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1 Introduction to Allen-Cahn Equation

1.1 Questions

1. Why isn’t a point a perimeter minimizer in definition 3.9?

2. Don’t understand “2D2uε(∇uε, ·) on p. 13 - what implicit pairing is happening?

3. Not sure how achieving Rayleight quotient is ewquivalent to solving that PDE p. 17

4. P. 18, why does limτ→∞ uτ = 1 uniformly? Resolved

5. Why is |∇u| ≤ C for a u a monotone solution to Allen-Cahn on R3? See middle of p. 22

6. Some sus moves on p.24: how does one go from inequality 2 to 3 in the first chain?

1.2 Miscellaneous References

Otis told us to check out these links

1. Poincare Bendixson theorem

2. Coarea formula

3. Good reference on other aspects of Allen Cahn

4. Other reference

5. Neves article - something about the Gromov-Guth families connecting to Otis’ work on trying to generalize the
Weyl law but for minimal surfaces. Very min-max oriented.

6. Gaspar and Guaraco article - same thing as above, relates to Weyl law and min-max theory

More notes to look into

1. Guaraco’s notes on Allen Cahn and construction via min-max

2. A comparison between Allen-Cahn and Almgren-Pitts Min-max theory

3. here A catalonian professor with good work on Allen-Cahn

4. here One of the papers from the previous source

5. here Another one of the papers from Cabre

Another list of notes

1. Overview of Allen Cahn from Frank Pacard - pretty good! Paper

2. Informal write up of Min-Max theory Yangyang Li

3. The best write up of Min-Max Colding and De Lellis

4. Guaraco’s notes, might have linked these before Guaraco

5. Time dependent allen-cahn as an imitation of mean-curvature flow this paper
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1.3 Exercise 2.1

(a) This should be an elliptic bootstrapping argument. I found the analogous problem in Evans PDE (second edition).
Mention of the non-linear poisson equation on p.457

Actually let’s just do this: let x ∈ M . We have that f(x) = 1
εu(x)(u(x)2 − 1) ∈ L2(Nx) for some neighborhood

Nx 3 x because u ∈ H1(Ω) ∩ L∞(Ω) for all Ω compact. Pushing this into real coordinate charts, we can apply

Lemma 1.1 (Higher Interior Elliptic Regularity). Assume

Lu = −(aij(x)uxi)xj + bkuxk + c(x)u

and aij , bi, c ∈ Cm+1(U) and f ∈ Hm(U) for U some open subset of Rn. Suppose further that u ∈ H1(U) is a weak
solution of the elliptic PDE

Lu = f ∀x ∈ U

Then u ∈ Hm+2
loc (U)

If we apply this to the image of Nx (under the image of some coordinate chart) with m = 1, then we get that
u ∈ H3

loc(U). Applying this theorem for m = 3 again to some neighborhood V ⊂⊂ U for which u, f ∈ H3(V ), we
get that u and f are in H5

loc(V ). Repeating this, we’ll get a sequence of open subsets Vi each compactly contained
in each other on which u and f are in H2k+1(Vk). Because H2k+1 =⇒ Ck by choosing continuous representatives
for the kth derivative, this will give us smoothness on a neighborhood of x.

There’s more to this: continuous representatives don’t exist unless we’re in R1, so we use Morrey’s inequality/sobolev
embedding theorem, which says that if

1

p
− k

n
= −r + α

n
=⇒ W k,p(U) ↪→ Cr,α(U), U ⊆ Rn open and bounded

in particular
||u||Cr,α ≤ C(r, n, α, U)||u||k,p

The point is that because u ∈ L∞ (this is given in the set up before the problem) and because it suffices to prove the
result in some small, precompact neighborhood about each point, i.e. Ux 3 x with µ(Ux) < ∞, then we can make
p arbitrarily large in the sobolev inequality. A priori, we don’t have an Lp bound on |∇u|, however, we can use the
interior regularity estimates, with the set up of L = −∆ and f = u(u2 − 1) and Lu = f .

In particular, Lp elliptic regularity tells us that if −∆u = f and u ∈ W , then we have the Calderon-Zygmud
estimate ˆ

B1

|D2u|p ≤ C
(ˆ

B2

|f |p +

ˆ
B2

|u|p
)

we can apply this in our setting by making our neighborhoods, Ux,i, diffeomorphic to balls via rescaling and choosing
our neighborhoods appropriately after using the chart map to send Ux,i to an open set in Rn. With this, because
f and u are bounded, we have that |D2u| ∈ Lp for any p. How do I get higher k though? Via elliptic regularity
results for which I’m having difficulty finding references for (see p. 7 here for an example), the |D2u| ∈ Lp, comes
with u ∈W 2,p for all p, now setting ε = n/p, we have

k − ε = r + α

immediately, we get that u ∈ C1,α (k = 2) for any α < 1, and so now by restricting to a smaller neighborhood about
x, we look at

Lu = −∆u = u(u2 − 1) = f

and then note that f ∈W 1,p for all p, because f ′(x) exists and is continuous and hence bounded on our small open
set. Elliptic regularity then allows us to upgrade u to W 3,p for all p. Now we see that we’ve gotten a higher value
of k and so we can repeat this process on a smaller and smaller neighborhood and get taht u ∈W k,p for arbitrary k
and p, which by the sobolev inequality will tell us that u is smooth at x. ending the proof.

See the sources for references on Lp-elliptic regularity: here and here p. 10 and 11 here. This one points to a lot
of resources
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(b) Let ρ : R→ R be a smooth function such that

ρ(x) =

{
0 x < 0− δ
x x > 0 + δ

i.e. just smooth the corner. Consider the set {|u| > 1} = {u > 1} ∪ {u < −1}. WLOG, assume that the former is
non-empty and hence has positive measure by nature of being open (remember that u is smooth and so continuous).
Now consider

ϕ(x) =

{
u(x)ρ(u(x)2 − 1) u(x) > −1/2

0 else

Just try
ϕ(x) = u(x)ρ(u(x)2 − 1)

instead then this is a smooth function which is supported on u ≥
√

1− δ. Moreover

∇gϕ = (∇gu)ρ(u(x)2 − 1) + uρ′(u2 − 1) · 2u∇g(u) = (∇gu)[ρ(u2 − 1) + 2u2ρ′(u2 − 1)]

we know that 0 ≤ ρ′(u2 − 1) ≤ 1 everywhere. For u2 − 1 > δ, we have

ρ(u2 − 1) + 2u2ρ′(u2 − 1) = (u2 − 1) + 2u2 > 2 + 3δ

and so by making δ as small as needed, we have

ˆ
Ω

εg(∇gu,∇gϕ) = ε

ˆ
|u2−1|≤δ

(· · · ) + ε

ˆ
|u2−1|>δ

|∇u|2[3u2 − 1] > 0

I conclude strict positivity because 3u2 − 1 ≥ 2 and µ(|u2 − 1| > δ) is bounded from below by some positive number
as δ → 0 (this is the assumption that µ{u2 − 1 > 0} > 0). For the integral over {|u2 − 1| < δ}, the integrand is

ε|∇u|2(3u2 − 1) ≤ 3ε|∇u|2

but the measure of the {|u2 − 1| < δ} decreases as δ → 0 so the integral tends to 0. Here Ω = supp(ϕ).
Similarly

1

ε
W ′(u)ϕ =

1

ε
u2(x)ρ(u2 − 1)2 ∀x s.t. u(x) > −1/2

but u(x) > −1/2 holds for all x ∈ Ω. Thus the derivative of the Allen-Cahn energy is strictly positive with this set
up, and so we conclude that |u(x)|2 ≤ 1 for all x in order for u to be a critical point

1.4 Exercise 2.2

(a) What does ”solution” mean? Clearly, solutions exist for small time by picard iterate arguments. There could be
a solution which exists for finite time but has infinite energy even on the time domain it is specified on. However,
Let’s consider u ≡ 0 with λ = −1/2, then we have

u′(t)2 = 0 = 2
1

4
(1− 02)2 − 1

2
= 0

However, the energy of this solution is

ˆ ∞
−∞

1

2
u′(t)2 +W (u(t)) =

ˆ ∞
−∞

0 +
1

4
dt =∞

b) If λ > 0, then I can show finite time blow up by making the bound

k1u
4 ≥ u′(t)2 ≥ k2u

4

for some large time t. This holds because we have u′(t) >
√
λ or u′(t) < −

√
λ which tells us that u will grow at least

linearly for all t. In fact, this contradicts the assumption of u(t) ∈ [−1, 1] for all t, and contradicts it in finite time.
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For λ < 0, first suppose that u(0) ≥ 0. Then because u′(t) > 0 for all t, we have that u(t) > 0 for all t > 0. If we
have that inft u

′(t) = c > 0, then we get at least linear growth and can contradict u ∈ [−1, 1] in finite time. Thus we
must have inft u

′(t) = 0. Let {tk} be a sequence such that u′(tk)→ 0. Then we have that

lim
k→∞

2W (u(tk)) + λ = 0 =⇒ u2(tk)→ 1−
√
−2λ

in particular, this tells us that −1/2 ≤ λ < 0. Note that u(tk) → 0 if and only if λ = −1/2, which because
2W (u(t)) ≤ 1/2, tells us that u′(t)2 ≤ 0 for all t, a contradiction. Similarly, u(tk) → 1 if and only if λ = 0, a
contradiction. Thus u(tk)→ c = 1−

√
−2λ with 0 < c < 1. Looking at the graph of

u′′(t) = u(t)3 − u(t) = u(t)(u(t)− 1)(u(t) + 1) = f(u(t))

for f(x) = x(x− 1)(x+ 1). Then if u(tk) converges to a value away from the roots of u′′(u) and u(tk) > 0, then we
see that locally about the value u = c, we can get a bound on u(tk) as

∃K > 0 s.t. ∀k > K, |u(tk)− c| < δ

For any ε > 0, we choose δ sufficiently small, this tells us that

|u′′(tk)− f(c)| < ε

in particular, setting ε = |f(c)|/2 where f(c) < 0, we get the uniform bound of

u′′(tk) < f(c)/2 =⇒ u′(t) < u′(tk) + (t− tk)
f(c)

2
, ∀t s.t. |u(s)− c| < δ ∀ s.t. tk < s ≤ t

The idea is that for k large, we get u(tk) close enough to c so that for t close to tk, we can apply this linear
approximation bound, assuming that u(t) stays close to c and doesn’t leave the δ-neighborhood of c. This is why we
require |u(s)− c| < δ for all tk < s ≤ t, because as soon as u(s) leaves the δ neighborhood, the linear approximation
on the first derivative no longer becomes valid

With this, we can choose k large so that |u(tk)− c| < δ/2 and also u′(tk)| < δ|f(c)|
8 . Now we know that

0 < u(t)− u(tk) < ||u′(t)||L∞(t− tk) < t− tk ∀t > tk

because |u′(t)| < 1/2for all t. With this, we have that setting T = tk + δ/2, we get by the triangle inequality that

|u(s)− c| < δ, ∀tk < s ≤ T = tk + δ/2

and so

u′(t) < |u′(tk)|+ (t− tk)
f(c)

2
<
δ|f(c)|

8
+ (t− tk)

f(c)

2
=
f(c)

2
((t− tk)− δ/4)

remember that f(c) < 0. Setting t = tk + δ/4, we get that u′(t) < 0 a contradiction.
Similarly, we handle the case when u(0) < 0. Again we must have a sequence {tk} such that u′(tk) ↓ 0. But note

that when u(t) < 0 then f(u(t)) = u′′(t) > 0. So in order for u′(tk) (or some subsequence) to be decreasing, we
must have that u(T ) ≥ 0 for some T , and hence because u′(t) > 0, we have that u(t) > 0 for all t > T . We can now
restart our sequence once tk > T and repeat the above proof.

With this, we get that λ = 0 is the only possibility and so we’re in the same case that the notes proved, meaning
that the solution must have finite energy.

1.5 Exercise 2.3

Yes, this is just a u-sub and using the fact that H ′(t)2 = 2W (H(t)) because we’re in the λ = 0 case. The integral is
pretty easy, not going to do it.

1.6 Exercise 2.4

We do this for a square first: we have

lim
ε→0

Eε(uε;S1(0)) =

ˆ 1

−1

ˆ 1

−1

ε

2
|∇uε|2 +

1

ε
W (uε)
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we have that

∇uε = ∇H(〈a, x/ε〉 − b) =
H ′(〈a, x〉 − b)

ε
(a1, a2) =⇒ |∇uε(x)|2 =

(H ′)2

ε2

recall that H ′(t)2 = 2W (t) so that

I =

ˆ 1

−1

ˆ 1

−1

ε

2
|∇uε|2 +

1

ε
W (uε) =

ˆ 1

−1

ˆ 1

−1

2

ε
W (uε(x, y))dxdy

making the change of variables (x, y)/ε = (s, t) gives

I = 2ε

ˆ ε−1

−ε−1

ˆ ε−1

−ε−1

W (u(x, y))dxdy

Now note that
W (u(x, y)) = W (H(〈a, (x, y)〉 − b))

and so we can make the change of variables so that 〈a, (x, y)〉 = x via a rotation (which doesn’t affect the measure)
because |a| = 1. With this, we see that

I = 2ε

ˆ ε−1

ε−1

ˆ ε−1

ε−1

W (H(x− b))dxdy = 4

ˆ ε−1

ε−1

W (u(x))dx→ 2

ˆ ∞
−∞

2W (u(x))dx

so this is expressable in terms of the integral answer from the previous question. Moreover, to see that integrating
over the square and the circle are the same in the limit, we have that the difference is

Id =

ˆ x=1

x=−1

ˆ
y∈V

2

ε
W (uε(x, y))dxdy

where V = (−1,−(1−
√

1− x2)) ∪ (1−
√

1− x2, 1). Having adopted the same basis so that uε(x, y) = H(x/ε− b),
we get that the y integral just contributes a factor of 2(1−

√
1− x2), and so

Id =
4

ε

ˆ 1

x=−1

(1−
√

1− x2)W (H(x/ε− b))dx

Note that on this domain, 1 −
√

1− x2 < x2 because 1 − x2 <
√

1− x2. With this and the change of variables
x/ε→ u, we get

Id = 4ε2
ˆ ε−1

−ε−1

u2W (H(u− b))du

I now show that the integrand is a bounded function, which will imply that Id → 0 as ε→ 0 because it tends like ε.
To see this, first, we can make a change of variables

Id = 4ε2
ˆ ε−1−b

−ε−1−b
(u+ b)2W (H(u))du

Now note that

tanh(u/
√

2) =
e
√

2u − 1

e
√

2u + 1
=⇒ tanh(u/

√
2)2 =

e2
√

2u − 2e
√

2u + 1

e2
√

2u + 2e
√

2u + 1
=⇒ 1− tanh(u/

√
2)2 =

4e
√

2u

e2
√

2u + 2e
√

2u + 1

when u is large and positive, the above tends like e−
√

2u via the largest term power term in the denominator

cancelling the numerator power, so that u2e−
√

2u remains bounded. When u is negative and large, we simply bound

the denominator below by 1 and use the numerator to get e
√

2u so that u2e
√

2u → 0 as u→ −∞. With this, we see
that

Id ≤ 4ε2
ˆ ε−1−b

−ε−1−b
C = 4Cε→ 0

Ok so retroactively, the above is not totally correct because the bounds of integration over the standard square
transform nontrivially under the change (x, y)→Mθ(x, y), HOWEVER, we didn’t have to integrate over the standard
square to begin, we could have integrated over the rotated square so that 〈a, (x, y)〉 = x in the coordinate frame from
the start. Then we would get the same result (with the correct bounds now) and the difference manipulations are
still valid.
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1.7 Exercise 2.5

(a) To get existence, we consider

Iε(w) =

ˆ
Ω

L(Dw(x), w(x), x)dx =

ˆ
ΩR

ε

2
|∇gu|2 +

1

ε
W (u)

We see that because ||x||2 is convex, then L is convex in the p-variable, where we denote L as a function of L(p, z, x).
We also have that L is coercive in the p argument, because the W term is always positive, thus

L(Dw(x), w(x), x) ≥ ε

2
|∇gw|2 ≥

ε

2
C|Dw(x)|2

In our specific case of working on ΩR, we can take the standard euclidean metric, in which case ∇gw = Dw and so
C = 1. With this, we have that Iε is lower semicontinuous and so a minimum of I exists by taking a sequence of uk
such that I(uk) approaches the minimum value

c = min{I(f) | f ∈ H1
0 (ΩR), |f | ≤ 1}

Note that this collection of functions over which we take the minimum is nonempty because f ≡ 0 works (though
it’s not a minimizer of energy). See section 8.2 in Evans for the theorems used

I claim that the minimizer, uε, is either identically 0 or u does not switch signs and 0 < |u| < 1 on the interior of
ΩR. The lack of switching signs is easy: note that if we decompose u = max(u, 0) + min(u, 0) = u+ + u− then from
a standard result in weak derivatives

∇u+(x) =

{
0 u ≤ 0

∇u u > 0
a.e.

and the same for u−(x), thus ∇u = ∇u+ +∇u− holds a.e. and the supports of ∇u+ and ∇u− are disjoint up to a
set of measure 0. In particular, this tells us that

||∇u||22 = ||∇u+||22 + ||∇u−||22

in particular, this expression and W (u) are not changed if we consider u+ − u− instead. Thus, we may as well take
u = u+ − u− ≥ 0 as a minimizer and can apply elliptic regularity to this function to show that it is actually smooth
(this was done in a previous problem). I now apply the maximum principle to the operator

L = −∆u

Then by The Allen Cahn equation, we get −∆u = −u(u2 − 1). WLOG, assume that u > 0, then −∆u ≥ 0, and
so the strong maximum principle (see Evans p. 349/350) says that if u attains it’s minimum on the interior, then

it is constant. The minimum is 0, and so either u ≡ 0 or u
∣∣∣
∂ΩR

= 0 and u > 0 on the interior. Now let’s consider

w = u− 1, which is a non-positive function on our domain

Lu = −
∑
i,j

aij(x)wxixj +
∑
i

bi(x)uxi + c(x)u = −∆w + [u(u+ 1)]w = 0

here, we have that c(x) ≥ 0 and Lw = 0 on our domain, so the strong maximum principle tells us that w cannot
attain a maximum or minimum on the interior. See p. 350 in Evans. Thus u 6= 1 on the interior.

(b) The idea is that uR is an energy minimizer and so it suffices to find another function vanishing on the boundary
which has at most linear energy. I’ll do this for R > 1, as the point is to take R→∞.

f(θ, r) = ηR(r)

where η(r) is a function which goes from 0 → 1 on the interval 1/ε, stays constant at 1 on [ε, R − ε] and then goes
from 1→ 0 on [R− ε, R]. Noting that the gradient in polar coordinates is er∂r + 1

r eθ∂θ we have

|∇f(θ, r)|2 = η′R(r)2

then

E1(f) = (π/4)(

ˆ ε

0

+

ˆ R

R−ε
)(η′R(r)2 +W (f))rdr
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we can choose ηR so that the derivative is bounded by 2/ε. Moreover W (f) ≤ 1, and so we have the bound

≤ π

4

[
ε2

4

ε2
+

ε

ε2
R

]
+

π

16
[ε+Rε] ≤ CR

where C = π+π/(4ε)+(ε+1) is independent of R, and so because uR is a minimizer, we see that E1(uR; ΩR) ≤ CR.
With this, we see that uR 6≡ 0, else the energy would grow quadratically.

(c) From Otis: “Consider the set up of ∆u = f (Weakly) in B1 \ {0}, that is, for any ϕ ∈ C∞0 (B1 \ {0}), we
have ˆ

∇u · ∇ϕ+ fϕ = 0

Then, interior estimates imply that u ∈ C∞loc(B1\{0}) and u solves the PDE in the classical sense at any point besides
0. Now, we want to extend things across 0 (we need some further assumptions on u, f , otherwise ∆ log |x| = 0 is a
counterexample). Let’s take ϕ ∈ C∞0 (B1) and choose a sequence of cutoff functions χi with suppχi b B1 \ {0} but
χi → 1 near 0 point wise. Then we can plug χi · ϕ into the weak formulation to get

ˆ
χi(∇u · ∇ϕ) + ϕ∇u · ∇χi + fχiϕ.

So, e.g. if u ∈ H1(B1), then we would have that the first term tends to ∇u · ∇ϕ (by dominated convergence) and
the second term tends to zero (by Holder), i.e. it satisfies

≤ ||ϕ||∞(

ˆ
|∇u|2)1/2 · (

ˆ
|∇χi|2)1/2

As long as we can ensure that
´
|∇χi|2 → 0. This is possible by a common function known as the log-cutoff trick

(taking χi cutting off ∼ linearly just barely fails since we get a gradient of 1
r integrated over a ball of radius ∼ r, i.e.

we get O(1) instead of o(1)). Take instead

χr(x) = 2− (log |x|)/ log r

For |x| in (r2, r) (And 0 for |x| < r and 1 for |x| > r). I’ll leave it for you to check that the Dirichlet energy goes to
zero as r → 0. Thus, as long as u ∈ H1 and f in L2, say, we get that u is a weak solution across 0. Then, we can
use elliptic regularity (assuming, say f ∈ C∞) to get that u is smooth and solves the PDE across 0. Of course, in
the Allen—Cahn setting, you have to be a bit more careful, since it’s non-linear. But I think the proof should go
reasonably along these lines.”

I’ll verify a few parts of this. So first we reflect u ∈ ΩR to get an H1 solution on BR ∩ {y ≥ 0}. The reason
that this reflection lies in H1

0 is because of the bounds of the reflection by 2||u||H1(ΩR). See Brezis p. 273, Lemma 9.2
in the second on extension operators. This worked via a reflection across the y-axis and the new solution still solves
our PDE weakly as the odd reflection across the y-axis allows us to preserve the derivative in the x-direction. Now
we reflect the new solution across the x-axis, to get an H1

0 (BR). We now show that this solves the PDE everywhere
except for on {xy = 0}, which we must verify. Note: even though this set is measure 0, it’s important to verify that
the reflect solution solves the PDE on it, as solutions of the PDE a.e. aren’t necessarily minimizers (consider the
standard energy functional with ∆u = 0 and the function u(x) = |x|, which works a.e. but doesn’t have the right
energy)

To see that allen cahn still holds across the axis we proceed as follows: consider a cover of the upper half plane
disk, D+

R , given by UL = {x < 0} ∩D+
R , UM = {−ε < x < ε} ∩D+

R , UR = {x > 0} ∩D+
R . Then we take a partition

of unity subordinate to the cover with three function ρL, ρM , ρR, where I choose ρM to be symmetric in x. Then we
have that ˆ

D+
R

∇u · ∇v + u(u2 − 1)v =

ˆ
∇u∇(ρLv + ρRv + ρMv) + u(u2 − 1)(ρL + ρM + ρR)

we can decompose this into
ˆ
∇u∇(ρLv) + u(u2 − 1)(ρLv) +

ˆ
∇u∇(ρRv) + u(u2 − 1)(ρRv) +

ˆ
u(u2 − 1)(ρMv) +

ˆ
∇u∇(ρMv)

The first two integrals are 0 for all ε > 0 by nature of u being a minimizer on both the left half and the right half
individually (note that ρLv has compact support within the left half and the same for ρRv). As we send ε → 0 the
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middle integral vanishes, and so it suffices to show that the fourth integral vanishes as we send ε→ 0. This will use
that ∇u is odd about the y-axis and that ρM is symmetric. If we write

∇ρM = (∂xρM , ∂yρM )

then we can assume that ∂yρM is uniformily bounded for ε small on UM by the symmetry (in fact we can make ρM
just to be constant w.r.t to y except for some decay at the top/bottom of the domain independent of ε). Moreove
∂xu(x, y) = ∂xu(−x, y) and ∂yu(x, y) = −∂yu(−x, y) (by the odd reflection) and finally ∂xρM (x, y) = −∂xρM (−x, y)
and we can bound this uniformily in size by 2/ε. Now we write

ˆ
∇u∇(ρMv) =

ˆ
UM

(∇u)(∇ρM ) · v +

ˆ
UM

(ρM )(∇u) · ∇v

the second integral also vanishes as ε→ 0 because the integrand is some bounded function. With the first integral,
we write ˆ

UM

(∇u)(∇ρM ) · v =

ˆ
UM

(∇u)(∇ρM ) · (v(0, y) + (x, 0) · ~h(x, y))

where we’ve used the taylor theorem in a very shallow manner. The point is that
ˆ
UM

(∇u)(∇ρM ) · (v(0, y)) = 0

because the integrand is odd about x. For the second integral

|
ˆ
UM

(∇u)(∇ρM ) · [(x, 0) · ~h(x, y)]| ≤ ||∇u||2
2

ε
2ε||~h||∞µ(UM )1/2 → 0

The idea with this last one is that ∇ρM is at most 2/ε, while |x| < ε and so these terms cancel, and also bound

||~h|| uniformily because v is smooth. We can then bound the remaining integral as C
´
UM
|∇u|, to which we apply

holder’s inequality, and note that

||∇u||L2(D+
R) ≤ 2||∇u||ΩR , µ(UM ) ≈ 2Rε

and so their product goes to 0 as ε→ 0.
With this, we can perform two reflections to get that uR satisfies allen cahn everywhere except potentially at

the origin. At the origin, we verify the steps in the clue, which are all straightforward once we set f = 0 and
c(x) = u2(x)− 1. Then we have that our operator is

L = −∆ + c(x) s.t. Lu = 0

c(x) is first just bounded, and so we get u ∈ H2
loc on B1−{0}. I now show that c(x) = (u− 1)(u+ 1) is also in H2

loc,
via the following:

∂2
xc(x, y) = (∂2

xu)(u+ 1) + 2(∂xu)(∂xu) + (u− 1)∂2
x(u+ 1)

integrating this over an open set, V , compactly contained in ΩR, we can bound the first and last terms by 2|∂2
xu|,

and we can use holder’s inequality on the middle term to get that ||∂2
xc||L2(V ) <∞. The same argument is repeated

everywhere locally, see exercise 2.1 I think I have an argument for this, but it confuses me about the elliptic regularity
argument in 2.1. We actually do the set up where L = ∆ and f = u(u − 1)(u + 1), then we get that u ∈ H2

loc. In
particular, it’s in H2 about some a neighborhood, U , of a fixed point x0 ∈ ΩR. Now via the leibniz rule and L∞

bound on u, we get that f ∈ H1. Then by the same elliptic regularity argument we get that f ∈ H3
loc(U), and we

can find a smaller neighborhood V ⊂⊂ U such that V 3 x such that f ∈ H3(V ). NOW, we can apply morrey’s
inequality to get that u ∈ C1: Morrey’s inequality/sobolev embedding theorem, which says that if

1

p
− k

n
= −r + α

n
=⇒ W k,p(U) ↪→ Cr,α(U), U ⊆ Rn open and bounded

in particular
||u||Cr,α ≤ C(r, n, α, U)||u||k,p

in particular we set p = 2, k = 3, n = 2 so that

1

2
− 3

2
= −1 =

−(r + α)

2
=⇒ r + α = 2
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so choosing r = 1, α = 1, we get C1 and in particular, that ||∇||L∞(V2) <∞ for V2 ⊂⊂ V . Now on V2, we can show
that f ∈ H3 by using the product rule, holder’s inequality, and also the uniform bound on the |u| and |∇u|. This is
because the terms in the derivative via leibniz rule look like

∂2
xu · ∂y(u+ 1) · (u− 1), ∂3

xu · (u2 − 1), ∂xu · ∂y(u− 1) · ∂x(u+ 1)

the first term is bound via holder’s after uniformly bounding u− 1 by 2. The second term is bound via |u2 − 1| ≤ 2
and then using the H3 norm of u. The last term is bound using the L∞ norm of u and u ± 1 on this smaller set
compactly contained in V . We can repeat this back and forth between elliptic regularity and morrey’s inequality,
while also taking smaller and smaller neighborhoods about x0 to get infinite regularity at x0.

Now it suffices to show that otis’ cutoff function has decreasing Allen-Cahn energy. First, note that χr(x) is a
radial function, so if we label the radial coordinate as ρ, then

∇χr = eρ∂ρχr

We can smoothen χr(x) at the points |x| = r and |x| = r2 so that the derivative is bounded by 2/(r log r) and
2/(r2 log r) around those points. Moreover we can make the smoothening occur in an arbitrarily small annulus about
these radii and so

||∇χr||22 ≤
1

log(r)2

π

4

ˆ r

r2

1

yρ2
(ρdρ) + ε =

1

log(r)2
[log(y)]rr2 + ε =

−1

log(r)
+ ε

as r → 0, the denominator tends to∞ and so we can bound this above by ε for all ε > 0, meaning that ||∇χr||22 → 0.
For the Potential term, note that

π

4

ˆ R

0

W (χr) =
π

4

ˆ r

r2
(1− χr(ρ)2)2ρdρ+ ε ≤ Cr(r − r2) + ε

where we bound the integrand by 1 · r. This also tends to 0, and so the claim is verified.

(d) The proof sketch is as follows

1. Use schauder estimates to get a uniform bound on ||uR||C2,α for α > 0 The Schauder estimates requires some
uniform bound in the holder norms of c and f , and these are uR and hence R dependent, so a prior we don’t
have this. However, Otis gave me the following bound

||u||C1,α ≤ ||∆u||C0

we know that the right hand side is bounded by 2 and so in particular, we have ||u||C0,α ≤ ||u||C1,α ≤ 2. Now
the original schauder estimate tells us that

||u||∗C2,α ≤ C(|u|0,Ω + |f |(2)
0,α,Ω

the point is that we have bounded holder norms for f (even with the odd weightings) because we have bounded
holder norms for u (holder spaces are closed under multiplication). OK even though the ∗ denotes some distance
based weighting, we can get nice C2,α bounds for uR on a set compactly contained inside ΩR, which is all that
we really need.

2. With the above bound, we can uniformily bound ||uR||C1 for all R. (actually can do this with the laplacian
bound)

3. Arzela ascoli then gives us a subsequence of {uRi,k} which converge uniformily on each Bρk . Here i is variable
when k is fixed. This is where the compactness comes in, we didn’t need to bound the C1 norm on the
whole space, just on some compact set contained in the support of uR, in which case we can convert from
||u||∗C2,α → ||u||C2,α .

4. Using a diagonal argument, we can get a subsequence which converges uniformily on each compact set. Formally,
we take the sequence which converges on Bρ1 and apply Arzela ascoli to that to get uniform convergence on
Bρ2 , and then repeat this for Bρ3 and so on. Now taking a diagonal sequence of these collections of sequences
gives a sequence which converges uniformily on each compact set.
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5. Once we have the uniform bound in ||u||C2,α , we can actually apply arzela ascoli to ∂xuRi and ∂yuRi to get a
sequence of functions for which these converge uniformly. First, choose a sequence so that {∂xui} converges
uniformily on each compact set via a diagonal sequence argument. Using this diagonal sequence as a starting
sequence, repeat this to get a subsequence so that ∂yui also converges uniformily on each compact set. Now
with this sequence, repeat again to get a further subsequence so that {uRi} converge uniformily as well. Let ũ be
the limiting function. Then for each ϕ compactly supported in R2, there exists an R so that BR(0) ⊇ supp(ϕ).
We can now choose i sufficiently large so that supp(ui) ⊇ BR(0), so that

ˆ
R2

∇ũ · ∇ϕ− ũ(ũ2 − 1)ϕ =

ˆ
BR(0)

∇ũ · ∇ϕ− ũ(ũ2 − 1)ϕ

=

ˆ
BR(0)

(∇ũ−∇ui) · ∇ϕ− [ũ(ũ2 − 1)− ui(u2
i − 1)]ϕ+

ˆ
BR(0)

∇ui · ∇ϕ− ui(ui − 1)ϕ

The latter integral will vanish because ui is a minimizer on some Bρi (we can extend this integral from BR(0)
to Bρi because ρi > R) and if we choose i sufficiently large then ||∇ũ − ∇u||L∞(BR) < ε/R2 by uniform
convergence of the derivatives. Similarly, by uniform convergence of the functions, we can force∣∣∣∣∣∣ũ(ũ2 − 1)− ui(u2

i − 1)
∣∣∣∣∣∣
L∞(BR(0))

<
ε

R2

making these integrals arbitrarily small. The point is that i is chosen after R is. This shows that ũ solves
the PDE locally everywhere. To see that ũ(x, y) 6= 0 for all (x, y) not on {xy = 0}, we can apply the strong
minimum principle again, which says the set on which ũ is 0 (note that ũ > 0 because we choose our {ũRi} to
all be non-negative) is open. But by continuity this set must be closed as well. Applying this to each quadrant,
and noting that each quadrant forms a connected set, we get that either {ũ = 0} on all of a single quadrant
or just at the nodal lines. Note that by the odd reflection construction of all of these soltuions, ũR being 0 on
one quadrant implies it for every other quadrant. However, this contradicts the linear growth in energy. I’m
not sure about this: uniform convergence on compact sets tells us that for fixed R, ui → 0 on BR as i → ∞,
which doesn’t contradict the linear growth in energy, as if ui is supported on Bρi then ρi may be huge so that
CR2 ≤ Kρi, i.e. it doesn’t seem like there’s a way to compare R to ρi.

I’ve spent too much time on this problem, but for posterity, here’s Otis’ work around: “There’s a technical issue
with applying monotonicity that I am glad to explain, but I don’t think it works directly (I made this mistake
since for minimal surfaces, this would be OK, but there’s a funny feature with the Allen—Cahn monotonicity
that’s not present for minimal surfaces and causes a headache).

Here is an alternative approach to finishing this part that does the trick, I think:

(a) The functions uR have the property that for any ball B contained in the first quadrant and if R is
large enough so that B ⊂ ΩR, then uR minimize on B. Namely, if w has the same value on ∂B then
E(w;B) ≥ E(uR;B). This is clear, since replacing uR by w inside of B does not change the boundary
conditions and would be admissible in the minimization problem.

(b) This property passes to the limit: for any ball B in the first quadrant, the limit of uR, u, minimizes E(·)
on B.

(c) The function u = 0 does not minimize E(·) on large B.

You already have given the argument for 3 (just cut off from 0 on ∂B to −1 on a smaller ball; this has less
energy as long as B is large). The fact 2 seems obvious until you start to prove it, and then it seems wrong. But
it’s actually true. The reason it will seem wrong is that if u was not minimizing on B, there is some function
w so that w = u on ∂B and E(w;B) ≤ E(u;B)− δ for some δ > 0.

Now you want to glue w into uR and decrease the energy. But, uR and w don’t exactly agree on ∂B (they’re
just close). However, you can still make it work because “w drops energy by a definite (independent of R
amount)”. Namely, if you choose a bump function φ that’s supported in B, then

(1− φ)uR + φw

Is smooth. Moreover, as R →∞, uR limits to u, so this will limit to (1− φ)u+ φw. You can check that as φ
limits to χB , this function limits in H1 to the function that’s u outside of B and w inside of B (this uses the
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fact that the values of the functions agree at ∂B; otherwise this function could not be in H1). So, by balancing
φ and R carefully, we can arrange that

E((1− φ)uR + φw; ΩR) = E(uR; ΩR \B) + E(w;B) + o(1)

As R → ∞. (This takes some checking and its a bit annoying but it’s worth trying if you don’t see why it’s
true). But, then you get

E(uR; ΩR) ≤ E((1− φ)uR + φw; ΩR) since uR minimizes

= E(uR; ΩR \B) + E(w;B) + o(1) (by the above construction/claim)

≤ E(uR; ΩR \B) + E(u;B)− δ + o(1) (by the property assumed about w)

= E(uR; ΩR \B) + E(uR;B)− δ + o(1) (since uR → u in C∞ on B).

= E(uR; ΩR)− δ + o(1) (putting the pieces back together).

This is then a contradiction since δ ≤ o(1) can’t hold. Sorry about my confusion! I guess strictly speaking, we
did not really need to prove the E ≤ CR bound proved in the earlier part of the problem, since we have to use
the minimizing property again after passing R→∞ anyways. . .

1.8 Exercise 3.2

The idea should be that any perturbation of the minimizer will decrease the energy. Now just need to balance the
L1’s vs. the H1’s. Yes this works out: Suppose that uε is a δ-minimizer, (Not sure what the distinction between
strict and non-strict minimizer is - Otis define’s one but asks about the other). Then consider

Eε(uε + tϕ; Ω)

where ϕ is some smooth compactly supported function. For fixed ϕ, we know that ||tϕ|| < δ for t sufficiently small,
and thus by the minimizer assumption, we have that

Eε(uε) ≤ Eε(uε + tϕ; Ω) ∀t sufficiently small

noting that the energy functional is smooth in t, we immediately get that the derivative must equal 0, as a non-zero
derivative would allow us to decrease the energy by taking t small and positive/negative, a contradiction. Now
because it minimizes energy locally, it must solve the Allen Cahn equation

1.9 Exercise 3.3

Let r be tbd, and define vε to be a minimizer of Eε over Br(`) (` := χE − χM\E) where the ball is taken w.r.t.
the L1 norm. Note that such a minimizer exists for each individual ε > 0 because of the same argument from
exercise 2.5/Evans Chapter 8.2. The key thing to notice is that a sequence of of vk,ε such that Eε(vk,ε) → Mε =
minf∈Br(`)Eε(f) is necessarily bounded uniformily in H1, which is a hilbert space, and so we get a weakly convergent
subsequence and the rest is history.

Let {vε} be our sequence of minimizers, then we know that for ε < εr fixed we can find a family of {uε}
in accordance with proposition 3.6 such that uε → ` and limεEε(uε;M) = σP (E; Ω). In particular, this forces
Eε(vε) ≤ Eε(uε) for ε < εr and so

lim sup
ε→0

Eε(vε) ≤ σP (E;M)

In particular, this tells us that Eε(vε) ≤ C independent of ε for ε sufficiently small. Now apply proposition 3.5 to get
a subsequence which converges to v0 which is ±1 a.e. and

lim inf
k→∞

Eεk(vεk ; Ω′) ≥ σP ({v0 = 1}; Ω′)

for any Ω′ ⊂⊆M = Ω. Now using the definition of strict local minimizer, we have that for Ω′ = Ω = M I can do this
because compact containment doesn’t imply strict containment, we have that if {v0 = 1}∆E is positive measure,
then

P (E;M) < P ({v0 = 1};M)

if we choose r = δ in accordance with the definition of strict local minimizer (see definition 3.9). However, we know
that

lim sup
ε→0

Eε(vε) ≤ P (E;M)
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so the lim inf bound cannot occur, meaning that {v0 = 1}∆E is 0 measure. Thus, {vεk} converges to χE − χM\E
in L1. In particular, for k sufficiently large, we know that vεk lies in the interior of Bδ(`), so that it is necessarily a
local minimizer, and hence a solution of Allen Cahn (exercise 3.2)

From here, we just need to pass from the subsequence to the overall continuum of functions {uε}.
I will show that {vε} → χE −χM\E , which will imply that for all ε sufficiently small, we have that vε solve Allen

Cahn as they are local minimizers. Suppose not, then we get γ > 0 and a subsequence, vεk such that εk → 0 and
||vεk − `|| ≥ γ. From here, we can extract a subsequence in accordance with 3.5 such that (after relabelling the
subsequence as the sequence) uεk → u0 and

σP ({v0 = 1};M) ≤ lim inf
k→∞

Eεk(vεk ;M)

but if we write J = χv0=1 −χM\{v0=1} then because ||vεk − `|| ≥ δ > 0 then we’ll have δ ≥ ||J − `||1 ≥ γ > 0 so that
by strict minimization we have

σP (E;M) < σP ({v0 = 1};M) ≤ lim inf
k→∞

Eεk(vεk ;M) ≤ lim inf
k→∞

Eεk(uεk ;M) = σP (E; Ω)

where {uε} is the continuum of functions we constructed with 3.6. This gives a contradiction, and really I don’t
think I needed the previous paragraph of arguments.

1.10 Exercise 4.1

1. One class of functions for which this works is constant functions. Note that Ricg(ν, ν) = (n−1)g(ν, ν) = (n−1)
because ν will always equal en and so if the metric is that inherited from Rn+1, then this works. Note that
|AΣ|2 = |ASn−2 |2 is some positive constant in terms of π and gamma functions. Thus for ϕ ≡ c, we get that
Jϕ = −(|AΣ|2 +Ricg(ν, ν))c which implies that ϕJϕM0 at every point. To get that this is the only subspace

2. Potentially useful source? here

3. Also here for Ricci tensor of sphere blah

Via a computation, the second fundamental form is actually 0 and so the mean curvature, which is the trace of the
second fundamental form, is also zero. Moreover, the Ricci curvature tensor of an n sphere is just n − 1 times the
metric, and so

Jϕ = −∆Σϕ− (|AΣ|2 + (n− 1) · 1)ϕ = (−∆Σ − (n− 1))ϕ = Lϕ

because g(N,N) = 1. Now we note that the rayleigh quotient is the largest eigenvalues of this operator. Moreover,
there is a one to one correspondence between eigenvalues and vectors of L and ∆Sn−1 . See here for the characterization
but the values are

λk = k(k + n− 1) k ∈ Z+ ∪ {0}

In particular, the smallest eigenvalue of −∆Sn−1 is 0, meaning that the smallest the largest eigenvalue of ∆Σ +(n−1)
is n− 1, and the second largest is −n+ (n− 1) = −1.

One can check that the first eigenvalue for both L and −∆Sn−1 is attained by constant functions. Now note that

λ2 = inf
φ⊥1

QΣ(ϕ,ϕ)

||ϕ||2

This can be seen via a variational argument, e.g.

d

dt

QΣ(ϕ+ tφ, ϕ+ tφ)

||ϕ+ tφ||2
= 0 φ ⊥ 1

Also here, ϕ ⊥ 1 in the sense that 〈ϕ, 1〉Sn−1 = 0, which means that the average of the function restricted to Sn−1

is 0.
With this set up at hand, suppose that QΣ(ϕ,ϕ) < 0 for some non-constant ϕ. After subtracting off its projection

onto constant functions, we see that ϕ− c ⊥ 1 and so in particular

QΣ(ϕ− c, ϕ− c)
||ϕ− c||2

> λ2 =⇒
ˆ

(−∆(ϕ− c))(ϕ− c)− (n− 1)(ϕ− c)2 > λ2

ˆ
(ϕ− c)2
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If the second eigenvalue for −∆ is n, then the second eigenvalue for −∆− (n− 1) is 1, and so

ˆ
(−∆(ϕ− c))(ϕ− c)− (n− 1)(ϕ− c)2 > λ2

ˆ
(ϕ− c)2 =

ˆ
(ϕ− c)2 ≥ 0

meaning that QΣ is not negative definite on the space spanned by {ϕ, 1}. Thus the morse index is 1.
After talking with Otis, this proof isn’t technically correct because the questions asks to show that we can’t have

a subspace of dimension ≥ 2 on which the form QΣ(·, ·) is negative definite. Note that if we choose any ϕ non
constant for which QΣ(ϕ,ϕ) < 0, then the same will hold for any non-zero rescaling. The point is that 1 doesn’t
have to be in our subspace. HOWEVER, the proof from above shows that if 〈ϕ, 1〉 = c

´
Σ
ϕ = 0, then the form

cannot be negative. Thus, suppose that our space contains ϕ and φ linearly independent, i.e. one is not a scalar
multiple of each other. Then we have one of the following cases:

´
ϕ 6= 0 and

´
φ 6= 0, OR one of these integrals is

non-zero. The latter case gives a contradiction as above. In the former case, set c =
´
ϕ and d =

´
φ, then consider

f = −dϕ+ cφ which will have zero integral. Thus the problem statement is still true

1.11 Exercise 4.2

I think we’re supposed to consider Quε(ψ
√
|∇uε|2 + δ2), which gives

Quε(ψ
√
|∇uε|2 + δ2) =

ˆ
M

ε|∇(
√
|∇uε|2 + δ2ψ)|2 +

1

ε
W ′′(uε)ψ

2(|∇uε|2 + δ2)

We know that
√
|∇uε|2 + δ2 is smooth because any derivative of it will involve derivatives of uε and have a denomi-

nator of (|∇uε|2 + δ2)k/2 which will be non-zero. With this, we expand

∇(
√
|∇uε|2 + δ2ψ) = ψ∇(

√
|∇uε|2 + δ2) + (

√
|∇uε|2 + δ2)∇ψ

and so noting that ∇f2 = 2f∇f and factoring in the cross terms, we get

|∇(
√
|∇uε|2 + δ2ψ)|2 = |∇(

√
|∇uε|2 + δ2)|2ψ2 +

1

2
g(∇ψ2,∇(|∇uε|2 + δ2)) + |∇ψ|2(|∇uε|2 + δ2)

= |∇(
√
|∇uε|2 + δ2)|2ψ2 +

1

2
g(∇ψ2,∇(|∇uε|2)) + |∇ψ|2(|∇uε|2 + δ2)

= |∇(
√
|∇uε|2 + δ2)|2ψ2 − 1

2
ψ2(∆g(|∇uε|2) + |∇ψ|2(|∇uε|2 + δ2)

note that though |∇uε| may not be smooth |∇uε|2 = ∇uε · ∇uε is so we can pull this integration by parts. Adding
back in the scaling and applying the Bochner formula again to get

ε

ˆ
M

|∇ψ|2(|∇uε|2 + δ2)− ((|D2uε|2 − |∇
√
|∇uε|2 + δ2|2) + Ricg(∇uε,∇uε) +

1

ε
W ′′(uε)δ)ψ

2dµg ≥ 0

=⇒ I :=

ˆ
M

|∇ψ|2|∇uε|2 − ((|D2uε|2 − |∇
√
|∇uε|2 + δ2|2) + Ricg(∇uε,∇uε))ψ2dµg ≥

ˆ
εδ2|∇ψ|2 −W ′′(uε)δψ2

noting that

∇
√
|∇uε|2 + δ2|2 =

∇(|∇uε|2 + δ2)

2
√
|∇uε|2 + δ2

=
∇(|∇uε|2)

2
√
|∇uε|2 + δ2

setting ~v = ∇uε, we have

∂i(|∇uε|2) = ∂ig(~v,~v) = ∂i(gjkvjvk) = (∂igjk)vjvk + 2g(∂i~v,~v)

Note that if ~v = ~0, then all of these terms vanish. Moreover, because |D2uε|2 > 0, we have

ˆ
∇uε 6=0

−|D2uε|2 ≥
ˆ
M

−|D2uε|2

Thus we haveˆ
∇uε 6=0

|∇ψ|2|∇uε|2 − ((|D2uε|2 − |∇
√
|∇uε|2 + δ2|2) + Ricg(∇uε,∇uε))ψ2dµg ≥ I ≥

ˆ
m

εδ2|∇ψ|2 −W ′′(uε)δψ2
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sending δ → 0 on the right gives a lower bound of 0. Note that when ∇uε 6= 0, we have

lim
δ→0

∇(|∇uε|2)

2
√
|∇uε|2 + δ2

=
∇(|∇uε|2)

2|∇uε|
=

2∇(|∇uε|) · |∇uε|
2|∇uε|

= ∇(|∇uε|)

To get this in an integral formula, we have

|D2uε|2 = |D2(uε + δ)|2 ≥ fδ = |D2(uε + δ)|2 − |∇
√
|∇uε|2 + δ2|2 ≥ 0

by the remark after the exercise. We know uε is smooth so if M is compact, we’ve bound fδ between two integrable
things and we can applied dominated convergence to get that

−
ˆ
|D2(uε + δ)|2 − |∇

√
|∇uε|2 + δ2|2 → −|D2(uε + δ)|2 − |∇|∇uε||2

If M is not compact, then we can use Fatou’s lemma.

1.12 Exercise 4.3

(a) Yes, stability will give us that QΣ(ϕ,ϕ) ≥ 0 for all ϕ ∈ C∞(Σ). Note that

Qσ(ϕ,ϕ) =

ˆ
ϕ(−∆Σϕ− (|AΣ|2 + Ricg(ν, ν))ϕ) ≥ 0 =⇒

ˆ
g(∇ϕ,∇ϕ) ≥

ˆ
Ricg(ν, ν)ϕ2

In particular, we know that Ricg(ν, ν) > 0 for all ν non-zero because the tensor is positive. However, the above is
not true for ϕ ≡ 1 as

´
g(∇ϕ,∇ϕ) = 0, but the right hand side is some positive value. Thus there can be no stable

solutions.

(b) Similar idea, apply proposition 4.1, and note that this is equivalent to

ˆ
∇uε 6=0

|∇ψ|2|∇uε|2 ≥
ˆ

((|D2uε|2 − |∇|∇uε||2) + Ricg(∇uε,∇uε))ψ2

In particular the right hand side is non-zero and strictly positive if we choose ψ ≡ 1, however the left hand side will
always be 0 because ∇ψ = 0.

1.13 Exercise 4.4

Look here and here to start

http://mathonline.wikidot.com/every-bounded-sequence-in-a-hilbert-space-has-a-weakly-conve

http://mathonline.wikidot.com/helley-s-theorem

So we know that by nature of H1(M) being a hilbert space, we can find weak limits. In particular, we can
take {uk} and replace it with a subsequence which converges weakly in H1 to some u. However, we can also take
{uk} ⊆ L2 and consider a weak limit, f ∈ L2. We can then show that f must be weakly differentiable and so
f ∈ H1, which then implies that f = u. The point of doing this is that weak convergence in H1 gives us convergence
w.r.t. 〈a, b〉H1 = 〈a, b〉L2 + 〈∇a,∇b〉L2 , but this doesn’t tell us if a act the same as elements of (L2)∗. The point
of passing to a weak L2-limit and then showing that it matches with the weak H1 limit gives us that individually:
〈u, ϕ〉L2 = limk→∞〈uk, ϕ〉L2 as well as 〈∇u,∇ϕ〉L2 = limk→∞〈∇u,∇ϕ〉L2 . This is important, because the energy
functionals deal with weighted versions of each. See here

https://math.stackexchange.com/questions/24776/weak-convergence-in-sobolev-spaces

With this, we have that

lim
k→∞

ˆ
ε

2
〈∇uk,∇ϕ〉+

1

ε
W ′(uk)ϕ

k→∞−−−−→
ˆ

ε

2
〈∇u,∇ϕ〉+

1

ε
W ′(u)ϕ

splitting up this integral into two, the fact that the first integral converges is straight from ∇uk ⇀ ∇u. The second
integral converges because we have |uk| ≤ 1 everywhere and so |u| ≤ 1 a.e. meaning that both are bounded. We’re also
on a compact set which has finite measure, and so applying Rellich-Kondrachov, we get that W 1,2 ↪→ W 0,2 = L2,
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where this embedding is compact. In particular, this tells us that our weakly convergent sequence, which is
necessarily bounded in || · ||H1 is then sent to a sequence in L2, which has a strongly convergent subsequence. As
showed previously, the limit of this strongly convergent subsubsequence in L2 must actually be u. With this, we’ve
gained that uk →L2 u, and so because our space is finite measure, we can use Holder’s inequality and boundedness

of {uk} to get that W ′(uK)
L2

−−→W ′(u) meaning that the second integral will converge! Now we can use the fact that

DE
∣∣∣
uk
→ 0 to get that u satisfies Allen Cahn weakly, and hence by problem 1 (recall that u is bounded), it will be

a strong solution. To see this, I interpret

DE
∣∣∣
uk

= I ′ε(uk) = vk s.t. ∀w, Iε(w) = Iε(uk) + 〈vk, w − uk〉+ o(||w − uk||)

in particular, if we set w = uk + tϕ for some ϕ smooth, then we get that

I(uk + tϕ) = I(uk) + t〈vk, ϕ〉+ o(t||ϕ||)

taking the derivative of this expression gives

d

dt
I(uk + tϕ)

∣∣∣
t=0

= 〈vk, ϕ〉

Now consider
d

dt
I(u+ tϕ)

∣∣∣
t=0

=

ˆ
Ω

ε〈∇u,∇ϕ〉+
1

ε
W ′(u)ϕ

note that u is the weak limit in H1 of our subsequence and the strong L2 limit of our sequence, so each of the
integrals above converge individually. In particular

ˆ
Ω

ε〈∇u,∇ϕ〉+
1

ε
W ′(u)ϕ = ε lim

k→∞

ˆ
Ω

〈∇uk,∇ϕ〉+
1

ε
lim
k→∞

ˆ
Ω

W ′(uk)ϕ = lim
k→∞

〈vk, ϕ〉 = 0

and so I ′(u) = 0 by our assumption on DE
∣∣∣
uk

. Thus u is a solution to Allen Cahn weakly because the left hand side

will give
d

dt
I(u+ tϕ)

∣∣∣
t=0

=

ˆ
ε〈∇u,∇ϕ〉+

1

ε
W ′(u)ϕ

and so the above being 0 for all ϕ tells us that u is a weak solution of Allen Cahn. From what we cited, it is then a
strong solution.

To get strong convergence in H1, we already have strong convergence in L2. We have up to first order in ||uk−u||L2

that
ε

2
〈∇(uk − u),∇(uk − u)〉 ≡ ε

2
〈∇uk, uk − u〉 −

ε

2
〈∇u, uk − u〉

= 〈vk, uk − u〉 −
1

ε
[

ˆ
M

[W ′(uk)−W ′(u)](uk − u)]− ε

2
〈∇u,∇(uk − u)〉 −

ˆ
M

1

ε
W ′(u)(uk − u)

= 〈vk, uk − u〉 −
1

ε
[

ˆ
M

[W ′(uk)−W ′(u)](uk − u)]

the point is that we can eliminate the last two terms in the second line because u is a solution to Allen-Cahn. The
first term tends to 0 as k → ∞ because vk → 0 and uk − u → 0 in L2 This double convergence feels too easy It
is easy, but Otis says it’s right. However, by holder’s inequality and boundedness of u and u′, the second term as
decreases to 0 because ||uk − u||L2 → 0. With this we have that our sequence actually converges strongly in H1 to

u. Ask Otis about the notation of DEε

∣∣∣
uk

Yes, the notation is as I’ve described

1.14 Exercise 5.1 (Mostly done)

(a) Define

gj(x) = ε−2f∗εj ,xjg =
∑
i,k

gik(expxj (εjx)dxi ⊗ dxk, gik : BK(0)→ R, fεj ,xj : BK(0)→ BKεj (xj)
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the point is that we’ve pulled the metric back by the map fεj ,xj which is a chart map sending BKεj (xj) → BK(0),
but we want to rescale by ε−2, as pulling back gives two extra powers of ε, and sending ε→ 0 would give the 0 metric
without the rescaling. We don’t need to rescale the function though, so similarly, define

ũj = uεj (expxj (εjx)) = f∗εj ,xj (u)(x)

(b) To see convergence of the metric, note that for any derivative ∂αx g
j(x) = ε

|α|
j (∂αx g ◦ expxj )(εjx). Take a

subsequence of the {xj} so that these points converge to some x0 ∈ M . We know that higher derivatives of the
original metric (assuming it is smooth itself) are continuous. In particular, as we send j → ∞, (∂αx g ◦ expxj )(εjx)

tends to (∂αx g ◦ expx0
)(0) and the factor of ε

|α|
j makes it so that

∀|α| ≥ 1, ∀x ∈ BK(0), lim
j→∞

∂αx g
j(x) = lim

j→∞
ε
|α|
j (∂αx g ◦ expxj )(εjx) = 0

Moreover, this convergence is uniform because we have control of (∂αx g ◦ expxj ) (really we have control of the metric
everywhere, because we’re on a compact domain) and in fact we have a uniform bound on this taking x over all
BK(0) assuming that xj is sufficiently close to x0. With this, note that for α = 0, we get that

∀x ∈ BK(0), lim
j→∞

gj(x) = g(x0)

and this is similarly a uniform convergence once we take j sufficiently large and note continuity of the metric. So
the fact that the metric converges is fine because yes we have control of it on the a compact domain, which is all
we need as {BKεj (xj)} will be contained in some U in our manifold for j sufficiently large (this is assuming we
have the subsequence so that {xj} → x0). However, something we can’t take for granted is expxj → expx0

however

this is true because the exponential map is the time 1-value of the geodesic flow, which is a map Φt : TM → TM .
We can solve this locally in coordinates and think of it as a map on R2n smooth in both the first n coordinates
(the base point) and the second n coordinates (the initial velocity vector). The flow is then smooth and so we get
expxj = Φ1(xj , ·)→ Φ1(x0, ·). See here for details

For our function ũj , we know that each is a solution to Allen-Cahn with ε = 1, as

∆ũj = ε2j (∆uεj ◦ expxj )(εjx) = W ′(ũj)

Now each ũj is bounded in magnitude by ±1, so because ε = 1 for all j, we can relate the Allen-Cahn energy
functional to the H1 norm on BK(0). We already have a nice L2(BK(0)) norm by nature of ũj being L∞. Now we
just need to get a bound on ||∇ũj ||. The idea for this is to use the fact that ũj and uεj are related closely, despite
their domains of definition being different. We have

ˆ
BK(0)

|∇ũj |2 =

ˆ
BK(0)

ε2j |(∇uεj ◦ expxj )(εjx)|2dx

= ε2−n
ˆ
BKεj (0)

|(∇uεj ◦ expxj )(y)|2dy ≤ ε2−nj ||1BKε(0)||p || |∇(uεj ◦ expxj )| ||q

here, set p = n/(n− 2) and q = 2/n, so that

ε2−nj ||1BKε(0)||p ≤ ε2−nj (CKεnj )(n−2)/n = C̃(K)

where C̃ is independent of εj because we have the right powers cancelling out. For the other integral, note that

||u||C1,α,Ω ≤ C1||u||C0,Ω Ω ⊆ Rn

this is some schauder estimate in our specialized case see Otis’ emails. But the point is that ||uεj ||L∞ ≤ 1 and all j,
and so ||∇uεj || ≤ ||uεj ||C1 ≤ C1 is bounded. We can do this for any chart on M , and then take finitely many charts
to cover M , giving a global bound for |∇uεj | and hence any of its higher power integrands. With this, we get H1

boundedness of {uεj}.

Once boundedness is resolved, take a weak subsequence of {ũj} which will strongly converge to some u in L2

and weakly to it in H1. From this, we can define weak derivatives of u as (set {uk} = {ũj})
ˆ

(∂αx u)ϕ = (−1)|α|
ˆ
u∂αxϕ = (−1)|α| lim

k→∞

ˆ
uk∂

α
xϕ = lim

k→∞

ˆ
(∂αx uk)ϕ
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here, of course we take ϕ with support compactly contained in our domain of integration, BK(0). We now know that
u is a weak solution of allen cahn asˆ

Bk(0)

(∆u+W ′(u))ϕ = lim
k→∞

ˆ
BK(0)

∆ukϕ+ lim
k→∞

ˆ
BK(0)

W ′(uk)ϕ = lim
k

ˆ
BK(0)

(∆uk +W ′(uk))ϕ = 0

because the integral vanishes for each k. Now we can use the fact that weak solutions of Allen Cahn lying in H1

are strong, smooth solutions of it. Note that u is in H1 a priori because norms don’t increase under weak limits.
Moreover the derivatives of uk convergence pointwise to the derivatives of u via the weak formulation two equations
above, i.e. we get convergence of the weak derivatives easily - then noting that u and {uk} are all smooth, then
their strong derivatives must also agree. Moreover, this convergence is locally uniform in k, as if we restrict to some
U ⊆ BK(0), then if we take ϕ with suppϕ ⊆ U , we get

ˆ
BK(0)

(∂αx uk)ϕ = (−1)|α|
ˆ
U

ukD
α
xϕ =⇒

∣∣∣ˆ
U

(uk − uj)Dα
xϕ
∣∣∣ ≤ ||ϕ||C|α|µ(U)1/2||uk − uj ||2

and we know that the sequence converges strongly in L2. This gives a uniform local convergence depending only
on ||uk − uj ||. Not sure what “smoothly converges” means. Also I want the above computation to communicate
some sort of uniformity, but there is dependence on the derivatives of ϕ, which is something I morally should be
able to divide out by. I think converges smoothly means convergence in the Ck seminorms for all k as j →∞. The
seminorms don’t have to all go to 0 at the same rate, just need to guarantee that this convergence does happen
Not sure how to get smooth convergence actually. Weak convergence in all derivatives doesn’t work if we consider
a smoothed out version of 1[0,1/n] on say the circle For smooth convergence: idea is to apply schauder estimates
and use that ũj ∈ [−1, 1] to get that ||ũj ||C1,α ≤ C uniform in j. Now apply arzela ascoli. Interesting to think of
schauder estimates as a means to bootstrap To flesh this out more: we have a sequence of {uj} from which we’ve
extracted C1 convergence on compact sets. If we look at {∂kuj} which are solutions to

∆∂ku = ∂k(u(u2 − 1)) = (3u2 − 1)∂ku = −c(x)∂ku

this can be formulated as a semilinear elliptic PDE which uj satisfies (the coefficients c(x), will be defined in terms
of u as before), from which we can get schauder estimates. In particular, using ||u||C2,α ≤ ||u||Cα + ||f ||Cα (we take
f ≡ 0) and then ||u||C1,α ≤ ||u||C0 , we can replace u with ∂ju and get bounds everywhere. Now we have a sequence
{∂kuj} with uniformly bounded derivatives, giving us a subsequence which converges uniformily. This tells us that
our subsubsequence converges in the C0 norm AND in the C1 norm by looking at the subsequence of derivatives.
We can repeat this with higher derivatives as well, e.g.

∆(∂j∂ku) = ∂j∂k[u(u2 − 1)] = 6u∂ju∂ku+ (3u2 − 1)∂j∂ku = c(x)∂j∂ku+ f(x)

so the same C2,α and C1,α schauder estimates (with f = 6u∂ju∂ku which still has bounded Cα norms on compact
sets because of the C1,α norm bound) apply and we can get another subsequence which gives convergence of the
second derivatives with respect to the C0 norm on compact sets..

(c) Having established smooth convergence of {ũj} to some u, then note that

Qu(ψ,ψ) =

ˆ
BK(0)

|∇ψ|2 +W ′′(u)ψ2dµg = lim
j→∞

ˆ
BK(0)

|∇ψ|2 +W ′′(ũj)ψ
2dµg

Make the change of variables v = εjx so that the above integral becomes

ε−nj

ˆ
BKεj (0)

|∇ϕ|2(v)ε2j +W ′′(uεj ◦ expxj (v))ϕ(v)2dµg(v)

where ϕ(x) = ψ(xε−1
j ). The point here is that even though we have this scaling factor out front, we get that

ε−nj

ˆ
BKεj (0)

|∇ϕ|2(v)ε2j+W
′′(uεj◦expxj (v))ϕ(v)2dµg(v) = ε−n+1

j

ˆ
BKεj (0)

|∇ϕ|2(v)εj+
1

εj
W ′′(uεj◦expxj (v))ϕ(v)2dµg(v) ≥ 0

because the integral is non-negative by assumption of uεj being stable, ε−n+1
j > 0, and expxj (BKεj (0)) ⊆ Bρ(xj) for

εj sufficiently small. Thus, the equality must hold in the limit as well.
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(d) The same argument will hold here: if Qu0(ψ,ψ) < 0, then Qũj (ψ,ψ) < 0 for all j sufficiently large. By
undoing the integration by parts above, this translates into a collection of linearly independent functions for which
non-stability holds for {uεj}. Thus

lim inf
j

index(uεj , Bρ(xj)) ≥ index(u0, BK(0))

If we have a constant upper bound on the quantity on the left, then we get the same result for index(u0, BK(0)).

(e) Really not sure - over what domain are we interpreting {uεj} to be a δ-locally minimizer? Should be work-
ing entirely on BK(0)

Here’s an idea, I claim that
||ũ− v||L1(BK(0)) < δ =⇒ E1(v) > E1(ũ)

The point is that if we have the former then we know that by smooth convergence on compact sets that

∃J0 s.t. ∀j > J0, ||ũj − v||L1(BK(0)) < δ

If we had non-strict inequality, then we might have hit a situation where ||ũ− v|| = δ and ||ũj − v|| > δ.
When the first inequality does hold, compute

E1(v) =

ˆ
BK(0)

1

2
|∇v|(x)2 +W (v)(x) = ε−n

ˆ
BKεj (0)

1

2
|∇v|(ε−1

j x)2 +W (v)(ε−1
j x)

Now if we set pj(x) = v(ε−1
j x), then we get

E1(v) = ε1−n
ˆ
BKεj (0)

εj
2
|∇pj |(x)2 +

1

εj
W (v)(ε−1

j x)

Now, if we have that uεj is a local minimizer on BKεj (0) (Note: it’s not sufficient to have it be a minimizer on a
larger set, as H1(Ω1) 6↪→ H1(Ω2) when Ω1 ⊂ Ω2.Ask), then we can conclude that

E1(v) ≥ ε1−nEεj (u) = E1(ũj)

this holds for all j sufficiently large, so
E1(v) ≥ E1(ũ)

ending the proof. So we have δ − ε-minimization for any ε > 0. Want our perturbations to lie in H1
0 . Otis says

that via rescaling the δ in δ > ||v− ũ|| doesn’t matter anymore, so I need to do the integration by parts and check this

(f) We can use the same arguments in exercise 2.5 to get a convergent subsequence out of the ũK ’s such that
this sequence of functions converges to a solution on Allen-Cahn on all of Rn, with the convergence being smooth on
compact sets not sure why it would still be smooth if we’re citing 2.5. See my comment in part b)

Once we have smooth convergence, if we use the definitions of minimzing and stabilizing as in section 5.1 (bottom
of p. 16), i.e being stable on compact subsets of Rn and minimizing on compact sets, then we have this automatically.
If we asked for stability under general, compactly supported perturbations, ϕ ∈ C∞c (Rn), we would still get the result:
just take the compact set on which we converge smoothly to contain supp(ϕ). The same holds for minimizing if the
comparative function, v, is compactly supported not sure what happens when support is allowed to be infinite.

In general, we expect minimizers to converge to minimizers, stable solutions to converge to stable solutions (think
about matrices)

The hope is that ũ is stable on all of Rn and a δ-local minimizer.

1.15 Exercise 5.2

(a) The idea is that we can actually take the infinum over all functions satisfying the boundary condition and lying
in H1 ∩ L4. Then the minimizer exists by functional analysis arguments (see Ch 8.2 of Evans again), and we know
that a minimizer must be smooth on BR by the first problem in this set of notes. Hence, this minimizer will also be
a minimizer taken over the smaller set of smooth functions satisfying the boundary condition.
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(b) The point is that τ exists because we have that limτ→∞ u(x′, xn + τ) = 1 uniformily in (x′, xn). In partic-
ular, because this is uniform convergence, we have that

∀ε > 0,∃T s.t. τ > T =⇒ uτ (x′, xn) > 1− ε, ∀(x′, xn) ∈ BR(0)

Now let ` = max
~x∈BR(0)

|u(~x)| < 1 because the function is < 1 on the interior and the boundary and it’s a compact

set, so u would have to achieve it’s maximum on BR(0). Now set ε = (1− `)/2 to see that

{τ |uτ ≥ v ∀(x′, xn) ∈ BR(0)

is non-empty. Now take the smallest, non-negative such τ in the above set, which must exist by the well-ordering

principle. Note that τ = 0 gives u0

∣∣∣
∂BR

= v
∣∣∣
∂BR

, so it is not the case that uτ > v holds for all τ non-negative, i.e.

strict inequality everywhere. With this, if γ is the minimal τ value, then we cannot have uγ > v everywhere, else by
uniform continuity on BR (b/c of continuity on a compact set) we would have that uγ−ε > v everywhere, as strict
inequality is an open condition. This contradicts minimality of γ, and so ∃x̂ ∈ BR such that uτ (x̂) = v(x̂).

1.16 Exercise 5.3 (One question)

Does Otis want me to think of u± as a function on Rn−1 and hence a solution to the n− 1-dimensional Allen Cahn?
I might have trouble then... So it actually solves it on both Rn and Rn−1

So pointwise, we know that u±(x′) exists by monotonicity. We now ask if a monotone sequence of functions
satisfying allen-cahn do actually solve allen-cahn, and this is indeed true via the domainated convergence theorem.
To see this, first define

v±(x′, xn) = u±(x′) = lim
τ→∞

uτ (x′, xn)

Now I drop ± in favor of + as the work for − is analogous. Take ϕ with compact support in Rn, thenˆ
〈∇v,∇ϕ〉+W ′(v)ϕ =

ˆ
−v∆ϕ+W ′(v)ϕ =

ˆ
supp(ϕ)

−v∆ϕ+W ′(v)ϕ

because supp(ϕ) is compact, and hence finite in measure, we can use the dominated convergence theorem to get that
ˆ

supp(ϕ)

v(−∆ϕ) + (W ′(v)ϕ) = lim
k→∞

ˆ
supp(ϕ)

uk(−∆ϕ) + (W ′(uk)ϕ)

Now we note that each uk = u(·, ·+ k) is a solution to Allen-Cahn, and so this integral is 0. Thus u is a solution to
Allen-Cahn.

We now want to run through the argument in proposition 5.8 with Savin’s condition replaced by u−(x′) ≤
v(x′, xn) ≤ u+(x′), where u±(x′) are replacing ±1.

Let

J = inf{E1(v) : v ∈ C∞(BR), u−(x′) ≤ v(x′, xn) ≤ u+(x′) ∀(x′, xn) ∈ BR} = inf{E1(v) | v ∈ S}

If we can show that a minimizer of the above set exists and satisfies Allen-Cahn, then the same steps will show that
the minimizer is not equal to u± at any point and so

u−(x′) < v(x′, xn) < u+(x′), ∀(x′, xn)

Now we can pull the same uτ argument, again noting uniform convergence on our compact set, and use the same
arguments to show that u = v everywhere, meaning that u is a minimizer.

Ok, suppose that of E1 over S exists. Then if we show that u−(x′) < v(x′, xn) < u+(x′), ∀(x′, xn), we can
take the minimum of the absolute value of v − u± and take the infinum over all of BR. This must be a non-zero
quantity, so for t small enough, we’ll have that for any smooth, compactly supported perturbation, we get v+ tϕ lies
in S. Thus v will be a solution to Allen-Cahn by nature of being a local minimizer! So we just need to show that
this minimizer exists. If we want this to be a solution to Allen Cahn, we can just stipulate u ∈ H1(BR). Now we
can truly apply the machinery of section 8.2 in Evans, i.e. a minimizer of E1 taken over the set

{v ∈ H1(BR), s.t. u−(x′) ≤ v(x′, xn) ≤ u+(x′)}

will exist. I want something that says that v satisfies strict inequality on the interior so that any pertubration, +tϕ,
will keep it in the set for t sufficiently small. Otis said he’ll get back to me on this Once I have this v will be a
bonafide solution to Allen-Cahn
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1.17 Exercise 5.4

Log cutoff? Should work just like exercise 2.5

1.18 Exercise 5.5

(a) If ∇u = 0 everywhere, then u is constant, and ∆u = u(u2 − 1) = 0, which implies that u = 0. I guess 0 is a
solution everywhere to allen-cahn.
(b) Is this not the content of the hint in 4.2?

(c) Consider the (k, j)th entry of D
(
∇u
|∇u|

)
, it is

∂k
uj
|∇u|

=
ujk|∇u| − uj∂k|∇u|

|∇u|2
=
ujk|∇u| − uj

∑
l uklul
|∇u|

|∇u|2
=

1

|∇u|3

(
ujk|∇u|2 − uj

1

2
∂k|∇u|2

)
and so the sum of squares of each term gives

1

|∇u|6
∑
j,k

u2
jk|∇u|4 − ujkuj |∇u|2∂k|∇u|2 +

1

4
u2
j (∂k|∇u|2)2

up to the prefactor, this is

|∇u|4|D2u|2 − 1

2
|∇u|2|∇|∇u|2|2 +

1

4
|∇u|2|∇|∇u|2|2 = |∇u|4|D2u|2 − 1

4
|∇u|2|∇|∇u|2|2 = 0

having used that |D2u|2 = |∇|∇u||2 and the fact that

|∇|∇u|2| = 2||∇u|∇|∇u|| =⇒ |∇u|2|∇|∇u|2|2 = 4|∇u|4|∇|∇u||2

With this, we’re able to conclude that
∇u
|∇u|

= ~c =⇒ ∇u = |∇u|~c

Thus

D

(
∇u
|∇u|

)(
∇u
|∇u|

)
= 0 = ∇ ∇u

|∇u|

∇u
|∇u|

= 0

(d) From the previous part, we actually see that D(∇u/|∇u|) = 0 and so ∇u = ~c|∇u| for some ~c ∈ Rn constant,
when ∇u 6= 0. This is an open set, so if we have x0 ∈ {∇u 6= 0〉, then on this set we have that

u(~x) = f(〈~c, ~x− ~x0〉)

This is because u only changes in the ~c direction, so the change between u(~x) and u( ~x0) only depends on where the
projection of ~x− ~x0 is on R~c.

Consider {∇u = 0}. If this set has any interior, then unique continuation would tell us that u ≡ 0, which is fine,
but we want to consider non-constant solutions. Thus {∇u = 0〉 has no interior. Let y ∈ {∇u = 0}, then we know
that

∃{zn} ⊆ {∇u 6= 0〉 s.t. lim
n→∞

zn = y

and so by continuity of u (which we have already without assuming that u is one-dimensional), we get

u(y) = lim
n→∞

u(zn) = lim
n→∞

f(〈~c, ~zn − ~x0〉)

If f is assumed to be continuous on all of R, then we can move the limit inside and get the result. We can guar-
antee this if {∇u = 0〉 does not contain any lint perpendicular to R~c, as then we would have f being evaluated
at every r ∈ R via some ~x ∈ {∇u 6= 0} such that r = 〈~c, ~x − ~x0〉. Almost done, just need to get continuity of f
everywhere This is true though because we know that u is smooth so f must be smooth as well, and hence continuous

(e) Without the stability condition, consider the constant functions u = 0, u = 1, and u = −1, which all solve
Allen Cahn. Do there exist non-constant solutions of Allen-Cahn of this form? We didn’t classify all solutions to
Allen-Cahn in 1-D, just the ones that have finite energy Note that if there exists a positive component of ~c then we
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would get the de giorgi monotonicity condition in some direction and understand stabilitiy well. However, if ci > 0,
then we have constant growth of u in one direction, meaning that u > 1 in finite time via integration by parts, a
contradiction..

If we could show that u has finite energy, then this would imply that f has finite energy and so by our work with
one dimensional solutions, we would get that f = H. By rotational symmetry, assume that ~a = ae1, then the scaling
of |a| = 1 should come from

∆u = ∂2
x1
f(〈ae1, x− x0〉) = a2f ′′ = u(u2 − 1) = f(f2 − 1)

and so f is a solution to Allen Cahn as well iff |a| = 1. Thus, if we have u = H(〈a, x − x0〉), then we must have
|a| = 1.

If stability is replaced by E1(u;Br) ≤ CRn−1, I’m not sure what happens. Replace BR with a rotated square, SR,~c,
i.e a square with perpendicular bisector parallel to ~c and having side length R. Note that if we can show the claim for
squares instead of balls, then we still get the claim for balls as the integrand is positive and BR(0) ⊆ SR,~c ⊆ B2R(0).
We get that ˆ

SR,~c

1

2
||∇u||2 +W (u) = (2R)n−1

ˆ R

−R

1

2
||∇u(s~c)||2 +W (u(s~c))ds

i.e. we pick up a factor of CRn−1 for free by nature of the solution being one dimensional, and so we need that the
one dimensional solution obeys a constant bound in integral, i.e.

E1(f) ≤ C

where the energy is being calculated over R. If we have that |a| = 1, then for u(x) = f(〈~c, x− x0〉), we know that f
is a solution to Allen-Cahen, and so we can apply our results from the first section: any solution to one dimensional
allen cahn with bounded energy is necessary f = H. If |a| 6= 1, I’m not sure - maybe we can do another rescaling
argument if |a| 6= 1? Note that u(x) = H(〈a, x−x0〉) is stable precisely because it satisfies the de giorgi monotonicity
condition It’s already a solution to allen-cahn, so this concern about |c| = 1 is not needed. Or rather, if |c| 6= 1, we
can write f(〈c, x− x0〉) = f̃(〈c̃, x− x0〉).

(f) No idea why this is the case.

1.19 Exercise 5.6

Use the ||u||C1,α ≤ ||f ||C0 bound (see 67/68 of Gillibarg-trudinger, acutally see lemma 6.35 on p. 135 in the appendix
about global interpolation inequalities). I think this is it

1.20 Exercise 5.7 (Not done)

Why doesn’t poincare inequality give us a lower bound of 4πR2? Maybe this is isoperimetric inequality or sobolev
inequality, but I feel like my reasoning should work, unless we’re talking about all components of the gradient.
Poincare inequality should still work: it gives a lower bound via two components of the gradient, so adding the third
is icing on top and still boundable from below Google poincare eigenvalue to get a sharp constant

So let’s do the following: the poincare inequality gives

||u||2L2 ≤ C||∇u||2L2 =⇒ 1

C
≤
||∇u||2L2

||u||2L2

If we can minimize the right hand side over some reasonable set, then setting this equal to 1/C gives us the optimal
value for C. Note that this looks like a Rayleigh quotient problem, except we have the added constraint that u ≡ 1
on BR(0).

Let’s say that ϕ is supported on W , then we have that

||ϕ||2L2 ≤ CW ||∇ϕ||2L2

Then we have

CW =
1

λ1,W
λ1,W = inf

f∈S
{||∇f ||22} S = {f ∈ H1

0 (W ) | ||f ||L2 = 1}
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Note that W ⊇ BR(0) implies that λ1,W ≤ λ1,BR(0) and so CW ≥ CBR(0). This is problematic because we get the
opposite direction of bound we want, i.e. ideally, we’d have

λ1,BR(0) ≤ λ1,W ≤
||∇u||2L2

||u||2L2

because then we could use our knowledge of λ1,BR(0) and ||u||2L2 ≥ 4
3πR

3 to get the result. Note that even if we had
the correct direction in the bound, we have

λ1,BR(0) =
c

R2

where c ≈ 2.4 (see one of the sources below), which is bad because then we don’t get the 4πR2 bound. Instead, we
get something like c

34πR2.
see here:

https://math.stackexchange.com/questions/1088051/the-best-constant-of-poincare-inequality-can-be-determined-by-eigenvalue-of-lapl

http://php.math.unifi.it/users/cime/Courses/2017/01/201712-Notes.pdf p. 5

https://mathworld.wolfram.com/BesselFunctionZeros.html

See Otis’ notes. It’s a “capacity” argument

1.21 Exercise 5.8

Just as in problem 5.3, we know that u±∞(x1, x2) is a solution to Allen Cahn in both 3 and 2 dimensions (because
∂2

3u
±∞ = 0). If u is a stable solution on R3, then we want to show that u±∞ is a stable solution on R2. Let’s write

ˆ
R2

|∇ψ|2 +W ′′(u±)ψ2dµg = lim
t→0

ˆ
R3

|∇ft|2 +W ′′(u±)f2
t dµg

define

ft(x, y, z) = ψ(x, y)ψt(z) ψt(z) =


t/2 |z| < 1/t

t/2− (±z ∓ 1/t) 1/t < |z| < 1/t+ t

0 |z| > 1/t+ t

Then we see that limt→∞ ||ψt||2L2(R1) = 1 and also

ˆ
R
ψ′t(z)

2 = 2

ˆ 1/t+t

1/t

(
t/2

t

)2

=
1

2
t

which tends to 0. From this, we note that

∇ft = (ψt∇ψ,ψψ′t) =⇒ |∇ft|2 = |∇ψ(x, y)|2|ψt|2 + |ψ(x, y)|2|ψ′t|2

And so taking the limit to 0, we get that

lim
t→0

ˆ
|∇ft|2 = ||∇ψ||2L2

and also

lim
t→0

ˆ
W ′′(u±(x, y))f2

t =

ˆ
R2

W ′′(u±(x, y))ψ(x, y)2

because the z dependence just cancels out and yields an integral of 1. Thus, it suffices to show that

Qu±(ft, ft) =

ˆ
R3

|∇ft|2 +W ′′(u±)|ft|2 ≥ 0

for all t, as then the limit will be positive as well. To show the above, it suffices to cite the fact that u± is smoothly
approximated by us(x) for s large, on fixed compact sets. This works, because for a fixed t, the support of ∇ft and
ft are compact in R3. Thus

∀s, t, Qus(ft, ft) ≥ 0 =⇒ ∀t, Qu±(ft, ft) ≥ 0

and so u±(x, y) is stable on R2.
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Now from theorem 5.9, aka exercise 5.5, we know that u± = H(〈a, x− x0〉) for some a and x0. The fact that we
have

E1(u±;BR ⊆ R3) ≤ CR2

is then immediate (see exercise 5.5) - replace BR with a square of radius R oriented so that one of the perpendicular
bisectors is parallel to a. Then the integrations in the directions orthogonal to a give a factor of R2, and the
integration in the a direction gives a constant bound because we know that E1(H(t)) < C, i.e. the energy is finite
when integrating over all of R, and hence bounded when integrating over an interval [−R,R].

Now because ut → u± smoothly on compact sets (including BR for R fixed), we get that

lim
t→±∞

E1(u;BR ⊆ R3) ≤ CR2

1.22 Exercise 6.1

For n = 1 consider

ϕR(x) =


1 |x| ≤ R
2− log |x|

log(R) R < |x| < R2

0 |x| ≥ R2

then as Otis does on p. 20, we know that even though this is lipschitz, it can be suitably approximated by C1
c

functions. We then have that

ˆ
R
|ϕ′(x)|2 = 2

ˆ R2

R

1

x2 log(R)2
=

2

log(R)2

[
1

R
− 1

R2

]
clearly, this tends to 0 as R→∞ but we also have that

ˆ
e−uϕ2

R →
ˆ
e−u > 0

i.e. this quantity is positive unless u =∞ everywhere, which is impossible.
For n = 2, it’s essentially the same computation except the measure is angle-symmetric measure 2πrdr and so

the integral becomes

ˆ
R2

|ϕ′(x)|2 = 2

ˆ r=R2

r=R

1

x2 log(R)2
rdr =

2

log(R)2

[
log(R2)− log(R)

]
=

2

log(R)
→ 0

and so the same argument works.

1.23 Problem 1 (almost done, details on (e) and (f))

a) Oh, if the infinum is non-zero, then just do the fundamental theorem of calculus and note that we’ll have u > 1
in finite time, i.e. solve for a path γ(t) such that γ′(t) = ∇u, because then if γ(0) = 0, we get

u(γ(t))− u(γ(0)) =

ˆ t

0

∇u · γ′(t) =

ˆ t

0

|∇u|2 ≥ C2t

such a gradient flow exists because u is smooth.

b) This holds via computation. Note that

∆P = ∆|∇u|2 − 2∆W (u)

we break this down as follows and use that ∆u = W ′(u)

1

2
∆|∇u|2 = |D2u|2 + 〈∇∆u,∇u〉 = |D2u|2 +W ′′(u)|∇u|2

∆W (u) = ∇ · (W ′(u)∇u) = W ′′(u)|∇u|2 +W ′(u)∆u = W ′′(u)|∇u|2 +W ′(u)2

=⇒ ∆P = 2|D2u|2 − 2W ′(u)2.
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We separately have that

∇P = 2(D2u · ∇u)− 2W ′(u)∇u

=⇒ 1

2
|∇P |2 = 2|D2u · ∇u|2 − 4[(D2u · ∇u) · ∇u]W ′(u) + 2W ′(u)2|∇u|2

∇u · ∇P = 2(D2u · ∇u) · ∇u− 2W ′(u)|∇u|2

=⇒ 1

2
|∇P |2 + 2W ′(u)∇u · ∇P = 2|D2u · ∇u|2 − 2W ′(u)2|∇u|2

With this, we see that

∆P |∇u|2 − 1

2
|∇P |2 − 2W ′(u)∇P · ∇u = 2[|D2u|2|∇u|2 − |D2u · ∇u|2] ≥ 0

ending the proof.

(c) We have that the laplacian is ≤ 0 at x = 0 if it is an absolute maximum, but it’s a maximum so ∇P = 0
at this point. If ∇u = 0, then by definition, P ≤ 0, a contradiction. Thus, assume ∇u 6= 0, and consider the
differential operator

L(P ) := −|∇u|2∆P +
1

2
|∇P |2 − 2W ′(u)∇u · ∇P ≤ 0

by the weak maximum principle (see here), we get that the maximum of P on a neighborhood of 0 on which |∇u|
is bounded away from 0, is equal to the maximum on the boundary of said region. This implies that P is locally
constant about 0. Being locally constant and ∇u 6= 0 are both open conditions, so there exists a maximal connected
region on which P ≡ c and ∇u 6= 0. If ∇u 6= 0 everywhere, then P is constant everywhere, but this contradicts the
fact in (a), that inf |∇u| = 0, meaning that there exists a sequence of points for which

P (xi) = |∇u|(xi)2 − 2W (u(xi)) ↓

The first term on the right is tending to 0 and the second term is nonpositive, so inf P ≤ 0, a contradiction to c > 0.
If ∇u = 0 at some point, then there must exist a point x0, on the boundary of the region on which P ≡ c and
∇u 6= 0. By continuity, we’ll have that P = c at x0 and ∇u = 0, so that P (x0) = c = −2W (u) ≤ 0, a contradiction
to c > 0. Thus, we get that P ≤ 0 when the supremum is attained somewhere.

Might need to do a refined maximum principle using the fact that if |∇u| 6= 0, then we would have a uniformily
elliptic operator in a neighborhood of 0 and then we can get better bounds.

(d) The idea is that ui(x) = u(x− xi) is a bounded sequence in H1 of solutions to Allen-Cahn with ε = 1. Using
Schauder estimates and Arzela-Ascoli as in exercise 2.5, we get a subsequence of solutions which converge uniformily
on compact subsets of Rn. Really, we want to perform the subsequence construction on ∂xxui, ∂xyui, ∂yyui,
i.e. extract a subsequence for which the first one converges, and then a subsubsequence for which the second one
converges, and so on. Then repeat this for ∂xui, ∂yui, and {ui} for further subsequences. With this, we’ll get a
sequence which converges in C2 on compact sets and hence in C2

loc, to some ũ

From here, we want to make a limiting argument as follows: define P̃ = |∇ũ|2 − 2W (u) so that supx∈Rn P̃ =

P̃ (0) > 0. From part c), this is a contradiction because P̃ is still a solution to Allen-Cahn, and so P ≤ 0 must have
been the case from the start.

(e) First I want to show that if P = 0 at a point, then P ≡ 0 everywhere. We have the same uniform elliptic
trick from the previous parts, assuming that |∇u| 6= 0 at all points of interest. Let’s start with P (x0) = 0. If
|∇u| = 0, then we have that

P (x0) = 0 = −2W (u)

I claim that |u| 6= 1, which means that −2W (u) < 0, a contradiction. To see this, apply Lemma 5.7 from the notes
to u and v = ±1, which shows that if u = ±1 at a point, then u ≡ ±1 everywhere, for which the statement doesn’t
apply but we don’t want to constant case anyway.

With this, we see that |∇u| must be non-zero when P = 0, and so P will be locally 0 about x0 by the maximum
principle. This argument shows that being 0 is an open condition, but it’s also a closed condition, so P ≡ 0
everywhere.

With this, we define
ϕ = H−1(u) s.t. u = H(ϕ)
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we compute that

∇u = H′(ϕ)∇ϕ =
1√
2

(1−H2)∇ϕ

|∇u|2 = 2W (u) ⇐⇒ 1

2
(1−H(ϕ)2)2|∇ϕ|2 =

2

4
(1−H(ϕ)2)2 =⇒ |∇ϕ|2 = 1

because 1−H(ϕ) 6= 0 for any value of ϕ. From this and the fact that ϕ is smooth, we can conclude that ϕ must be
linear. See here, which I don’t totally understand. Another thing to note is that ∆u = u(u2 − 1) will tell us that
∆ϕ = 0, which is nice information, though superfluous. A better way to do this is note that ∆u = 0 tells us that this
is a harmonic function and in particular ∆∂iu = 0, and ||∂iu|| ≤ 1, so each of the derivatives are bounded harmonic
functions

(f) Yes this is true, and is evident if we rewrite

ER = R1−n · f(R) =⇒ ER
dR

= (1− n)R−nf(R) +R1−nf ′(R)

where

f ′(R) = lim
h→0

1

h

ˆ R+th

r=R

(
1

2
|∇u|2 +W (u)

)
=

ˆ
∂BR(0)

(
1

2
|∇u|2 +W (u)

)
We can then rewrite

R1−nf ′(R) = R−n
ˆ
∂BR(0)

(
1

2
|∇u|2 +W (u)

)
〈x, ν〉dµ

because 〈x, ν〉 = R. Maybe this is the green formula for integration by parts?
We write ˆ

∂BR

1

2
|∇u|2〈x, ν〉 =

ˆ
BR

1

2
|∇u|2n+ 〈(D2u)(∇u), x〉

ˆ
∂BR

W (u)〈x, ν〉 =

ˆ
BR

W ′(u)〈∇u, x〉+W (u)n

having considered ϕ = 1
2 ||x||

2. Note that
ˆ
∂BR

(∂νu)2 = R

ˆ
∂BR

〈∇u, x〉(∇u · ν) = R

ˆ
∆u〈∇u, x〉+ 〈(D2u)(∇u), x〉+ |∇|2

having written ψ = 〈∇u, x〉 and ϕ = u. With this, we get that

(1− n)R−1ER +R−n
ˆ
∂BR

[
1

2
|∇u|2 +W (u)]〈x, ν〉

= (1− n)R−n
ˆ
BR

1

2
|∇u|2 +W (u) +R−n

ˆ
BR

W ′(u)〈∇u, x〉+ n(
1

2
|∇u|2 +W (u)) + 〈(D2u)(∇u), x〉

=

ˆ
BR

1

2
|∇u|2 +W (u) +R1−n

ˆ
∂BR

(∂νu)2 −
ˆ
|∇u|2 = −2

ˆ
BR

P +

ˆ
(∂νu)2

which is what I think we wanted

(g) Yes, I can at least do this part. For the limits, we replace the balls with the squares of side length 2R and√
2R and show that the limits are the same. We compute

FR := R1−n
ˆ
SR

1

2
|∇u|2 +W (u) = R1−n

ˆ
SR

2W (u) =

ˆ R

−R
2W (u)dx = 4

ˆ R

−R
W (u)

having used that |∇u|2 = 2W (u). Now we write

ˆ R

−R
W (u) =

ˆ R

−R
(1−tanh(x/

√
2)2)2 =

√
2

ˆ R/
√

2

−R/
√

2

(1−tanh(x)2)2dx =
√

2

ˆ R/
√

2

−R

64e4x

(e2x + 1)4
dx = 64

√
2

ˆ b

a

(u− 1)

u4
du

where b = e
√

2R + 1 and a = e−
√

2R + 1. We have

ˆ b

a

(u− 1)

u4
du =

2− 3b

6b3
− 2− 3a

6a3
=
−1− 3e

√
2R

6(e
√

2R + 1)3
− −1− 3e−

√
2R

6(e−
√

2R + 1)3
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as R → ∞ the first term dies off, and the second term persists, and we get 1/6. As R → 0, both terms contribute,
and we get 0. Note that if we replaced R by R/

√
2 in our bounds of integration, then these limiting values would be

the same. Thus, we can conclude that

lim
R→∞

ER = lim
R→∞

ER =
32
√

2

3

in the limit that R→ 0
lim
R→0

ER = lim
R→0

ER = 0

Not sure what the monotoncity formula is? Ask otis but also see here. The statement is something like

area(Σ ∩Br)
rn

is increasing as r → 0 for Σn ⊆ Rn+k.

Extra reading on why monotoncity formulas are useful: here. The idea is that a monotonicity formula prevents
the energy from accumulating in small regions. More philosophically, monotonicity allows us transfer information
about energy accumulation at zoomed in scales (for example when zooming in). (h) We calculate

∆P = 2ε[|D2u|2 + Ricg(∇u,∇u)− ε−4W ′(u)2]

1

2
|∇P |2 = 2[ε2|D2u · ∇u|2 − 2W ′(u)(D2u · ∇u) · ∇u+ ε−2W ′(u)2|∇u|2]

W ′(u)∇u · ∇P = 2[εW ′(u)(D2u · ∇u) · ∇u− ε−1W ′(u)2|∇u|2]

so a candidate for a good inequality would be

A−B − C := ∆P |∇u|2 − ε−1

(
1

2
|∇P |2

)
− ε−2(2W ′(u)∇u · ∇P )

= 2ε[|D2u|2|∇u|2 − |D2u · ∇u|2 + Ricg(∇u,∇u)|∇u|2] ≥ 2εRicg(∇u,∇u)|∇u|2

(i) If Ricg ≥ 0 then the idea is to mimic the proof in parts (b) through (d). We already have an analogous inequality
for (b), namely

∆P |∇u|2 ≥ ε−1

(
1

2
|∇P |2

)
+ ε−2(2W ′(u)∇u · ∇P )

If the supremum is positive and obtained somewhere in Rn, WLOG at x = 0, then ∆P = 0 and ∇P = ~0 at those
points. If ∇u = 0 at that point, then P (0) = −2ε−1W (u) ≤ 0, a contradiction. If ∇u 6= 0, then we can run the same
argument of the maximum principle with

L(P ) = ∆P |∇u|2 − ε−1

(
1

2
|∇P |2

)
− ε−2(2W ′(u)∇u · ∇P )

so that the leading order term is elliptic in some neighborhood where |∇u| is bounded away from 0. For fixed ε, the
same argument in (d) works as well.

1.24 Problem 6

(a) So the notation ∇u is a little mysterious when u is complex valued, but if u(x) = a(x) + ib(x), then I’ll write

∇u(x) = ∇a(x) + i∇b(x)

and so

Eε(u+ tϕ) =

ˆ
1

2
(|∇u|2 + t∇u · ∇ϕ+ t∇u · ∇ϕ) + t2|∇ϕ|2) +

1

2ε2
(1− |u|2 − t(uϕ+ uϕ)− t2|ϕ|2)2

the derivative at t = 0, is then

ˆ
1

2
(∇u · ∇ϕ+∇u · ∇ϕ)− 1

ε2
(1− |u|2)(uϕ+ uϕ) =

ˆ
(
−1

2
∆u− 1

ε2
(1− |u|2)u)ϕ+ (

−1

2
∆u− 1

ε2
(1− |u|2)u)ϕ = 0
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having used integration by parts. If we choose ϕ real, then these two terms add, and we get

∆Re(u) =
2

ε2
Re(u)(1− |u|2)

And if ϕ is chosen to be purely imaginary, then we get the same statement for Im(u), so a necessary condition is
that

∆u = ∆Re(u) + i∆Im(u) = 2ε−2u(1− |u|2)

which is the analogous PDE for Allen Cahn. Moreover this is clearly sufficient if we look at the previous integral.

(b) Not sure. I want to do log-cutoff again because we’re in two dimensions, but getting − log(ε) is hard. I think
one idea is to have u ≡ 1 for r < 1− f(ε) and then twist u from 1 to eiθ via some homotopy like construction using
a partition of unity. I tried both a linear and log cut off and wasn’t able to get it to work. Otis doesn’t know the
construction so I’m just going to leave this

(c) This is the same argument as in Evans chapter 8, i.e. theorem 2 on p. 470. The only thing needed to show is
that

L(p, z, x) ≥ α|p|q − β

for some α > 0 and 1 < q <∞, where

L(p, z, x) =
1

2
|p|2 +

1

2ε

2

(1− |z|2)2 ≥ 1

2
|p|2

so this holds for q = 2, α = 1
2 , and hence a minimizer exists.

(d) Need to balance a.e. pointwise convergence vs. L1 convergence vs. convergence in measure... Can I construct a
subsequence which converges to a function? Might need a finite energy bound, which doesn’t make sense.

I need to use the fact that {uε} represent a sequence of minimizers. I think the idea is that for ε very small, if
||uε(x)| − 1| > δ, then this condition must hold on some neighborhood and so bumping the function closer to ±1
would decrease the potential term at a finite cost of the |∇u|2 term. The problem is we want a uniform value for δ and
a uniform bound from below on the size of the neighborhood of x, else the decrease in the potential function may not
be comparable to the increase in the |∇u|2 integral. So it should be some geometric measure theory decomposition
where I let S be the set of points where |uε| 6→ 1, and then decompose it as

S = ∪k{x ∈ S | ∃{εj,x} s.t.
∣∣∣|uεj,x(x)| − 1

∣∣∣ > 1/k}

but I’m concerned about this. So Otis told me that actually we only care about pointwise convergence a.e. up to a
subsequence. The way we get this is by noting that we get L1 convergence because

ˆ
(1− |uε|2)2 ≤ ε2Eε(uε) ≤ ε2α(1/ε) + ε2C

As ε→ 0, this bound tends to 0, and so by some theorem this has a subsequence which converges almost everywhere.
By the value of the integral, we get that this subsequence converges to ±1 a.e.

(e) Suppose αε did not tend to infinity, i.e. there exist a subsequence of εj → 0 with αεj < C for C uniform
in j. This gives a uniform bound on the H1 norm of this sequence of functions, and so we can extract a subsequence
which converges weakly in H1 and strongly in L2 See exercise 4.4. This limiting function u, will have bounded H1

norm, be equal to 1 a.e. and satisfy u(x)
∣∣∣
∂B1

= x, a contradiction to the fact.

2 Problems to look into

2.1 Minimizers as a function of ε

The idea is to write
uε(x) = u(ε, x)
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and then see if we can glean any information from this double parameterization. In particular, I think one can show
that

∂εu(ε, x)2 ≤ 0

i.e. the absolute value increases at any fixed point as ε→ 0
Here are the computations I have

v(ε, x) := u(ε, εx)

∂εv = (∂0u)(ε, εx) +
∑
j=1

ε(∂iu)(ε, εx)

∂2
ε v = (∂2

εu)(ε, εx) + 2ε

n∑
j=1

(∂j∂0u)(ε, εx) +

n∑
i=1

(∂iu)(ε, εx) + ε2
n∑

k,`=1

(∂k∂`u)(ε, εx)

(∂i∂εv) = ε(∂i∂0u)(ε, εx) + ε2
n∑
j=1

(∂i∂ju)(ε, εx)

∂2
i v = ε2(∂2

i u)(ε, εx)

In retrospect, I don’t think defining this function v(ε, x) is useful. The whole point of defining a v function is
to get rid of ε dependency, so it’s best to just investigate u on it’s own. These look somewhat interesting, though
dubious in quality

1. Paper on parameter dependency for parameters

2. Continuation on the above

3. Stack exchange post

After asking Otis about this, he doesn’t think it’s plausible and there are some example of H(ε−1〈a, x−x0〉+c(ε))
which he thinks would contradict a monotonicity property. It seems like the best way to do things is get monotonicity
up to a subsequence.

3 Transformed Allen-Cahn

Otis says to consider
ϕ = H−1(u)

for ε = 1. There’s some interesting things that end up happening with this because H is a nice function

4 Pigati-Stern

Investigate solutions of abelian higgs renormalized to ε = 1 so that we can do a local argument and take a solution
on a chart to a solution on Rn. Would have to figure out how to renormalize in the first place and then see what
could be extrapolated from global solutions

4.1 Set up

Recall the set up is as follows: M is a closed, oriented riemannin manifold with a hermitian structure 〈·, ·〉, which
may be denoted as g. We’re investigating a complex line bundle

L

M

i.e. the fiber is C. The equations we’re interested in are the following

∇∗∇u =
1

2ε2
(1− |u|2)u

ε2d∗ω = 〈∇u, iu〉
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In the first equation, we have that ∇∗ is defined via the following equation: for s ∈ Γ(L) (i.e Γ(L) = C∞(M,L)) and
V ∈ TM , we have

∇∗V s+∇V s = −div(v)s

where
div(V ) = trace(∇v) =

∑
i

〈∇eiv, fi〉

where {ei} and {fi} are dual bases under the inner product. The symbol ∇∗∇ :=
∑
i∇∗i∇i is the Bochner laplacian

and is required to be taken with respect to an orthonormal basis - I’m now abbreviating ∇i := ∇ei for some specified
basis {ei}. Choose {ei} to be geodesic normal coordinates (GNC), such that ∇iej = 0. See here and here for
questions of existence (These definitions require a complex structure J it seems. Do we get this for free if we have
〈·, ·〉 and g? Both of which we’re given, but I’m unsure if the scope is the same as the paper). In this choice of basis,
we have the particular nice identity

div(ei)
∣∣∣
x

= 0 =⇒ ∇∗i
∣∣∣
x

= −∇i
∣∣∣
x

at our distinguished point. Thus

∇∗∇u = −
∑
i

∇i∇i(ukek) = −
∑
i

∇i
(
ei(uk)ek + uk∇iek

)
= −

∑
i

∇i(ei(uk)ek) = −
∑
i

[ei(ei(uk))]ek

The definition of a Bochner-laplacian is independent of the orthonormal frame we choose. Actually this last line is
not true because ∇i∇iek may not vanish! I don’t end up using this later, so it’s okay.

Overall, there are three things we can change: the section/function u, the connection ∇, and the metric/hermitian
inner product 〈·, ·〉/g

4.2 Working it out

Suppose we have a neighborhood V ⊆M and on the manifold and a chart (exp, U) such that U ⊆ Rn and exp : U → V
is a diffeomorphism for exp the exponential map in geodesic normal coordinates. Suppose 0 ∈ U and choose a
BK(0) ⊆ U . Define

f = exp : BK(0)→ V

Now consider f∗∇ = ∇̃ for ∇ the restriction of our connection to V . Then we have that for X a vector field on
BK(0) the following

∇̃X ũ = f∗(∇df(X)u)

(see here) where we think of ũ as a section of f∗L
∣∣∣
V

∼= U ×C, i.e in the chart of sufficiently small size, the pullback

of the bundle is trivial. This allows us to work in local coordinates.

Dropping the ∼’s, we can also consider

fε = expε : BK(0)→ V s.t. fε(x) = expε(x) = exp(εx)

ũε = f∗ε u = u(exp(εx))

Working in BK(0) ⊆ Rn for simplicity, we ask what the connection of potential of f∗ε∇ = ε∇ is. Through the defining
property of pullback connection, one can shown that in local coordinates

ε∇
∣∣∣
x

= d+ εA
∣∣∣
εx

This is the right thing needed to show that

ε∇iε∇iuε
?
= (1− |uε|2)uε

we calculate as follows

ε∇iuε
∣∣∣
x

= duε(e
i) + εA

∣∣∣
εx

(ei)uε = ε · ei(u)(εx) + εA
∣∣∣
εx

(ei)uε(x)

ε∇iε∇iuε
∣∣∣
x

= d
(
ε · ei(u)(εx) + εA

∣∣∣
εx

(ei)uε(x)
)

(ei) + εA
∣∣∣
εx

(ei)
(
εei(u)(εx) + εA

∣∣∣
εx

(ei)uε(x)
)

= ε2(∇i∇iu)(εx)
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the scaling is clear in the second term, and this is also clear in the first term if we write

A(ei)(x) = ai(x)

Here, we’ve specified a frame on BK(0). A is usually a matrix in coordinates, taking in a tangent vector and yield-
ing an endomorphism of the section, but here our section is just a complex valued function, so we can think of
A ∈ Hom(V,C), in which case it makes sense to define ai(x) with respect to some basis. Important: here, we’re
using {ei} as an orthonormal basis to calculate the bochner laplacian with both in the BK(0) picture and the pulled
back picture (i.e. εBK(0)). This indicates that we do not want to rescale the metric. Compare this to a natural

rescaling of g → ε−2g accomodate {ei} → {dfεei} = {εei
∣∣∣
εx
}. However, this is what happens in exercise 5.1, so I

think it’s reasonable

An alternative way to do this is just use the property of pullback connections twice

ε∇eiuε = (f∗ε∇)ei(f
∗
ε u) = f∗ε (∇dfεeiu) = f∗ε (∇εeiu) = εf∗ε (∇eiu)

If we do this again, we get another factor of ε. To iterate again, we’re using {ei} as a preferred orthonormal frame
in both the standard and pulled back setting. Note that dfε both scales ei by ε and also changes it’s base point to
lie in εBK(0), which is where the computations are happening even though u is defined on more than just εBK(0).
I’m not sure if this is analogous to Exercise 5.1.

For the second equation, we want
d∗ωε = gε(

ε∇uε, iuε)

where ωε is the multiplicative factor from the curvature tensor after the pullback by fε. I calculate this as follows

vε(x) = v(εx)

[ε∇X , ε∇Y ] vε = ε2f∗ε ([∇X ,∇Y ]v)
ε∇[X,Y ]vε = f∗ε (∇dfε[X,Y ]v) = ε2f∗ε (∇[X,Y ]v)

The reason I write the first line is that any section on BK(0) can be written as the pull back of a section on εBK(0)
I’m not sure if this is the right class of functions to be looking at, because while I certainly make this rescaled version
for u, I want to record general information about Fε∇ on arbitrary sections/C-valued functions. The second line
follows through essentially the same reasoning as with the Bochner-laplacian in the first part. The third line follows
from

dfε[X,Y ] = [dfεX, dfεY ] = [εX, εY ] = ε2[X,Y ]

however, if we just think of dfε as εId, then we should only get one factor of ε? So for one, I need to be more careful
about where these vectors are being evaluated and it should be at εx. I wasn’t vareful about this before with the
previous computation or the bochner-laplacian computation, but I don’t think the point of evaluation comes into
play in the prior work. It is important to think about with what basis are X and Y being expressed, i.e. in some

standard basis {ei} before the pushforward or in another basis, {dfεei} = {εei
∣∣∣
ε·()
}, i.e. the pushforward changes the

point of evaluation and scales by ε. This should resolves things because when I write

dfε[X,Y ](x) = ε[X,Y ](εx)

then here I’m expressing [X,Y ] with respect to the {εei} basis, i.e. the pushforward basis. However, when I write

[dfεX, dfεY ] = ε2[X,Y ]

I’m expressing this with respect to the original basis, hence the extra factor of ε

With this, we see that ωε

∣∣∣
x

= ε2ω
∣∣∣
εx

, which can be thought of as f∗ε (ω) because

f∗ε (ω)(Y, Z)
∣∣∣
x

= ω
∣∣∣
εx

(dfεX, dfεY ) = ε2 (ω(X,Y ))
∣∣∣
εx

31



again, where (dfε(X))(x) = εX(εx). Now we compute

εd∗ωε(e
k) = −

∑
j

(ε∇jωε)(ej , ek) = −
∑
j

f∗ε (∇dfεejω)(ej , ek)

= −ε
∑
j

(∇ejω)
∣∣∣
εx

(dfεe
j , dfεe

k) = −ε3
∑
j

(∇ejω)(ej , ek)
∣∣∣
εx

= ε3f∗ε ((d∗ω)(ek))(x) = εf∗ε (g(∇eku, iu)) = εf∗ε (g(∇εeku, iu))

=
∑
j,k

gj,k(εx) (∇εeku) (εx)j(iu)(εx)k =
∑
j,k

gj,k(εx)(f∗ε (∇dfεeku))(x)j(iuε)(x)k

=
∑
j,k

gj,k(εx)(ε∇ekuε))(x)j(iuε)(x)k = ε〈ε∇ekuε, iuε〉

here ε〈·, ·〉 = εg = g
∣∣∣
εx

(·, ·) is notated for consistency. The point is that this is what we want, and so a rescaled

version of the ε-dependent Yang-Mills-Higgs energy works out.

4.2.1 Previous train of thought

The point is that we don’t want to rescale the connection, else the following property:

∇̃∗i ∇̃iũ = −∇̃i∇̃iũ = −f∗(∇i∇iu)

would mean that there’s no rescaling resulting from differentiation (here ũ = f∗u and one can see that if we replaced
∇̃ with ∇̃ε and ũ with ũε then all of the differentiation would happen normally). Here, we use i to denote covariant
differentiation with respect to some basis {ẽi} on BK(0) when paired with ∇̃, as well as {ei} = {df(ẽi)} when
paired with ∇ on V . So while this identity is true, things would be different if we used ε∇̃ and ũε, because then
{ei} = {dfεẽi} but dfε = εId, so the new basis is not orthonormal unless we rescale the connection by a factor of
ε−2. This factor of ε−1 from the metric could be useful! I also think that the metric is one extra variable that I
haven’t messed with, which could help accommodate the scaling. Actually, to any extraneous factor of ε we get from
computations of ∇uε, we should be able to make up for these factors by messing with the metric.

We now calculate

∇̃iũε(x) = ∇̃i(ũ(εx)) = f∗(∇iu)(εx) · ε
∇̃i∇̃iũε(x) = f∗(∇i∇iu)(εx)ε2 = f∗(ε−2(1− |u|2)u)(εx)ε2 = (1− |ũε|2)ũε

because we’re working in charts so that our bundles are trivial, we can pass the multiplicative factors of ε through
the pullback.

For the other equation, we again note that the connection is pulled back but note rescaled. However, the scaling
factors are kind of poor for this situation, because we have

〈∇̃ũε, iũε〉 = ε〈(∇̃ũ)(εx), iũ(εx)〉 = ε3d∗ω
∣∣∣
εx

even this last equality doesn’t really make sense, as we don’t know where to evaluate the form at, and hence, from
which tangent space we should input vectors. Note that in the above, we may also want to pull back the hermitian
inner product, though this is confusing end previous train of thought

4.3 Potentially useful links

1. pushforward and lie bracket

2. pull back connection

3. ref on differentials/pushforwards

4. Hermitian Structures - good to know when rescaling the hermitian inner product

32

https://math.stackexchange.com/questions/365535/pushforward-of-lie-bracket
https://mathoverflow.net/questions/49272/pull-back-connection
https://math.stackexchange.com/questions/2410519/push-forward-or-differential-is-there-a-link-with-the-differential-of-a-functi
https://encyclopediaofmath.org/wiki/Hermitian_structure


4.4 Easy Extensions

Going through Pigati-Stern, I note the following equalities which rely on some global bound, i.e. closedness of the
manifold

1. (3.7) - though this can be salvaged if we have some uniform bound on the Weitzenbock curavture (notated as
R2)

2. (4.10) - for its reliance on (3.7)

3. P. 12 - Hessian Comparison theorem on bottom of the page. Don’t know exactly what this is but I found the
following links on stackexchange which might indicate salvagability because the sectional curvature is trivial in
euclidean space

4. Anything relying on (4.2)

Something which only relies on local arguments

5 Radially Symmetric solutions to Allen-Cahn

Otis once said that the laplacian has no directional preference, which is true. Neither does the allen-cahn equation
on Rn, so maybe it’s good to look for solutions this way

Didn’t get anything from the PDE (i.e. transforming the Laplacian), but note that if we let A = H1
0 (B1) then

the minimizer must be single signed because of the same reasoning as in exercise 2.5 part a). Now via the result here,
which is a standard result in PDE about radially symmetric functions and also Evan’s chapter 9 p. 556, we get that
the solution to Allen-Cahn with Dirichlet conditions on the ball is radially symmetric. Nice. I think analogously to
exercise 2.5, we can construct a radial solution on R2 - worried that the limiting function would be ≡ 1, as this is
compatible with the energy growth

Something that would be interesting to show is that the only solution to Allen-Cahn on Rn that is radially
symmetric is just constant functions, so in particular 0, ±1. Would have to show that the operator, which is
degenerate elliptic operator, has zero dimensional kernel

Also wondering if the mellin transformation could be good for this. Not sure if u(u2 − 1) has a nice mellin
transformation, but the laplacian sure does
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