How Should We Measure District-Level Public Opinion?

Christopher Warshaw
cwarshaw@stanford.edu

Jonathan Rodden
jrodden@stanford.edu

Department of Political Science
Stanford University

December 7, 2010

Abstract: Due to insufficient sample sizes in national surveys, strikingly little is known about public opinion at the level of Congressional and state legislative districts in the United States. As a result, there has been virtually no study of whether legislators accurately represent the will of their constituents on individual issues. This paper solves this problem by developing a multi-level regression and post-stratification (MRP) model that combines survey and census data to estimate public opinion at the district level. We show that MRP estimates are excellent predictors of public opinion and referenda results for both congressional and state senate districts. Moreover, they have less error, higher correlations, and lower variance than either disaggregated survey estimates or presidential vote shares. The MRP approach provides American and Comparative Politics scholars with a valuable new tool to measure public opinion at low levels of geographic aggregation.
1. Introduction

The aggregation of citizens’ preferences into policy lies at the heart of democracy. In countries like the United States, where legislative representation is based on plurality elections in single-member constituencies, it is important to measure policy preferences at the level of electoral districts in order to make progress in answering even the most basic questions about representation. One of the most central questions in the study of democratic politics is whether the activities of individual legislators reflect the preferences of their constituents on salient issues. In order to approach this question, it is necessary to have a reliable way of characterizing each district’s preferences. If a legislator voted in favor of funding for stem cell research, it would be useful to know whether her constituents also favor this policy.

Unfortunately, previous empirical work has been stymied by the fact that the sample size in national surveys is generally too small to make inferences at the district level. Scholars have adopted various techniques to cope with the sparse availability of district-level data. Some have adopted the strategy of employing the district-level presidential vote as a catch-all proxy for district public opinion (Canes-Wrone, Cogan, and Brady 2002). Others have disaggregated national surveys to the district level (Miller and Stokes 1963; Clinton 2006; Peress 2008). Still others have employed demographics (Peltzman 1984), simulation techniques (Ardoin and Garand 2003) or Bayesian models based in part on district-level election data (Levendusky, Pope, and Jackman 2008).

The goal of such efforts is often to come up with broad, one-dimensional measures of partisanship or overarching ideology. Of course such encompassing measures can be useful for some questions, but they are poorly suited to the class of
questions about representation introduced above, which often require relatively precise measures of preferences on specific issues.

An alternative approach developed by Gelman and Little (1997) and Park, Gelman, and Bafumi (2004) builds upon some of the key strengths of these different techniques. This multi-level regression and post-stratification (MRP) approach incorporates demographic and geographic information to improve survey-based estimates of each geographic unit’s public opinion. First, the model incorporates both demographics and geographic information to partially pool data across districts. Next, predictions are made for each demographic-geographic respondent type. Finally, these predictions are post-stratified (weighted) using Census data for each district.

This approach has worked well at the state level, and this paper extends it to the district level. A lingering question about this approach is whether it is actually an improvement over simpler methods, such as disaggregating national surveys or employing presidential vote shares. In their state-level analysis, Lax and Phillips (2009) answer in the affirmative, showing that MRP significantly outperforms disaggregation for estimating public opinion on same-sex marriage. In this paper, we develop a relatively simple MRP model to estimate the public opinion of congressional and state senate districts on six salient issues. Then we use a variety of approaches to evaluate whether the MRP estimates outperform disaggregation and presidential vote shares for estimating district-level public opinion.

First, we combine three large surveys to build a “super-survey” with more than 100,000 respondents, and use a split-sample design to compare disaggregated means to MRP estimates of public opinion. We find that MRP significantly outperforms
disaggregation for estimating the public opinion of both congressional and state senate
districts on all six issues we examine. For both small and large sample sizes, the MRP
estimates have smaller errors, higher correlations with “true” district public opinion, and
less variance.

Next, we compare the performance of MRP and disaggregation for predicting
district-level voting behavior on state ballot initiatives. To our knowledge, this is the first
validation of a survey-based measure of district opinion on specific policies against
related referenda. Surprisingly high correlations between survey-based estimates and
observed voting behavior provide a useful validation of survey-based approaches to
estimate the district-level public opinion of voters, and once again, MRP clearly
outperforms raw disaggregation. Finally, we compare MRP estimates to presidential vote
shares. With some caveats, we find that MRP generally yields higher correlations with
“true” district public opinion than presidential vote shares.

A strength of the MRP method is its strong performance in relatively small
national survey samples. We find that MRP produces very reliable estimates of
congressional districts’ public opinion with a national sample of just 2,500 people. Not
surprisingly, a larger sample is required to estimate the public opinion of state legislative
districts, yet for many issues a sample of 5,000 people yields very strong estimates for the
public opinion of state senate districts.

In general, our results suggest that the value of the MRP approach increases as
survey sample sizes get smaller relative to the number of districts. Thus MRP may be
especially valuable for students of state politics, or for scholars who wish to estimate
district-level public opinion in countries like Canada, Australia, France, and the UK,
where postal codes in existing surveys often make it possible to place respondents in districts, survey sample sizes are often not terribly large, and census departments produce detailed district-level demographic reports.

The application of MRP to produce reliable estimates of public opinion at the district level provides new tools for a number of research questions. First, it provides public opinion and political behavior scholars with the opportunity to examine the distribution of opinions across districts on specific issues or bundles of issues rather than attempting to make inference about ideology from noisy and endogenous district-level voting data. Second, it provides U.S. and comparative scholars with the ability to develop stronger tests of representation and democracy by comparing district-level public opinion with the attitudes and behavior of elected representatives. While in this paper we focus on individual survey items in order to provide the clearest possible evaluation of the MRP approach, researchers can also combine Item Response Theory (IRT) and MRP models to aggregate information across related survey questions in order to develop more accurate estimates of overall district ideology. This approach would have the added benefit of reducing measurement error associated with individual survey items (Ansolabehere, Rodden, and Snyder 2008), making it possible to generate a high-quality mapping of district-level opinion on multiple issue dimensions. Finally, MRP provides comparative politics scholars with a new tool to estimate district-level public opinion in other countries where survey data is sparser than in the United States.

2. Estimating District-Level Public Opinion

2.1. Disaggregation Overview

The most straightforward approach to estimating district preferences is to use data
from a representative survey that asks respondents for their preferences on individual issues (Erikson, Wright, and McIver 1993; Brace, Sims-Butler, Arceneaux, and Johnson 2002). Lax and Phillips (2009) calls this approach “disaggregation.” The primary advantage of disaggregation is that scholars can estimate district-level public opinion using only the respondent’s answer and district of residence. Thus, it is very straightforward for applied researchers to quickly build disaggregated estimates for each state and district’s public opinion.

District-level disaggregation has a long lineage in political science. In their seminal study of legislative representation, Miller and Stokes used data from the 1958 American National Election Study to estimate policy preferences at the district level (Miller and Stokes 1963). The problem is that national surveys generally do not have enough respondents to develop efficient estimates of voter’s preferences at sub-state levels. Miller and Stokes (1963) study had an average of just 13 respondents per district (see Achen 1978; Erikson 1978). Thus, while their estimates of constituency opinion were unbiased, they had extremely large standard errors.

Several recent studies have turned to large-N surveys, such as National Annenberg Election Survey (NAES), Knowledge Networks, and the Cooperative Congressional Election Survey (CCES) to increase sample sizes. For instance, Clinton (2006) combines data on self-identified preferences from surveys conducted in 1999 and 2000 by Knowledge Networks (KN) and the National Annenberg Election Survey (NAES). However, although the two surveys have over 100,000 combined responses, some congressional districts still have fewer than 50 respondents. Moreover, there are significantly fewer responses for many specific issue-questions.
2.2. MRP Overview

An alternative strategy introduced by Park, Gelman, and Bafumi (2004) and Lax and Phillips (2009) is to estimate district-level public opinion using multi-level regression and post-stratification (MRP). This approach employs Bayesian statistics and multi-level modeling to incorporate information about respondents’ demographics and geography in order to estimate the public opinion of each geographic sub-unit (see Gelman and Hill 2007 and Jackman 2009 for more about multi-level modeling).

Specifically, each individual’s survey responses are modeled as a function of demographic and geographic predictors, partially pooling respondents across districts to an extent determined by the data. The district-level effects are modeled using additional district, state, and region-level predictors. Thus, all individuals in the survey yield information about demographic and geographic patterns, which can be applied to all district estimates. The final step is post-stratification, in which the estimates for each demographic-geographic respondent type are weighted (post-stratified) by the percentage of each type in the actual district population.

This approach improves upon the first generation of simulation-based methods, pioneered by Pool and Abelson (1961), in a number of crucial ways. First, the earlier simulation approaches relied exclusively on demographic correlations, such that the prediction for any demographic type was constant across districts. In the words of Pool and Abelson (1961: 175), “A simulated state therefore consisted of a weighted average of the behaviors of the voter types in that state, the weighting being proportional to the numbers of such persons in that state… We assumed that an “upper-income Protestant Republican rural white male” was the same in either state.” In contrast, MRP allows
researchers to address possible geographic “neighborhood” or “contextual” effects by including a rich array of district-level covariates in the first stage of the model, thus taking into account the fact that people in different locales differ in their opinions even after controlling for individual-level demography. Second, MRP is far more sophisticated in the way it models public opinion, using Bayesian statistics and multilevel modeling to partially pool information about respondents across districts to learn about what drives individual responses (Lax and Phillips 2009).

2.3. What do we know?

The case for MPR is clear, but the proof is in the performance. Lax and Phillips (2009) show that MRP dramatically outperforms disaggregation at the state level for predicting both public opinion and election outcomes. Compared to baseline opinion measures, it yields smaller errors, higher correlations, and more reliable estimates. Moreover, they show that the performance advantages of MRP are even greater for smaller sample sizes: MRP yields relatively reliable estimates of state public opinion with national samples as small as 1,500.

Lax and Phillips’ state-level results suggest that MRP is also likely to produce strong estimates at the district level as well, but a number of questions remain unanswered. First, and most importantly, no previous work has evaluated whether MRP produces more accurate district-level estimates of public opinion than disaggregation or presidential vote shares. There are number of reasons why MRP might fail to do so. The small district-level sample sizes may stymie MRP analysis by producing too much pooling between districts, and geography may affect district-level estimates in complex
ways that are difficult to capture through an MRP model.

Second, many previous MRP models use previous election results to help improve state-level public opinion estimates (Park, Gelman, and Bafumi 2004). However, this approach is less suitable at the district level, where researchers are likely to want to use district public opinion estimates as a right-hand side variable to predict election results. If election results are used in the estimation process for the public opinion estimates, it makes little sense to use them to predict election results in subsequent work.

Third, if MRP does outperform disaggregation, it is important to examine whether the “performance gap” varies for different sample sizes, political levels (e.g., congressional versus state legislative districts), or issues. For instance, it is possible that MRP works for congressional districts but not smaller levels of aggregation such as state legislative districts. Finally, existing research has done little to validate district-level MRP estimates of preferences on specific issues against results of actual district-level votes on those issues. Statewide referenda provide an excellent opportunity.

3. The MRP Model

3.1. Data

In order to evaluate MRP at the district level, we develop a large “super-survey” by combining three large-N surveys of the American public: the 2004 National Annenberg Election Survey, the 2006 Cooperative Congressional Survey, and the 2008 Cooperative Congressional Survey. There are six issue questions with similar question wording on at least two of the three surveys: same-sex marriage, abortion, environmental

1 Each of these surveys has codes that identify the congressional district of each respondent. They also include the zip code of each respondent, which enables us to estimate each respondent’s state senate district. We estimate respondents’ state senate districts by matching zip codes to state senate districts using a geographic information system (GIS) process.
protection, minimum wage, social security privatization, and federal funding for stem cell research. This yields between 70,000 and 110,000 responses for each question.

We then recode the surveys as necessary to combine them into a single dataset:

- For same-sex marriage, responses are coded 1 for support of an amendment to ban same-sex marriage and 0 otherwise (“no”, “don’t know”, or “refused”).
- For abortion, responses are coded 1 if the respondent either believes abortion should never be permitted or permitted only in case of rape, incest or when the woman's life is in danger, and 0 otherwise.
- For environmental protection, responses are coded 1 if they favor environmental protection over the economy, and 0 otherwise.
- For minimum wage, responses are coded 1 for support of increasing the minimum wage to $7.25, and 0 otherwise.
- For social security, responses are coded 1 for support of privatization and 0 otherwise.
- For stem cell research, responses are coded 1 for support of federal funding for stem cell research, and 0 otherwise.

For each respondent, we have an array of demographic information, including sex (male or female), race (black, Hispanic, white, and other), and one of five education categories (less than a high school education, high school graduate, some college, college graduate, and graduate school). We also have information on each respondent’s congressional district, state senate district, state, and region. For each district, we have Census data on the percent that live in an urban area, the median income, the percent of the population that are veterans, and the percent of couples that live with a member of the same sex. For each state, we have the percent of evangelical Protestants and Mormons (American Religion Data Archive 2000).

3.2. Modeling Individual Responses

\[\text{We chose these demographic predictors because they are generally used by survey organizations when they create survey weights (Voss, Gelman King 1995) and they are commonly used by state-level MRP studies (see Park, Gelman, and Bafumi 2006). Moreover, each of these predictors is available from the Census factfinder, which facilitates the post-stratification step of our analysis.}\]
MRP models each individual response as a function of both demographic and geographic predictors. It assumes that the effects within a grouping of variables are related to each other by their hierarchical or grouping structure. For data with hierarchical structure (e.g., individuals within districts within states), multilevel modeling is generally an improvement over classical regression. A classical regression is a special case of multilevel models in which the degree to which the data is pooled across subgroups is set to either one extreme or the other (complete pooling or no pooling) by arbitrary assumption (Lax and Phillips 2009; Gelman and Hill 2007, 254–58). In contrast, a multilevel model pools group-level parameters towards their mean, with greater pooling when group-level variance is small and more smoothing for less populated groups. The degree of pooling emerges from the data endogenously, “with the relative weights determined by the sample size in the group and the variation within and between groups” (Gelman and Hill 2007, 254).

In our MRP model, we estimate each individual’s preferences as a function of his or her demographics, district, and state (for individual i, with indexes r, g, e, d, p, s, and z for race, gender, education category, district, poll-year, state, and region, respectively). This approach allows individual-level demographic factors and geography to contribute to our understanding of district ideology. Moreover, the model incorporates both within and between-state geographic variation. We facilitate greater pooling across districts by including in the model several district and state-level variables that are plausibly correlated with public opinion. For example, we include the percentage of people in

3 Since this paper is focused on the general applicability of MRP, we chose to deploy a relatively parsimonious model that is not tailored for a specific issue area. However, MRP’s performance for any particular issue area would likely be improved by using a model with a stronger theoretical basis for linking specific demographic or geographic characteristics to issue stances.
each state that are evangelicals or Mormons, and the percentage of people in each district in same-sex couples.

We incorporate this information with the following hierarchical model for respondent’s responses:

\[
\Pr(y_i = 1) = \logit^{-1}(\gamma_0 + \alpha_{\text{race}}[i] + \alpha_{\text{gender}}[i] + \alpha_{\text{edu}}[i] + \alpha_{\text{district}}[i] + \alpha_{\text{year}}[i])
\]

where

\[
\begin{align*}
\alpha_{\text{race}} & \sim N(0, \sigma_{\text{race}}^2), \text{ for } r = 1, \ldots, 4 \\
\alpha_{\text{gender}} & \sim N(0, \sigma_{\text{gender}}^2) \\
\alpha_{\text{edu}} & \sim N(0, \sigma_{\text{edu}}^2), \text{ for } e = 1, \ldots, 5 \\
\alpha_{\text{year}} & \sim N(0, \sigma_{\text{year}}^2), \text{ for } p = 1, 2, 3
\end{align*}
\]

That is, each individual-level variable is modeled as drawn from a normal distribution with mean zero and some estimated variance. Following previous work using MRP, we assume that the effect of demographic factors do not vary geographically. We allow geography to enter into the model by adding a district level to the model, and giving each district a separate intercept.\(^4\) However, our model could easily be extended to allow the effect of individual-level demographics to vary across districts or states (see Jackson and Carsey 2002; Gelman 2008). For our models, we tested whether allowing the effects of demographics to vary across states changed our estimates of district preferences, and found very little effect.\(^5\)

The district effects are modeled as a function of the state into which the district falls, the district’s average income, the percent of the district’s residents that live in urban areas, the percentage of the district’s residents that are military veterans, and the

\(^4\) This intercept is, in turn, modeled based on district and state-level demographic factors.

\(^5\) For example, we tested allowing the effect of race and education to vary across state or regions, and found very little improvement in model fit.
percentage of couples in each district that are in same-sex couples.\(^6\)

\[\alpha_d^{\text{district}} \sim N(\kappa_{[d]}^{\text{state}} + \gamma^{\text{inc}} \cdot \text{income}_d + \gamma^{\text{urb}} \cdot \text{urban}_d + \gamma^{\text{mil}} \cdot \text{military}_d + \gamma^{\text{samesex}} \cdot \text{samesex}_d, \sigma_{\text{district}}^2), \]

for \(c = (1, \ldots, 436) \)

The state effects are modeled as a function of the region into which the state falls, the percentage of the state’s residents that are union members, and the state’s percentage of evangelical or Mormon residents\(^8\):

\[\alpha_s^{\text{state}} \sim N(\alpha_{[s]}^{\text{region}} + \beta^{\text{union}} \cdot \text{union}_u + \beta^{\text{relig}} \cdot \text{relig}_s, \sigma_{\text{state}}^2), \]

for \(s = (1, \ldots, 51) \)

The region variable is, in turn, another modeled effect:

\[\alpha_z^{\text{region}} \sim N(0, \sigma_{\text{region}}^2), \]

for \(z = (1, \ldots, 4) \)

We estimate the model using the GLMER function in R (Bates 2005).\(^9\)

3.3. Post-Stratification

For any set of individual demographic and geographic values, cell \(c \), the results above allow us to make a prediction of ideology. Specifically, \(\theta_c \) is a function of the relevant predictors and their estimated coefficients.\(^{10}\) The next stage is post-stratification, in which our estimates for each respondent demographic geographic type must be

\(^6\) These data were obtained from Census factfinder.

\(^8\) While one might think to include religion at the individual level, rather than include it only as a state-level indicator, information on religion is not available in census data.

\(^9\) For simplicity, we employ the mean coefficient estimates yielded by GLMER and ignore the uncertainty in these estimates. In other contexts, however, it may be useful to propagate the measurement error in the model’s coefficients into the post-stratification step. This would allow us to quantify the uncertainty in our MRP estimates of district public opinion.

\(^{10}\) Since we allow different poll-year intercepts when estimating the individual’s response, we must include a specific year coefficient when generating these predicted values using the inverse logit. For simplicity, we use the average value of the coefficients, which is zero by assumption.
weighted by the percentages of each type in the actual district populations.

Previous work using MRP at the state level has used either the “1-Percent or 5-
Percent Public Use Microdata Sample” data from the Census (Park, Gelman, and Bafumi
2004; Lax and Phillips 2009; Lax, Kastellec, and Phillips 2010). However, the micro-
data does not include information about respondents’ congressional or state-legislative
districts. Fortunately, the census factfinder data includes breakdowns by race, gender,
and education in each congressional district for the population 25 and over.\footnote{Using
the population 25 and over to post-stratify our results introduces some error into our
analysis. But this error is likely minimal since 1) only about 10% of the voting population
is under 25 and 2) in most districts the demographic breakdown of the 25 and under population
is similar to the demographic breakdown of the 25 and older population.} We use
these data to calculate the necessary population frequencies for our analysis.\footnote{Because
census factfinder does not include age breakdowns for each race/gender/education
subgroup, we are not able to control for respondents’ age in our model. However, the omission
of predictors for age probably does not significantly affect our results. Previous studies using
MRP have found little variation among age groups after controlling for the other predictors in the
model (Park, Bafumi, and Gelman 2004).}

For our model of congressional districts, we have 436 districts with 40
demographic types in each, which yields 17,440 possible combinations of demographic
and district values. For our model of state senate districts, we have 1942 districts, which
yields 77,680 possible combinations of demographic and district values.

Each cell \(\vartheta_c \) is assigned the relevant population frequency \(N_c \). The prediction in
each cell, \(\vartheta_c \), needs to be weighted by these population frequencies of that cell. For each
district, we calculate the average response, over each cell \(c \) in district \(d \):

\[
y_{\text{districts}}^{\text{mrp}} = \frac{\sum_{c \in d} N_c \vartheta_c}{\sum_{c \in d} N_c}
\]

\section{4. Does MRP Outperform Disaggregation?}

In this section, we compare MRP and disaggregation estimates for predicting
district-level public opinion. First, we use a split-sample validation approach to compare MRP and disaggregation for same-sex marriage. Focusing on same sex marriage has a number of advantages. It makes our results directly comparable to the Lax and Phillips (2009) evaluation of MRP at the state level. In addition, all three of our surveys have almost identical questions on same-sex marriage. This enables us to generate a very large sample that makes district-level disaggregation plausible for both congressional districts and state senate districts. Also, the district estimations may be of substantive interest to scholars and policymakers -- particularly at the state legislative district level. Moreover, as Lax and Phillips (2009) point out, there is significant variation across districts on same-sex marriage, which avoids biasing results towards MRP.\(^\text{13}\)

Above all, several states have held statewide votes on same-sex marriage, and the availability of district-level tallies gives us a rare opportunity to undertake a second, and perhaps more convincing validation strategy: we contrast the performance of raw survey means and MRP preference estimates in predicting district-level referendum results.

Finally, we replicate our split-sample validation strategy for five additional issues, and our referendum strategy for two additional issues.

4.1. Split-Sample Validation Analysis of Same-Sex Marriage Estimates

In order to assess the relative performance of the disaggregation and MRP methods in different sample sizes, we rely upon cross-validation (see Lax and Phillips 2009). We randomly split the data, using roughly three fourths of the data to define the baseline or “true” district public opinion. We define the baseline data for same-sex marriage.

\(^{13}\) The partial pooling employed by MRP may be less useful when the opinion of voters in one area is not useful for predicting the opinion of voters of the same demographic type in other areas after controlling for intercept shifts due to geographic differences.
marriage as the percentage of people in each district that support a constitutional amendment to ban same-sex marriage. We then use some portion of the remaining data to generate estimates of opinion, using both disaggregation and MRP. We draw these random samples 500 times (both the baseline data and the sample data for comparative estimation) for three or four different sized samples. For congressional districts, the national sample sizes are 2,500, 5,000, 15,000, and 30,000. For state legislative districts, the national sample sizes are 5,000, 15,000, and 30,000. The sample size in particular districts ranges from 0 to roughly 150. We chose 30,000 as the largest sample size in our validation analysis because most large-N surveys top-out at about 30,000 responses. Thus, for the time being, 30,000 responses is likely to be the largest sample size available for most applied research questions.

We follow Erikson, Wright, and McIver (1993), Brace et al. (2002), and Lax and Phillips (2009) in using unweighted survey responses for both the baseline data and sample data. Similarly to Lax and Phillips (2009), we measure predictive success (how close each set of estimates is to the measure for the baseline sample) in several ways. In each run of a simulation q, let $y^\text{base}_{q,d}$ be the opinion percentage in district d in the baseline data (again, measured as the disaggregation method does, totaling up the simple percentage by state), let $y^\text{dis}_{q,d}$ be the disaggregated percentage in district d on the sampled data, and let $y^\text{MRP}_{q,d}$ be the estimate in district d using MRP.

14 This yields approximately 85,000 responses.
15 To our knowledge, the National Annenberg Election Survey (NAES) is the only major survey with more than 30-35,000 responses
16 This approach biases our findings somewhat against MRP since unweighted data are being used both to define both the baseline “actual public opinion” and the disaggregated analysis of the sample data. In contrast, MRP corrects for lack of weighting through post-stratification. Thus, some of the differences between the MRP and baseline results could be due to the lack of survey weighting in the baseline data.
For each of the sample sizes, we do the following. We first calculate the errors produced by each simulation. The simplest way to measure these errors is using the absolute differences between the estimates and the baseline measure.

\[\epsilon_{q,d}^{\text{dis}} = |y_{q,d}^{\text{dis}} - y_{q,d}^{\text{base}}|, \quad \epsilon_{q,d}^{\text{MRP}} = |y_{q,d}^{\text{MRP}} - y_{q,d}^{\text{base}}| \]

This forms two matrices of absolute errors, of size 500 (simulations) x \(d \) (districts) each. For district \(d \), we then calculate the mean absolute error for each method across simulations.

\[\bar{\epsilon}_d^{\text{dis}} = \frac{\sum_q \epsilon_{q,d}^{\text{dis}}}{100}, \quad \bar{\epsilon}_d^{\text{MRP}} = \frac{\sum_q \epsilon_{q,d}^{\text{MRP}}}{100} \]

Next, we calculate the mean absolute error over both districts and simulations, collapsing the means-by-district into a simple number for each sample size and method:

\[\bar{\epsilon}_d = \frac{\sum_q \epsilon_{q,d}^{\text{dis}}}{100 \times D}, \quad \bar{\epsilon}_d = \frac{\sum_q \epsilon_{q,d}^{\text{MRP}}}{100 \times D} \]

Second, we take the correlations between each set of estimates and the baseline measure for each sample size. Finally, we ask how often MRP “beats” disaggregation. We calculate this in two ways. First, for each district estimate (i.e., for each district in each run of a simulation), we score whether the MRP estimate or the disaggregation estimate comes closer to the “true” value. Next, we score whether the average absolute error across states within a simulation run is smaller for MRP or disaggregation. In other words, would a researcher get less absolute error for that sample using MRP or disaggregation?

The left column of Figure 1 shows the results of our performance measures on same-sex marriage for congressional districts. The top-left panel compares the mean absolute errors for each estimation method for various sample sizes. It indicates that the
MRP method’s mean absolute error is smaller than disaggregation for all four-sample sizes. Indeed, the MRP method has smaller absolute errors with a national sample of just 2,500 than disaggregation does in the largest sample.

Moreover, MRP outperforms disaggregation in individual districts with both small and large sample sizes. In districts with less than 10 respondents, MRP yields roughly 50% smaller errors than disaggregation. In districts with larger sample sizes, MRP yields smaller improvements, and in districts with very large sample sizes of more than 120 respondents, the performance of MRP and disaggregation converge.\(^\text{17}\)

FIGURE 1 ABOUT HERE

The middle panel on the left shows the correlations between MRP estimates and the baseline measure. Not surprisingly, the disaggregated estimates are only weakly correlated with the baseline for smaller sample sizes. In contrast, MRP is correlated with the baseline at 0.75 or better in every sample size. Finally, the lower-left panel shows how often MRP “beats” disaggregation for estimating the public opinion of congressional districts. For individual district estimates, MRP wins 81% of the comparisons in the smallest sample and 57% in the largest sample. If we use simulated datasets as the unit of comparison, MRP wins 100% of the matchups in each sample size.

The right-hand in Figure 1 displays broadly similar results for identical analysis at the level of state senate districts. The top-right panel shows that the MRP method’s mean absolute error is significantly smaller for all four sample sizes. The smaller size of most state senate districts compared to congressional districts magnifies the advantages of MRP; even with a sample of 30,000 people, MRP has a 40% smaller mean absolute error than disaggregation. The middle panel on the right in Figure 1 shows the correlations

\(^{17}\) See the online appendix for more information.
between MRP estimates and the baseline measure. MRP varies little in its correlation with the baseline, and has a higher correlation with the baseline than disaggregated estimates at every sample size. While MRP fails to reach correlations with the baseline as high as for congressional districts, it is notable that MRP is correlated with the baseline at 0.65 or better in every sample size. Finally, the lower-right panels shows how often MRP “beats” disaggregation for state senate districts. For individual district estimates, MRP wins 80% of the comparisons in the smallest sample and 66% in the largest sample. If we use simulated datasets as the unit of comparison, MRP wins 100% of the matchups in each sample size.

4.2. External Validation: Same-Sex Marriage Ballot Referendums

We further assess the performance of MRP by comparing the accuracy of MRP and disaggregation for predicting the results of state ballot initiatives on same-sex marriage. We use a question on the 2004 NAES that asks whether respondents support state laws permitting same-sex marriages.\(^\text{18}\) We recode the responses as 1 for opposition to state laws permitting same-sex marriage and 0 otherwise (“no”, “don’t know”, or “refused”). We then compare the district-level results to actual referenda on state constitutional amendments prohibiting same-sex marriage. California, Ohio, and Wisconsin make such data available at the district level, and we were able to build district-level aggregates from the precinct-level results made available by Arizona and Michigan.\(^\text{19}\) While these five states represent less state-level variation in size and attitudes than we would like, they are convenient in that all five states have districts with

\(^{18}\) There were approximately 17,000 respondents on this question.

\(^{19}\) Most other states make referendum results available at the county level, but the matching of counties to state senate districts is not nearly precise enough for our purposes.
relatively large populations. Thus, any advantage we find for MRP is likely to be magnified in states with smaller districts.

Figure 2 displays scatter plots of referendum results against disaggregated means in the panels on the left and against MRP estimates in the panels on the right. The results are encouraging for scholars who wish to use surveys to gauge district-level preferences of voters. Even the raw means are reasonably correlated with actual district-level votes, but the MRP estimates are clearly a much better predictor of the referenda results than the disaggregated estimates for both congressional and especially state senate districts.

FIGURE 2 ABOUT HERE

For state senate districts, the same-sex marriage MRP estimates significantly outperform disaggregation for predicting the referenda results. The MRP estimates show a correlation of 0.73 with the referenda results, while the disaggregated results show a correlation of just 0.53. Similarly, the disaggregated results have a mean absolute error of 10.2%, while the MRP results have a mean absolute error of just 6.6%. The results are closer for congressional districts. Here, MRP results have a mean absolute error of 5.6%, while the disaggregated results have a mean absolute error of 6.8%.

4.3. Replication for Other Issues

It is possible that same-sex marriage is unique in some way. As a result, we replicated our split-sample validity analysis of same-sex marriage for five other issues: abortion, environmental protection, minimum wage, social security privatization, and stem cell research. Figure 3 shows that the improvements yielded by MRP vary little across issues. For every issue and sample size, the MRP estimates have lower mean
absolute error than the disaggregated estimates. Moreover, MRP always “beats”
disaggregation in terms of total error. For individual district estimates, MRP wins
between 55% and 85% of the comparisons. If we use simulated datasets as the unit of
comparison, MRP wins 100% of the matchups in each issue and sample size.

FIGURE 3 ABOUT HERE

We also examine the relationship between MRP estimates and state referendum
results for minimum wage laws (Arizona and Ohio) and stem cell research (California
and Michigan). The results, presented in Figure 4, are similar to those for same-sex
marriage. For both issues, the MRP estimates are better predictors of state referendum
results than the raw, disaggregated estimates. On average, the MRP estimates have mean
absolute errors approximately 25% lower than the disaggregated estimates.

FIGURE 4 ABOUT HERE

5. Does MRP Outperform Presidential Vote Shares?

Even if MRP outperforms disaggregation, presidential vote shares could still be a
more reliable correlate of public opinion. Empirical researchers in need of a catchall one-
dimensional proxy for district ideology have typically turned to the district-level
presidential vote. This strategy has a number of advantages, especially given its potential
for meaningful time-series analysis. Yet one of several drawbacks is that presidential
voting might be driven by preferences on multiple issue dimensions, and the salience of
these dimensions might vary across districts and over time. Presidential voting might be
a useful proxy for district ideology on one dimension and not another.

20 In Arizona and Ohio, we have referenda data on minimum wage laws. The Arizona initiative
raised the state minimum wage from $5.15 to $6.75, while the Ohio initiative raised it to $6.85.
In California and Michigan, we have referenda data on ballot initiatives to fund stem cell
research. For these issues, we compare the referenda results to the disaggregated and MRP
estimates calculated using our 30,000 person sample (see above).
We are now in a position to evaluate whether MRP estimates of preferences on specific issues display higher correlations with “true” congressional district public opinion on those issues than presidential vote shares, and we can do this for several distinct issues (Figure 5).21

FIGURE 5 ABOUT HERE

We find that presidential vote shares generally have a correlation with public opinion between .6 and .7. This is a rather impressive correlation, and it should be somewhat heartening for researchers who wish to continue using presidential vote shares as catch-all proxies for district-level ideology, especially those who require time-series variation. Nevertheless, we also find that the MRP estimates generally outperform presidential vote shares for estimating public opinion on our selected issues. MRP estimates have substantially higher correlations with “true” public opinion than presidential vote shares at all sample sizes for four of our six issues. On the other two issues (minimum wage and social security), MRP outperforms presidential vote shares in samples of 30,000 people and presidential vote shares have slightly higher correlations with the baseline in smaller samples.

6. How much does increasing MRP model complexity increase accuracy?

Our results thus far indicate that MRP generally yields significantly stronger estimates of district public opinion than disaggregation or presidential vote shares. But what causes these gains? The gains could be due to the individual-level demographic predictors in the model. Alternatively, they could be due to the partial pooling of

21 Unfortunately, data on presidential vote shares are not readily available for state legislative districts. As a result, we focus our analysis on congressional districts.
observations across districts using the geographic predictors in our multi-level model. At the state level, Lax and Phillips (2009) find that most of the gains from MRP in the context of same-sex marriage come from the combination of geography and demographics. But the greater geographic variation across districts may make geography more useful for estimating the public opinion of districts than states.

We evaluate four possible MRP models to estimate the public opinion in congressional districts, along with disaggregation, and presidential vote shares (Figure 6). We run 500 simulations, applying each method to a national sample of 5,000 survey respondents. We use the remainder of the sample to measure the baseline public opinion in each congressional district.

FIGURE 6 ABOUT HERE

First, we consider MRP using only demographic predictors. This model does not include any geographic modeled effects, and is similar in spirit to the simulation efforts of the 1960s (e.g. Pool and Abelson 1961) in that the only variation across districts is their demographic composition. We find that a demographics-only model generally outperforms disaggregation. This is particularly striking since our individual-level demographics model is very simple.

Second, we consider a model that includes only a simple geographic model, with district, state, and region effects. This model allows partial pooling of districts toward the national mean, to an extent determined by the district sample. But the model does not include any district or state-level predictors. We find that the partial pooling in the simple

22 Social security is the only issue where disaggregation outperforms a simple model with just demographics. This is largely because there are particularly weak correlations between demographics and public opinion on social security privatization.

23 Our model included only gender, race, and education. Unlike state-level MRP work, data limitations precluded us from including age in our demographic model.
geography model generally yields modest gains compared to the demographics-only model or disaggregation. But the gains are inconsistent across issues.

Third, we evaluate a model that omits individual-level demographics, but includes our full suite of district- and state-level predictors, such as the district’s average income (see equations (2), (3), and (4)). This model yields substantial gains on every issue stemming from the inclusion of district and state covariates in our multi-level model.

Finally, we evaluate our full multi-level model. We find that the full multi-level model only modestly increases the correlations compared to the full geography model for the majority of our issues. In other words, a multi-level model with only geographic predictors (e.g., the district’s average income and the state’s religiosity) generally yields estimates almost as good as our full MRP model with individual-level demographics. Thus, in some contexts in which the researcher has a powerful set of district-level predictors, it may be possible to omit the individual-level demographics entirely. This would reduce the “start-up cost” required to estimate district level public opinion since it may be possible to remove the post-stratification step from the analysis. Nonetheless, we recommend running a full MRP model with demographics for most applied questions. First, the costs associated with the MRP model are relatively trivial. Second, the full MRP model yields substantial gains for four of our six issues. Thus, it should increase the accuracy of district-level public opinion for most issues. Third, the demographic variables are often of interest in their own right. For instance, it may be of interest to break down public opinion by race or gender.25

25 For example, in the online appendix we show the coefficients for the demographic predictors of public opinion on same-sex marriage.
7. Conclusion

This article addresses a crucial question in the study of Congress, state politics, public opinion, and political geography: How should we measure public opinion at the district level? There is no consensus on this important question in the extant literature. Perhaps the most attractive strategy is to obtain a very large sample and take the disaggregated mean or median of the relevant survey response in each district (e.g. Clinton 2006). But this approach falls apart in the smaller datasets that are far more typical in applied research on specific issues. As a result, many applied researchers have simply used district-level presidential votes as a proxy for public opinion. This approach, however, makes it impossible to disaggregate district public opinion into individual issues or issue dimensions, or to examine the relationship between district-level preferences and voting behavior.

In this paper, we show that MRP yields estimates of district public opinion that are consistently superior to disaggregated means or presidential vote shares. Indeed, the gains at the district level are even larger than the gains shown by Lax and Phillips (2009) at the state level. Thus, most applied researchers who require an estimate of district-level public opinion on specific issues or bundles of issues should consider employing the MRP approach rather than using disaggregated means or presidential vote shares.

For congressional districts, we show that MRP clearly outperforms disaggregation to estimate public opinion in congressional districts at even small and moderate sample sizes. At larger sample sizes (30,000+), the difference between MRP and disaggregation

\[26\] However, our findings also imply that presidential vote shares may be sufficient for questions requiring a longer time series or where survey data is unavailable.
is smaller.27 As a result, given a sufficiently large sample size, some researchers may choose to simply use the disaggregated estimates due to the simplicity and convenience associated with this approach. But even in samples at the limit of most large-scale surveys, MRP consistently outperforms the disaggregation approach and presidential vote shares. Thus there is little or no disadvantage to using MRP for most research questions. For state senate districts, we show that MRP outperforms disaggregation at all sample sizes. Moreover, the accuracy of MRP estimates varies little across sample sizes. This suggests that a national sample as small as 5,000 is sufficient to produce reasonably accurate estimates of public opinion in every state senate district in the country.

Our results also suggest a number of additional lessons for scholars seeking to use MRP to estimate district public opinion in the United States and beyond. First, a potential weakness of MRP is that due to the unavailability of district-level demographics broken down by voters and abstainers, estimates are based on survey responses from all adults rather than voters. Nevertheless, MRP estimates perform well in predicting the opinions of voters as expressed in referenda (see Figures 2 and 4).28 Thus, MRP estimates appear to be useful for predicting the public opinion of voters. However, researchers should be mindful of the distinction between voters and all adults, and employ caution when deploying MRP, especially if attempting to analyze low-turnout elections where the public opinion of voters may differ from all adults.

Second, although most existing applications of MRP and related techniques rely on the inclusion of election results in the model (e.g. Park, Gelman, and Bafumi 2004), it

27 In national samples significantly larger than 30,000 respondents, disaggregation may sometimes yield better estimates.

28 The MRP estimates also perform well at predicting baseline estimates of “true” public opinion using only survey respondents that indicated they voted. See online appendix for more details.
is possible to get very reliable estimates of district public opinion without relying on election results. This makes MRP estimates a viable tool for congressional scholars seeking to examine the impact of various district-level issue preferences on contemporaneous elections since the MRP estimates are arguably not endogenous to election outcomes. More broadly, this strategy solves a classic problem in the electoral geography literature: theories often focus on the distribution of issue preferences across districts (Gudgin and Taylor 1979; Snyder 1994; Callander 2005), but empirical researchers are often forced to examine the distribution of election results instead.

Third, very small national samples (2,500 people) produce reliable estimates for congressional districts and moderate-sized samples (5,000 people) can produce reliable estimates for state legislative districts on many issues. For the first time, this means that congressional and state politics scholars can examine whether legislators are responsive to public opinion on individual issues. Moreover, the distribution of political preferences across districts is an important topic in other countries with winner-take-all districts, such as Australia, Canada, and the UK. Given the sample sizes of the most commonly used surveys in these countries and the ready availability of district-level census reports, MRP is a promising technique for the production of sensible district-level preference estimates.

Finally, the strength of our model stems partially from the district- and state-level covariates we include in our MRP model. Our covariates are particularly well suited for social issues such as same-sex marriage and abortion. This suggests the importance of optimizing an MRP model for a particular research question. For instance, a researcher seeking district-level public opinion estimates on social security would want to include additional district-level covariates related to opinion on business and financial issues.
References

Gudgin, G. and Peter J. Taylor. 1979. Seats, Votes, and the Spatial Organization of

The top panel plots the mean absolute error across districts and simulation runs for MRP (•) and disaggregation (◦). The second panel shows the correlation of the MRP and disaggregated estimates with the baseline measures. The bottom panel shows how often the MRP error is smaller than the disaggregation error using (■) each district estimate (across districts and simulation runs) as the unit of analysis and using (□) each simulation run as the unit of analysis (averaging over districts within each simulation run). The national sample sizes are on the left axis, and the values plotted are indicated along the right axis.
This figure shows that in national samples of 17,000, MRP outperforms disaggregation for predicting state referenda results on same-sex marriage.
This figure compares MRP and disaggregation for six issues and four national sample sizes. The left-most column plots the mean absolute error across districts and simulation runs for MRP (•) and disaggregation (◦) for cong. districts. The next column shows how often the MRP error is smaller than the disaggregation error using (■) each district estimate as the unit of analysis and using (□) each simulation run as the unit of analysis (averaging over districts within each simulation run) for cong. districts. The right two columns make the same comparisons for state senate districts.
FIGURE 4 -- Cross Validation of MRP Estimates with Minimum Wage and Stem Cell Referenda

This figure shows that in national samples of 30,000, MRP outperforms disaggregation for predicting state referenda results for minimum wage and stem cell research funding.
This figure compares MRP estimates and presidential vote shares for six issues and four national sample sizes. For each issue, it plots the correlations of presidential vote shares (○) and MRP (•) with the baseline public opinion in each congressional district.
We apply MRP to 5,000 person national samples to estimate congressional district public opinion, using four models of varying complexity. We show the correlation of each set of MRP estimates to the baseline estimate, along with the correlation using disaggregation and presidential vote shares. Values plotted are indicated along the right axis.