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10/4: Yuval’s talk on “Expander Graphs & Their Applications”

1. Simple Random walk on a graph, G = (V,E) with |V | = n. Transition matrix M ∈Mn,n s.t.

M = (mij) mij =

{
1
dj

vertex i adjacent to vertex j

0 else

2. If p a prob vector, p ∈ Rn s.t. pi ≥ 0 and
∑
i pi = 1, then Mp is the prob vector after one step of the random

walk, if we started with p. This is because

(Mp)i =
∑
j

mijpg =
∑
j∼i

1

dj
pj

where j ∼ i denotes vertex j adjacent to vertex i.

3. Let ~d = (di) be the vector of degrees, i.e. vector whose ith coordinate is the degree of vertex i. Then

(Md)i =
∑
j∼i

1

dj
dj = di

thus d is an eigenvector of M with eigenvalue equal to 1

4. ~d normalized will be the stationary distribution of this walk, i.e. 1∑
i di

~d

5. From now on, G is d-regular (i.e. some unknown number of vertices n, but each vertex has degree d), so:

(a) the stationary distribution is uniform, i.e. u = (1/n, . . . , 1/n)

(b) M is symmetric, M = 1
dA where A is the adjacency matrix

(c) Let eigenvalues of A be d = λ1, . . . , λn

6. Facts:

(a) λ1 = λ2 ⇐⇒ G disconnected

(b) λn = −λ1 ⇐⇒ G bipartite

(c) Note that in order for our SRW (simple random walk) to converge to a stationary distribution, we should
have that G is both connected and not bipartite

7. Question: Starting with some distribution p, how does M tp→ u? Here, u is the stationary distribution and
t ∈ Z+.

8. Let λ = max{|λ2|, |λn|} and α = λ/d

9. Theorem: : For any distribution p, ||M tp−u|| ≤ αt. Note: in the disconnected and bipartite case, this bound
is 1
Proof: : Note that

〈p− u, u〉 =
1

n

∑
i

(pi − u) =
1

n

(∑
i

pi − 1

)
= 0
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Note too that Mu = u, second largest e-value of M is α by correspondence between M and A, the adjacency
matrix. Now

||M tp− u||2 = ||M t(p− u)||2 ≤ αt||p− u||2 ≤ αt

||p− u||22 = 〈p, p− u〉 − 〈u, p− u〉

=
∑

pi(pi − 1/n) ≤
∑
i

pi = 1

Note that we showed that p − u ⊥ u, which is the eigenvector with eigenvalue λ1, so we can bound by the
second largest eigenvalue. Also in the above we use |pi − 1/n| ≤ 1.

10. Corollary: ||M tp− u||1 ≤
√
nαt

Proof: Cauchy Schwarz: ∀v, ||v||1 ≤
√
n||v||2.

11. Now note

t ≥
1
2 log n

log(1/α)
+ C =⇒ ||M tp− u||1 ≤ e−C

12. We want α ≤ 1 − ε, this is called the spectral gap. A graph is called an (n, d, ε)-spectral EXPANDER if n
vertices, d-regular, and α ≤ 1− ε ⇐⇒ λ ≤ (1− ε)d for λ = max{|λ2|, |λn|} as before

13. Question: How small can λ be in terms of d. Answer: G = Kn, which is (n−1)-regular, implies that d = n−1
all other eigenvalues are −1, so λ = 1

14. In light of the above, we want to restrict to the case when d = o(n) or d = O(1), i.e. degree is growing slowly
w.r.t. the number of vertices

15. Theorem: If d = o(n), then λ >
√
d(1− o(1))

Proof: : Consider tr(A2) =
∑
i λ

2
i ≤ d2 +λ2(n− 1). But also tr(A2) = dn because the (i, i)th entry is d which

can be seen by doing the matrix multiplication out. Thus

dn ≤ d2 + λ2(n− 1) =⇒ λ2 ≥ dn− d
n− 1

=⇒ λ ≥
√
d(1− o(1))

16. Theorem: (Alon - Boppana) λ ≥ 2
√
d− 1(1− o(1)) for d constant

17. Question: Do Expanders even exist??? yeS

18. How people came up with expanders: Random constructions, i.e. if G is a random d-regular graph on n vertices,
want to understand λ(G).

19. Theorem: (Broder-Shamir) λ(G) = O(d3/4) almost surely! (a.a.s) - I don’t know what this means. Could
apply in the context of random matrix theory/graphs

20. Theorem: (Friedman) ∀ε > 0, Pr[λ(G) > 2
√
d− 1 + ε] = o(1) when d ≥ 3

21. Explicit constructions: a graph with λ = 2
√
d− 1 is called a Ramanujan graph. See Lubotzky-Philips-Sarnak:

Ramanujan graphs exist for all d = p + 1 where p ≡ 1 mod 4 and p is a prime. The graph is a Cayley graph
of PSL2(Fq), other q, infinitely many n

22. Conjecture: 275 of graphs are Ramanujan for all d

23. Let V (G) = Fp and x ∼ x+ 1 and x ∼ x− 1 and x ∼ x−1 when x 6= 0. Turns out this is an expander, but this
requires hard number theory

24. Lemma: (Expander Mixing Lemma): ∀S, T ⊆ V , we have∣∣∣E(S, T )− d

n
|S||T |

∣∣∣ ≤ λ√|S| |T |
where E(S, T ) is the number of edges between S and T , when S ∩ T = ∅ and is some modification when they
are not disjoint. This is proved doing similar tricks as before with

E(S, T ) = 1SA1
T
T
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25. A calculation ∣∣∣E(S, T )

dn
− |S||T |

n2

∣∣∣ ≤ λ

dn

√
|S||T | ≤ λ

d
= α

This of this as picking x, y random vertices of V , then Pr[x ∈ S, y ∈ T ] relates to the above. Pick x at random,
y ∼ x another random choice

26. Fix a “bad” set, B ⊆ V , |B| = βn. Pick t + 1 vertices, we want one of them to be outside of B. If I choose
independently, Pr[failure] = βt+1

27. Theorem: (Ajtai - Komlos - Szemeredi) If instead I pick X0 random, X1, . . . , Xt to be a SRW, then

Pr[Xi ∈ B ∀i] ≤ (β + α)t

28. Theorem: (Expander Chernoff bound) (Gillman) Let f : V → [0, 1], let µ = Ef . SRW X0, . . . , Xt starting at
random vertex. Then

∀ε > 0 Pr[|1
t

∑
i

f(Xi)− µ| > ε] ≤ e−cε
2t(1−α)

10/11: Mark Selke’s talk on Cheeger Inequalities

1. Mark Selke is giving a talk about Cheeger stuff. We’ll go over

(a) Cheeger’s inequality

(b) Multiway cheeger

(c) Theorem: Let T be a self-adjoint ergodic Markov Operator with

||T ||L1→Lp <∞ ∀p > 2, then spec(T ) ⊆ {1} t [−1, 1− ε]

2. Let G be a d-reguler graph, n vertices V

3. Normalized Laplacian:

LG = I − A

d
, LG(f)(v) = f(v)− 1

d

∑
w∼v

f(w)

where w ∼ v means the two vertices are adjacent

4. LG has eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ 2

5. Spectral gap aims to measure λ2 − λ1

6. If the spectral gap is big (i.e. λ2 > 0 and large, maybe Ω(1), i.e. is greater than some constant c ≥ 0), then
this corresponds to fast mixing of random walks

7. This connects with things called “sparse bottleneck” which is when we only have a few edges between two
components of the graph.

8. The idea is that no sparse bottlenecks is equivalent to a large spectral gap

9. Bottleneck: S ⊆ V has a bottleneck ratio of

φ(S) =
E(S, Sc)

d ·min(|S|, |S|c)

Note that
φ(G) = min

S⊆V
φ(S)

10. Theorem: (Cheeger)
λ2
2
≤ φ(G) ≤

√
2λ2

11. When is either side sharp? Consider Kn, the complete graph of size n, for which λ2 = 1 and φ(G) = 1/2

3



12. For a cycle graph Cn, we have λ2 ∼ 1
n2 and φ ∼ 1

n so this shows us Cheeger is tight (up to a constant, which I
guess doesn’t really matter?)

13. For the hypercube {0, 1}n we have λ2 ∼ 1
n and φ = 1

n

14. Rayleigh Quotient

f : V → R, R(f) =

∑
v∼w(f(v)− f(w))2

d ·
∑
v f(v)2

think of the numerator as 〈Lf, f〉 for the laplacian (its actually LG but there’s some tricky grouping to get this
to work out). If f has an eigendecomposition, then

f =
∑
i

αifi R(f) =

∑
i λiα

2
i∑

i α
2
i

for {fi} the eigenfunctions, which are pairwise orthogonal. Another way to think about this is

〈Lf, f〉 =
∑
v∼w

(f(v)− f(w))2 = 〈∇f,∇f〉

15. Suppose that α1 = 0, then R(f) ≥ λ2

16. Part 1: λ2/2 ≤ φ(G)

(a) Say S, φ(S) = E(S,Sc)
d·min(|S|,|Sc|) = φ(G)

(b) Then define

gS(V ) =

{
|S|
n v 6∈ S
|S|−n
n v ∈ S

Note that gs(V ) has mean zero. Moreover

λ2 ≤ R(gs) =
E(S, Sc)

d
(
|S|
n

)2
(n− |S|) +

(
n−|S|
n

)2
|S|

=
E(S, Sc)

d |S||S|
c

n

∼= φ(G)

Note that up to a factor of two, we have

d
|S||S|c

n
∼ dmin(|S|, |S|c)

17. Part 2: φ(G) ≤
√

2λ2

(a) Start with f2 such that R(f2) = λ2 because f2 is the second eigenfunction of f

(b) Want to get a set S with φ(S) small

(c) Natural approach: take α ∼ xdx, i.e. it is distributed according to xdx, let

Sα = {v | fi(v) > α}

Then for v, w ∈ V , we have that

P(v,w are on opposite sides ) = |f(v)2 − f(w)2|

where “opposite sides” means that one lies in Sα and the other in Scα

(d) Now replace f2 with either the positive or negative part, i.e.

g = (f2)+ or g = (f2)−

then R(g) ≤ 2λ2.
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(e) Now we ask what is the expected value of the number of edges between S and Sc, i.e.

E[E(Sα, S
c
α)] =

∑
v∼w
|g(v)2 − g(w)2|

We also have
E[|Sα|] ∼=

∑
v

g(v)2

(f) We have the following lemma: If E(A)/E(B) ≤ c, then P[A/B ≤ c] > 0, by looking at E[A− cB]

(g) Now going back, we have

E[E(Sα, S
c
α)] =

∑
v∼w
|g(v)2 − g(w)2| ≤

√∑
v∼w

(g(v)− g(w))2 ×
√∑
v∼w

(g(v) + g(w))2

via cauchy schwartz. Further note that∑
v∼w

(g(v) + g(w))2 ∼= d
∑
v

g(v)2

(h) The above yields

E[E(S, Sc)]

E[|Sα|]
<∼

√∑
v∼w(g(v)− g(w))2∑

v g(v)2
<∼
√
λ2

18. Higher Order Cheeger

(a) We have the following bound
λk
2
≤ pk(G) ≤ kO(1)

√
λk

we also have

pk(G) ≤
√
λ2k log k, pk(G) ≤ `O(1) λk√

λ`
∀` ≥ k

We have that
pk(G) = min

S1,...,Sk
partition

max
j≤k

φ(Sj)

19. Application: Clustering Data

(a) Form weighted similarity graph

(b) Map to Rk, i.e. v 7→ (f1(v), . . . , fk(v))

(c) Do some clustering

10/18: Jared Marx-Kuo’s talk on Hypercontractivity and Log-Sobolev
Inequalities

10/25: Mark Perlman’s talk entitled “Trailing ‘Trailing the Dovetail
shuffle to its lair’ to its lair”

1. Definition: TFAE definitions of a riffle shuffle

(a) Sequential:

i. Step 1: cut deck into 2 piles, choice of pile is distributed ∼ Bin(n, 1/2). So cutting the deck in half
in a binomial way

ii. Interleave them sequentially, #(pile 1) = A, #pile 2 = B, and P(next card falls from pile 1) =
A/(A+B)
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(b) Entropy: Each valid tuple (pile size, interleaving) (here, pile size refers to the size of pile 1, and there’s
only two piles in play) is equally likely

(c) Geometric: have n i.i.d. variables distributed uniformily on [0, 1]. Then we map X 7→ 2X mod 1

2. Remark The riffle shuffle procedure defines a markov chain on Sn

3. Our goal: study limm→∞ ||Qm − U ||TV for n fixed, where U is the uniform measure on Sn. Here Qm = Qmv0
where v0 is our initial vector and Qm is our markov chain raised to the mth power

4. We now prove equivalence of these definitions of shuffles:
Proof: (Sequential = Entropic)
1. Need to show same distribution on pile sizes, so the plan: show for entropy, pile size ∼ Bin(n, 1/2).

For a given pile size k, how many valid interleavings are there? This is a stars and bars argument, and it’s just(
n
k

)
which matches up with the binomial distribution.

2. Given a pile size, want same distribution on interleavings. The plan: in sequential, show interleavings are
equally likely

P(some interleaving | k) =
k!(n− k)!

n!

(maybe some other denominator, but there are definitely k! · (n− k)! choices to be made).

(Geometric = Others proof):
1. Pile size distribution: how many points will be > 1/2? This is Bin(n, 12 ) which is the same as the sequential
model so we’re good.

2. Interleavings have the same distribution given a pile size: We have [0, 1] and uniform rand variables in that
space. Any interleaving should be equally likely once we bring the variables who’s values are > 1/2 back to
[0, 1] (by doing 2x mod 1 operation).

5. Definition: /Theorem: TFAE definitions of an a-shuffle

(a) Sequential:

i. Step 1: Cut into a-piles. Distribute the shuffle multinomially, i.e. ∼Multi(n,
(
1
a ,

1
a , . . . ,

1
a

)
)

ii. Step 2: P(next card falls from pile i) = ki∑
j kj

(b) Entropy: every valid tuple ((k1, k2, . . . , ka), interleaving) is equally likely

(c) Geometric: X 7→ aX mod 1

6. Rule: applying an a-shuffle, then a b-shuffle is the same as applying an ab-shuffle (this follows by the definition
of a geometric shuffle, which is equivalent to all of the other ones)

7. So applying m 2-shuffles is equivalent to applying 2m shuffles! Neat!

8. Rising Sequences:

(a) How many times did I shuffle this deck?

9 1 5 6 10 2 11 7 3 13 12 14 4 15 8 16

twice! This is because we can find

[9] (1) {5} {6} [10] (2) [11] {7} (3) 13 [12] 14 (4) 15 {8} 16

4 rising sequences, and each shuffle yields two new rising sequences assuming the shuffle is non-trivial

(b) Definition: A rising sequence is a maximal increasing, sequential progression

(c) Remark Any π ∈ Sn can be decomposed (partitioned) into rising sequences
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(d) Theorem:

P(a-shuffle gives π with r rising sequences) =

(
a+ n− r

n

)
an

Proof: Given pile sizes, then there is at most 1 way to make π. So, we need a way to calculate

#{piles sizes: they can lead to π}

We require a ≥ r from the onset. If a = r, then there is only 1 such permutation. If a > r, then we need
to count the number of ways to refine r rising sequences into a piles

(e) FACT: r(π) = (number of rising sequences in π) is also a markov chain under shuffling.

9. Asymptotics

(a) Theorem: If n cards are shuffled m times, then if m = 3
2 log2 n+ θ, then

||Qm − U ||TV = 1− 2Φ

(
−2−θ

4
√

3

)
+)(n−1/4)

11/1: Kevin Yang’s talk on Random Matrix Theory

1. Wigner’s Matrix Ensemble

(a) We have H = (hij)
N
i,j=1, real symmetric

(b) {hij} is independent up to hij = hji

(c) E(hij) = 0 with Eh2ij ∼ 1
N and

sup
i,j≤N

E|hij |4+ε <∞

(d) We also have ∑
j

E|hij |2 = 1

(e) Ex: (GOE) for hij
iid∼ N(0, 1/N) with i 6= j and hii

iid∼ N(0, 2/N) for i = 1, . . . , N . Then FACT: GOE is
invariant under orthogonal conjugation

2. Wigner semicircle law

(a) We want to look at

ρsc(x)dx =
1

2π

√
(4− x2)+dx

(b) We want to look at the following measure

µN =
1

n

n∑
j=1

δλj

for λ1 ≤ · · · ≤ λN eigenvalues of H and δx = dirac mess at x

(c) Note: µN is a random probability measure on R
(d) Theorem: ˆ ∞

−∞
fdµN

N→∞→
ˆ ∞
−∞

f(x)ρsc(x)dx

Proof: Compute moments of LHS and they show that they converge to the moments of ρsc(x)dx, i.e.
take f(x) = xk for k ≥ 0 and show convergence. Via Weierstrass approximation, this will give us the
desired weak convergence, but we need some tightness, i.e. need to ensure that the eigenvalues are not
too big with high probability

3. Work by Dyson, Gaudin, Mehta
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(a) They explcitly computed the gap statistics, i.e. looking at the random variables N(λi − λj), for GOE
(Gaussian Orthogonal Ensembles)

(b) Others did the same for invariant ensembles

(c) Johansson in 2001: For H = H0 + aW for H0 random, a > 0, and W is a GOE, then the gap statistics
are equal to those of the GOE. Here all of the above matrices are complex hermitian

4. Dyson Brownian Motion

(a) Dyson Brownian Motion is a modified Brownian motion

(b) First realize that the real symmetric space is a real dimensional space, so we can do a brownian motion
on it

(c) Then we have

dH(T ) =
1√
N
dB(t)− 1

2
H(T )dT

(d) We define B(T ) = (Bij(T )) where Bij(T )
iid∼ Brownian motions for i 6= j (up to symmetric) and Bii(T )

iid∼
1√
2
Brownian Motions

(e) B(T ) is an evolving path in the space of real symmetric matrices, so the eigenvalues are evolving as well

(f) Proposition:

dλj(T ) =

√
2

N
dBj(T ) +

−λj
2

+
1

N

∑
` 6=j

1

λj − λ`

 dT

Proof: Perturbation theory from QM and Ito’s formula and some stochastic analysis.

(g) Dyson’s conjecture:

i. globally, the above relaxes on an O(1) time-scale

ii. The gap statistics converge on an O(N−1) time-scale

5. Bakery-Emory Theory

(a) For our set up, the generator is

L =
1

N
∆− v · ∇, vj =

xj
2
− 1

N

∑
` 6=j

1

xj − x`

(b) Lemma: vj = ∂jH and H = 1
2

∑N
j=1 x

2
j −

∑
i6=j log |xi − xj |

(c) What is the generator?
µ∞(dx) = e−NH/Z dx

(d) Fact: if f0 ≥ 0 and
´
f0
dµ∞ = 1, then ∂tft = Lft is the probability density w.r.t. µ∞ under the Dyson

Brownian Motion

(e) Definition:

H(T ) =

ˆ
f(T ) log f(T )dµ∞, D(T ) =

1

N

ˆ
|∇f(T )|2dµ∞

(f) Theorem: N∇2H ≥ Nk > 0 for k > 0

(g) Consequence: H(T ) ≤ ND(T ) and H(T ) ≤ e−k′TH(0) and D(T ) ≤ e−k′TD(0)

(h) This tells us that the eigenvalues can’t get too close to each other, so in the convergence of the (normalized)
eigenvalues to the semicircle, each eigenvalue stays in some small subsection of the semicircle
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11/8: Huy Pham’s talk on Clumpy and Dealer Shuffles

1. Given p ∈ (0, 1), generate a binary sequence B of length n following the markov chain(
p 1− p

1− p p

)
2. We split cards to 2 decks, the 0-deck has size equal to the number of 0’s in our binary string, and the 1-deck

has size equal to the number of 1’s in our string, B.

3. We go through B, if we see a 1, we drop the bottom card from the 1-deck, and if we see a 0 we drop the bottom
card from a 0-deck

4. If p = 1/2, then this is the standard riffle shuffle which Mark told us about

5. If p > 1/2, then we call this a clumpy shuffle

6. If p < 1/2, this is called the dealer’s shuffle because we’re more likely to alternate, which is not standard in the
riffle shuffle

7. Example: Take cards {1, 2, 3, 4, 5, 6} and B = 000110, then we have two decks

{1, 2, 3, 4}, {5, 6}

and our shuffle will be {1, 2, 3, 5, 6, 4}

8. Now let p ∈ (0, 1) be fixed

9. Call
πt = σtσt−1 · · ·σ1π1

such that σi is iid according to the shuffle alogirthm

10. define τmix = inf{t : ||πt − U ||TV ≤ 1
4} where U is the uniform measure

||P ||TV =
1

2

∑
π∈Sn

|P (π)|

is the total variation

11. Theorem:
τmix(p) ≤ Cp(log n)4

τmix(p) ≥ log n−O(1)

| log p|

12. Time reversal: If the shuffle πt+1 = σt+1πt, then the backward shuffle is defined by π̃t+1 = σ̃−1t+1π̃t. Note that
σ̃t+1 has the same distribution as σt+1

13. Proposition: ||πt+1 − U ||TV = ||π̃t+1 − U ||TV

14. Time reversal of p-riffle shuffle: generate a binary sequenceB according to Markov Chain, Mp =

(
p 1− p

1− p p

)
,

then draw all cards with a 0 in t he sequence our and place them at the bottom (in order). Draw all cards with
1 and place on top

15. Proof of lower bound on mixing time: Call (i, i+ 1) an adjacent pair, if π(i+ 1) = π(i) + 1. For each pairs of
cards (i, i+ 1), they will be adjacent if MCp did not change state, which happens with probability p. After t
steps, (i, i+ 1) remains an adjacent pair with probability pt.
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16. The number of adjacent pairs in πt is distribution Bin(n− 1, pt). Choose

t =
log n− C
| log p|

Hence

P (# of adjacent pairs ≤ eC

4C
) ≤ 1

8

We also know that for sufficiently large C, we get

PU (# of adjacent pairs ≤ eC

4C
) >

7

8

along with the facts that EU (# of adjacent pairs ) = (n− 1)/n and V arU (# of adjacent pairs ) < 2, then we
get

||πt − U ||TV ≥
3

4

17. Entropy, Collision and the upper bound

18. Definition: H(X) = −
∑
x∈supp(X) p(x) log p(x)

19. Definition: H(X | Y )(y) = H(X | Y = y)

20. We have H(X) ≤ log |supp(X)|

21. Proposition: The pinsker inequality says

||X − U ||TV ≤
√

1

2
(H(U)−H(X))

22. Definition: (Jensen-Shannon Divergence): For p, q ≥ 0,

d(p, q) =
1

2
p log p+

1

2
q log q − p+ q

2
log

p+ q

2

d(X,Y ) =
∑
s

d(P (x = s), P (y = s))

where (X + Y )/2 is a distribution where the probability that s appears is

P (x = s)

2
+
P (Y = s)

2

23. Note that d(X,Y ) ≥ 0 and d(X,Y ) ≤ log 2

24. This d function is also convex in the sense that

d(pX1 + (1− p)X2, Y ) ≤ pd(X1, Y ) + (1− p)d(X2, Y )

25. Lemma: X,Y RVs over S, g : S → T , then

d(g(X), g(Y )) ≤ d(X,Y )

26. Lemma: We have
d(X,Us) ≥

c

log |S|
(log |S| −H(x))

for some universal constant c

27. Collisions and the Monte Shuffle

28. Definition:

c(a, b) =

{
Id with probability 1

2

(a, b) with probability 1
2

where (a, b) is the permutation switching a and b
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29. Definition: πt is a Monte shuffle if

πt+1 = νc(a1, b1) · · · c(ak, bk)πt

where ν is a random variable, the {(ai, bi)} are all disjoint, each (ai, bi) can depend on πt, but conditional on
πt and ν, and the randomness of the collisions are independent.

30. Theorem: Let π be of the form of a Monte shuffle. Let T be a RV with values in [1, t].

31. For each card x, we let b(x) be the first card after time T for which there exists a c(i, j) such that πt1(x) = i
and πt1(y) = j and in the definition of πt+1, we have a c(i, j).

32. Let m(x) = b(x) if b(b(x)) = x. Otherwise let m(x) = x. Let Ai be such that P (m(i) = j) ≥ Ai
i for all j ≤ i.

Then let µ be a random permutation, independent of π, with

H(πtµ)−H(µ) ≥ C

log n

n∑
k=1

AkEk

where
Ek = log k − E

[
H(µ−1(k))(µ−1(k + 1))µ−1(n)

]
33. We apply this to the p-riffle shuffle. Start with a binary sequence B, at this point I stopped paying attention.

11/15: Andy Tsao’s talk on “Bounding Mixing Times via Coupling”

1. Definition: A coupling of 2 distributions (µ, ν) is a pair (X,Y ) defined on the same space such that X ∼ µ
and Y ∼ ν.

2. Proposition: We have

||µ− ν||TV = inf{P(X 6= Y ) : (X,Y ) is a coupling of µ, ν}

Proof: For A some event, then

µ(A)− ν(A) = P (X ∈ A)− P (Y ∈ A) ≤ P (X ∈ A, Y 6∈ A) ≤ P (X 6= Y )

this proves the left hand side is less than or equal to the right hand side. To get equality, we construct coupled
random variables: Flip a coin with probability heads of 1− ||µ− ν||TV and then we get two variables from this
somehow.

3. How does this extend to markov chains?

4. A coupling of Markov chains with transition matrix P is a process (Xt, Yt)
∞
t=0 such that (Xt)

∞
t=0, (Yt)

∞
t=0 are

both markov chains with transition matrix P .

5. From our proposition:
||P t(x, ·), P t(y, ·)||TV ≤ Px,y(τcouple > t)

where τcouple is the first time that our independent markov chains starting at x, y agree.

6. Now note
d(t) = sup

x
||P t(x, ·)− π||TV ≤ ||P t(x, ·)− P τ (y, ·)||TV

and then we define

tmix(ε) = min(d(t) < ε) ≤ max
x,y

Eτcouple
ε

7. Path coupling: why we care
We have a state space, X , a graph, (X , E) and

Φ(x, y) ≥ δ(x, y)

11



is a potential function which is greater than

δ(x, y) =

{
1 x, y are adjacent

0 not adjacent

where a path γ = (x0, x1, . . . , xr) where (xi−1, xi) adjacent and

ρ(x, y) = min{Σri=1Φ(xi−1, xi) : (x0, . . . , xr)is a path from x→ y}

8. For any pair of Random variables, X and Y , then P(X 6= Y ) = E1X 6=Y ≤ Eρ(X,Y ). If (X,Y ) is a coupling of
µ, ν then

||µ− ν||TV ≤ P(X 6= Y ) ≤ Eρ(x, y)

and
ρk(µ, ν) = inf{Eρ(X,Y ) : (X,Y ) is a coupling of µ, ν)}

9. Path coupling: Suppose that, for each edge (x, y) ∈ E, there exists a coupling (X1, Y1) of the distributions
P (x, ·) and P (y, ·) such that

Ex,yρK(X1, Y1) ≤ e−αρ(x, y)

Then for any measures, µ and ν, we have

ρk(µP, νP ) ≤ e−αρk(µ, ν)

Consequently

tmix(ε) ≤ d log(Dε−1)

α
e

where D is the diameter of G, defined to be

D = max
x,y

ρ(x, y)

10. Sampling independent sets via Glauber

11. define the Hard-Core measure

µG(σ) =
λ|σ|

ZG

The dynamics are as follows: Starting from an independent set σ,

(a) Choose a vertex, v, of G uniformily at random

(b) Flip a coin with probability of heads equal to λ/(1 + λ), if heads then add v, if tails, remove v

(c) Then make the transition σ 7→ σ′ if σ′ ∈ Ind(G)

12. We check µG(σ) satisfies detailed balance: If σ′ = σ t {v}

λ|σ
′|

ZG
P (σ, σ′) =

λ|σ|+1

ZG

1

|v|
1

λ+ 1
=
λ|σ|

ZG

1

|v|
λ

λ+ 1
=
λ|σ|

ZG
P (σ, σ′)

13. Our state space X = collection of independent sets, then

(σ1, σ2) ∈ E if σ1 6= σ2, σ2 = σ1 ∪ {v}, or σ2 = σ1\{v}

14. We have additional assumptions

(a) Maximum degree is δ for some δ

(b) λ < 2
δ−2 with (λ = (1− α) 2

δ−2 )

(c) G is triangle-free

12



15. Theorem: (Main theorem) Under assumptions

tmix(ε) ≤ O(n log(n/t))

where the actual constants are 4δn
α log 3nδ

t

16. The coupling is: starting from states σ1, σ2 try to apply some update

Φ(σ, σv) = δv − c|B(σ, v)|

where δv means the degree of v where B(σ, v) is the set of blocked vertices from σ, i.e.

w ∈ B(σ, v) ⇐⇒ w ∈ Γ(v), σ ∪ {w} is not an independent set

where Γ(v) denotes the set of all neighbors of v

17. Now we look at
E∆+x = E(∆Φ | MC attempts to add x)

E∆+x = E(∆Φ | MC attempts to remove x)

E[∆+xΦ] =
λ

1 + λ
E∆+xΦ +

1

1 + λ
E∆−xΦ

The cases are as follows:

(a) MC transitions at v

(b) MC transitions at w ∈ Γ(V )

(c) MC transitions at x, a neighbor of a neighbor of v

The point is that the no triangles in the graph condition means that the last two cases are distinct

18. We have

(a) In this case, E∆V Φ = −δv + c|B(σ, v)|
(b) If w ∈ Γ(v), then w 6∈ σ, w 6∈ σv, then

E∆+wΦ =???

If w is blocked, then cannot add w either σ or σv

=⇒ E∆+wΦ = 0

If w is not blocked, then σ ∪ {w} = σw.

∆+wΦ = Φ(σw, σv)− Φ(σ, σv) ≤ Φ(σw, σ) + Φ(σ, σv)− Φ(σ, σv) = Φ(σ, σw)

Then

E∆wΦ =
λ

1 + λ
(δw − c|B(σ,w)|) if w is not blocked

(c) More cases if: a) x is in both independent sets, a change of Φ from removing x comes from unblocking
w ∈ Γ(v) and b) x is in neither independent set

11/22: Max Xu’s talk on “Mixing time of Markov Chain AX + B in Fp
and its connection to number theory”

1. Let p be a prime (integers). Consider Xn+1 = aXn + bn in Fp = Z/pZ for a 6= 0

2. bn’s are i.i.d. with law (i.e. distributed by) |mu| with |supp(µ)| ≥ 2, e.g. µ(1) = µ(0) = µ(−1) = 1/3

3. Question: how fast does Xn → U , the uniform distribution

4. Mixing time: T (δ) = inf({n : ||µna − U ||TV ≤ δ})

13



5. Here, we have

||π1 − π2||TV = sup
A⊆FP

|π1(A)− π2(A)| = 1

2
||π1 − π2||1

6. We want to bound T (S) in terms of p

7. Specific SettingL (Chung, Diaconis, Graham paper setting): If we fix a, then what conditions on it tell us that
the mixing time is small or large. If p important? Note that p is not necessarily prime

8. Global setting: What happens if a is arbitrary in Fp

9. Theorem: : (Konyagin; Bukh; Harper; Helfgott) - suppose a has multiplicative order a at least c log p(log log p),
then for every δ ∈ (0, 1/2), we have

T (δ) ≤ c

1− ||µ||2L2

(
log(1/δ) + (log(p))2(log log p)5

)
= O((log p)2+o(1))

10. Theorem: 2 (observation) If one can prove the following statement (which is open), then the upper bound
will be O(log p): For

(a) a with sufficient large multiplicative order and

(b) most primes p

11. If the above statement is true, then this will prove Lehmer’s conjecture

12. Lehmer’s conjecture: For all p(x) ∈ Z[x], there exists a constant c > 1 such that one of the following is true

(a) µ(p(x)) ≥ c > 1

(b) µ(p(x)) = 1

here µ(p(x)) = |a0|
∏n
i=1 max{1, |αi|}, where

p(x) = a0(x− α1) · · · (x− αn)

13. Theorem: For almost all a, we have

(a) The O(log p log log p) bound holds for all primes

(b) O(log p) holds for “most” primes

(c) The Markov chain has a cut-off phenomena at n = log p
H(µ) , if the general riemann hypothesis is true. This

means that the markov chain is close to uniform after this number of steps

|T (δ)− log p

H(µ)
| ≤ Cε,µ

√
log p

In the second point, the notion of “most” primes is somehow different than a density in the limit as n → ∞
notion of “most”

14. Theorem: : For Xn+1 = Xn + bn (i.e. a = 1) and µ(1) = µ(−1) = µ(0) = 1
3 , then there exists α, β such that

e−αN/p
2 ≤ ||µ(N) − U || ≤ e−βN/p2 .

Proof: We write
µ̂(j) =

∑
k∈Fp

e(jk/p)µ(k) e(x) = e2πix

µ(k) =
1

p

∑
j

e(−jk/p)µ̂(j)

1

p

∑
j∈Fp

|µ̂(j)|2 =
∑
|µ(k)|2

14



Now

||µ(N) − U ||2 =
1

4

(∑
k

|µ(k)− U(k)|

)2

≤ 1

4
p
∑
k

|µ(k)− U(k)|2 =
1

4

∑
j 6=0

|µ̂(j)|2

=
1

4

∑
j 6=0

µ̂2N (j) using that ˆµ ∗ ν = µ̂ · ν̂

=
1

4

∑
j 6=0

(
1

3
+

2

3
cos

(
2πi

p

))2N

with some more work, we can get the desired bound.

15. Theorem: We have the upper bound of C log p log log p for all p, where the markov chain is

XN =

N−1∑
i=0

2N−1−jbj =

N−1∑
j=0

2jbj

Proof: (sketch) mess with convolutions, get another product of cosines, and bound this product using step
functions and a binary expansion trick.

16. Remark: when p = 2t − 1, then the bound of log p log log p is sharp!

17. Theorem: When a = 2, we have that for almost all odd p, if

N ≥ log p

log(9/5)
+ c

then ||µ(N) − U || = O((5/9)C
′/2)

18. Consider
P (X) = b0X

n−1 + · · ·+ bn−2X + b1

where b2 ∈ Z and i.i.d. with law µ, then P (a) has law µ
(
an)

12/6: Andrea Ottolini’s Talk on Random Walks and Cut Offs for Mixing
Times

1. Set up is: GN = (VN , EN ) for |VN | = N

2. For each e ∈ EN , put an exponential clock with norm 1

3. When a clock rings, exchange the cards (i.e. the vertices that the edge connects is represented by a card)

4. ν is the initial distribution on SN

5. P νt is the distribution after time t starting from ν

6. In this talk, we consider GN to be the graph 0→ 1→ 2→ · · · → N

7. µ = uniform distribution on N

8. dN (t) = maxν ||P νt − µ||

9. TNmix(ε) = inf{t > 0 : dN (t) ≤ ε}

10. Theorem:

lim
N→∞

TNmix(ε)
N2 logN

2π2

= 1

11.

||PN2 logN

2π2 (1+δ)
− µ|| →

{
1 δ < 0

0 δ ≥ 0

15



12. Given σ ∈ SN , define σ̃ : {0, . . . , N} → R by

σ̃(x, y) =

x∑
z=1

1σ(z)≤y −
xy

N

this is like counting minus a normalized area

13. As an example, check the counts when σ = (2 3) on {1, 2, 3} and look at the map

x 7→
x∑
z=1

1σ(z)≤y

14. Note we can define a partial order on permutations by

σ ≤ σ′ ⇐⇒ σ̃(x, y) ≤ σ̃′(x, y)

15. Given an update σ → σ(x x+ 1), then σ̃(x, y) is affected if and only if σ̃(·, y) has a max/min at x

16. We want to show that
f(x, t; y) = E[σ̃t(x, y)]

satisfies some sort of discrete heat equation

17. We do this is by computing

∂

∂t
f(x, t; y) = E[σ̃t(x+ 1), y] + σ̃(x− 1, y)− 2σ̃t(x, y) =: ∆xf

the idea is that we compute that variation of f , and this will be 0 unless we have a maximum or minimum, in
which case the paranthesized expression captures the variation w.r.t. to t. We also have the initial conditions

f(0, t; y) = 0 = f(N, t; y), f(x, 0; y) = E[σ̃0(x, y)]

18. Lemma: We have
max

x∈{0,...,N}
f(x, t, y) ≤ 2 min(y,N − y)e−λN t

where λN is the last eigenvalue of the laplacian and

λN = 2(1− cos(π/N)) =
π2

N2
(1 + o(1))

Also if σ̃0 = δĨd then

f(x, t; y) ≥ min(y,N − y)

π
sin
(πx
N

)
e−λNT

19. Now start from the identity, and look at the number of red cards in the first half of the deck - take an average

20. Under the uniform distribution, fµ(N2 , t;
N
2 ) = 0 and σ̃µt (N2 ,

N
2 ) =

√
NZ(0, 1)

21. Then the idea is we can bound

f

(
N

2
, t,

N

2

)
≥ cN1/2+δ

for t = N2 logN
2π2 (1− δ)

22. Definition: A censoring scheme is a cadlog function C : R+ → P ({1, . . . , N + 1}) (where P denotes the power
set). If x is selected, then do the update iff x ∈ C(t)

23. Theorem: ||P ν,Ct − µ||TV ≥ ||P νt − µ||TV if ν is increasing (here, we’re using the order on the permutations)

24. Fix K, define the semi-skeleton, σ̂ : {0, . . . , N} × {0,K} → R such that (x, i) 7→ σ̃(x, xi) and xi = d iNK e and
the skeleton σ : {0, . . . ,K} × {0, . . . ,K} → R such that (i, j) 7→ σ̃(xi, xj)
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25. As an example: K = 2, then σ̂ encodes the position of the red cards and σ(1, 1) = the number of red cards in
the first half

26. Given ν a measure on ∧σ, define

ν̂ = push forward of ν under the map σ̃ → σ̂

ν = push forward of ν under the map σ̃ → σ

ν̃ = measure on SN ; given ν, all “something” are equally likely

27. Fix ε > 0, δ > 0 and N large. Assume
||P νt3 − µ||TV ≤ ε

and

t1 =
δ

3

N2

2π2
logN

t2 = (1 + 2/3δ)
N2

2π2

N2

2π2
logN

t3 = (1 + δ)
N2

2π2

N2

2π2
logN

28. Fix K = b 1δ c, run the censoring scheme where in [0, t1] ∪ [t2, t3] all moves at xi for i = 1, . . . , k are censored.
Then

||P νt3 − µ||TV ≤ ||P
ν,C
t3 − µ|| ≤ ||P ν,Ct1 − P̃ ν,Ct1 ||+ ||P̃

ν,C
t3 − µ||TV ≤

K∑
i=1

||νit − µit||TV

where ||P̃ ν,Ct3 − µ||TV = ||P̃ ν,Ct3 − µ̂||TV
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