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0. Introduction

One of the most debated issues in monetary economics concerns the impact of monetary policy on the term structure of
interest rates.! Approaching this issue from the perspective of monetary policy rules seems promising because long-term
interest rates depend on expectations of future short-term rates, which are determined by the response of the central bank
to future developments in the economy, a response most easily captured by a policy rule. This paper takes such an approach
by combining a no-arbitrage affine theory of the term structure of interest rates with a structural macro model of the
impact of monetary policy rules on the economy.?

The paper proceeds as follows. The next section starts with a simple model in which the monetary policy rule for the
short-term interest rate r, depends only on the inflation rate .. That is, r, = 3,7, In this case we show that the affine
equations for long-term interest rates also depend on the inflation rate. That is

l.gn) =da + bnTCt (1)

* Corresponding author. Tel.: +1650723 9677.
E-mail address: john.taylor@stanford.edu (J.B. Taylor).
! The appendix and replication programs of this paper can be found on the Science Direct website.
2 Previous work combining models of the term structure with monetary policy rules include Fuhrer (1996), who combines a pure expectations theory
of the term structure, a policy rule, and a simple structural model; and Ang et al. (2005), who use the no-arbitrage affine model, a policy rule, and a vector
auto-regression.
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for n=1, ..., N, where i‘t”) is the yield to maturity on zero-coupon bonds with maturity n, a, is the intercept, and b, is the
response coefficient for maturities n. The sizes of the response coefficients b, are important for the overall behavior of the
economy. For example, if b, is large, then an increase in inflation will bring about a large increase in the yields on bonds
with that maturity and thereby affect spending by firms or consumers who are borrowing funds at that maturity. In the
case where the monetary policy rule for the short-term interest rate depends on the inflation rate and on the output gap y,,
so that r=0,y+0.m, we show that the affine equations of the term structure take the form

i = an + by pYe + bome @)

Observe that the affine Eqgs. (1) and (2) can be interpreted as a series of implied policy rules for long-term interest
rates—one policy rule for each maturity—with coefficients measuring the size of the interest rate reaction. In other words,
Egs. (1) and (2) define the term structure of policy rules.

We derive analytically the formula relating the coefficients in the affine equations for long-term interest rates to the
coefficients of the monetary policy rule for the short-term interest rate. In the case of Eq. (1), the formula shows how the
response coefficients b,, depend on the policy rule coefficient § for each maturity n. The formula predicts that a change in
the coefficients in the monetary policy rule (6 in the simple case) will lead to a change in the coefficients (b, in the simple
case) by a specific amount. The formula takes risk into account and reveals countervailing effects of shifts in the policy rule
on the affine equations for long-term interest rates.

Next, in order to assess the accuracy of this prediction, we estimate the affine Eqgs. (1) and (2) using data on long-term
interest rates in the United States and look for temporal shifts in the equations. The results are reported in Section 2. We
find that the coefficients on inflation and real GDP in the affine equations shifted upwards in the 1980s and that this was
about at the same time as a previously-documented and well-known increase in the policy rule coefficients. Thus, the
prediction of the formula is confirmed by the data. Section 3 then shows graphically that the pattern of the affine response
coefficients by maturity is remarkably close to what the formula derived from our model predicts.

Section 4 provides an example of how the formula can be used in practice for policy evaluation. We examine the period
from 2003 to 2005 when the federal funds rate deviated significantly from what would have been predicted by the policy
rule response that was typical over the period since the mid-1980s. Though this 3-year period is comparatively short for
determining whether market participants interpreted this as a regime shift or a temporary deviation from the post mid-
1980s regime, the interest rate response to inflation is much lower. A perception of a smaller response coefficient could
have led market participants to expect smaller interest rate responses to inflation in the future, and therefore to smaller
long-term interest rate responses. If so, our model provides an explanation for the puzzle—coined the “conundrum” by
former Federal Reserve Chairman Alan Greenspan—that the rise in the federal funds rate starting in 2004 did not bring
about an increase in long-term interest rates as would have been expected based on experience over the previous 20 years.

1. A simple model of monetary policy and the term structure

We begin with a model in which the central bank responds to inflation, but not to output. The model has the following
equations:

e = 0m; 3)
i = —n~1log(P™") )
P = Emey P ®)
M = exp(—1t — 0.52? — t€e41) 6)
At=—Yo = V1Tt )
T =1 — P(F—1 — Te—1) + O&; 3)

where the shock e~iid N(0, 1). Eq. (3) is the monetary policy rule in which the short-term nominal interest rate r, depends
on the inflation rate with a policy response coefficient 6 >0 Eq. (4) gives the yield to maturity of a zero-coupon bond with a
face value of 1 that matures in n periods, where P,"" is the price of the bond at time t. Eq. (5) is a no-arbitrage condition
showing that the price of an n+1 period bond at time t must equal the expected present discounted value of the price of an
n-period bond at time t+1, where m, is the stochastic discount factor. Eq. (6) describes this stochastic discount factor, which
has the convenient functional form used in the affine term structure literature. Eq. (7) shows that the risk term A, depends
on two coefficients: 7o, which represents a constant risk premium, and y;, which represents the time-varying risk premium
attributed to changes in inflation. Finally, Eq. (8) describes how monetary policy affects inflation. It is a price adjustment
equation in which the change in inflation depends on the lagged real interest rate, which we simply assume depends on the
ex-post real interest rate through the parameter ¢ >0.

The affine term structure Eqs. (4)-(7) are simplifications of assumptions in Ang et al. (2005). These authors also assume
that macroeconomic variables (7 in this simple model) evolve according to an auto-regression, which does not depend on
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the policy rule. To answer the questions posed here about the impact of regime shifts on the term structure, it is necessary
to describe how the interest rate affects inflation, and for this reason we introduce a simple structure which assumes the
interest rate transmission mechanism in Eq. (8). This effect would be ignored by a vector auto-regression model with
constant coefficients, leading to errors similar to those pointed out in the Lucas critique.? It is possible, of course, to
improve on our model by introducing, for example, a forward-looking optimization model, staggered price setting, or a
non-zero inflation target 7*, but the simple form of (8) allows us to obtain analytic results and focus on the term structure
relations.

We now show that Egs. (3)-(8) imply that the yields i{™ are linear functions of the inflation rate as shown in Eq. (1). For
i(t” = r¢ this is obvious from the policy rule Eq. (3), and so a;=0 and b;=4. For i‘tz’it is instructive to show the derivation in
some detail because it easily generalizes to longer maturities and higher-order models. From Eq. (4), the price of the one-
period bond at time t+1 is simply Pﬁ”] = exp(—1;1), which can be substituted into Eq. (5) to obtain

Y
P® = E,[m; 1exp(—r¢.1)]. Now, substituting for m;; and r.,; from Egs. (3), (6), and (8) gives

P = EJexp(—0m; — 0.5/ — Aeéei1 — O(Te — P(OTe — Te) + 6€¢11))]
= exp(—om; — 0.5&? — o(mty — (0 — 1)m)E[exp(— (50 + Ar)ers1)]
= exp(—07; — 0.5/7 — 8(nty — p(d — 1)7;) 4 0.56°6% + 66/ + 0.5)2
= exXp(—0m; — 8(1; — P8 — 1)me) + 0.55%6% — 56(g + 71 70r))

= exp(0.56°62 — §oyg — 62 — G0 — 1) + o)) )

where the normal distribution assumption for &, is used to evaluate the expectation. That the yield i‘tz) is given by
—0.5log(P®) implies that

i = 05607, — 0.256°02 + 0562 — $(5 — 1) + ay)7e (10)

which is the linear form of (1) with a, the intercept term and b, the coefficient on 7,.
Proceeding in the same fashion for maturities n> 2 (see the appendix posted on Science Direct), the response coefficient
on the inflation rate for yields for any maturity is given by the formula

n—1 .
0> (1—=¢p0—1)+ay;)

by = =2 - (11

Observe that the above formula shows how ¢ affects b,,. Observe also that the numerator of the formula is a geometric
series in which each term equals the previous term multiplied by the common ratio (1-¢(0—1)+0y;). While it is
algebraically possible for this common ratio to be negative, this would imply implausible values for the parameters, such as
an enormous response coefficient 6 for the central bank. Hence we will assume throughout that the common ratio is
positive and focus on whether it is greater than one or not.

Note that b, <0 if

o142 12)

)

Condition (12) is closely related to the monetary policy principle that § >1 (called the “Taylor principle,” by Woodford
(2001) and others). Condition (12) is sufficient to prevent b,, from exploding as n increases. To see this, note that if (12)
holds, then the common ratio of terms in the geometric series in the numerator of Eq. (11) is less than one. For each
increase in maturity n, we calculate b, by (i) adding a term in the numerator which is less than the previous term and
(ii) adding a term in the denominator greater than the previous term. Thus we conclude that b, cannot increase geometrically.

The close connection between condition (12) and the Taylor principle is important because the latter is usually viewed
as the sine qua non of a good monetary policy. If that principle does not hold, then the model is not even stable; but it is
possible for (12) to hold if 7 is negative which causes longer-term yields to have a more muted response to inflation. If the
Taylor principle holds, it is possible that (12) does not hold if ) is sufficiently large and positive. In the case of time-
invariant risk aversion (y;=0), the Taylor principle and condition (12) are exactly the same. Ang and Piazzesi (2003) and
Ang et al. (2005) estimated the time-varying risk parameter corresponding to inflation to be positive, though in somewhat
different set-ups.

1.1. Impact of shifts in the monetary policy rule

The question to focus on now is how a change in the policy rule affects the behavior of the term structure. For
by=(2—¢(6—1)+071)/2 one can easily see how the response coefficient in the policy rule has a direct impact on the
response of this longer-term yield to inflation. However, there are countervailing effects. A larger reaction coefficient &

3 Examples where more complex structural models have been combined with affine models of the term structure are Bekaert et al. (2005), Rudebusch
and Wu (2007), and Gallmeyer et al. (2007).
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means that expected future short-term interest rates will rise by a larger amount when future inflation rises; this effect is
measured by the presence of ¢ outside the parentheses and it depends on the risk premium parameter y;; but a higher ¢
also means that inflation is expected to increase by a smaller amount in the future for a given increase in inflation today,
because the persistence in inflation declines; this effect is measured by the term ¢(6—1).

To sort out these countervailing effects, consider the derivative of b, with respect to J:

oby 2+ ¢+o0y,
e 2
Note that unless ¢ is already very large, the derivative is likely to be positive and we will generally make this
assumption, as indicated by the inequality sign in (13). Then increasing ¢ will raise the reaction of the two-period rate to
inflation. Here, the reduced persistence has a smaller effect than the size of the reaction. For high values of ¢ the derivative
could be negative, reflecting that reduced persistence has a larger effect.
In the general case of maturity n the derivative is

—0¢>0 (13)

n-2 n-2
%" = % (1+ 2;(1 + ¢+ )1 — P© — 1)+ 0yp) — P 2;<i+2>(1 — 06 - 1) +ay,)) (14)
1=l 1=

Observe that Eq. (14), much like Eq. (13), is composed of two countervailing terms. Both terms are strictly monotonically
increasing and multiplied by 1/n. The first term is a geometric sum with common factor equal to (1—¢(5—1)+074)/2 while
the second term, which is subtracted from the first, is an arithmetic-geometric sum with the same common factor. Much as
in Eq. (13), there are two countervailing effects: the first term is the direct effect of policy while the second term is the
indirect persistence effect.

The sign of (14) is crucial to understanding how longer-term rates depend on changes in policy as shown in the
following proposition:

Proposition 1. Suppose conditions (12) and (13) hold and that y,>0. Then there exists a unique n* such that for all n<n*,
Pu >0 and for all n>nx, 2Lx <0.

Proof. See the appendix posted on Science Direct.

As explained above, the assumptions underlying Proposition 1 are empirically realistic. Hence, the model predicts that a
monetary policy that reacts more aggressively against inflation implies that bond yields respond more aggressively to
inflation* O

1.2. The case where both inflation and output appear in the policy rule

Now, consider the following model which includes real output as well as inflation:

re =98z (15)
My = exp(—r¢ — 0.5AN — A{ Veiq) (16)
h=7+T7z a7
Ve = —0q(Teo1 — 1) + Y1 + Oyl (18)
T = 1 + PYr + Oc&r (19)

o b} —1 1
where z; = e , V= e , 0= y , Y= Yot , I'= fu Y1z and where the shocks #~iid N(0, 1) and
T &t On Vo2 Y21 V22

&~iid N(0, 1) are independent of each other. Eq. (15) is the policy rule; it replaces the simpler policy rule of Eq. (3),
incorporating a measure of the real output gap in the interest rate rule of the central bank. We specify bond prices
analogous to (5), but the pricing kernel m,,; now has the matrix form shown in Eq. (16). Eq. (17) shows how inflation and
real output affect risk aversion in the pricing kernel, a generalization of Eq. (7). The risk term /. is now two-dimensional.
The first element corresponds to the risk term associated with real output, whereas the second element corresponds to the
risk term associated with inflation. Egs. (18) and (19) replace Eq. (8). Eq. (18) shows how real output depends on its own lag
and on the ex-post real interest rate. Eq. (19) is a price adjustment equation in which inflation depends on lagged inflation
and lagged real output.

4 A critical question is how large n* is. The empirical exercise we perform leads us to believe that n* is sufficiently large so that it is almost surely the
case that 22 >0
o =Y
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Analogously with the first model, the yield on an n-period bond is an affine function of inflation and output, as in Eq. (2).
To show this write Eq. (2) in vector form

i = a, + b}z ) (20)
with the n—periqd yield intercept term given by a,, and the n-period response coefficient vector given by b, = ( b;: )
We can rewrite Eqs. (18) and (19) as a first order vector auto-regression: ’
z,=®z_; +Xv; 21
where

® 062—061(5)/ —061((57-5—1) ¥ Oy 0
T\ P2 —oqdy) 1 -6 1) 2T (/)017 O

In the appendix we show that the n-maturity bond yield response coefficient vector is
1 = i\s
b, :ﬁ(g(m_zr)) 3 (22)

The above formula is a generalization of the formula in Eq. (11).

In the first model, the inflation response coefficient in the simple policy rule had a direct impact on the response of
longer-term yields to inflation and the direction of the reaction had two countervailing forces. The same is true in this
h11 h12
h21 h22

elements of J is then given by

model. To see this let H = ( > = @ — 2T. One can then show that the derivative of b, with respect to each of the

n-1 n—1
1=y (iSyhy" + §ozhih) + > b
aLM 1 i=1 i=1 23)
%y, n LI
> hi
i=1
n-1
. > ho
1=y (iSyhs! + §ozhh) + > b
i=1 i=1

Now consider the derivative E:fg: =11+ nzll hi,) -1 (ocl nzl] iOyhiz! + (bénhizgl))
1= i=
Observe that this derivative is very similar to Eq. (14) and that countervailing forces are again at work. There are two
sums, one is geometric and the other is arithmetic-geometric. The geometric term represents the direct effect of policy,
while the arithmetic-geometric term is a combination of the persistence of inflation and the output gap. As in the simpler
case one can use the formula to calculate how the response coefficients for the longer yields are affected by the policy
response coefficients.

2. Empirical evidence of the upward shift in the term structure of policy rules

To assess the predictive power of the formula, we estimated empirical counterparts of the affine Egs. (1) and (2) using
US data. The zero-coupon bond yields are the quarterly averages of monthly CRSP data on US Treasury yields at 1-5-year
maturities. These maturities are chosen because they are the only maturities in the CRSP database that have been
converted to zero-coupon yields. The inflation measure is the four-quarter moving average of the percentage change of the
US GDP chain-weighted price index. The GDP gap is the percentage deviation of real GDP from a Hodrick-Prescott trend
using quarterly GDP data. Table 1 reports unconstrained ordinary least squares estimates of Eq. (1) and shows the response
coefficients b, for a range of maturities. Table 2 reports analogous least squares estimates of Eq. (2).

The formula derived in the previous section predicts that a shift in the monetary policy rule coefficients should cause a
shift in the coefficients of the affine equations for long rates. A natural place to test for the accuracy of this prediction is
around the time of a large shift in the monetary policy rule. In the United States such a shift has been previously-
documented by Clarida et al. (2000), Taylor (1999), and Woodford (2003) as occurring in the early 1980s. In particular the
estimated J,, and ¢, coefficients in the policy rule shifted upwards. The policy shift occurred as the Federal Reserve, under
the leadership of Paul Volcker, began to pursue a different approach to monetary policy. Though the shift in policy might be
modeled in other ways—perhaps as due to a shift in the target rate of inflation or to poor measurements of the GDP
gap—there is considerable agreement that the coefficients in the monetary policy rule shifted.

The question is whether the estimated b, or b,, coefficients in the affine equations for long-term interest rates
also shifted upward at this time. We are not aware of previous research that has found or studied such a shift, but if we
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Table 1
Estimates of the coefficients in Eq. (1) and the corresponding monetary policy rule for the overnight federal funds rate.

Maturity (years) 1960Q1-1979Q4 1984Q1-2006Q4
an bn R? an bn R?

Fed funds 2.234 0.761 0.603 1.312 1.579 0.264
(0.493) (0.151) (1.277) (0.479)

1 2.913 0.605 0.681 1.487 1.549 0.279
(0.388) (0.113) (1.201) (0.453)

2 2.989 0.603 0.758 1.790 1.566 0.286
(0.333) (0.097) (1.141) (0.449)

3 3.188 0.580 0.797 2114 1.540 0.291
(0.295) (0.085) (1.061) (0.433)

4 3.282 0.573 0.816 2.338 1.536 0.297
(0.28) (0.081) (1.001) (0.422)

5 3.319 0.573 0.832 2.480 1.528 0.305
(0.288) (0.077) (0.951) (0.412)

OLS regression estimation was performed for two samples: 1960Q1-1979Q4 and 1984Q1-2006Q4. Standard errors are reported in parentheses below
coefficient estimates.

Table 2
Estimates of the coefficients in Eq. (2) and the corresponding monetary policy rule for the overnight federal funds rate.

Maturity (years) 1960Q1-1979Q4 1984Q1-2006Q4
an bl,n bZ,n RZ an bl,n b2,n RZ

Fed funds 2.180 0.623 0.760 0.777 2.022 1.322 1.234 0.504
(0.278) (0.118) (0.080) (0.921) (0.265) (0.362)

1 2.874 0.454 0.604 0.847 2.156 1.244 1.224 0.513
(0.194) (0.078) (0.051) (0.856) (0.252) (0.343)

2 2.960 0.335 0.602 0.860 2.394 1.124 1.273 0.478
(0.186) (0.076) (0.053) (0.849) (0.257) (0.356)

3 3.166 0.259 0.580 0.865 2.652 1.000 1279 0.451
(0181) (0.071) (0.052) (0.818) (0.254) (0.355)

4 3.263 0.222 0.572 0.868 2.815 0.888 1.304 0.426
(0.183) (0.071) (0.053) (0.798) (0.254) (0.358)

5| 3.303 0.191 0.573 0.872 2913 0.806 1.318 0.416
(0.186) (0.07) (0.054) (0.777) (0.244) (0.356)

OLS regression estimation was performed over two samples: 1960Q1-1979Q4 and 1984Q1-2006Q4. Standard errors are reported in parentheses below
the coefficient estimates.

were able to find one, it would provide evidence in support of our theory. For this reason, we estimated the regressions in
Tables 1 and 2 over two sample periods. One sample is before the early 1980s, from 1960Q1 to 1979Q4, and the other after
the early 1980s, from 1984Q1 to 2006Q4.°

The equation in the first row of Tables 1 and 2 is the estimated monetary policy rule with the overnight federal funds
rate as the dependent variable. This equation simply replicates the well-known results mentioned above. Note how the
monetary policy response coefficients to inflation and output are much larger in the second sub-sample. The reaction
coefficient on inflation is less than one in the first sub-sample and shifted to a value substantially greater than one in the
second sub-sample. The reaction coefficient on output also shows a much greater responsiveness in the second period.

The remaining rows of Tables 1 and 2 show the estimated affine models for longer-term rates. There is little or no
tendency for the coefficients on inflation to be lower for longer maturities in either model or in either sample period (tests
of the null hypothesis that the inflation coefficients are equal at all maturities cannot be rejected for either period). In
contrast the coefficients on output are lower for longer maturities in Table 2. More important for the test of the theory is
that there is a dramatic upward shift in the coefficients in the affine equations for both models between the two sample
periods. For all maturities, the response coefficients are much larger in the second period than in the first period. This shift
is what our formula predicts and represents empirical confirmation of the theory.®

5 The results are robust to different sample periods, including using a second sub-sample of 1982Q4-2006Q4 to remove the period of reserves
targeting, as well as using a second sub-sample of 1987Q3-2006Q1 coinciding with the tenure of former Federal Reserve Chairman Alan Greenspan.

& We find quantitatively similar results if we use zero-coupon bond data derived in Gurkaynak et al. (2006), or if we use the core CPI as our measure of
inflation. In addition, the evidence of a shift in response coefficients is not sensitive to the exact choice of sample periods. Our results are similar if we
include the observations between 1980Q1 and 1984Q1 in the second sample.
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Fig. 1. The affine response coefficient (ARC) curve for inflation, derived from the model with inflation only and estimated over the period
1960Q1-1979Q4. The horizontal axis shows the maturity in years. The solid line with dots shows the estimated coefficients, the dashed lines show the
95% confidence intervals, and the solid line with stars shows the theoretical coefficients.

3. Comparing the theoretical and estimated affine response coefficients (ARC) curve

If you plot the response coefficients of the affine equations against maturity n, you get what might be called an affine
response coefficients (ARC) curve. An ARC curve is analogous to a yield curve for the term structure of interest rates except
that affine response coefficients are plotted rather than the yields. Such an ARC curve can be estimated, and indeed a plot
with the estimated affine response coefficients from Table 1 or Table 2 on the vertical axis with maturity on the horizontal
axis is such an estimate. A theoretical ARC curve can also be drawn in the same diagram using our formula in Eq. (11) or
Eq. (22), and the theoretical ARC curve can be compared with the estimated ARC curve for certain parameter values. Hence,
another test of our formula can be obtained by looking at how well it predicts changes in the whole shape of the ARC curve
over time when the coefficients in the policy rule change.

The results of such a comparison are shown in Figs. 1-6 which show estimated and theoretical ARC curves. In each of the
figures, the solid line with dots represents the empirical coefficient estimates for the specified sample period
(corresponding to the estimation results reported in Tables 1 and 2), the dashed lines are the 95% confidence intervals
for these estimates, and the solid line with stars represents the theoretical response coefficients for the specified macro
variable given by Eqs. (11) or (22). The theoretical curves are drawn holding fixed all structural parameters of the models
and changing only the policy coefficients in the monetary policy rule to approximate the kind of shift observed in the early
1980s. The values of the non-policy structural parameters are y; = 0.25, ¢ = 0.15, 6 = 0.25 for the inflation only model,
while for the bivariate model including inflation and the output gap, they are a7 =0.2, 0, =0.2, ¢ =0.2, 5, =0.75,
o, = 0.36, y11 = 0.1, y12 = 0.15, and 1 = y1=0. The macro parameters are drawn from the standard macro literature, while
the risk parameters are taken from the affine no-arbitrage literature.” For simplicity, we assume that the off-diagonal
elements of the matrix y from the bivariate model are zero, which is approximately in line with small previous estimates. In
order to compare the estimated and theoretical ARC curves, we assume that policy is approximately what we estimated in
Section 2. In the first model with inflation only the policy rule coefficient ¢ is increased from 0.6 to 1.5. In the second model
with both inflation and output, the policy coefficient vector (d,, é,) is increased from (0.5, 0.6) to (1.2, 1.2).

First consider Figs. 1 and 2 which show the estimated ARC curves for the first model in the two sample periods along
with the theoretical ARC curves. Fig. 1 plots the empirical estimate of the curve from Section 2 for the sample period
1960Q1-1979Q4 with its 95% confidence intervals along with the theoretical response coefficients with ¢ = 0.6. Fig. 2 plots
the same two curves except the sample is 1984Q1-2006Q4 for the estimated curve and the coefficient ¢ equals 1.5 for the
theoretical curve which is calculated using the formula in Eq. (11). Note how the theoretical affine response curves match

7 See Ball (1999), Rudebusch (2002), and Ang and Piazzesi (2003) for an overview of the range of parameters available in the literature.
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Fig. 2. The affine response coefficient (ARC) curve for inflation, derived from the model with inflation only and estimated over the period

1984Q1-2006Q4. The horizontal axis shows maturity in years. The solid line with dots shows the estimated coefficients, the dashed lines show the 95%
confidence intervals, and the solid line with stars shows the theoretical coefficients.
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Fig. 3. The affine response coefficient (ARC) curve for output, derived from the model with both output and inflation and estimated over the period
1960Q1-1979Q4. The horizontal axis shows maturity in years. The solid line with dots shows the estimated coefficients, the dashed lines show the 95%
confidence intervals, and the solid line with stars shows the theoretical coefficients.

the pronounced upward shift in the estimated curve and generally lie within the standard error bands from the estimation.
Hence, a substantial portion of the increase in the affine response coefficients for long term rates is explained by the
formula with these parameters and is attributable to the change in policy responsiveness.

Figs. 3-6 give estimated and theoretical ARC curves for the second model with both inflation and output. Here we use
the formula in Eq. (22). The ARC curve for output (the b, , coefficients) is shown in Figs. 3 and 4 for the two sample periods.
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Fig. 4. The affine response coefficient (ARC) curve for output, derived from the model with both output and inflation and estimated over the period
1984Q1-2006Q4. The horizontal axis shows maturity in years. The solid line with dots shows the estimated coefficients, the dashed lines show the 95%
confidence intervals, and the solid line with stars shows the theoretical coefficients.
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Fig. 5. The affine response coefficient (ARC) curve for inflation, derived from the model with both output and inflation and estimated over the period
1960Q1-1979Q4. The horizontal axis shows maturity in years. The solid line with dots shows the estimated coefficients, the dashed lines show the 95%
confidence intervals, and the solid line with stars shows the theoretical coefficients.

In this case the formula captures not only the upward shift in the ARC curve but also its general downward slope. The ARC
curve for inflation (the b, coefficients) is shown in Figs. 5 and 6 for the two sample periods. Again the formula accurately
captures the upward shift and the nearly flat slope. Even though these macro models are extremely simple the results are a
very encouraging confirmation of the usefulness of the formula and the overall approach.
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Fig. 6. The affine response coefficient (ARC) curve for inflation, derived from the model with both output and inflation and estimated over the period
1984Q1-2006Q4. The horizontal axis shows the maturity in years. The solid line with dots shows the estimated coefficients, the dashed lines show the
95% confidence intervals, and the solid line with stars shows the theoretical coefficients.

4. An explanation of the term structure conundrum

As an example of how these results can be used for policy evaluation, consider the famous term structure puzzle which
first arose when the Federal Reserve started raising the federal funds rate in 2004. That increase in the short-term interest
rate was not associated with as large an increase in long-term interest rates as the Fed expected based on experience over
the previous 20 years as explained by former Federal Reserve Chairman Alan Greenspan who called the puzzle a
“conundrum.” It was a great concern for policymakers for it appeared that the tightening of monetary policy would not
have had the bite that it had in previous periods of tightening. One explanation for the conundrum is that there was a
global saving glut that drove down the world real interest rate, but that explanation has been challenged because world
saving as a share of world GDP had actually fallen during this period.?

An alternative explanation naturally emerges from the theory in this paper. During this period, the federal funds rate
deviated significantly from what would have been predicted by Fed’s typical response as exemplified by the empirical
estimates of the policy rule reported in Table 2 of this paper for the sample period from 1984Q1 to 2006Q4. While it is
difficult to determine whether this was a shift in the policy response coefficients or simply an additive deviation from the
rule, there is econometric evidence that it may have been interpreted as a shift in the response coefficient. To see this,
consider the following regression estimated over the 1984Q1-2006Q4 period:

re = 2.056 + 1.016y; + 1.4287m, — 1.327P° (25)

where 7P is a multiplicative dummy variable in which the actual inflation rate is multiplied by a dummy variable that
equals one from 2002Q4-2005Q4, and zero elsewhere. This is the period when the actual federal funds rate deviated
significantly from estimated policy rules such as that in the first row of Table 2. All the coefficients in this equation are
statistically significant, and in particular the inflation terms and the multiplicative dummy are highly significant. We also
included an additive dummy along with the multiplicative dummy in the regression and still found a significant downward
shift in the inflation response. The equation clearly suggests the possibility that the response coefficient on inflation
dropped significantly during this period. The short-term interest rate response to inflation (¢,) would seem much lower to
market participants trying to assess Federal Reserve policy. Note that Davig and Leeper (2006) found a similar shift using an
estimated Markov switching model.

Now, according to the theory presented in this paper, a perception of a smaller response coefficient in the policy rule
could have led market participants to expect smaller interest rate responses to inflation in the future, and therefore lower

8 See Bernanke (2005) and Taylor (2007).
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long-term interest rate responses. That is, we would predict that the lower response ¢, would have lowered the response
coefficient b, , for inflation. Hence, our model provides a simple consistent explanation for the conundrum. While this shift
was temporary when viewed from the perspective of today, it would have been difficult to assess at the time whether the
Federal Reserve would have returned to the typical rule followed during the post 1984Q1 period.

5. Conclusion

In this paper, an affine no-arbitrage model of the term structure was imbedded into a simple macro model. Using this
framework we derived closed-form affine equations for long-term interest rates and showed that a simple formula links
the coefficients on inflation and GDP in the monetary policy rule for the short-term interest rate to comparable
affine response coefficients. The formula predicts that an increase in the coefficients in the monetary policy rule will lead
to an increase in the coefficients in the affine equations across a wide range of maturities, a prediction confirmed
by an upward shift in the coefficients in the affine equations in the 1980s at the same time as the well-known upward
shift in the policy rule coefficients. We also examined the affine response coefficient (ARC) curve which shows now
the coefficients in the affine equations depend on the maturity of the bonds. Shifts in this curve are predicted remark-
ably well by the formula as demonstrated with simple graphs. Finally, our model helps explain the behavior of
longer-term interest rates during the recent spell in 2002-2005, where standard models predicted that longer-term
yields would increase more than they did. Moreover, because the formula has a closed form, it is a useful pedagogical
tool.

There are several directions that future research might take. Clearly our macro model has a number of simplifying
assumptions and incorporating more individual optimizing behavior would be worth exploring, though at the cost of a
likely loss in analytical simplicity. Using models of stochastic regime shifting, such as Davig and Leeper (2007), along with
no-arbitrage restrictions may help pin down the exact patterns of bond yields and macroeconomic variables. Including
longer-term interest rates directly in the macro model would be an important check for robustness. Applying the model to
policy changes in other countries—even more dramatic changes than studied here—would also be valuable.
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