operatorname{Ric}_{g} \geq 0$, but M^{3} doesn't admit any metric with Ric >0, then $\left(M^{3}, g\right)$ is isometric to one of the following:

1. Quotient of \mathbb{R}^{3}
2. Quotient of $S^{2} \times \mathbb{R}$ where $\left(S^{2}, h\right), \kappa_{h}>0$

Proof: Given $\left(M^{3}, g\right)$, we flow by Ricci flow and get $\left\{g_{t}\right\}$. Then at some point we have nullity and use the previous theorems to either get a splitting (e.g. $S^{2} \times \mathbb{R}$) or show that the metric is flat (e.g. $\left.\mathbb{R}^{3} / \Gamma\right)$.

Note that the condition of finding a metric with Ric >0 (or ruling it out) is partially dealt with by Hamilton's theorem.

Theorem 9.3. Let $n=3$ and $\left(M^{3},\left\{g_{t}\right\}_{t \in[0, T]}\right)$ a Ricci Flow. Suppose that $\sec _{g_{t}} \geq 0$ (i.e. $R m \geq 0$), and $R m>0$ fails at $\left(x_{0}, t_{0}\right)$ for $t_{0}>0$, then one of the following is true

1. $\left(M, g_{t}\right)$ is flat for all $t \leq t_{0}$. OR
2. $\left(M, g_{t}\right)$ locally splits off a line

Note that in the latter case, the nullity of $R m$ is 2 because a basis for the domain of $R m$ is $\left\{e_{1} \wedge e_{2}, e_{1} \wedge\right.$ $\left.e_{3}, e_{2} \wedge e_{3}\right\}$ and $e=e_{1}$ is the null direction for Ric.

Proof: In fact, this can be deduced from the last theorem (Ric splitting theorem). It suffices to show that Ric >0 also fails at $\left(x_{0}, t_{0}\right)$. Note that $R m>0$ fails implies that there exists e_{1}, e_{2}, e_{3} such that $R m$ is diagonal under $e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge e_{3}$ and

$$
R m=\left(\begin{array}{ccc}
\kappa_{1} & 0 & 0 \\
0 & \kappa_{2} & 0 \\
0 & 0 & \kappa_{3}
\end{array}\right), \quad \kappa_{1} \leq \kappa_{2} \leq \kappa_{3}
$$

and

$$
0=\frac{d}{d t} k_{1}=k_{1}^{2}+k_{2} k_{3}
$$

where

$$
Q(R m)=\left(\begin{array}{ccc}
k_{1}^{2}+k_{2} k_{3} & 0 & \ldots \\
0 & \ldots & \ldots \\
\cdots & \ldots & \ldots
\end{array}\right)
$$

Note that $k_{1}=0$ implies $k_{2} k_{3}=0$ so $k_{2}=0$ or $k_{3}=0$, i.e. the nullity of $R m$ is 2 or 3 . In either case, this implies that Ric >0 fails at $\left(x_{0}, t_{0}\right)$.

Theorem 9.4 (Cone Rigidity). Let $n=3,\left(M^{3},\left\{g_{t}\right\}_{t \in[0, T]}\right)$ a RF not necessarily compact. Suppose $\operatorname{Ric}_{g_{t}} \geq$ 0 . If $\left(M^{3}, g_{T}\right)$ is isometric to an open subset of a cone over a Riemannian manifold, then $\left(M^{3},\left\{g_{t}\right\}\right)$ is flat

Proof: Recall a cone is given by $d r^{2}+r^{2} h$ where (N, h) is a 2D manifold. It's an exercise to show that $\operatorname{Ric}\left(\partial_{r}, \partial_{r}\right)=0$. Then the theorem tells us that we're either flat, or we split off a line. Suppose not flat. Then we have

$$
g_{T}=d r^{2}+h_{N^{\prime}}=d r^{2}+r^{2} h_{N}
$$

where we think of $\left(N^{\prime}, h_{N^{\prime}}\right)$ and $\left(N, h_{N}\right)$ as two separate 2 D manifolds. Now we write

$$
\operatorname{Ric}=\left(\begin{array}{lll}
0 & & \\
& \rho_{2} & \\
& & \rho_{3}
\end{array}\right)
$$

where $\rho_{2} \leftrightarrow e_{2}, \rho_{3} \leftrightarrow e_{3}$. Then ρ_{2} is constant in r if we split like a line, but also ρ_{2} scale like r^{-2} in r if we have a cone splitting. This is a contradiction since r is variable in the cone perspective. Thus we must have $\rho_{2}=0$. Same for ρ_{3}. Thus Ric $=0$ and we're flat!

10 Lecture 10: 10-27-22

Today

- More preserved curvature condition in $n=3$
- Hamilton's Ric >0 theorem

10.1 More preserved curvature condition in $n=3$

If $C \subseteq E$ is defined as $\psi^{-1}([0, \infty))$ for some concave function

$$
\psi: E \rightarrow \mathbb{R}
$$

then C is a convex subset. Moreover, the preservation of C under the ODE if and only if for all $e \in E$ with $\psi(e)=0$, let $e(t)$ satisfy $e(0)=e$ and the ODE

$$
\nabla_{\partial_{t}} u=\phi(u)
$$

Then,

$$
\frac{d}{d t} \psi(e(t)) \geq 0
$$

Figure 22

Lemma 10.1. Assume that

$$
R m=\left(\begin{array}{lll}
\kappa_{1} & & \\
& \kappa_{2} & \\
& & \kappa_{3}
\end{array}\right)
$$

with $\kappa_{1} \leq \kappa_{2} \leq \kappa_{3}$. Then

1. $\kappa_{1}+\kappa_{2}+\kappa_{3}$ is both concave and convex (because its linear)
2. κ_{1} is concave, $\kappa_{1}\left(R m_{1}\right) \geq C, \kappa_{1}\left(R m_{2}\right) \geq C \Longrightarrow \kappa_{1}\left(a R m_{1}+b R m_{1}\right) \geq C$, for $a, b \geq 0$ and $a+b=1$
3. κ_{3} is convex
4. $\rho_{1}=\kappa_{1}+\kappa_{2}$ is concave
5. $\kappa_{3}-\kappa_{1}$ is convex

Remark Here, the underlying space is \mathbb{R}^{3}, so we interpret concave and convex on \mathbb{R}^{3}. Remember that our bundle $E=S_{B}\left(\wedge_{2} \mathbb{R}^{3}\right)$

Theorem 10.2 (Pinching condition). For all $\epsilon \in[0,1 / 3), n=3,\left(M^{3},\left\{g_{t}\right\}_{t \in[0, T]}\right)$ a Ricci Flow, M^{3} compact, then

$$
\operatorname{Ric} \geq(\epsilon \cdot R) g
$$

is preserved
Remark Note that we've already proved this when $\epsilon=0$.
Remark

1. Note that

$$
\operatorname{trRic} \geq \operatorname{tr}(\epsilon R \cdot g), \quad R \geq 3 \epsilon R \Longrightarrow R \geq 0
$$

2. In S^{3}, we have Ric $=\frac{1}{3} R \cdot g$, i.e. sharpness for $\epsilon=1$
3. In a manifold with Ric >0, there exists an $\epsilon>0$ such that Ric $\geq \epsilon R \cdot g$

Proof: We have

$$
\operatorname{Ric}=\left(\begin{array}{ccc}
\kappa_{1}+\kappa_{2} & & \\
& \kappa_{1}+\kappa_{3} & \\
& & \kappa_{2}+\kappa_{3}
\end{array}\right)
$$

for $\kappa_{1} \leq \kappa_{2} \leq \kappa$.
Goal: Write Ric $\geq \epsilon R g$ as the 0 -sublevel set of a concave function ψ and check

$$
\frac{d}{d t} \psi(e(t)) \geq 0
$$

whenever $\psi(e(0))=0$. Note that

$$
\begin{aligned}
\operatorname{Ric} \geq \epsilon R g & \Longleftrightarrow \kappa_{1}+\kappa_{2} \geq \epsilon\left(2\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right)\right) \\
& \Longleftrightarrow \kappa_{1}+\kappa_{2} \geq \frac{2 \epsilon}{1-\epsilon} \kappa_{3} \triangleq \delta \kappa_{3}, \quad \delta \in[0,2) \\
& \Longleftrightarrow \kappa_{1}+\kappa_{2} \geq \delta \kappa_{3} \\
& \Longleftrightarrow \kappa_{1}+\kappa_{2}-\delta \kappa_{3} \geq 0
\end{aligned}
$$

Note that the first line holds since $\kappa_{1}+\kappa_{2}$ is the lowest eigenvalue. And in the last line $\kappa_{1}+\kappa_{2}-\delta \kappa_{3}$ is concave.
When " $\psi(e(0))=0$ ", then this corresponds to $\kappa_{1}+\kappa_{2}=\delta \kappa_{3}$. Moreover " $\left.\frac{d}{d t} \psi(e(t))\right|_{t=0}$ corresponds to

$$
\frac{d}{d t}\left(\kappa_{1}+\kappa_{2}-\delta \kappa_{3}\right) \geq 0
$$

Now we use the underlying ODE to compute this, i.e.

$$
\nabla_{\partial_{t}} R m=\phi(R m)
$$

with $\partial_{t} \kappa_{1}=\kappa_{1}^{2}+\kappa_{2} \kappa_{3}$ to get

$$
\frac{d}{d t}\left(\kappa_{1}+\kappa_{2}-\delta \kappa_{3}\right)=\kappa_{1}^{2}+\kappa_{2} \kappa_{3}+\kappa_{2}^{2}+\kappa_{1} \kappa_{3}-\delta\left(\kappa_{3}^{2}+\kappa_{1} \kappa_{3}\right)
$$

Note that if $\kappa_{3}=0$, then we're done as Ric $\equiv 0$, so WLOG assume $\kappa_{3} \neq 0$ and let

$$
\delta=\frac{\kappa_{1}+\kappa_{2}}{\kappa_{3}}
$$

Then with this choice of δ, we have that

$$
\kappa_{1}+\kappa_{3} \geq \delta \kappa_{3}
$$

and also plugging δ into the above we get

$$
\kappa_{1}^{2}+\kappa_{2} \kappa_{3}+\kappa_{2}^{2}+\kappa_{1} \kappa_{3}-\delta\left(\kappa_{3}^{2}+\kappa_{1} \kappa_{3}\right) \geq 0
$$

finishing the proof.

Lemma 10.3. $\forall \epsilon \in(0,1), \exists \delta(\epsilon)>0$ such that

$$
C=\left\{\frac{\rho_{1}}{\rho_{3}} \geq 1-\frac{1}{\rho_{3}^{\delta(\epsilon)}}, \rho_{1} \geq \epsilon \rho_{3}>0\right\}
$$

and $\rho_{1} \leq \rho_{2} \leq \rho_{3}$ eigenvalues of Ric are convex and preserved by Ricci Flow.
Remark The proof is similar but a bit more involved than the previous lemma, so we'll skip this proof for now.

Theorem 10.4 (Hamilton, Ric $>0)$. Let $\left(M^{3}, g\right)$ compact, Ric >0, then M is diffeomorphic to S^{3} / Γ
Proof: Run Ricci flow for g as the initial condition. Assume T is the maximal existence time. Then

$$
T<\infty\left(R_{g}>0 \xrightarrow{W M P} R \uparrow \infty \text { in finite time }\right)
$$

By compactness of the manifold, there exists $\epsilon>0$ such that

$$
\frac{\rho_{1}}{\rho_{3}} \geq \epsilon
$$

at time $t=0$. After a rescaling, we can find $\delta(\epsilon)>0$ such that

$$
1-\frac{1}{\rho_{3}^{\delta(\epsilon)}} \leq \frac{\rho_{1}}{\rho_{3}} \leq 1
$$

Now our lemma implies that these are also true for all g_{t} in our $\mathrm{RF}, t \in[0, T)$. Now let

$$
Q_{t}=\max _{M} \rho_{3}(\cdot, t)
$$

This $\rightarrow \infty$ as $t \uparrow T$, since we now that scalar curvature blows up.
Claim 1: There exists $C>0$ such that $\forall \alpha>0$, there exists $\tilde{\delta}>0$ such that for any $x \in M, t \in[T-\tilde{\delta}, T)$, if

$$
\rho_{3}(x, t) \geq \frac{1}{10} Q_{t} \geq \frac{1}{100} \max _{M \times[0, t]} \rho_{3}
$$

then

$$
\rho(\cdot, t) \in\left[(1-\alpha) \rho_{3}(x, t),(1+\alpha) \rho_{3}(x, t)\right]
$$

Figure 23
in $B_{t}\left(x, c \rho_{3}^{-1 / 2}(x, t)\right)$.
Remark Intuitively, this says that " (x, t) almost achieves the max of ρ_{3} in $M \times[0, t]$ " Proof: Let $t_{k}<T$, $t_{k} \uparrow T$. Let

$$
g_{k}^{\prime}=\rho_{3}\left(x_{k}, t_{k}\right) g_{t_{k}}
$$

Then $\rho_{3} \leq 100$ on g_{k}^{\prime} (implies $|R m| \leq C 100$). Now Shi's derivative estimate gives that

$$
\left|\nabla^{m} R m\right| \leq C_{m}
$$

forall $m \in \mathcal{N}$ for g_{k}^{\prime}. Now let

$$
g_{k}^{\prime \prime}=\exp _{x_{k}, g_{k}^{\prime}}^{*} g_{k}^{\prime}
$$

on $T_{x_{k}} M \cong \mathbb{R}^{3}$, then via an exercise, we have

$$
\left|\partial^{m}\left(g_{k}^{\prime \prime}\right)_{i j}\right| \leq c_{m}^{\prime}
$$

on $B(0,3 c)$ for some $c>0$ and $g_{k}^{\prime \prime}$ satisfies

$$
1-\frac{1}{\left(\rho_{3}(x) \rho_{3}\left(x_{k}, t_{k}\right)\right)^{\delta(\epsilon)}} \leq \frac{\rho_{1}(x)}{\rho_{3}(x)} \leq 1
$$

here, $\rho_{1}(x), \rho_{3}(x)$ is with respect to $g_{k}^{\prime \prime}$ and $\rho_{3}\left(x_{k}, t_{K}\right)$ is with respect to the original setting and $g_{t_{k}}$. Thus

Figure 24

$$
\lim _{k \rightarrow \infty} g_{k}^{\prime \prime}=g_{\infty}
$$

with convergence in C^{∞} on $B(\overrightarrow{0}, 2 C) \subseteq \mathbb{R}^{3}$. Moreover

1. $\rho_{3}(\overrightarrow{0})=1$
2. $\forall x \in B(\overrightarrow{0}, 2 C)$ if $\rho_{3}(x) \neq 0$

$$
1 \leq \frac{\rho_{1}(x)}{\rho_{3}(x)} \leq 1 \Longrightarrow \rho_{1}(x)=\rho_{2}(x)=\rho_{3}(x)
$$

But if $\rho_{3}(x)=0$, then $\rho_{1}(x)=\rho_{2}(x)=0$ by Ric ≥ 0 (before we take the limit, we know Ric >0, so in the limit we have Ric ≥ 0). This shows that in all cases $\rho_{1}(x)=\rho_{2}(x)=\rho_{3}(x)$, and we aim to show that ρ_{i} is a constant in x.

Thus

$$
\operatorname{Ric}=\lambda g
$$

for $\lambda: B(\overrightarrow{0}, 2 c) \rightarrow \mathbb{R}$. By Schur's lemma, λ is a constant. Morever

$$
\rho_{3}(\overrightarrow{0})=1
$$

which implies that $\lambda \neq 0$ and $\rho_{1}=\rho_{2}=\rho_{3}$ on $B(\overrightarrow{0}, 2 C)$.
Claim 2: $\forall \alpha^{\prime}>0$, we can find a point (x, t) such that

$$
\rho_{3}(\cdot, t) \in\left[\left(1-\alpha^{\prime}\right) \rho_{3}(x, t),\left(1+\alpha^{\prime}\right) \rho_{3}(x, t)\right] \quad \operatorname{in} B_{t}\left(x, 10 \pi \rho_{3}(x, t)^{-1 / 2}\right)
$$

Proof: Repeat Claim 1

Figure 25

$$
\rho_{3}(\cdot, t) \in\left[(1-\alpha) \rho_{3}(x, t),(1+\alpha) \rho_{3}(x, t) \text { in } B_{t}\left(x, C \rho^{-1 / 2}(x, t)\right)\right.
$$

for $\left[\frac{10 \pi}{C}\right]+1$ times, and we can find (x, t), as long as $\left(x_{k}, t_{k}\right)$ almost achieves the $\max _{M \times[0, t]} \rho_{3}$. I.e.

$$
\begin{gathered}
\forall k, \quad \rho_{3}\left(x_{k}, t_{k}\right) \geq \frac{1}{10} Q_{t_{k}} \geq \frac{1}{100} \max _{M \times\left[0, t_{k}\right]} \rho_{3} \\
\rho_{3}\left(x_{k}, t_{k}\right) \in\left[(1-\alpha)^{k-1} \rho_{3}\left(x_{1}, t_{1}\right),(1-\alpha)^{k-1} \rho_{3}\left(x_{1}, t_{1}\right)\right] \\
k \leq\left[\frac{10 \pi}{C}\right]+1
\end{gathered}
$$

If we choose $\alpha \ll 1$ such that the first line holds for any k. Assume $\alpha^{\prime} \ll 1$. Then Bonnet-Meyers theorem tells us that

$$
\left.\operatorname{diam}_{t}(M)<4 \pi \rho_{3}^{-1 / 2}(x, t) \Longrightarrow B_{t}\left(x, 10 \pi \rho_{3}(x, t)^{-1 / 2}\right)\right)=M
$$

and we know that

$$
\rho_{3}(\cdot, t) \in\left[\left(1-\alpha^{\prime}\right) \rho_{3}(x, t),\left(1+\alpha^{\prime}\right) \rho_{3}(x, t)\right]
$$

for any other point. Now the differential sphere theorem implies that $M \cong S^{3} / \Gamma$.
For posterity, we recall the differential sphere theorem
Theorem 10.5. Let $\left(M^{3}, g\right)$ compact and

$$
\begin{aligned}
& \kappa_{3} \leq(1+\epsilon) \kappa_{1} \\
& \Longrightarrow M \cong S^{3} / \Gamma
\end{aligned}
$$

$\left(\kappa_{1} \leq \kappa_{2} \leq \kappa_{3}\right)$, then

11 Lecture 11: 11-1-22

Today

- Curvature estimate of Hamilton's Ric >0 theorem
- Hamilton-Ivey pinching (3D)
- Preserved curvature condition in $n \geq 3$

11.1 Hamilton's Ric >0 theorem

Theorem 11.1 (Hamilton). For $\left(M^{3}, g\right)$ compact with $\operatorname{Ric}_{g}>0$, then the Ricci flow $\left(M,\left\{g_{t}\right\}_{t \in[0, T]}\right)$ with T the maximal existence time and $g_{0}=g$ satisfies

$$
\begin{equation*}
|R m(\cdot, t)| \leq \frac{C}{T-t} \tag{14}
\end{equation*}
$$

for some $C>0$.
Remark Equation (14) is called a "Type I singularity" and a "Type II singularity" is when (14) fails to hold.
Proof: Let

$$
R_{\max }(t)=\max _{M} R(\cdot, t)
$$

$$
\frac{d}{d t^{+}} R_{\max }^{-1}(t) \leq-C \quad C>0
$$

Proof: Suppose not, then we can find a sequence $t_{k} \uparrow T, \epsilon_{k} \rightarrow 0, \epsilon_{k}>0$ so that

$$
\frac{d}{d t^{+}} R_{\max }^{-1}(t) \geq-\epsilon_{k}
$$

Suppose $R\left(x_{k}, t_{k}\right)=R_{\max }\left(t_{k}\right)$. Then we showed last time that

$$
R^{-1}\left(x_{k}, t_{k}\right) g_{t_{k}} \rightarrow g_{S^{3}}
$$

smoothly. Recall the ODE for R

$$
\frac{d}{d t} R=\Delta R+2|\mathrm{Ric}|^{2}
$$

and so

$$
\frac{d}{d t} R^{-1}=-\frac{\partial_{t} R}{R^{2}}=-\frac{1}{R^{2}}\left(\Delta R+2|\operatorname{Ric}|^{2}\right)
$$

Note that

$$
-\frac{1}{R^{2}}\left(\Delta R+2|\mathrm{Ric}|^{2}\right)=-C
$$

on $\left(S^{3}, g_{S^{3}}\right)$ with $C>0$. Thus

$$
\frac{d}{d t} R^{-1}\left(x_{k}, t_{k}\right) \leq-\frac{C}{2}
$$

for C large, a contradiction. Here, we've noted that $\frac{d}{d t} R^{-1}$ is a scale invariant, i.e.

$$
\frac{d}{d t} R_{g_{t_{k}}}^{-1}=\frac{d}{d t} R_{R\left(x_{k}, t_{k}\right) g_{t_{k}}}^{-1}
$$

This tells us the claim is true, and now

$$
\frac{d}{d t^{+}} R_{\max }^{-1}(t) \leq-C \Longrightarrow R_{\max }(t) \leq \frac{C^{-1}}{T-t}
$$

but now scalar curvature bounds norm of the Riemannian tensor up to a constant so

$$
|R m|(t) \leq \frac{C}{T-t}
$$

Remark To be formal, we have to connect

$$
\frac{d}{d t} R^{-1}\left(x_{k}, t_{k}\right)
$$

to

$$
\frac{d}{d t} R_{\max }\left(t_{k}\right)
$$

which aren't the same. But there's a viscosity argument that gives the same bound (see 26) since

Figure 26

$$
R_{\max }(t) \geq R\left(x_{k}, t\right)
$$

we can show that the appropriate bound on the derivative holds in the correct direction.
Remark We have

$$
(T-t)^{-1} g_{t} \xrightarrow{C^{\infty}} g_{S^{3}}
$$

11.2 Hamilton-Ivey Pinching

Lemma 11.2. The following subset C_{t} is convex and preserved by

$$
\nabla_{\partial_{t}} R m=Q(R m)
$$

for any $t>0$. Let

$$
C_{t}=\left\{\begin{array}{l}
R m \in S_{B}\left(\wedge_{2} \mathbb{R}^{3}\right): R \geq-\frac{3}{2 t} \\
\exists X>0 \text { s.t. } \mathrm{sec} \geq-C \text { and } 2 X(\log (2 X t)-3) \geq R
\end{array}\right.
$$

Remark We call C_{t} the " t^{-1}-positive curvature" subset, i.e. $R m_{g} \in C_{t}$ means that it has " t^{-1}-positive curvature"

Corollary 11.2.1. If $\left(M^{3},\left\{g_{t}\right\}_{t \in[0, T]}\right)$ compact Ricci Flow, assume $R m_{g_{t_{0}}} \in C_{t_{0}}$, then $R m_{g_{t}} \in C_{t}$
Lemma 11.3. Suppose $\left(M^{3}, g\right)$ is t^{-1}-positive for $t>0$, then $\forall \lambda>0$, we have that $\left(M^{3}, \lambda g\right)$ is $\lambda^{-1} t^{-1}$ positive, i.e.

$$
R m_{g} \in C_{t} \Longrightarrow R m_{\lambda g} \in C_{\lambda t}
$$

Lemma 11.4. $\left(M^{3}, g\right)$ is T_{i}^{-1}-positive for a sequence of $T_{i} \rightarrow \infty$ then $\sec _{g} \geq 0$.

Proof: Fix a point $x_{0} \in M$. The first condition of being in $C_{T_{i}}$ means that

$$
R \geq-\frac{3}{2 T_{i}} \rightarrow 0
$$

The second condition means there exists an $x_{T_{i}}$ (a constant) such that $\sec \geq-x_{T_{i}}$ and

$$
2 x_{T_{i}}\left(\log \left(2 x_{T_{i}} T_{i}\right)-3\right) \leq R\left(x_{0}\right)
$$

(here x_{0} is a point, not $T_{i}=0$). Note that $x_{T_{i}} \rightarrow 0$, else $T_{0} \rightarrow \infty$ forces

$$
2 x_{T_{i}}\left(\log \left(2 x_{T_{i}} T_{i}\right)-3\right) \rightarrow \infty
$$

a contradiction to the fixed upper bound of $R\left(x_{0}\right)$. This implies that

$$
\sec \left(x_{0}\right) \geq \lim _{i}-x_{T_{i}}=0
$$

Theorem 11.5. $\left(M^{3},\left\{g_{t}\right\}_{t \leq 0}\right)$ an RF implies that $\sec \geq 0$ for all $x \in M$, for all $t \leq 0$
Proof: Fix $t_{0} \leq 0$, let $T_{i} \rightarrow \infty$ and $g_{i, t}=g_{t-T_{i}}, t \leq T_{i}$

Figure 27

Lemma 11.6. For a Ricci flow $\left(M^{3},\left\{g_{t}\right\}_{t \in[0, T]}\right)$ we have $R m_{g_{t}} \in C_{t}$ for all $t>0$ (i.e. t^{-1}-positive using our definition of C_{t} as before)

Proof: Can find $\epsilon_{i} \rightarrow 0$ such that

$$
R m_{g_{\epsilon_{i}}} \in C_{\epsilon_{i}}
$$

This follows by compactness of M. Now use the strong maximum principle to preserve the properties defined by C_{t} for all $t>0$. This finishes the proof.

Now apply the lemma to $g_{i, T}$ then

$$
\begin{aligned}
\quad R m_{g_{i, t}} & \in C_{t}, \quad \forall t>0 \\
\Longrightarrow R m_{g_{t-T_{i}}} & \in C_{t}, \quad \forall t>0 \\
\Longrightarrow R m_{g_{t_{0}}} & \in C_{t_{0}+T_{i}}, \quad\left(\text { take } t=t_{0}+T_{i}\right)
\end{aligned}
$$

This implies that $R m_{g_{t_{0}}}$ is $\left(t_{0}+T_{i}\right)^{-1}$-positive. Now send $T_{i} \rightarrow \infty$ and get

$$
\sec \left(\cdot, t_{0}\right) \geq 0
$$

Corollary 11.6.1. A closed shrinking solution in 3D must be the shrinking sphere

Proof: Recall that a shrinking soliton generates an ancient Ricci Flow

$$
g_{t}=(-2 \lambda t) \phi_{t}^{*} g
$$

where ϕ_{t} is a diffeo and $t \in(-\infty, 0]$. Our theorem then gives that $\sec _{g_{t}} \geq 0$. If Ric >0, then Hamilton's Ric >0 theorem tells us that g_{t} is asymptotically round (i.e. $R_{m a x}^{-1}(t) g_{t} \rightarrow g_{S^{3}}$), which implies that g_{t} itself must be round. This is because we have for t close to T

$$
\begin{aligned}
(-2 \lambda t)^{-1} g_{t} & \rightarrow g_{S^{2}} \\
\phi_{t}^{*} g & \rightarrow g_{S^{3}}, \quad t \uparrow T \\
g & \rightarrow g_{S^{3}}, \quad t \uparrow T
\end{aligned}
$$

the last metric, g, is constant and $g=g_{S^{3}}$.
If Ric >0 fails at a certain point, then

$$
M \cong\left(S^{2}, h\right) \times \mathbb{R} / \Gamma \quad \text { or } \quad M \cong T^{3} / \Gamma
$$

which implies that the diameter stays bounded away fro m 0 as $t \uparrow 0$ (i.e. $\operatorname{diam}_{g_{t}} \geq C>0$ for all t). THis is a contradiction by the definition of the flow

$$
g_{t}=(-2 \lambda t) \phi_{t}^{*} g \Longrightarrow \operatorname{diam}\left(g_{t}\right)=\operatorname{diam}(g) \cdot(-2 \lambda t)^{1 / 2} \rightarrow 0
$$

so we must be in the first case, i.e. the shrinking sphere. (Here we note that ϕ_{t} is an isometry so the diameter with respect to g is the same as that with respect to $\left.\phi_{t}^{*}(g)\right)$

11.3 Preserved curvature conditions for $n \geq 3$

Here we make a table

name	definition	properties
$R m \geq 0$	$\lambda_{1}(R m) \geq 0, \lambda_{1} \leq \lambda_{2} \leq \ldots$	\Longrightarrow sec ≥ 0
2-non-negative curvature	$\lambda_{1}(R m)+\lambda_{2}(R m) \geq 0$	\Longrightarrow Ric $\geq 0(n \leq 3$, equiv to Ric $\geq 0)$
weakly PIC C_{2}	$M \times \mathbb{R}^{2}$ is weakly PIC	\Longrightarrow sec ≥ 0
weakly PIC 1	$M \times \mathbb{1}$ is weakly PIC	
weakly PIC	$\forall\left\{e_{i}\right\}$ o.n.b a 4-frame	
	s.t. $R_{1331}+R_{1441}+R_{2332}+R_{2442}+2 R_{1234} \geq 0$	

where $\mathrm{PIC}=$ "Positive isotopic curvature". Note that weakly $\mathrm{PIC}_{2} \Longrightarrow$ weakly $\mathrm{PIC}_{1} \Longrightarrow$ weakly PIC. Note that every surface is weakly PIC, but not weakly PIC_{2}

12 Lecture 12: 11-3-22

Today

- Generalization of WMP
- Geometric Compactness theorem

12.1 Generalization of WMP

Theorem 12.1 (Shi, Short-time Existence). Let $\left(M^{n}, g\right)$ complete, $|R m| \leq C$, then \exists a Ricci Flow, $\left\{g_{t}\right\}_{[0, T]}$ with $g_{0}=g$ and $T=T(C)$

Remark We won't prove this but note that the maximal time can be bounded above by a function dependent on the curvature bound.

We also have that "almost non-negative" curvature is preserved by Ricci Flow.

Theorem 12.2 (Simon-Topping). For $\left(M^{3}, g\right), \operatorname{Ric}_{g_{0}} \geq-1$ and $\operatorname{vol}\left(B_{g_{0}}(x, 1)\right) \geq v_{0}>0, \forall x \in M$. Then there exists a Ricci flow $\left\{g_{t}\right\}_{t \in[0, T]}$ such that $\operatorname{Ric}_{g_{t}} \geq-C$ where $\tau\left(v_{0}\right) C\left(v_{0}\right)>0$
here C is the curvature bound and only depends on v_{0}. Moreover, $\tau\left(v_{0}\right)$ is some multiplicative constant.
Theorem 12.3 (Bamler, Cabezas-Rivas, Wilking). Let C be one of the following

$$
\begin{aligned}
& C_{1}=\{R m: R m \geq 0\} \\
& C_{2}=\left\{R m: \lambda_{1}(R m)+\lambda_{2}(R m) \geq 0\right\} \\
& C_{3}=\left\{R m: \text { weakly } \mathrm{PIC}_{1}\right\} \\
& C_{4}=\left\{R m: \text { weakly } \mathrm{PIC}_{2}\right\}
\end{aligned}
$$

Let $\left(M^{n}, g_{0}\right)$ complete and $R m_{g_{0}}+I d \in C$ and $\operatorname{vol}(B(x, 1)) \geq v_{0}, \forall x$. Assume moreover that $\left(M^{3}, g_{0}\right)$ is compact (or complete with bounded curvature) if $C=C_{2}$ or $C=C_{3}$, then $\exists\left\{g_{t}\right\}_{t \in[0, T]}$ and $R m+C \cdot I d \in C$, and $\tau\left(v_{0}\right) C\left(v_{0}\right)>0$.

Remark Here, we think of $R m: \wedge_{2} \mathbb{R}^{n} \rightarrow \wedge_{2} \mathbb{R}^{n}$ and $I d: \wedge_{2} \mathbb{R}^{n} \rightarrow \wedge_{2} \mathbb{R}^{n}$ so that their sum makes sense.
Theorem 12.4 (L.). Theorem 12.3 holds without assuming anything when $C=C_{2}, C_{3}$
Remark In the above theorem, non-collapsing (i.e. volume bound) is important. Yi constructs a counter example of a shrinking sphere bundle (see 28) In this example, Ric $\geq-\epsilon$

Figure 28

Conjecture 12.4.1. For $\left(M^{3}, g\right)$ complete, Ric ≥ 0, then $\exists\left\{g_{t}\right\}_{t \in[0, T]}$ a complete Ricci Flow such that $g_{0}=g$

Theorem 12.5 (L.). The conjecture is true modulo completeness assertion
Remark Yi says he idea is to run Singular Ricci Flow and then use the Ric ≥ 0 assumption to prevent the formations of singularities. Once the flow exists, Ric ≥ 0 is preserved.
Corollary 12.5.1 (A gap theorem). Let $C=C_{1}, C_{2}, C_{3}, C_{4}$. For all $D>0, v_{0}>0$, there exists $\epsilon\left(D, v_{0}\right)>0$ such that if $\left(M^{n}, g\right)$ closed, $\operatorname{diam}(M) \leq D, \operatorname{vol}(M) \geq v_{0}, R m+\epsilon I d \in C$, then M admists a metric \tilde{g} such that $R m_{\tilde{g}} \in C$

Proof: Suppose not, then there exists $\left\{\left(M_{k}, g_{k}\right)\right\}$ and $\epsilon_{k} \rightarrow 0$ such that $R m_{g_{k}}+\epsilon_{k} I d \in C$, but M_{k} does not have a metric such that $R m \in C$. The above theorems imply that $\exists g_{k, t}$ a Ricci Flow for $t \in[0, T]$. Moreover, $|R m|_{g_{k, t}} \leq \frac{C\left(v_{0}\right)}{t}$ (also obtained in out theorems), so that

$$
\left(M_{k}, g_{k, t}\right) \xrightarrow{\text { Cheeger-Gromov-Hamilton }}\left(M_{\infty}, g_{\infty, t}\right) \quad t \in(0, \tau]
$$

Moreover

$$
R m_{g_{k, t}}+C \epsilon_{k} I d \in C \Longrightarrow R m_{g_{\infty, t}} \in C
$$

so M_{∞} has a metric such that $R m \in C$. Because M_{k} is diffeomorphic to M_{∞} for large k we see that we've found such a metric in C on M_{k}, a contradiction.

12.2 Geometric Compactness Theorem

We define Gromov-Hausdorff distance. Let $\left(Z, d_{z}\right)$, metric space and $X_{1}, X_{2} \subseteq Z$, then the hausdorff distance between them is

$$
d_{H}\left(X_{1}, X_{2}\right)=\inf \left\{r>0 \mid B_{r}\left(X_{1}\right) \supseteq X_{2}, B_{r}\left(X_{2}\right) \supseteq X_{1}\right\}
$$

There's a remark that this can be thought of as a min-max characterization

$$
d_{H}\left(X_{1}, X_{2}\right)=\inf _{p \in X_{1}} \sup _{q \in X_{2}} d(p, q)
$$

or something similar.
Now let $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ be two metric spaces. Then

$$
d_{G H}\left(X_{1}, X_{2}\right)=\inf _{\substack{\varphi_{i}: X_{i} \rightarrow Z \text { isometric embedding } \\ \text { from } X_{i} \text { to a metric space } Z}} d_{H}\left(\varphi_{1}\left(X_{1}\right), \varphi_{2}\left(X_{2}\right)\right.
$$

Now let

$$
\mathbb{M}=\text { isometry class of all compact separable metric spaces }
$$

Theorem 12.6. $\left(\mathcal{M}, d_{G H}\right)$ is a separable and complete metric space.
Proof: We go through the metric space requirements

1. We show that $d_{G H}(X, Y)=0 \Longrightarrow\left(X, d_{x}\right) \cong\left(Y, d_{Y}\right)$. To see this, we have that

$$
d_{H}^{Z}(X, Y) \leq i^{-1} \rightarrow 0
$$

for all i. This means there exists $I_{i}(x) \in Y$ such that $d\left(x, I_{i}(x)\right) \leq i^{-1}$, and there exists $J_{i}(y) \in X$ such that $d\left(y, J_{i}(y)\right) \leq i^{-1}$. This tells us that

$$
d\left(I_{i}\left(x_{1}\right), I_{i}\left(x_{2}\right)\right) \leq d\left(x_{1}, x_{2}\right)+2 i^{-1}
$$

for all $x_{1}, x_{2} \in X$. Similar for J and Y (see 29) In particular, $d\left(x, J_{i}\left(I_{i}(x)\right) \leq 2 i^{-1}\right.$. By a diagonalization

Figure 29
argument, for a dense countable subset $A \subseteq X$ (using separability of X) such that

$$
I_{i} \rightarrow I: A \rightarrow Y
$$

How to do this? For each $x_{i} \in A$, consider $I_{i}\left(x_{j}\right) \in Y$. Using compactness of Y (without thinking about the ambient $Y \subseteq Z_{i}$), we can take (along a subsequence) $I_{i}\left(x_{j}\right) \rightarrow I\left(x_{j}\right) \in Y$. Thus I is defined for A. Now if we extend $I: X \rightarrow Y$, distance decreasing extension (and the same for J), we have that

$$
d(x, J(I(x))=0
$$

i.e. I is an isometry with $J=I^{-1}$.
2. Triangle inequality - exercise
3. Completeness - Let $\left\{X_{i}\right\}$ cauchy. We find metric spaces $\left\{Z_{i, i+1}\right\}$ such that X_{i}, X_{i+1} isometrically embed in $Z_{i, i+1}$. Now we glue together $Z_{i-1, i}$ and $Z_{i, i+1}$ along for all i to get a limiting space Z that isometrically contains all X_{i}. In Z, we actually have hausdorff convergence, and completeness under the hausdorff distance gives us a space in the limit.
4. Separable - let

$$
S=\left\{(X, d) \in M| | X \mid<\infty, \quad d_{x} \text { takes rational values }\right\}
$$

This is clearly countable, and to see density, we take any X compact, then approximate X by an ϵ-net. Using compactness we get a finite cover.

12.2.1 Examples of G-H convergence

- Let (M, g) riemannian manifold. Let X_{i} be an approximating ϵ_{i}-net of M (finite sets!). Then this converges in the GH sense back to (M, g). Note that this works even when (M, g) is smooth, so smoothness (or lack of it) not really preserved by GH (see 30)

discrete sets $\xrightarrow{G H}$ smooth mnfd
Figure 30
- Let

$$
X_{i}=S^{1}(1) \times S^{1}(1 / i) \xrightarrow{G H, i \rightarrow \infty} S^{1}(1)
$$

This is collapsing (see 31)

- Consider S^{3} / \mathbb{Z}_{k} with the induced standard metric on S^{3}. Then there exists

$$
\begin{aligned}
& \tau: S^{3} / \mathbb{Z}_{k} \rightarrow S^{2} \\
& \tau^{-1}(p) \text { has length } \frac{1}{2 k} \rightarrow 0 \\
& S^{3} / \mathbb{Z}_{k} \xrightarrow{G H} S^{2}, \quad k \rightarrow \infty
\end{aligned}
$$

So the topology can totally change under GH convergence, because the first fundamental groups are all different

Figure 31

- Consider the berger sphere $S^{3}(\epsilon) \rightarrow S^{2}$. Then

$$
S^{3}\left(i^{-1}\right) \xrightarrow{G H} S^{2}
$$

13 Lecture 13: 11-10-22

Today:

- Pointed Gromov-Hausdorff convergence
- Smooth Cheeger-Gromov Convergence

Recall for $D>0, \bar{N}: \mathbb{R}^{+} \rightarrow \mathbb{N}$, set

$$
\mathbb{M}(D, \bar{N})=\left\{(X, d) \in \mathcal{M} \mid \operatorname{diam}(X, d) \leq D, N^{(X, d)}(r) \leq \bar{N}(r), \quad \forall r\right\}
$$

where $N^{(X, d)}$ is the minimal number of $\{r-$ net $\}$. Formally, $N^{(X, d)}$ - have $\left\{x_{1}, \ldots, x_{N}\right\}$ such that $\cup_{i} B\left(x_{i}, r\right) \supseteq$ X, then $\left\{x_{i}\right\}$ is an "r-net" and $N^{(X, d)}(r)$ is the minimal such N for given r

Theorem 13.1. $\mathbb{M}(D, \bar{N})$ is compact w.r.t $d_{G H}$, i.e. closed and totally bounded
Corollary 13.1.1. $\forall n \in \mathbb{N}, D, k>0$. Then

$$
\left\{\left(M^{n}, d_{g}\right) \mid \operatorname{diam}_{g}(M) \leq D, \quad \text { Ric } \geq-k g\right\}
$$

(where M is compact and g is riemannian metric) is precompact in \mathbb{M}.
Note that we may not have a smooth object in the limit.
Proof: Choose $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq M$ to be a maximal set such that $B\left(x_{i}, r / 2\right)$ are pairwise disjoint. Then

$$
M=\cup_{i=1}^{n} B\left(x_{i}, r\right)
$$

Then

$$
N \leq \frac{\operatorname{Vol}(M, g)}{\min _{1 \leq i \leq N} \operatorname{Vol}\left(B\left(x_{i}, r / 2\right)\right)}=\frac{\operatorname{Vol}\left(B\left(x_{j}, 0\right)\right)}{\operatorname{Vol}\left(B\left(x_{j}, r / 2\right)\right)} \leq C(n, D, k, r)
$$

assuming that the minimum ball volume is achieved at j for some j. The last inequality follows by a volume comparison theorem. Here, we note that the constant does not depend on the manifold itself, but rather the lower bound for Ricci. Now our theorem gives precompactness.

Definition 13.2. A metric space (X, d) is a "length space" if

$$
d(x, y)=\inf \left\{\ell(\gamma) \mid \gamma:[0,1] \rightarrow X, \quad \gamma \in C^{0}, \quad \gamma(0)=x, \gamma(1)=y\right\}
$$

where the length of a continuous curve is the sup of the partitions. I.e.

$$
\ell(\gamma)=\sup _{P \in \mathcal{P}} \sum_{t_{i} \in P} d\left(\gamma\left(t_{i}\right), \gamma\left(t_{i+1}\right)\right)
$$

where \mathcal{P} is the collection of all partitions of $[0,1]$.
Theorem 13.3. (X, d) is a length space if and only if $\forall x, y \in X, \forall \epsilon>0$, there exists $z \in X, z \neq x$, such that

$$
d(x, z) \leq \frac{1}{2} d(x, y)+\epsilon
$$

Figure 32

Examples: Let X be the unit circle of radius 1 union the origin (see 32) This is because $d(x, 0)=1$ and we cannot find a continuous curve from the origin to the unit circle. On the other side of the theorem, let x be the origin, then $d(x, z)=1$ for all $z \neq x$ and so the above would give

$$
1 \leq \frac{1}{2}+\epsilon
$$

which is false for ϵ small.
Let $X=\mathbb{R}^{2} \backslash\{(0,0)\}$ - then this is a length space.

Lemma 13.4. If (X, d) is a length space, then

$$
\overline{B(x, r)}=D(x, r)
$$

where

$$
\begin{aligned}
& B(x, r)=\{y \in X, d(x, y)<r\} \\
& D(x, r)=\{y \in X, d(x, y) \leq r\}
\end{aligned}
$$

Ex: $\overline{B(x, 1)}=\overline{\{0\}}=\{0\}$, and $D(x, 1)=X$ for $X=S^{1} \backslash\{0\}$.

Definition 13.5. Let $\left(X_{i}, d_{i}, x_{i}\right)$ pointed complete, metric length space, $i \leq \infty$. Suppose all the bounded closed subsets are compact. We write

$$
\left(X_{i}, d_{i}, x_{i}\right) \xrightarrow{P G H}\left(X_{\infty}, d_{\infty}, x_{\infty}\right)
$$

if $\forall r>0$

$$
\left(D\left(x_{i}, r\right), d_{i}\right) \xrightarrow{G H}\left(D\left(x_{\infty}, r\right), d_{\infty}\right), \quad i \rightarrow \infty
$$

RemarkHere, we assume that X_{∞} exists and is a length space.
RemarkSimilarly we can find a correspondence $\left(Z, d_{Z}\right)$ such that $\left(\left\{\varphi_{i}\right\}_{i=1}^{\infty}, Z\right)$ and $\varphi_{i}: X_{i} \rightarrow Z$ isometric embedding such that for all r

$$
\varphi_{i}\left(D\left(x_{i}, r\right)\right) \xrightarrow{H} \varphi_{\infty}\left(D\left(x_{\infty}, r\right)\right)
$$

see 33
Theorem 13.6. Let $\left(X_{i}, d_{i}, x_{i}\right)$ be a pointed complete length space such that bounded subsets are compact. Suppose $\exists\left\{r_{k}\right\} \rightarrow \infty$ such that

$$
\left(D\left(x_{i}, r_{k}\right), d_{i}\right) \xrightarrow{G H}\left(X_{\infty, k}, d_{\infty, k}\right)
$$

then

$$
\left(X_{\infty, k}, d_{\infty, k}\right) \stackrel{\text { isometric,embed }}{\longrightarrow}\left(X_{\infty, k^{\prime}}, d_{\infty, k^{\prime}}\right) \quad \forall k \leq k^{\prime}
$$

and there exists $\left(X_{\infty}, d_{\infty}, x_{\infty}\right)$ such that

$$
\left(X_{i}, d_{i}, x_{i}\right) \xrightarrow{P G H}\left(X_{\infty}, d_{\infty}, x_{\infty}\right)
$$

Figure 33

Remark This gives a sufficient condition for getting PGH.

Example. Let $X=\bigvee_{i=1}^{\infty}[0,1]_{i}$. Then X is bounded, closed, but not compact. Here

$$
d_{X}(A, B)=d_{X}(A, 0)+d_{X}(B, 0)
$$

if A, B are not on the same interval (see)

Figure 34

Corollary 13.6.1. $\forall k \in \mathbb{R}, \forall n \in \mathbb{N}$

$$
\left\{\left(M^{n}, d_{g}, p\right) \mid(M, g) \text { complete }, \quad \operatorname{Ric} \geq-k g\right\}
$$

is precompact in the space of pointed, complete length space whose bounded closed subsets are all compact
Proof: Follows from the compact case of this theorem.
RemarkThis corollary holds true when replacing k by a function $k(r), r=d(\cdot, p)$.

Example. Let $\left(M^{n}, g, p\right)$ and $\left\{\lambda_{i}\right\} \rightarrow \infty$. Let $\left(M^{n}, \lambda_{i}^{2} g, p\right) \rightarrow\left(M^{n}, d_{\lambda_{i}^{2} g}, p\right)$ a complete length space (bounded subsets are compact). And now

$$
\left(M^{n}, d_{\lambda_{i}^{2} g}, p\right) \xrightarrow{P G H}\left(T_{p} M^{n}, g_{e u c}, p\right)
$$

Similarly, 35 if we have a manifold with a cone point and we consider the sequence

$$
\left(M^{n}, d_{\lambda_{i}^{2} g}, p\right) \xrightarrow{P G H}\left(C^{n}, d r^{2}+c r^{2} d g_{N^{n-1}}, p\right)
$$

i.e. we get convergence to a cone. Note that the tangent cones at a point are not necessarily metric cones, and not necessarily unique (i.e. may depend on $\left\{\lambda_{i}\right\}$).

Figure 35

Example. Cigar soliton (call it (M, g)). If we choose $\left\{p_{i}\right\}$ arbitrary sequence of points

$$
\left(M, g, p_{i}\right) \xrightarrow{P G H} \begin{cases}\left(M, g, p^{1}\right) & \left\{p_{i}\right\} \text { bounded } \\ \left(\mathbb{R} \times S^{1}, g_{\mathbb{R} \times S^{1}}\right) & \left\{p_{i}\right\} \rightarrow \infty\end{cases}
$$

see 46

Figure 36

13.1 Smooth Cheeger-Gromov Convergence

Theorem 13.7. Let $\left(M_{i}^{n}, d_{g_{i}}, p_{i}\right) \xrightarrow{P G H, Z, i \rightarrow \infty}\left(X_{\infty}, g_{\infty}, p_{\infty}\right)$ where each $\left(M_{i}, d_{g_{i}}\right)$ is a complete RM and $\left(X_{\infty}, g_{\infty}\right)$ is a complete length space. Then we say convergence is smooth at $q_{\infty} \in X_{\infty}$ if $\exists\left\{q_{i}\right\} \in X_{i}$ with

$$
q_{i} \xrightarrow{Z} q_{\infty}
$$

where Z is the larger ambient space where this whole correspondence occures. Moreover, there exists $r, V>0$, $C_{m}>0$ such that

1. $\operatorname{Vol}\left(B\left(q_{i}, r\right)\right) \geq C>0$
2. $\left|\nabla^{m} R m\right| \leq C_{m}$ in $B\left(q_{i}, r\right)$

Furthermore, if we define

$$
R^{*}=\left\{q_{\infty} \in X_{\infty}: \text { convergence } q_{i} \xrightarrow{Z} q_{\infty} \text { is smooth at } q_{\infty}\right\}
$$

Then R^{*} is n-dimensional and has a smooth $\mathrm{RM},\left(R^{*}, g^{*}\right)$ such that $\left(R^{*}, d_{g^{*}}\right) \stackrel{I d}{\longrightarrow}\left(X_{\infty}, d_{\infty}\right)$ is a local isometry
Remark Consider $\left\{M_{i}\right\}$ a sequence of tori getting progressively more pinched which converges in a PGH sense to a sphere with two points touching (i.e. fully pinched torus at a point), . Then R^{*} is everything except the point where we pinch. But

$$
\left(R^{*}, d_{g^{*}}\right) \hookrightarrow\left(X_{\infty}, d_{\infty}\right)
$$

is not an isometry. Topologically

$$
R^{*} \cong(0,1) \times S^{1}
$$

see 37

Remark Without the first condition (volume preservation), we can construct the following perverse example of

$$
S^{1}(1) \times S^{1}(\epsilon) \xrightarrow{S^{1}}
$$

and $R^{*}=\emptyset$.
Without the second condition (bounded curvature), we can let $\left\{M_{i}\right\}$ be a sequence of wedges smoothed out at the vertex, converging to a wedge/cone. In this case

$$
R^{*}=X_{\infty} \backslash\{\text { cone point }\}
$$

also see 37

Note maynot be a global isomety when $R^{*} \subsetneq X_{\infty}$:

Figure 37

14 Lecture 14: 11-15-22

14.1 Smooth Cheeger-Gromov Convergence

Recall from last time:
Theorem 14.1. Assume $\left\{\left(M_{i}^{n}, d_{g_{i}}, p_{i}\right)\right\} \xrightarrow{P G H, Z, i \rightarrow \infty}\left(X_{\infty}, d_{\infty}, p_{\infty}\right)$ and

$$
R^{*}=\{\text { smooth points }\} \text { on } B_{g_{i}}\left(q_{i}, r\right)
$$

then

1. $R^{*} \subseteq X$ is open, and there exists a riemannian metric g_{∞} such that $\left(R^{*}, g_{\infty}\right) \stackrel{i d}{\hookrightarrow}\left(X_{\infty}, d_{\infty}\right)$ is a local isometry.
2. There exists an open subset $U_{1} \subseteq \cdots \subseteq U_{n} \subseteq R^{*}$, such that $\bigcap_{i=1}^{\infty} U_{i}=R^{*}$ and a diffeo

$$
\psi_{i}: U_{i} \rightarrow V_{i} \subseteq M_{i}
$$

such that
(a) $\psi_{i}^{*} g_{i} \xrightarrow{C_{l o c}^{\infty}, i \rightarrow \infty} g_{\infty}$ on R^{*}
(b) $\psi_{i}^{*} \xrightarrow{Z, i \rightarrow \infty} i d$

Recall that $q_{\infty} \in R^{*}$ is smooth there exists $\left\{q_{i} \in M_{i}\right\}$ such that

$$
q_{i} \xrightarrow{Z} q_{\infty}
$$

and

$$
\begin{gather*}
\operatorname{Vol}\left(B_{g_{i}}\left(q_{i}, r\right)\right) \geq V>0 \tag{15}\\
\left|\nabla^{m} R m\right| \leq C_{m} \tag{16}
\end{gather*}
$$

Proof: First, for 1., note that the Gromov theorem (We haven't proved this) and equation (15) and (16) give that

$$
\operatorname{inj}\left(q_{i}\right) \geq c>0
$$

i.e. the injectivity radius is bounded from below. Thus

$$
\underbrace{\left(D\left(q_{i}, C / 2\right), d_{i}\right)}_{\text {topological ball }} \xrightarrow{G H, i \rightarrow \infty}\left(D\left(q_{\infty}, c / 2\right), d_{\infty}\right))
$$

Then there exists local coordinates near $q_{i} \in M$ and

$$
\begin{aligned}
& \vec{x}_{i}: B\left(q_{i}, \gamma_{0}\right) \rightarrow \mathbb{R}^{n} \\
& \quad q_{i} \rightarrow 0
\end{aligned}
$$

such that

1. $B\left(\overrightarrow{0}, r_{1}\right) \subseteq \vec{x}_{i}\left(B\left(q_{i}, r_{0}\right)\right)$
2. $g_{i j}=g_{i j, \mathrm{st}} d x_{i}^{s} d x_{j}^{t}$
see 38

Recall the three types of coordinates

Figure 38

1. Exponential coordinates

$$
C_{m}^{\prime}=C_{m}^{\prime}\left(C_{0}, C_{1}, \ldots, C_{m}\right)
$$

where $\left\{C_{i}\right\}$ are our curvature bounds
2. Distance coordinates give

$$
C_{m}^{\prime}=C_{m}^{\prime}\left(C_{0}, C_{1}, \ldots, C_{m-1}\right)
$$

(Here Yi draws a picture explaining this, essentially you have a base point q_{i}, and then you fix n points x_{1}, \ldots, x_{n} in the ambient space, and we map

$$
q \mapsto\left(d\left(q, x_{1}\right), \ldots, d\left(q, x_{n}\right)\right)
$$

)
3. Harmonic coordinates gives

$$
\left\|C_{m}^{\prime}\right\|_{\alpha}=C_{m}^{\prime}\left(C_{0}, C_{1}, \ldots, C_{m-1}\right)
$$

Arzela-Ascoli and our lemma give that

$$
g_{i, s t} \xrightarrow{C^{\infty}} g_{\infty, s t} \text { on } B\left(\overrightarrow{0}, \frac{r_{1}}{2}\right)
$$

Recall

$$
\left.\left(D\left(q_{i}, C / 2\right), d_{i}\right) \xrightarrow{G H, i \rightarrow \infty}\left(D\left(q_{\infty}, c / 2\right), d_{\infty}\right)\right)
$$

then GH limit uniqueness implies that

$$
\left(D\left(q_{\infty}, r_{2}\right), d_{\infty}\right) \stackrel{i s o m}{\cong}\left(D\left(q_{\infty}, r_{2}\right), d_{g_{\infty}}\right)
$$

we can find maps $\psi_{i}: D\left(q_{\infty}, r_{2}\right) \rightarrow M_{i}$ diffeos onto the image such that (a) and (b) in our initial theorem

Figure 39
statement (see initial theorem conditions in 2.) are true on $D\left(q_{\infty}, r_{2}\right)$. This proves 1. (see 40 in our theorem.

Figure 40

Proof: of 2. First, we can find $\left\{x_{1}, x_{2}, \ldots\right\} \subseteq R^{*}$ with $\left\{U^{j}\right\}$ neighborhoods of x_{k}. Form a locally finite cover of R^{*} and there exists

$$
\psi_{i}^{j}: U^{j} \rightarrow V_{i}^{j} \subseteq M_{i}
$$

such that (a) and (b) are true on U^{j}. Now let $X_{i}^{j}: V_{i}^{j} \rightarrow U^{j}$ be the inverse of ψ_{i}^{j} (see 41)
We now claim that

$$
\begin{gathered}
X_{i}^{j_{2}} \circ \psi_{i}^{j_{1}} \xrightarrow{C_{\text {loc }}^{\infty}, i \rightarrow \infty} i d \text { on } U^{j_{1}} \cap U^{j_{2}} \\
\left(X_{i}^{j_{2}} \circ \psi_{i}^{j_{1}}\right)^{*} g_{\infty} \xrightarrow{C_{\text {loc }}^{\infty}, i \rightarrow \infty} g_{\infty}
\end{gathered}
$$

hint: $\psi_{i}^{j_{1}}, \psi_{i}^{j_{2}}$ are almost isometries. Same with $X_{i}^{j_{1}}, X_{i}^{j_{2}}$. Then

$$
\begin{aligned}
\psi_{i}^{j} & \xrightarrow{Z} I d \\
X_{i}^{j} & \xrightarrow{Z} I d \\
\Longrightarrow X_{i}^{j_{2}} \circ \psi_{i}^{j_{1}} & \xrightarrow{Z} I d
\end{aligned}
$$

Figure 41

Proof: Next: "glue-up" the maps $X_{i}^{j}: V_{i}^{j} \rightarrow U^{j}$ for a fixed i. Let $\left\{\eta^{j}\right\}_{j=1}^{\infty}$ be a partition of unity surbordinate to $\left\{U^{j}\right\}_{j=1}^{\infty}$.

Claim: There exist smooth maps $\sigma_{k}:[0,1]^{k} \times \Delta_{k} \rightarrow R^{*}$, where Δ_{k} is a diagonal neighborhood of $\left(R^{*}\right)^{k}=R^{*} \times \cdots \times R^{*}$ and the diagonal is just $\left\{(x, \ldots, x) \mid x \in R^{*}\right\}$, such that

$$
\begin{gather*}
\sigma_{k}\left(s_{1}, \ldots, s_{k}, x, \ldots, x\right)=x \tag{17}\\
\sigma_{k}\left(0, \ldots, 1, \ldots, 0, x_{1}, \ldots, x_{j}, \ldots, x_{k}\right)=x_{j} \tag{18}\\
\sigma_{k}\left(s_{1}, \ldots, s_{k-i}, 0, \ldots, 0, x_{1}, \ldots, x_{k}\right)=\sigma_{k-i}\left(s_{1}, \ldots, s_{k-1}, x_{1}, \ldots, x_{k-i}\right) \tag{19}
\end{gather*}
$$

Note that for $k=2, \sigma_{2}$ is the "mid point" of any two nearby points. Now let

$$
\hat{\chi}_{i}(x)=\sigma_{N}\left(\eta_{1}\left(\chi_{i}^{1}(x)\right), \ldots, \eta_{N}\left(x_{i}^{N}(x)\right), x_{i}^{1}(x), \ldots, x_{i}^{N}(x)\right)
$$

where N is an integer such that

$$
\eta_{k}\left(x_{i}^{k}(x)\right)=0 \quad \forall k \geq N
$$

can check that $\hat{\chi}_{i}$ are diffeos and

$$
\hat{\psi}_{i}=\hat{\chi}_{i}^{-1}
$$

and $\hat{\psi}_{i}$ satisfy (a) and (b) from the theorem assumption.
Definition $14.2\left(C^{\infty}\right.$ _CG convergence $)$. We say $\left(M, g_{i}\right) \xrightarrow{C G}\left(M_{\infty}, g_{\infty}\right)$ if there exists open $U_{1} \subseteq \ldots U_{n} \subseteq$ M_{∞}, and

$$
\bigcap_{i=1}^{\infty} U_{i}=M_{\infty}
$$

and diffeos

$$
\psi_{i}: U_{i} \rightarrow V_{i} \stackrel{\text { open }}{\subseteq} M_{i}
$$

such that

$$
\begin{aligned}
\psi_{i}^{*} g_{i} & \xrightarrow{C_{\text {loc }}^{\infty}} g_{\infty} \\
\psi_{i}^{-1}\left(p_{i}\right) & \rightarrow p_{\infty}
\end{aligned}
$$

So 2. from the theorem: $\left(M_{n}, g_{n}, p_{n}\right) \xrightarrow{C G}\left(R^{*}, g_{\infty}, p_{\infty}\right.$
Corollary 14.2.1. Let $\left(M_{i}^{n}, g_{i}, p_{i}\right)$ complete RM and if $\exists r>0$ and for all $D>0$ such that

1. $\left|\nabla^{m} R m\right| \leq C_{m}(D)$ on $B\left(p_{i}, D\right)$
2. $\operatorname{Vol}\left(B\left(p_{i}, r\right)\right) \geq V>0$ (non-collapsing)
implies that there exists a subsequence such that

$$
\left(M_{i}, g_{i}, p_{i}\right) \xrightarrow{C G}\left(M_{\infty}, g_{\infty}, p_{\infty}\right)
$$

14.2 Compactness of RF/Smooth Cheeger-Gromov-Hamilton Convergence

Setup: $\left(M_{i},\left(g_{i, t}\right)_{t \in\left[-T_{i}^{-}, T_{i}^{+}\right]}, p_{i}\right)$ pointed complete Ricci Flows, $T_{i}^{-}<0, T_{i}^{+}>0$ and assume

$$
\left[-T_{i}^{-}, T_{i}^{+}\right] \rightarrow \hat{I}_{\infty}
$$

then let $I_{\infty}=\hat{I}_{\infty} \backslash\{$ left end point $\}$, e.g. $\hat{I}_{\infty}=[0,1]$, then $I_{\infty}=(0,1]$ and

$$
\begin{equation*}
\left(M_{i}, g_{i, 0}, p_{i}\right) \xrightarrow{P G H, Z, i \rightarrow \infty}\left(X_{\infty}, d_{\infty}, p_{\infty}\right) \tag{20}
\end{equation*}
$$

and $R^{*} \subset X_{\infty}$ as the subset of smooth points of 20. Let

$$
\begin{aligned}
& R^{* *}=\left\{q_{\infty} \in R^{*} \mid \exists q_{i} \xrightarrow{Z} q_{\infty} \text { s.t. } \forall\left[-\hat{T}^{-}, \hat{T}^{+}\right] \subseteq I_{\infty}, \exists C, r>0\right. \\
& \left.\quad \text { s.t. }|R m| \leq C \text { on } B_{g_{i, 0}}\left(q_{i}, r\right) \times\left[-\hat{T}^{-}, \hat{T}^{+}\right]\right\}
\end{aligned}
$$

for large i.
Claim: $R^{* *} \subseteq R^{*}($ see 42$)$
Proof: Shi's estimate gies that if $|R m| \leq C$ for a small time interval locally at a point in X_{∞}, then

Figure 42

$$
\left|\nabla^{m} R m\right| \leq C_{m}
$$

Theorem 14.3. Let $\psi_{i}: R^{*} \supseteq U_{i} \rightarrow V_{i} \subseteq M_{i}$ and $\cup_{i=1}^{\infty} U_{i}=R^{*}$ be diffeos of

$$
\left(M_{i}, g_{i, 0}, p_{i}\right) \xrightarrow{C G}\left(R^{*}, g_{\infty}, p_{\infty}\right)
$$

such that

$$
\psi_{i}^{*} g_{i, 0} \xrightarrow{C^{\infty}} g_{\infty}
$$

and

$$
\psi_{i} \xrightarrow{Z} i d \quad i \rightarrow \infty
$$

then after passing to a subsequence, we have

$$
\psi_{i}^{*} g_{i, t} \xrightarrow{C^{\infty}} g_{\infty, t}
$$

a smooth ricci flow on $R^{* *}$ with $t \in I_{\infty}$ (where $g_{\infty, 0}=g_{\infty}$)
Proof: Take

$$
\tilde{g}_{i, t}=\psi_{i}^{*}\left(g_{i, t}\right)
$$

on $R^{* *} \cap U_{i}$. And Shi's derivative estimate tells us that $\tilde{g}_{i, t}$ has bounded derivative up to any order on any compact subset of I_{∞}. The Arzela-Ascoli lemma now tells us that

$$
\tilde{g}_{i, t} \xrightarrow{C^{\infty}} g_{\infty, t} \quad \text { on } \quad R^{* *} \quad \text { as } i \rightarrow \infty
$$

Moreover, $\tilde{g}_{i, t}$ satisfies Ricci Flow, so does $g_{\infty, t}$.

15 Lecture 15: 11-17-22

Today

- Blow-up analysis
- Solitons

15.1 Application of compactness in blow-ups

Let $\left(M,\left\{g_{t}\right\}_{t \in[0, T)}\right)$ compact RF, $T<\infty$ maximal existence time. Choose $\left(x_{i}, t_{i}\right) \in M \times[0, T], t_{i} \uparrow T$ and

$$
\max _{M \times\left[0, t_{i}\right]}|R m| \leq C \cdot|R m|\left(x_{i}, t_{i}\right):=C Q_{i} \rightarrow \infty
$$

where C is independent of i. Let

$$
g_{i, t}=Q_{i} g_{Q_{i}^{-1} t+t_{i}}, \quad t \in\left[-Q_{i} t_{i}, 0\right]
$$

Figure 43

Assume for some $r>0, v>0$

$$
\operatorname{Vol}\left(B_{g_{i}, t}\left(x_{i}, r\right)\right) \geq v r^{3}
$$

(We will confirm this later using Perlman's no-local collapsing theorem). So applying the convergence theorem, we have

$$
\left(M, g_{i, t}, x_{i}\right) \xrightarrow{C G H}\left(M_{\infty}, g_{\infty, t}, x_{\infty}\right) \quad \text { RF, complete } t \in(-\infty, 0]
$$

Example. Consider two separate sequences, one converging to the sphere, and one converging to the Bryant soliton. These are called the "neck-pinch" and the "degenerate neck-pinch" (see 44)

Theorem 15.1 (Perelman-Brendle). The only possible singularity models for 3D compact Ricci Flows are $S^{3} / \Gamma, S^{2} \times \mathbb{R}, S^{2} \times \mathbb{R} / \mathbb{Z}_{2}$, and the Bryant soliton.

15.2 Solitions (Revisit)

Definition 15.2. We say that a triple (M, g, X) is a soliton if

$$
\operatorname{Ric}+\frac{1}{2} \mathcal{L}_{X} g-\frac{\lambda}{2} g=0, \quad \lambda \in \mathbb{R}
$$

Figure 44
if $X=\nabla f$ then this is a gradiaent solution and the above becomes

$$
\operatorname{Ric}+\nabla^{2} f-\frac{\lambda}{2} g=0
$$

Moreover

$$
\begin{aligned}
\text { shrinking } \lambda & >0 \\
\text { steady } \lambda & =0 \\
\text { expanding } \lambda & <0
\end{aligned}
$$

Now consider the diffeo

$$
\phi_{t}:=\text { flow of }\left\{\begin{array}{lll}
-\frac{1}{\lambda t} & t<0, & \text { when } \lambda>0 \\
X & t \in \mathbb{R}, & \lambda=0 \\
-\frac{1}{\lambda t} X, & t>0, & \lambda<0
\end{array}\right.
$$

Let

$$
g_{t}=\left\{\begin{array}{lll}
-\lambda t \phi_{t}^{*} g & t<0, & \lambda>0 \\
\phi_{t}^{*} g & t \in \mathbb{R}, & \lambda=0 \\
-\lambda t \phi_{t}^{*} g, & t>0, & \lambda<0
\end{array}\right.
$$

Theorem 15.3. $\left\{g_{t}\right\}$ is a Ricci Flow.
Proof: Assume $\lambda>0$, then

$$
\begin{aligned}
\frac{d}{d t}(-\lambda t) \phi_{t}^{*} g & =(-\lambda) \phi_{t}^{*} g-\lambda t \partial_{t} \phi_{t}^{*} g \\
& =(-\lambda) \phi_{t}^{*} g+\phi_{t}^{*}\left(\mathcal{L}_{X} g\right) \\
& =\phi_{t}^{*}\left(-\lambda g+\mathcal{L}_{X} g\right) \\
& =\phi_{t}^{*}(-2 \operatorname{Ric}) \\
& =-2 \operatorname{Ric}\left(\phi_{t}^{*} g\right) \\
& =-2 \operatorname{Ric}\left(g_{t}\right)
\end{aligned}
$$

Example. All Einstein manifolds, i.e. Ric $=\frac{\lambda}{2} g$ and let X be a killing field, then

$$
\operatorname{Ric}+\frac{1}{2} \mathcal{L}_{X} g=\mathrm{Ric}=\frac{\lambda}{2} g
$$

Example. Gaussian gradient soliton: $\left(\mathbb{R}^{n}, g_{\text {euc }}, f=\frac{\lambda}{4}|x|^{2}\right)$ euclidean coordinates. Note that

$$
\nabla^{2}|x|^{2}=2 g_{e u c}
$$

Check

$$
\begin{aligned}
\text { Ric }+\nabla^{2} f-\frac{\lambda}{2} g_{e u c} & =\nabla^{2} f-\frac{\lambda}{2} g_{e u c l} \\
& =\frac{\lambda}{4} 2 g_{\text {euc }}-\frac{\lambda}{2} g_{e u c} \\
& =0
\end{aligned}
$$

see 45

Figure 45

Example. Hamilton-Cigar soliton - on \mathbb{R}^{2}, with $g=d r^{2}+h(r)^{2} d \theta^{2}$, and f. h and f have explicit formulae, but not stated here. This is a steady gradient soliton with $h(r)<\infty$ as $r \rightarrow \infty$. Here $k>0$, i.e. positive gauss curvature everywhere. Moreover for $\left\{p_{i}\right\}$ a sequence with $r \rightarrow \infty$

$$
\left(M, g, p_{i}\right) \xrightarrow{C G} \mathbb{R} \times S^{1}
$$

In 2D, steady solitons are either

- flat
- Cigar soliton
due to Hamilton, Seseum, ... see 46

Figure 46

Example. In $n \geq 3$, the rotationally symmetric soliton is called the Bryant soliton (due to R. Bryant). We work on \mathbb{R}^{n} and

$$
g=d r^{2}+h(r)^{2} g_{S^{n-1}}
$$

and an f. see 47
Both h and f unique. This is not like a cigar soliton and the graph of the Bryant soliton is like a polynomial

Figure 47
of degree two. If you measure the diameter of the sphere at distance r, we have that $h(r) \sim \sqrt{r}$. Moreover, $R m>0$ everywhere, and also for $\left\{p_{i}\right\}$ a sequence tending to $r=\infty$

$$
\left(M, g, p_{i}\right) \xrightarrow{C G} \mathbb{R}^{n}
$$

we can also get nice convergence if we rescale

$$
\left(M, R\left(p_{i}\right) g, p_{i}\right) \xrightarrow{C G} S^{n-1} \times \mathbb{R}
$$

Finally, if we take $\left\{\lambda_{i}\right\} \rightarrow 0$ and take the distinguished parabolic point, p, on the Bryant soliton, we have that

$$
\left(M, \lambda_{i} g, p\right) \xrightarrow{G H} \mathbb{R}^{+}=[0, \infty)
$$

Example. In generalized cylinders

$$
\left(S^{k} \times \mathbb{R}^{n-k}, g=g_{S^{k}}+g_{\mathbb{R}^{n-k}}, f=\frac{\lambda}{4}|\bar{x}|^{2}\right)
$$

where \bar{x} is just $n-k$ coordinates on \mathbb{R}^{n-k} see 48

Figure 48

In 2 D , shrinking soliton converges to $S^{2} / \Gamma, \mathbb{R}^{2}$ (Gaussian shrinking).
In 3 D , shrinking soliton converges to $S^{3} / \Gamma, S^{2} \times \mathbb{R} / \Gamma$, and \mathbb{R}^{3} (Gauss).
We have yet to classify steady solitons, though Hamilton conjectured that there is at least one more besides the 3D Bryant soliton and $\mathbb{R} \times$ Cigar. see 49

Recently Yi found a family of steady solitons called "flying wings", the difference is that

Figure 49

$$
\begin{array}{r}
\text { 3D Bryant soliton } \xrightarrow{\text { Blow down, } \mathrm{GH}} \mathbb{R}^{+} \\
\text {Flying Wing } \xrightarrow{\text { Blow down, GH }}(\text { cone }) \\
\mathbb{R} \times \text { cigar } \xrightarrow{\text { Blow down, } \mathrm{GH}} \mathbb{R} \times \mathbb{R}^{+}
\end{array}
$$

Conjecture 15.3.1. Are these all the 3D steady gradient solitons?
We've shown the existence of at least one more with the flying wings. Moreover this example has $\mathbb{Z}_{2} \times O(2)$ symmetry, but all 3D steady gradient solitons have $O(2)$ symmetry. Uniqueness is still open
Example. Danielle: $\forall\left(N^{n-1}, h\right)$ with $R m>I d, \exists!\left(M^{n}, g, f\right)$ expanding with $R m>0$ and $R(p)=1$, $\nabla f(p)=0$ such that (M, g) asymptotic to $C(N)$, the metric cone over $N, d r^{2}+r^{2} h$, see 50 We have

$$
\left(M, \lambda_{i} g, p\right) \xrightarrow{G H} C(N)
$$

Moreover, let $\left\{g_{t}\right\}$ be a RF associated to g, ie.

$$
g_{t}=(-\lambda t) \phi_{t}^{*} g
$$

Then

$$
\left(M, g_{t}, p\right) \xrightarrow{G H, t \downarrow 0}(C(N), p)
$$

As an aside: Metric comparison geometry say that for (M, g, p) with sec $\geq 0, \lambda_{i} \rightarrow 0$, then

$$
\left(M, \lambda_{i} g, p\right) \xrightarrow{G H}\left(P(X), p_{\infty}\right)
$$

where $P(X)$ is a cone. Here X is the class of geodesic rays on M, which admits a metric
Example. Due to Mi, in $n \geq 4$, there is a family of $\mathbb{Z}_{2} \times O(n-1)$-symmetric steady gradient solitons for $R m>0$, see 51
Let

$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-2}>\lambda_{n-1}=\lambda_{n}
$$

Let $\alpha=\frac{\lambda_{2}}{\lambda_{1}}$ Here, if we take $p_{i} \rightarrow 0$ then

$$
\left(M, R\left(p_{i}\right) g, p_{i}\right) \rightarrow \mathbb{R} \times \text { Dry }^{n-1} \text { or } \mathbb{R}^{2} \times S^{n-2}
$$

Figure 50

Figure 51

Question: What is $\left(M, \lambda_{i} g, p\right)$ as $\lambda_{i} \rightarrow 0$ and $i \rightarrow \infty$? If $\alpha=1$, we get the bryant soliton. If $\alpha=0$, we get the $\mathbb{R} \times$ Bry $^{n-1}$. What about other values of α ?

16 Lecture 16: 11-29-22

Today we'll discuss heat flows and conjugate heat flows

16.1 \mathcal{F}-functional and λ-invariants

We try to view the ricci flow as a gradient flow of some functional. Let $\left\{g_{t}\right\}_{t \in I}$ be a Ricci flow on M, compact. Let $u, v \in C^{2}(M \times I)$. Recall that the heat equation is given by

$$
\square u:=\left(\partial_{t}-\Delta_{g_{t}} u\right)=0
$$

We can define the conjugate heat equation by

$$
{ }^{*} u=\left(-\partial_{t}-\Delta_{g_{t}}+R_{g_{t}}\right) u=0
$$

Note that if $u, v \in C_{c}^{2}\left(M \times\left[t_{1}, t_{2}\right]\right)$ (i.e. $u(\cdot, t), v(\cdot, t)$ vanish on $\left.\partial M\right)$, then

$$
\begin{align*}
\int(\square u) \cdot v d g_{t}-\int u \square^{*} v d g_{t} & =\int\left(\partial_{t}-\Delta\right) u \cdot v-\int u\left(-\partial_{t}-\Delta+R\right) v \tag{21}\\
& =\int\left[\partial_{t}(u v)-(\Delta u) v+u(\Delta v)-R u v\right] d g_{t} \\
& \left.=\int \partial_{t}(u v)-R u v\right) \\
& =\partial_{t} \int u v d g_{t}
\end{align*}
$$

where the third line follows from integration by parts, and the fourth line follows because the derivative of the volume form with respect to the metric is the scalar curvature. We phrase this as the following theorem

Theorem 16.1. For $u, v \in C_{c}(M \times I)$, we have

$$
\partial_{t} \int_{M} u v d g_{t}=\int(\square u) v d g_{t}-\int u\left(\square^{*} v\right) d g_{t}
$$

We can also integrate the above and get

$$
\left.\int u v d g_{t}\right|_{t_{1}} ^{t_{2}}=\int_{t_{1}}^{t_{2}} \int_{M}\left[(\square u) v d g_{t}-u\left(\square^{*} v\right) d g_{t}\right]
$$

16.2 Heat Kernels

In order to understand the heat equation, we also want to understand its underlying kernel. Define

$$
K(x, t ; y, s)>0, \quad x, y \in M, \quad s<t
$$

such that

$$
\begin{array}{r}
\square_{(x, t)} K(x, t ; y, s)=0 \\
\lim _{t \downarrow s} k(\cdot, t ; y, s)=\delta_{(y, s)}
\end{array}
$$

see 52

Figure 52

Proposition 3 (Reproduction Formula). If $\square u=0$, then for $s<t$, we have

$$
u(x, t)=\int_{M} K(x, t ; y, s) u(y, s) d g_{s}
$$

One could view this as a defining property of the heat kernel.
Similarly, we can define a kernel for the conjugate heat equation, i.e. a function

$$
K^{*}(x, t ; y, s)>0
$$

such that

$$
\begin{aligned}
\square_{(y, s)}^{*} K^{*}(x, t ; y, s) & =0 \\
\lim _{s \uparrow t} K^{*}(x, t ; y, s) & =\delta_{(x, t)}
\end{aligned}
$$

see 53 Then the corresponding reproduction formula is

Figure 53

Proposition 4 (Reproduction Formula). If $\square^{*} v=0$, then for $s<t$

$$
v(y, s)=\int_{M} K^{*}(x, t ; y, s) v(x, t) d x
$$

Finally we have

Lemma 16.2.

$$
K^{*}(x, t ; y, s)=K(x, t ; y, s)
$$

Proof: Consider

$$
F(\tau)=\int K^{*}(x, t ; z, \tau) K(z, \tau ; y, s) d_{\tau} z \quad \tau \in(s, t)
$$

Then recall (21). Applying this to the two heat kernels, we see that $F(\tau)$ is constant in τ. Moreover

$$
\lim _{\tau \uparrow t} F(\tau)=K(x, t ; y, s) \lim _{\tau \downarrow s} F(\tau)=K^{*}(x, t ; y, s)
$$

which finishes the proof.

Corollary 16.2.1 (Reproduction Formula). If $t_{1}<t_{2}<t_{3}$, then

$$
K\left(x_{3}, t_{3} ; x_{1}, t_{1}\right)=\int_{M} K\left(x_{3}, t_{3} ; \cdot, t_{2}\right) K\left(\cdot, t_{2} ; x_{1}, t_{1}\right) d g_{t_{2}}
$$

Proof: Again by (21), the intergal on the RHS is independent of t_{2}. Letting $t_{2} \downarrow t_{1}$ or $t_{2} \uparrow t_{3}$ along with the defining properties of the heat kernel give the result. See 54

Figure 54

We will now discuss

- \mathcal{F}-functional, \mathcal{W}-functional, monotonicity
- λ, μ-invariants
- No local collapsing theorem

$16.3 \quad \mathcal{F}$-functional

Let M a smooth manifold, closed. Define

$$
\mathcal{F}(g, f)=\int_{M}\left(R+|\nabla f|^{2}\right) e^{-f} d V, \quad d V=d V o l_{g}
$$

i.e. $f \in C^{\infty}(M)$ and g is a riemannian metric on M. Let

$$
h:=D g
$$

(i.e. $h=\dot{g}$ - for a smooth variation of metrics $\left\{g_{t}\right\}$). And similarly $v=D f$ (Also an infinitesimal variation) Then

Theorem 16.3. We have

$$
D \mathcal{F}_{(g, f)}(h, v)=\int_{M}\left[-\left\langle h, \operatorname{Ric}+\nabla^{2} f\right\rangle+\left(\frac{\operatorname{tr}(h)}{2}-v\right)\left(2 \Delta f-|\nabla f|^{2}+R\right)\right] e^{-f} d V
$$

Proof: From hereon we'll label the LHS $D \mathcal{F}$. Recall that

$$
D(-2 \operatorname{Ric})(h)_{j k}=\Delta_{L} h_{j k}+\nabla_{j} \nabla_{k} \operatorname{tr}(h)+\nabla_{j}(\delta h)_{k}+\nabla_{k}(\delta h)_{j}
$$

So that

$$
D R=-\Delta(\operatorname{tr}(h))-\langle\operatorname{Ric}, h\rangle+\delta^{2} h
$$

where δ is the divergence. Similarly

$$
\begin{aligned}
D|\nabla f|^{2} & =-h(\nabla f, \nabla f)+2\langle\nabla f, \nabla v\rangle \\
D(d V) & =\frac{\operatorname{tr}(h)}{2} d V \\
D\left(e^{-f} d V\right) & =\left(\frac{\operatorname{tr}(h)}{2}-v\right) e^{-f} d V \\
\Longrightarrow D \mathcal{F} & =\int_{M}\left[-\Delta \operatorname{tr}(h)-\langle\operatorname{Ric}, h\rangle+\delta^{2} h-h(\nabla f, \nabla f)+2\langle\nabla f, \nabla v\rangle+\left(R+|\nabla f|^{2}\right) \cdot\left(\frac{\operatorname{tr} h}{2}-v\right)\right] e^{-f} d V
\end{aligned}
$$

where again $(v=D f)$. Moving all the derivatives off of the variations h and v and integrating by parts, we get

$$
\begin{aligned}
\int_{M}-\Delta \operatorname{tr}(h) e^{-f} d V & =\int_{M}-\operatorname{tr}(h) \Delta e^{-f} d V=\int_{m}-\operatorname{tr}(h)\left(|\nabla f|^{2}-\Delta f\right) e^{-f} d V \\
\int_{M} \delta^{2} h e^{-f} d V^{=}-\int_{M}\left\langle\delta h, \nabla e^{-f}\right\rangle=\int_{M}\left\langle h, \delta^{*} \nabla e^{-f}\right\rangle d V & \\
& =\int_{M}\left\langle h, \nabla^{2} e^{-f}\right\rangle=\int_{M}\left\langle h, d f \otimes d f-\nabla^{2} f\right\rangle e^{-f} d V \\
\int_{M} 2\langle\nabla f, \nabla v\rangle e^{-f} d V & =\int_{M} 2\left\langle-\nabla e^{-f}, \nabla v\right\rangle d V=\int_{M} 2 \Delta e^{-f} v d V \\
& =2 \int_{M} v\left(|\nabla f|^{2}-\Delta f\right) e^{-f} d V
\end{aligned}
$$

This implies the theorem.
We can get rid of $\left(\frac{\operatorname{tr}(h)}{2}-v\right)\left(2 \Delta f-|\nabla f|^{2}+R\right)$ by requiring that

$$
\frac{\operatorname{tr}(h)}{2}-v=0
$$

In this case, we also see that

$$
D\left(e^{-f} d V\right)=\left(\frac{\operatorname{tr}(h)}{2}-v\right) d V=0
$$

i.e. its a constant measure, and hence

$$
D \mathcal{F}=\int-\left\langle h, \operatorname{Ric}+\nabla^{2} f\right\rangle e^{-f} d V
$$

Can now define an L^{2}-product on the space of symmetric 2 -tensors by

$$
\left\langle\left\langle h_{1}, h_{2}\right\rangle\right\rangle_{g}:=\frac{1}{2} \int_{M}\left\langle h_{1}, h_{2}\right\rangle d m
$$

for m a fixed measure. The gradient flow of \mathcal{F} is then

$$
\begin{aligned}
\partial_{t} g_{t} & =-2\left(\text { Ric }+\nabla^{2} f\right) \\
\partial_{t} f_{t} & =-R-\Delta f
\end{aligned}
$$

and hence

$$
\frac{d}{d t} \mathcal{F}\left(g_{t}, f_{t}\right)=\int-\left|\operatorname{Ric}+\nabla^{2} f\right|^{2} e^{-f} d V \leq 0
$$

Now let $\tilde{g}_{t}=\phi_{t}^{*}\left(g_{t}\right)$ and $\tilde{f}_{t}=\phi_{t}^{*} f_{t}$ for ϕ_{t} defined to be the flow of ∇f. Then

$$
\begin{align*}
& \partial_{t} \tilde{g}_{t}=-2 \operatorname{Ric}\left(\tilde{g}_{t}\right) \\
& \partial_{t} \tilde{f}_{t}=-\tilde{R}-\Delta \tilde{f}+|\nabla \tilde{f}|^{2} \tag{22}
\end{align*}
$$

We then see that

$$
\mathcal{F}\left(\tilde{g}_{t}, \tilde{f}_{t}\right)=F\left(g_{t}, f_{t}\right)
$$

and

$$
e^{-\tilde{f}} d \tilde{V}=\phi_{t}^{*}\left(e^{-f} d V\right)
$$

is no longer constant, but the integral is!

$$
\frac{d}{d t} \int e^{-\tilde{f}} d \tilde{V}=\frac{d}{d t} \int \phi_{t}^{*}\left(e^{-f} d V\right)=\frac{d}{d t} \int e^{-f} d V=0
$$

just by diffeomorphism invariance of integrals. This means that from 22), we get

$$
\begin{align*}
\partial_{t} g_{t} & =-2 \operatorname{Ric} \tag{23}\\
\partial_{t} f & =-R-\Delta f+|\nabla f|^{2} \tag{24}\\
\Longrightarrow \partial_{t} e^{-f} & =-\Delta e^{-f}+R e^{-f} \tag{25}
\end{align*}
$$

where the last equation is the conjugate heat equation, and linear. Thus we can solve for f backwards in time

Example. Consider $\left(\mathbb{R}^{n}, g_{\text {eucl }}\right)$ and $g_{t}=g_{\text {eucl }}$ for all $t \in\left[0, t_{0}\right)$. Let $\tau=t_{0} 0 t$. Let

$$
\begin{aligned}
f_{t} & =\frac{|x|^{2}}{4\left(t_{0} 0 t\right)}+\frac{n}{2} \ln \left(4 \pi\left(t_{0}-t\right)\right) \\
\Longrightarrow e^{-f_{t}} & =\left(4 \pi\left(t_{0}-t\right)\right)^{-n / 2} e^{-|x|^{2} / 4\left(t_{0}-t\right)}
\end{aligned}
$$

This is a conjugate heat kernal starting at $\left(0 \in \mathbb{R}^{n}, t_{0} \in(0, \infty)\right)$. Moreover $e^{-f_{t}}$ satisfies 25) and

$$
\int_{\mathbb{R}^{n}} e^{-f_{t}} d V=1
$$

Finally

$$
\mathcal{F}\left(g_{t}, f_{t}\right)=\int\left(R+|\nabla f|^{2}\right) e^{-f} d V=(4 \pi \tau)^{-n / 2} \int \frac{|x|^{2}}{4 \tau^{2}} e^{-|x|^{2}} 4 \tau d V=\frac{n}{2 \tau}
$$

16.4λ-invariant

Given a manifold, we can define

$$
\lambda(g):=\inf _{\substack{f \in C^{\infty}(M) \\ \int e^{-f} d V=1}} \mathcal{F}(g, f)
$$

Letting $\phi=e^{-f / 2}$, this is equivalent to

$$
\lambda(g)=\int_{\substack{\phi \in C^{\infty}(M) \\ \int \phi^{2}=1}} \int 4|\nabla \phi|^{2}+R \phi^{2} d V
$$

16.4.1 Existence of minimizer and regularity

There exists a smooth $\phi>0$ a minimizer of

$$
\int 4|\nabla \phi|^{2}+R \phi^{2}
$$

and

$$
-4 \Delta \phi+R \phi=\lambda \phi
$$

where λ is the smallest eignevalue of $-4 \Delta+R$. Moreover, this occurs if and only if

$$
2 \Delta f-|\nabla f|^{2}+R=\lambda
$$

for λ a constant in M. Taking the gradient of the above and applying the 2 nd Bianchi identity, we get

$$
\begin{equation*}
\operatorname{div}\left[\left(\operatorname{Ric}+\nabla^{2} f\right) e^{-f}\right]=\operatorname{div}\left[-\frac{1}{2} \nabla \lambda\right]=0 \tag{26}
\end{equation*}
$$

Check:

$$
\delta \lambda_{g}(h)=\int_{M}-\left\langle h, \operatorname{Ric}+\nabla^{2} f\right\rangle e^{-f} d V
$$

we define

$$
\langle\langle h, h,\rangle\rangle_{g}=\frac{1}{2} \int_{M}\langle h, h\rangle \phi^{2} d V_{g}
$$

then (26) gives

$$
\left\langle\nabla \lambda, \operatorname{div}^{*} X\right\rangle=\langle\operatorname{div}(\nabla \lambda), X\rangle=\langle 0, X\rangle=0
$$

So the gradient of λ is orthogonal to

$$
\text { Imdiv }^{*}=\left\{\mathcal{L}_{X} g: X \text { v.f. }\right\}
$$

so our ricci flow is a "gradient flow" of λ when projected on $M / \operatorname{Diff}(M)$.
Remark In finite dimensional manifolds, a periodic gradient flow (called a steady breather) must be a fixed point (i.e. evolves by diffeomorphisms)

Theorem 16.4. If $\left\{g_{t}\right\}_{t \in[0, T]}$ is a RF, the $\lambda\left(g_{t}\right)$ is non-decreasing in t

Proof: WLOG, show that $\lambda(g(\tau)) \geq \lambda(g(0))$ for all τ. Let $f(\tau)$ be a smooth function such that $\phi=e^{-f(\tau) / 2}$ is a minimizer of $\lambda\left(g_{\tau}\right)$. Solve the conjugate heat equation

$$
\begin{aligned}
-\partial_{t} u-\Delta u+R u & =0 \\
u(\tau) & =e^{-f(\tau)}
\end{aligned}
$$

Claim: $u(t)>0$ everywhere.
Proof: It follows immediately from convolution with the conjugate heat kernal OR: take v to be a test function such that $v>0$ and $\operatorname{supp}(v) \subseteq B_{0}(x, r)$ for r small. Solve

$$
\begin{aligned}
\partial_{t} v & =\Delta v \\
v(0) & =v
\end{aligned}
$$

to get $v(t)>0$ everywhere. Then immediately, we have

$$
0<\int u(\tau) v(\tau) d V_{\tau}=\int u(0) v(0) d V_{0}
$$

I believe this follows from (21). Now taking $v(0)$ arbitrary we see that $u(x, 0)>0$ everywhere.
NOw our claim shows that there exists $f(t)$ for $t \in[0, T]$ such that $e^{-f(t)}=u(t)$, and so $\mathcal{F}\left(g_{t}, f(t)\right)$ is non-decreasing i.e.

$$
\lambda\left(g_{0}\right) \leq \mathcal{F}\left(g_{0}, f(0)\right) \leq \mathcal{F}\left(g_{\tau}, f(\tau)\right)=\lambda\left(g_{\tau}\right)
$$

ending the proof.

Corollary 16.4.1. A compact steady breather is a steady gradient soliton (and hence is Ricci Flat)
Recall that a steady breather means we have $\left\{g_{t}\right\}$ a RF and $\exists t_{2}>t_{1}$ and ϕ a diffeo such that $g\left(t_{2}\right)=\phi^{*} g\left(t_{1}\right)$. Hence the ricci flow is periodic after rescaling appropriately.

Proof: Tracing through the previous proof, we find $\mathcal{F}\left(g_{t}, f(t)\right) \equiv c$ a constant. Thus

$$
\left.0=\frac{d}{d t} \mathcal{F}\left(g_{t}, f(t)\right)=2 \int_{M} \right\rvert\, \text { Ric }+\left.\nabla^{2} f\right|^{2} e^{-f} d V \Longrightarrow \text { Ric }+\nabla^{2} f=0
$$

which is our criterion for a gradient soliton.

17 Lecture 17: 12-1-22

Today we discuss the \mathcal{W} and μ functionals.

17.1 \mathcal{W}-functional

Define

$$
\begin{aligned}
\mathcal{W} & : M \times C^{\infty}(M) \times \mathbb{R}^{+} \rightarrow \mathbb{R} \\
\mathcal{W}(g, f, \tau) & =\int_{M}\left[\tau\left(|\nabla f|^{2}+R\right)+f-n\right](4 \pi \tau)^{-n / 2} e^{-f} d V
\end{aligned}
$$

Then we see that it satisfies

$$
\begin{aligned}
\mathcal{W}(\lambda g, f, \lambda \tau) & =\mathcal{W}(g, f, \tau) & & \text { scaling invariance } \\
\mathcal{W}\left(\phi^{*} g, \phi^{*} f, \tau\right) & =\mathcal{W}(g, f, \tau) & & \text { diffeo invariance }
\end{aligned}
$$

Let $D g=h, D f, D \tau$, all be infinitesimal variations in time. And assume that

$$
\begin{equation*}
\frac{\operatorname{tr} h}{2}-D f-\frac{n D \tau}{2 \tau}=0 \tag{27}
\end{equation*}
$$

Then we have that

$$
D \mathcal{W}_{(g, f, \tau)}(h D f, D \tau)=\int_{M}\left[D \tau\left(R+|\nabla f|^{2}-\tau\left\langle h, \operatorname{Ric}+\nabla^{2} f\right\rangle+D f\right](4 \pi \tau)^{-n / 2} e^{-f} d V\right.
$$

Consider the coupled flow

$$
\begin{aligned}
\partial_{t} g & =-2\left(\operatorname{Ric}+\nabla^{2} f\right) \\
\partial_{t} f & =-\Delta f-R+\frac{n}{2 \tau} \Longleftrightarrow 27 \\
\partial_{t} \tau & =-1
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{d \mathcal{W}}{d t}\left(g_{t}, f_{t}, \tau\right) & =\int_{M}\left[-\left(R+|\nabla f|^{2}\right)+2 \tau\left|\operatorname{Ric}+\nabla^{2} f\right|^{2}-\Delta f-R+\frac{n}{2 \tau}\right](4 \pi \tau)^{-n / 2} e^{-f} d V \\
& =\int_{M}\left[-2(R+\Delta f)+2 \tau\left|\operatorname{Ric}+\nabla^{2} f\right|^{2}+\frac{n}{2 \tau}\right](4 \pi \tau)^{-n / 2} e^{-f} d V \\
& =\int_{M} 2 \tau\left|\operatorname{Ric}+\nabla^{2} f-\frac{1}{2 \tau} f\right|^{2}(4 \pi \tau)^{-n / 2} e^{-f} d V
\end{aligned}
$$

Replacing g, f with the pull backs $\phi_{t}^{*} g, \phi_{t}^{*} f$, for ϕ_{t} the flow of ∇f, we get

$$
\begin{aligned}
& \partial_{t} g=-2 \text { Ric } \\
& \partial_{t} f=-\Delta f+|\nabla f|^{2}-R+\frac{n}{2 \tau} \Longrightarrow \int_{M}(4 \pi \tau)^{-n / 2} e^{-f} d V=1 \\
& \partial_{\tau} \tau=-1
\end{aligned}
$$

17.2μ-functional

We define

$$
\begin{aligned}
\mu(g, \tau) & =\inf _{f}\left\{\mathcal{W}(g, f, \tau): \int(4 \pi \tau)^{-n / 2} e^{-f} d V=1\right\}>-\infty \\
& \stackrel{\phi=e^{-f / 2}}{=} \inf _{\phi}\left\{\int_{M}\left[\tau\left(4|\nabla \phi|^{2}+R \phi^{2}\right)-2 \phi^{2} \log \phi^{2}-n \phi^{2}\right] d V: \int(4 \pi \tau)^{-n / 2} \phi^{2}=1\right\}
\end{aligned}
$$

There exists a $\phi>0$, minimizer and smooth such that

$$
\tau(-4 \Delta+R) \phi=2 \phi \log (\phi)+(\mu(g, \tau)+n) \phi
$$

so there exists an f such that $\phi=e^{-f / 2}$ and f smooth.
Theorem 17.1. Let $\left(M,\left\{g_{t}\right\}\right)$ a RF. M compact, let t_{0} arbitrary, then $\mu\left(g_{t}, t_{0}-t\right)$ is non-increasing and continuous in $t, t \in\left(-\infty, t_{0}\right)$

Proof: Let $f\left(t_{2}\right)$ be the minimizer of $\mu\left(g_{t_{2}}, t_{0}-t_{2}\right)$, then solve

$$
\square^{*}(4 \pi \tau)^{-n / 2} e^{-f}=0
$$

to get f_{t}. Then

$$
\mathcal{W}\left(g_{t}, f_{t}, t_{0}-\tau\right)
$$

is non-decreasing and

$$
\mu\left(g_{t_{1}}, t_{0}-t_{1}\right) \leq \mathcal{W}\left(g_{t_{1}}, f_{t_{1}}, t_{0}-t_{1}\right) \leq \mathcal{W}\left(g_{t_{2}}, f_{t_{2}}, t_{0}-t_{2}\right)=\mu\left(g_{t_{2}}, t_{0}-t_{2}\right)
$$

where the first inequality holds by definition of inf.

Corollary 17.1.1. A shrinking breather (compact) is a shrinking gradient soliton.
Recall that a shrinking breather means $\exists \phi$ a diffeo with $c \in(0,1)$ such that

$$
g\left(t_{2}\right)=c \phi^{*}\left(g\left(t_{1}\right)\right)
$$

for some $t_{2}>t_{1}$. This relation gives periodic ricci flow modulo rescalings (i.e. there exists t_{i} for all $i \geq 3$ such that a similar relation to the above holds).

Proof: WLOG assume $t_{2}=c t_{1}<0$, i.e. perform a time shift, see 55Let $f\left(t_{2}\right)$ be a minimizer of $\mu\left(g_{t_{2}},-t_{2}\right)$

Figure 55
and solve

$$
\square^{*}(4 \pi \tau)^{-n / 2} e^{-f}=0
$$

(i.e. heat equation, this is what \square^{*} represents) to get f_{t} and

$$
\begin{aligned}
\mu\left(g_{t_{1}}, t_{1}\right) & \leq \mathcal{W}\left(g_{t_{1}}, f_{t_{1}},-t_{1}\right) \leq \mathcal{W}\left(g_{t_{2}}, f_{t_{2}},-t_{2}\right) \\
& =\mu\left(g_{t_{2}},-t_{2}\right)=\mu\left(c \phi^{*} g_{t_{1}},-c t_{1}\right) \\
& =\mu\left(\phi^{*} g_{t_{1}},-t_{1}\right)=\mu\left(g_{t_{1}},-t_{1}\right)
\end{aligned}
$$

where the equalities in the third line follow since the μ-functional is rescaling invariant and also diffeomorphism invariant. This implies that

$$
\mathcal{W}\left(g_{t}, f_{t},-t\right)
$$

is constant, i.e.

$$
\frac{d}{d t} \mathcal{W}=0 \Longrightarrow \int_{M} 2 \tau\left|\operatorname{Ric}+\nabla^{2} f-\frac{1}{2 \tau}\right|^{2}(4 \pi \tau)^{-n / 2} e^{-f} d V=0
$$

This implies that

$$
\operatorname{Ric}+\nabla^{2} f-\frac{1}{2 \tau} g=0
$$

which is exactly the equation for a gradient soliton.

17.3 Example: The gaussian shrinker

The gaussian shrinker on $\left(\mathbb{R}^{n}, g_{\text {eucl }}\right)$ with $g(t)=g_{\text {eucl }}$ and $t \in(-\infty, 0)$. Then

$$
\begin{aligned}
g_{t} & =g_{\text {eucl }} \\
f_{t} & =\frac{|x|^{2}}{4 \tau} \Longleftrightarrow(4 \pi \tau)^{-n / 2} e^{-f} \quad \text { is the conjugate heat kernal } \\
\tau & =-t
\end{aligned}
$$

see 56
Then

$$
\tau\left(|\nabla f|^{2}+R\right)+f-n=\tau \cdot \frac{|x|^{2}}{4 \tau^{2}}+\frac{|x|^{2}}{4 \tau}-n=\frac{|x|^{2}}{2 \tau}-n
$$

Then

$$
\mathcal{W}\left(g_{t}, f_{t},-t\right)=\int_{\mathbb{R}^{n}}\left(\frac{|x|^{2}}{2 \tau}-n\right)(4 \pi \tau)^{-n / 2} e^{-f} d V=0
$$

Figure 56

17.4 Example: $\mathbb{R}^{2} / \mathbb{Z}_{k}$

Let $g_{t}=g_{\text {eucl }}$ for $t \in\left[0, t_{0}\right)$ and $\tau=t_{0}-t$ and \mathbb{Z}_{k} acting by rotating by $2 \pi / k$ around 0 . This turns \mathbb{R}^{2} into a cone. Let

$$
(4 \pi \tau)^{-n / 2} e^{-f}=(4 \pi \tau)^{-n / 2} e^{-|x|^{2} /(4 \tau)} k
$$

then $(4 \pi \tau)^{-n / 2} e^{-f}$ a conjugate heat kernal, implies that

$$
f=\frac{|x|^{2}}{4 \tau}-\ln (k)
$$

This gives that

$$
\mathcal{W}\left(g_{t}, f_{t}, t_{0}-t\right)=-\ln (k)
$$

and the above tends to $-\infty$ as $k \rightarrow \infty$. Note that as $k \rightarrow \infty$, the cone we have collapses since we quotient out by \mathbb{Z}_{k}

17.5 No local collapsing theorem

Definition 17.2. Let $\left(M, g_{t}\right)$ for $t \in[0, T)$ be a Ricci flow. It is locally collapsing at T if $\exists\left\{t_{k}\right\} \rightarrow T$ and $p_{k} \in M$ and $r_{k}>0$ with

$$
\sup _{k} \frac{r_{k}^{2}}{t_{k}}<\infty
$$

and

$$
|R m|\left(g\left(t_{k}\right)\right) \leq r_{k}^{-2} \quad \text { on } \quad B_{t_{k}}\left(p_{k}, r_{k}\right)
$$

but

$$
\lim _{k \rightarrow \infty} \frac{\operatorname{vol}\left(B_{t_{k}}\left(p_{k}, r_{k}\right)\right)}{r_{k}^{n}}=0
$$

Definition 17.3. We say that a manifold (M, g) is k-noncollapsed on the scale of ρ if $\forall x \in M, \forall r \leq \rho$, we have

$$
|R m| \leq r^{-2} \quad \text { in } \quad B_{g}(x, r) \quad \Longrightarrow \operatorname{Vol}\left(B_{g}(x, r)\right) \geq k r^{n}
$$

Example. Consider the Cigar soliton, which we know asymptotically looks like $\mathbb{R} \times S^{1}$. It is k-noncollapsed on scale 1 , but not k-noncollapsed on all scales. Then

- It is k-non-collapsed on scale 1
- But not k-non-collapsed on all scales - This means there exists no k so that the cigar can be k-noncollapsed at all scales

Intuitively, the second is because asymptotically the cigar looks like a cylinder, which converges to a ray at larger scales and this contradicts the quadratic volume growth

Definition 17.4. We say (M, g) is non-collapsed if there exists a $k>0$ such that (M, g) is k-non-collpased at all scales. Otherwise (M, g) is collapsed.

Figure 57

Example. Using the above, the cigar soliton is collapsed. Note that $|R m| \leq r^{-2}$ in $B(x, r)$, but $\operatorname{Vol}(B(x, r))=$ $O(r) \ll r^{3}$ when $r \gg 1$, so collapsed. See 57

Example. Consider $\mathbb{R} \times S^{2}$. THis is actually non-collapsed because $|R m| \equiv 1$ and so the curvature condition $|R m| \leq r^{-2}$ is not satisfied on for $r>1$, so the implication is vacuously true. For $r<1$, we have cubic volume growth and can find a concrete $\kappa>0$. See 58

Figure 58

Example. Bryant solution is non-collapsed. See 59

Figure 59

Example. Flying wings - is collapsed because of the geometry at the vertex. See 60
Theorem 17.5. If M is a closed manifold and $T<\infty$, then $g(t)$ is not locally collapsing at T, i.e.

$$
\sup _{k} r_{k}^{2}<\infty, \quad \lim _{k \rightarrow \infty} \frac{\operatorname{Vol}\left(B\left(p_{k}, r_{k}\right)\right)}{r_{k}^{n}}=0
$$

never happens.
The theorem means that $\left(M, g_{t}\right)$ is k-non-collapsed on some scale ρ - note that k, ρ may depend on g_{0} and T.

Figure 60

18 Lecture 18: 12-6-22

Theorem 18.1 (Perelman). If M is closed and $T<\infty$, then $g(t)$ is not locally collapsing at T
Proof: Let $\phi=e^{-f}$, then

$$
\mathcal{W}(g, f, \tau)=(4 \pi \tau)^{-n / 2} \int_{M} 4 \tau|\nabla \phi|^{2}+(\tau R-2 \ln (\phi)-) \phi^{2} d V
$$

Suppose theorem not true, then $\exists\left\{p_{k}\right\} \in M, r_{k}>0$ such that $\sup _{k} r_{k}<\infty$ such that

$$
|R m| \leq r_{k}^{-2} \quad \text { on } \quad B\left(p_{k}, r_{k}\right) \quad \text { but } \quad \frac{\operatorname{Vol}\left(B\left(p_{k}, r_{k}\right)\right)}{r_{k}^{n}} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

We will find ϕ_{k} (and hence $f_{k}, \phi_{k}=e^{-f_{k} / 2}$) such that $\mathcal{W}\left(g_{t_{k}}, f_{k}, r_{k}^{2}\right) \rightarrow-\infty$ as $k \rightarrow \infty$ and

$$
\mu\left(g_{0}, t_{k}+r_{k}^{2}\right) \leq \mu\left(g_{t_{k}}, r_{k}^{2}\right) \leq \mathcal{W}\left(g_{t_{k}}, f_{k}, r_{k}^{2}\right) \rightarrow-\infty
$$

However $\mu\left(g_{0}, t_{k}+r_{k}^{2}\right) \rightarrow-\infty$ is impossible (this will be done in an independent exercise, but as long as the metric is fixed, then $\mu\left(g_{0}, r\right)$ is bounded). This will give a contradiction. We now verify that $\mathcal{W}\left(g_{t_{k}}, f_{k}, r_{k}^{2}\right) \rightarrow-\infty$

$$
\phi_{k}=e^{c_{k} / 2} \varphi\left(\frac{d\left(p_{k}, \cdot\right)}{r_{k}}\right)
$$

where φ is a cut off on the half line that is 1 on $[0,1 / 2]$ and decays to 0 on $[1 / 2,1]$ see 61 Choose c_{k} so that

Figure 61

$$
\int_{M}\left(4 \pi r_{k}^{2}\right)^{-n / 2} \phi_{k}^{2}=1
$$

We now use Jensen's inequality, which we recall as
Proposition 5. Let $\left(M^{n}, g\right), \varphi: \mathbb{R} \rightarrow \mathbb{R}$ convex, $\mu \in L^{1}(M, d V)$, then

$$
\frac{1}{\operatorname{Vol}(M)} \int_{M} \varphi(u) d V=f \varphi(u) d V \geq \varphi(f u d V)
$$

Now assume that $\left(4 \pi r_{k}^{2}\right)^{-n / 2}=1$. Then omit " k " for a moment and let

$$
B:=B\left(p_{k}, r_{k}\right), \quad B_{1 / 2}=B\left(p_{k}, r_{k} / 2\right), \quad \tau=r_{k}^{2}
$$

apply Jensen's inequality on $M=B$ with $\varphi=u^{2} \ln \left(u^{2}\right)$ (which is convex). This gives

$$
\begin{aligned}
& \frac{1}{\operatorname{Vol}(B)} \int_{B} \phi^{2} \ln \left(\phi^{2}\right) \geq\left(\frac{1}{\operatorname{Vol}(B)} \int_{B} \phi^{2} d V\right) \ln \left(\frac{1}{\operatorname{Vol}(B)} \int_{B} \phi^{2} d V\right) \\
& \frac{1}{\operatorname{Vol}(B)} \int_{B} \phi^{2} \ln \left(\phi^{2}\right) \geq \frac{1}{\operatorname{Vol}(B)} \ln \left(\frac{1}{\ln (\operatorname{Vol}(B))}\right) \\
& \Longrightarrow-\int_{B} \phi^{2} \ln \left(\phi^{2}\right) \leq \ln (\operatorname{Vol}(B))
\end{aligned}
$$

This tells us that

$$
\int_{M}(\tau R-2 \ln (\phi)-n) \phi^{2} d V \leq c_{0}+\ln (\operatorname{Vol}(B))
$$

so it suffices to estimate

$$
\int 4 \tau|\nabla \phi|^{2}
$$

in our initial integral. First we know that

$$
|\nabla \phi| \leq c_{0} e^{-c / 2}
$$

this is a consequence of the definition of ϕ_{k} (remember we're dropping the " k " subindex). This tells us that

$$
\int_{M} 4 \tau|\nabla \phi|^{2} d V \leq c_{0} \operatorname{Vol}(B) e^{-c} \leq c_{0} \frac{\operatorname{Vol}(B)}{\operatorname{Vol}\left(B_{1 / 2}\right)} \stackrel{\text { Volume Comparison }}{\leq} c_{0}
$$

Note that $\phi=e^{-c / 2}$ on $B_{1 / 2}$ we have

$$
e^{-c} \operatorname{Vol}\left(B_{1 / 2}\right)=\int_{B_{1 / 2}} \phi^{2} d V \leq \int_{B} \phi^{2} d V=1
$$

restoring the subscript " k " and rescaling, this gives

$$
\mathcal{W}\left(g_{t_{k}}, f_{k}, r_{k}^{2}\right) \leq c_{0}+\ln \left(\frac{\operatorname{Vol}\left(B\left(p_{k}, r_{k}\right)\right.}{r_{k}^{n}}\right) \rightarrow-\infty
$$

since

$$
\frac{\operatorname{Vol}\left(B\left(p_{k}, r_{k}\right)\right.}{r_{k}^{n}} \rightarrow 0
$$

as $k \rightarrow \infty$.

18.1 Nash Entropy

Let $\left(M, g_{t}\right)$ a RF, compact. Fix $\left(x_{0}, t_{0}\right) \in M \times I$ and $\tau=t_{0}-t$. Define

$$
d V_{\tau}=d V_{x_{0}, t_{0} ; \cdot, t}=k\left(x_{0}, t_{0} ; \cdot t\right) d g_{t}=(4 \pi \tau)^{-n / 2} e^{-f} d g_{t}
$$

is a probability measure i.e.

$$
\int_{M} d V_{\tau}=1
$$

and

$$
\square^{*} k\left(x_{0}, t_{0} ; \cdot, t\right)=0 \Longleftrightarrow-\partial_{t} f=\Delta f-|\nabla f|^{2}+R-\frac{n}{2 \tau}
$$

Denote

$$
\mathcal{W}(\tau)=\mathcal{W}_{x_{0}, t_{0}}(\tau)=\mathcal{W}\left(g_{t_{0}-\tau}, f_{t_{0}-\tau}, \tau\right)
$$

then is called the pointed Nash entropy (often abbreviated $\mathbb{N}(\tau)$)

$$
\mathbb{N}_{x_{0}, t_{0}}(\tau):=\int_{M}\left(f_{t_{0}-\tau}-\frac{n}{2}\right) d V_{\tau}
$$

Theorem 18.2.

$$
\begin{aligned}
\frac{d}{d \tau}(\tau \mathbb{N}(\tau)) & =\mathcal{W}(\tau) \leq 0 \\
\frac{d^{2}}{d \tau^{2}}(\tau \mathbb{N}(\tau)) & \leq 0 \\
\frac{d}{d \tau}(\mathbb{N}(\tau)) & \leq 0 \\
0 & \geq \mathbb{N}(\tau) \geq \mathcal{W}(\tau)
\end{aligned}
$$

Proof: Note that if we prove the first equality, the second inequality follows by monotonicity of \mathcal{W}. We compute

$$
\begin{aligned}
\frac{d}{d \tau} \mathbb{N}(\tau) & =-\frac{d}{d \tau}\left(f-\frac{n}{2}\right) d V_{\tau}=-\frac{d}{d \tau} \int_{M} f d V_{\tau}=-\int_{M} \square f d V_{\tau} \\
& =\int_{M}\left(2 \Delta f-|\nabla f|^{2}+R-\frac{n}{2 \tau}\right) d V_{\tau}=\int_{M}\left(\left(|\nabla f|^{2}+R\right)-\frac{n}{2 \tau}\right) d V_{\tau}
\end{aligned}
$$

Note that the last equality in the first line follows from 21. Note this doesn't give non-positivity, but we'll show that somehow else. Now the first equation comes from

$$
\begin{aligned}
\frac{d}{d \tau}(\tau \mathbb{N}(\tau)) & =N(\tau)+\tau \frac{d}{d \tau} \mathbb{N}(\tau)=\int_{M} f d V_{\tau}-\frac{n}{2}+\int_{M} \tau\left(|\nabla f|^{2}+R\right)-\frac{n}{2} d V_{\tau} \\
& =\mathcal{W}(\tau)
\end{aligned}
$$

This gives the first equation.
Its an exercise to show that

$$
\lim _{\tau \rightarrow 0} \mathbb{N}(\tau)=\lim _{\tau \rightarrow 0} \mathcal{W}(\tau)=0
$$

see 62
The picture follows in part from the convexity of $\tau \mathbb{N}(\tau)$. Now with this, we use the first equation to

Figure 62
get

$$
\begin{aligned}
0 & \geq \mathbb{N}(\tau) \geq \mathcal{W}(\tau) \\
\Longrightarrow \frac{d}{d \tau} \mathbb{N}(\tau) & \leq 0
\end{aligned}
$$

A rigorous proof can be done but the picture suffices for the idea. This finishes our proof of all statements.

Theorem 18.3 (No-local collapsing, Bamler). Let $\left(M,\left\{g_{t}\right\}\right)$ a RF and $\left[t-r^{2}, t\right] \subseteq I$, then

$$
R(\cdot, r) \leq r^{-2} \quad \text { on } \quad B_{t}(x, r) \Longrightarrow \frac{\operatorname{Vol}\left(B_{t}(x, r)\right)}{r^{n}} \geq c_{n} e^{N_{x_{0}, t_{0}}\left(r^{2}\right)}
$$

Remark $R \leq r^{-2}$ is indispensable: because $\mathbb{N}_{\left(x_{0}, t_{0}\right)}(\tau) \geq-c_{0}$ holds for any τ on the shrinking sphere, shrinking cylinder, and Bryant soliton. However $\frac{\operatorname{Vol}\left(B_{t}(x, r)\right)}{r^{n}} \rightarrow 0$ as opposed to being bounded. This is precisely because the scalar curvature bound does not hold. see 63

Intuitively,

Figure 63

Nash entropy of RF $\stackrel{\text { compare }}{\leftrightarrow}$ Volume growth ration in $\left(M^{n}, g\right)$, Ric ≥ 0

$$
\begin{aligned}
\mathbb{N}_{x_{0}, t_{0}}\left(r^{2}\right) & \leftrightarrow \ln \left(V\left(x_{0}, r\right)\right) \\
\text { Theorem } & \leftrightarrow \frac{\operatorname{Vol}\left(B\left(x_{0}, r\right)\right)}{r^{n}}=e^{\ln \left(V\left(x_{0}, r\right)\right)}
\end{aligned}
$$

Thm: gradient estimate on $\mathbb{N}_{x_{0}, t_{0}}(\tau) \leftrightarrow V\left(x_{2}, r_{2}\right) \leq C V\left(x_{1}, r_{1}\right), \quad C=C\left(d\left(x_{1}, x_{2}\right), r_{1}, r_{2}\right)$

18.2 H_{n}-center

Definition 18.4. Let (X, d) a metric space, and $P=\{$ probability measure on $(X, d)\}$. hen for all $\mu_{1}, \mu_{2} \in$ P, we define

$$
\operatorname{Var}\left(\mu_{1}, \mu_{2}\right)=\int_{X} \int_{X} d^{2}\left(x_{1}, x_{2}\right) d \mu_{1}\left(x_{1}\right) d \mu_{2}\left(x_{2}\right)
$$

This is not exactly a distance function but

$$
\sqrt{\operatorname{Var}\left(\mu_{1}, \mu_{3}\right)} \leq \sqrt{\operatorname{Var}\left(\mu_{1}, \mu_{2}\right)}+\sqrt{\operatorname{Var}\left(\mu_{2}, \mu_{3}\right)}
$$

Theorem 18.5 (Bamler, 2021). Let $\left(M,\left\{g_{t}\right\}\right)$ a RF, compact, and ν_{1}, ν_{2} satisfy $\square^{*} \nu_{i}=0, \nu_{i} \geq 0$, and $\int \nu_{i} d g_{\tau}=1$. Set

$$
d \mu_{i, \tau}=\nu_{i, \tau} d g_{\tau} \in P
$$

then

$$
\frac{d}{d t} \operatorname{Var}\left(\mu_{1, t}, \mu_{2, t}\right) \geq-H_{n}
$$

for H_{n} some dimensional constant
We'll omit the proof for now
Corollary 18.5.1. ($\left.M,\left\{g_{t}\right\}\right)$ a RF, compact, $s<t \in I, x_{1}, x_{2} \in M$. Then

$$
\operatorname{Var}\left(\nu_{x_{1}, t ; s}, \nu_{x_{2}, t ; s}\right) \leq d_{t}^{2}\left(x_{1}, x_{2}\right)+H_{n}(t-2)
$$

this is called the "distance distortion estimate" on a RF.
Let

$$
\operatorname{Var}\left(\mu_{1}, \mu_{1}\right)=: \operatorname{Var}\left(\mu_{1}\right)
$$

then we have

$$
\begin{aligned}
H_{n}(t-s) & \geq \operatorname{Var}\left(\nu_{x_{1}, t, s}\right)=\int_{M} \operatorname{Var}\left(\nu_{x_{1}, t ; s}, \delta_{z}\right) d V_{x_{1}, t ; s}(z) \\
\int_{M} \operatorname{Var}\left(\nu_{x_{1}, t ; s}, \delta_{z}\right) d V_{x_{1}, t ; s}(z) & \leq H_{n}(t-s)
\end{aligned}
$$

which forces equality everywhere.

Definition 18.6. (z, s) is called an H_{n}-center of (x, t) if $s \leq t$ and

$$
\operatorname{Var}\left(\nu_{x, t ; s}, \delta_{z}\right) \leq H_{n}(t-s)
$$

Theorem 18.7. Let $\left(M,\left\{g_{t}\right\}\right)$ a RF. Then $\forall x \in M$, if $R \geq-r^{-2}$ on $M \times\left[t-r^{2}, t\right]$ and $\left(z, t-r^{2}\right)$ is an H_{n}-center of (x, t), then

$$
\frac{\operatorname{Vol}\left(B_{t-r^{2}}\left(z, \sqrt{2 H_{n}} r\right)\right.}{r^{n}} \geq c_{n} e^{N_{x, t}\left(r^{2}\right)}
$$

Intuitively

$$
\begin{aligned}
d_{t}\left(x, z_{t}\right) & \cong t \\
R\left(z_{t}\right) & \sim t^{-1}
\end{aligned}
$$

19 Lecture 19: 12-8-22

Today is the last class. Yi is giving an overview of the modern theory of Ricci Flow, particularly pertaining to the work of Bamler.

Conjecture 19.0.1 (Folklore). For a general RF, "Most" singularities are gradient shrinking solitons
Note that the bryant soliton is not a gradient shrinking soliton, but if we take a blow up sequence of $\left(M, R\left(p_{i}\right) g, p_{i}\right)$ which converges to $\mathbb{R} \times S^{2}$, we see that even in the limit the blow up is a gradient shrinking soliton.

Similarly, with the dumbbell, if we rescale about the pinched point we get $\mathbb{R} \times S^{2}$, which is again a gradient shrinking soliton.

Finally if we take $M=S^{3}$ or something close to S^{3} with the standard metric, then if we run RF and rescale appropriately we'll get S^{3} round in the limit, which is also a gradient shrinking soliton since Ric $=\lambda g$ on S^{3}.

Example (Appleton). There exists a RF in $n=4$ whose blow up limits are Eguchi-Hanson metric on $T S^{2}$, and Ric $\equiv 0$, and asymptotically equivalent to $\mathbb{R}^{4} / \mathbb{Z}_{2}$ (a cone on $\mathbb{R} \mathbb{P}^{3}$), a shrinking soliton, see ??

Figure 64

Example (Stolaski). There exist ricci flows in $n \geq 13$ whose gradient shrinking solitons blow up limits are Ricci-flat cones.

These examples tell us that we modify the folklore conjecture to
Conjecture 19.0.2 (Folklore, modified). "Most" singularities are gradient shrinking solitons (smooth) or Ricci Flat cones

Recall: If (M_{i}^{n}, g_{i}, x_{i}) is a sequence of RM with Ric $\geq-\lambda g$, assume $B_{g_{i}}\left(x_{i}, r\right) \geq v>0$ (non-collapsin), then passing to a subsequence, there exists $\left(X, d, x_{\infty}\right)$ a complete length space such that

$$
\left(M_{i}^{n}, d_{g_{i}}, x_{i}\right) \xrightarrow{P G H}\left(X, d, x_{\infty}\right)
$$

Moreover, $\left(M_{i}^{n}, g_{i}, x_{i}\right)$ are Einstein-manifolds with Ric $=\lambda_{i} g_{i},\left|\lambda_{i}\right| \leq 1$. Then (Cheeger, Colding, Tian, Naber) there exists a decomposition $X=R \cup S$ such that

1. R is an open manifold and $\exists g_{\infty}$ a smooth Einstein metric,

$$
(X, d)=\text { completion of }\left(R, d_{g_{\infty}}\right)
$$

2. (codimension 4 conjecture) $\operatorname{dim}_{M} S \leq n-4$ (Minkowski dimension!), where S is the singular set
3. Any tangent cone at any point of X is a metric cone
4. There is a filtration $S^{0} \subset S^{1} \subset \cdots \subset S^{n-4}=S$ such that $\operatorname{dim}_{M} S^{k} \leq k$ and

$$
S^{k}=\left\{\text { points in } S \text { whose tangent cone cannot split off a } \mathbb{R}^{k+1} \text {-factor }\right\}
$$

This impies that if a point has a tangent cone splitting off a \mathbb{R}^{n-3} factor then $x \in \mathbb{R}$.
Theorem 19.1 (Bamler, 2020). Given $\left(M_{i}^{n},\left\{g_{i, t}\right\}_{t \in\left(-T_{i}, 0\right]},\left(x_{i}, 0\right)\right)$ a RF then by passing to a subsequence assume

$$
\left(M_{i},\left\{g_{i, t}, \nu_{x_{i}, 0 ; t}\right) \xrightarrow{\mathcal{F}, C ., i \rightarrow \infty}\left(\chi,\left(\nu_{x ; t}\right)_{t \in\left[-T_{\infty}, 0\right)}\right)\right.
$$

where

$$
\nu_{x_{i}, 0 ; t}=K\left(x_{i}, 0, t\right)
$$

where we have a conjugate heat kernel on the RHS. Also assume that

$$
\mathcal{N}_{x_{i}, 0}\left(\tau_{0}\right) \geq-Y_{0} \quad \text { for some } \tau_{0}, Y_{0} \quad \text { (non-collapsed) }
$$

then we have $X=R \cup S$ where

$$
R=\{p \in X \mid \text { convergence is smooth }\}, \quad S=X \backslash R
$$

and

1. \exists a smooth Ricci flow spacetime structure on R
2. $\operatorname{dim}_{M} S \leq(n+2)-4$
3. Any "tangent flow" at any point of X is a gradient shrinking soliton or Ric-flat cone (this is an analogue of the Einstein metric case)
4. There is a filtrain $S^{0} \subset S^{1} \subset \cdots \subset S^{n-2}=S$ such that $\operatorname{dim}_{M} S^{k} \leq k$ and

$$
S^{k}=\left\{\text { points in } S \text { whose tangent flow cannot split off a } \mathbb{R}^{k-1} \text { factor }\right\}
$$

Fix a metric space (X, d), complete separable, $\mu_{1}, \mu_{2} \in P(X)$
Definition 19.2. We define the 1 -Wasserstein distance to be

$$
d_{w_{1}}\left(\mu_{1}, \mu_{2}\right)=\sup _{\substack{f: X \rightarrow \mathbb{R} \\ f: 1-\mathrm{lip}}}\left(\int_{X} f d \mu_{1}-\int f d \mu_{2}\right)=\inf _{\mathrm{q} \text { is any coupling of } \mu_{1} \times \mu_{2}} \int_{X \times X} d\left(x_{1}, x_{2}\right) d q\left(x_{1}, x_{2}\right)
$$

where the equality holds by the Kantorovich-Rabinstein theorem. If $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right), \mu_{1} \in P\left(X_{1}\right), \mu_{2} \in$ $P\left(X_{2}\right), q \in P\left(X_{1} \times X_{2}\right.$ is a coupling if

$$
\left(\operatorname{proj}_{x_{i}}\right)_{*} q=\mu_{i}, \quad i=1,2
$$

(e.g. $q=\mu_{1} \otimes \mu_{2}$).

The root of this is in optimal transport - and we'll now apply this to Ricci flow.
Example. - $d_{w_{1}}\left(\delta_{x_{1}}, \delta_{x_{2}}\right)=d\left(x_{1}, x_{2}\right)$

- $d_{w_{1}}\left(\mu_{1}, \mu_{2}\right) \leq \sqrt{\operatorname{Var}\left(\mu_{1}, \mu_{2}\right)} \leq d_{w_{1}}\left(\mu_{1}, \mu_{2}\right)+\sqrt{\operatorname{Var}\left(\mu_{1}\right)}+\sqrt{\operatorname{Var}\left(\mu_{2}\right)}$

Theorem 19.3. $\left(P(X), d_{w_{1}}\right)$ is a complete metric space.
Definition 19.4. Let (X, d) a metric space and $\mu \in P(X) .(X, d, \mu)$ is a called a metric measure space if

$$
\left(X_{1}, d_{1}, \mu_{1}\right) \stackrel{i s o}{\cong}\left(X_{2}, d_{2}, \mu_{2}\right) \quad \text { if } \exists \phi: X_{1} \rightarrow X_{2} \text { is an isometry }
$$

We can also define

$$
d_{G W_{1}}\left(\left(X_{1}, d_{1}, \mu_{1}\right),\left(X_{2}, d_{2}, \mu_{2}\right)\right)=\inf _{\substack{\varphi_{i}:\left(X_{i}, d_{i}\right) \rightarrow(Z, d) \\ \text { iso embedding }}} d_{w_{1}}\left(\left(\varphi_{1}\right)_{*}\left(\mu_{1}\right),\left(\varphi_{2}\right)_{*}\left(\mu_{2}\right)\right)
$$

Theorem 19.5. If

$$
d_{G W_{1}}\left(\left(X_{1}, d_{1}, \mu_{1}\right),\left(X_{2}, d_{2}, \mu_{2}\right)\right)=0
$$

then they are "isometric", i.e.

$$
\left(\operatorname{supp}\left(\mu_{1}\right),\left.d_{1}\right|_{\operatorname{supp}\left(\mu_{1}\right)}, \mu_{1}\right) \cong\left(\operatorname{supp}\left(\mu_{2}\right),\left.d_{2}\right|_{\operatorname{supp}\left(\mu_{2}\right)}, \mu_{2}\right)
$$

We also have
Theorem 19.6. Let $\mathcal{M}=\{(X, d, \mu) \mid \operatorname{supp}(\mu)=X\} / \sim$ is a complete metric space (i.e. mod out by isometry)

Definition 19.7. A metric flow $\left(\chi, t,\left\{d_{t}\right\}_{t \in I},\left(\nu_{x ; s}\right)_{x \in X}, s \in I, s \leq t(x)\right)$ where

- $t \in \chi \rightarrow I \subset R$
- d_{t} is metric on $\chi_{t}=t^{-1}(\chi)$
- $\nu_{x ; s} \in P\left(X_{s}\right)$
satisfying

1. $\left(X_{t}, d_{t}\right)$ is a complete and separable metric space
2. $\nu_{x ; t(x)}=\delta_{x}$ and $\forall t_{1}<t_{2}<t_{3}, x \in \chi_{t_{3}}$ with

$$
\nu_{x ; t_{1}}(Z)=\int_{X_{t_{2}}} \nu_{y ; t_{1}}(z) d \nu_{x ; t_{2}}(y)
$$

(Reproduction formula) see 65

Figure 65
3. All the heat flows satisfy certain "gradient estimates"

19.1 Turn a RF to a metric flow

Now we can turn a RF into a metric flow. We have $\left(M,\left\{g_{t}\right\}_{t \in I}\right)$ a RF, compact. Define

$$
X=M \times I, \quad d_{t}=d_{g_{t}}
$$

an $\nu_{(x, t) ; s}=K(x, t ; \cdot, s)$ is the conjugate heat flow starting from (x, t) and

$$
K\left(x, t_{3} ; z, t_{1}\right)=\int K\left(x, t_{3} ; y, t_{2}\right) k\left(y, t_{2} ; z, t_{1}\right) d_{t_{2}} y
$$

where $\square^{*} K=0$. We now need to choose a base point to fully convert our Ricci flow to a metric flow.
A metric flow pair $\left(X,\left\{\mu_{t}\right\}_{t \in I}\right)$ is a metric flow which is equipped with a conjugate heat flow.

Definition 19.8. Let

$$
\mathbb{F}_{I}=\left\{X,\left\{\mu_{t}\right\}_{I}\right\} / \text { isometry }
$$

where

$$
\left(X^{i},\left\{\mu_{t}^{i}\right\}_{t \in I}, \quad i=1,2, \quad\right. \text { two metric flow pairs }
$$

and

$$
\begin{gathered}
d_{\mathbb{F}}\left(\left(\chi^{1},\left\{\mu_{t}^{1}\right\}\right),\left(\chi^{2},\left\{\mu_{t}^{2}\right\}\right)\right)=\inf _{r>0}\left\{r \mid \exists\left\{q_{t}\right\}_{t \in I \backslash E} \text { coupling } \mu_{t}^{1}, \mu_{t}^{2}\right. \text { such that } \\
\left.|E| \leq r^{2} \text { and } \int_{X_{t}^{1} \times X_{t}^{2}} d_{w_{1}}^{Z_{s}}\left(\left(\varphi_{s}^{1}\right)_{*}\left(\nu_{x_{1} ; s}\right),\left(\varphi_{s}^{2}\right)_{*}\left(\nu_{x_{2} ; s}\right)\right) d q_{t}\left(x_{1}, x_{2}\right) \leq r\right\}
\end{gathered}
$$

and define

$$
\mathcal{C}:=\left\{\left(Z_{t}, d_{t}^{Z}\right),\left\{\varphi_{t}^{i}\right\}_{t \in I}\right\}
$$

where φ_{t}^{i} is an isometric embedding from $\left(X_{t}^{i}, d_{t}^{i}\right) \rightarrow\left(Z_{t}, d_{t}^{Z}\right)$. Moreover, all the heat flows satisfy a graident estimate

$$
d_{\mathbb{F}}\left(\left(X_{1}, \mu_{t}^{1}\right),\left(X_{2}, \mu_{t}^{2}\right)\right)=\inf _{e} d_{F}^{e}\left(\left(X_{1}, \mu_{t}^{1}\right),\left(X_{2}, \mu_{t}^{2}\right)\right)
$$

Example. Let $\left(M^{n},\left\{g_{t}\right\}_{t<0}\right)$ Bryant soliton. χ is metric flow. X^{λ} is parabolic rescaling by λ. If $\lambda_{i} \xrightarrow{i \rightarrow \infty} 0$, then

1. $\left(M, \lambda_{i} d_{g_{t}}, x\right) \xrightarrow{P G H, i \rightarrow \infty} R_{+}$
2. $\left(X^{\lambda_{i}},\left(\nu_{x ; t}\right)_{t \leq 0}\right) \xrightarrow{\mathcal{F}} \mathbb{R} \times S^{2}$ in the metric flow sense

This is an example of getting our known results about ricci flows and blow ups, but in the language of metric flows
(Unfortunately we ran out of class time)

