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Cournot Versus Bertrand: A Dynamic Resolution

1: Introduction

Formal analysis of oligopoly has focussed on two basic models: Cournot and Bertrand.

Cournot analysis assumes that a Þrm determines its sales while price is determined by some

unspeciÞed agent so that market demand equals the total amount offered. Bertrand ana-

lyis assumes that a Þrm determines the price at which it sells its output with Þrms being

absolutely obligated to immediately meet the resulting customer demand. Unfortunately,

these models have very different predictions in many applications. This paper examines a

dynamic game wherein the Þrm sets both its output and its price, imposing neither of the

artiÞcial and unrealistic strategic limitations of the Cournot and Bertrand models. In doing

so, we Þnd that noncooperative dynamic oligopoly looks like neither simple static model in

general but, in a limited sense, incorporates both as special cases. Despite its hybrid nature,

followup work has shown that this model is less ambiguous when addressing speciÞc issues,

such as merger incentives. We show that dynamic analysis incorporating both output and

price strategies is tractable, and argue that it is more representative of actual markets.

It is well-known that the Cournot and Bertrand models are substantial simpliÞcations of

Þrms� strategies, but are used in a hope to approximate the �true� game. Since neither is a

clearly superior approximation, both are used whenever a speciÞc issue is examined. While

this is great for fattening journals and vitas, the result has been a rich diversity of theories

yielding no clear predictions about important questions since the answers generally depend

on the choice of strategic instrument. For example, Gal-Or (1985) shows that the incentives

of oligopolists to share information depends whether competition is in prices or quantities.

Fershtman and Judd (1987) show that owners� incentives to strategically manipulate the

incentives of their managers depends on whether competition is in price or quantity. Even

the question of whether Þrms want to merge depends on the model used (see Salant et al.).

Bulow, Geankoplos and Klemperer (1985) (BGK) show that this ambiguity is pervasive in

oligopoly theory. They argue that a critical feature of any model is whether the strategic

variables are strategic complements or strategic substitutes, that is, whether a marginal in-

crease in my strategy will increase or decrease the marginal proÞtability of my opponents�
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strategies. They show that many standard arguments concerning strategic investment, entry

deterrence, product proliferation, and learning curves are reversed when reasonable alterna-

tive strategic formulations are used. While the BGK focus is often helpful, it is limited to

special contexts where all variables are either strategic complements or complements.

This sensitivity to strategic formulation is a major weakness of oligopoly theory, and

leads us to ask how the correct speciÞcation of oligopolistic interaction is related to the

structural elements of an industry. This problem has been addressed in several inventive

ways. Some have examined the issue by slightly extending the static game into a dynamic

model. A good example of this is the analysis of Kreps and Scheinkman (1983). They

argue that if Þrms Þrst choose their capacity, and only later are allowed to commit to a

price, the outcome will be the Cournot equilibrium. This is arguably a reasonable game to

examine since it models the intuition that capacity choices are made prior to any binding

price decisions. However, they make special assumptions concerning demand, costs, and

rationing. In particular, Davidson and Deneckere (1986) have shown that this result is

sensitive to reasonable but not compelling assumptions made by Kreps and Scheinkman

concerning the off-equilibrium path disposition of residual demands.

Others have appended the usual static game with a preliminary game wherein the players

register their preferences over the games to be played. Leading examples of this approach

are Singh and Vives (1984), and Klemperer and Meyer (1986). While these analyses indicate

which game the players want to play, they suffer from a lack of realism since we never observe

such a game being played. They argue that such choices are implicit in investment decisions.

While that may be somewhat true, few options force either extreme mode of behavior. A

robust analysis of these issues would permit the continuum of possibilities which lie between

the extremes of precommitment to price and precommitment to quantities.

The conjectural variations literature is another attempt which tries to represent dynamic

considerations in a static framework. However, the lack of any extensive form game basis for

conjectural variation analysis makes it difficult to evaluate. This is particularly unfortunate

since it is often used as a basis for empirical analysis of strategic interdependence (e.g., see

Gollop and Roberts). However, our model could be viewed as a foundation for the empirical
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version of conjectural variations since we can compute the reaction of a Þrm to recent (but

past) behavior of competitors. This view of conjectural variations is the same as examined

in Riordan (1985), the difference being that Riordan concentrated on equilibrium reactions

to information ßows, whereas we are examining reactions to a different set of strategies. 1

This paper begins with the premise that efforts to determine which static game is correct

are futile since both are so clearly wrong. In the real world, Þrms leave neither output nor

price for an automatic mechanism to determine. Firms choose both the price at which they

sell their output and the amount which is produced; any formulation of Þrms� decisionmaking

which eliminates either choice is implausible, particularly if answers to important questions

depend on which strategy is arbitrarily thrown out of the analysis. This view is implicit

in the earlier work cited above, but those models do not allow simultaneous and repeated

choices of output and price, dynamic features of real life.

In static models, Þrms cannot be allowed to choose simultaneously both price and quan-

tity 2 since the Þnal price-quantity outcome must be consistent with consumer demand. To

avoid these problems, this paper adds a generally neglected aspect of the real world: inven-

tories. There has been some effort to include inventories in oligopoly analysis, with Kirman

and Sobel(1974) being the earliest and almost only example of dynamic oligopoly analysis

with inventories 3. If a Þrm has the ability to draw on existing inventories when current

demand exceeds current output, or augment them when current demand falls short of cur-

rent output, then it can choose both the current price and the current level of output. The

realism of such a speciÞcation is clear since Þrms do choose both the price at which they

sell their output and the amount which they produce, and unsold output generally survives

(albeit at a cost and with some decay) to be offered for sale the next day. This is true even

1 In fact, future work will concentrate on integrating the strategic concerns of this paper and Riordan�s
informational concerns.

2 Strictly speaking, it is not necessary to choose between the strategic variables if rationing rules are
speciÞed to handle the cases where demand and output are not equal. We do not pursue analysis of such
games here because it would be contrary to this essay�s point that any such static analysis is, at best, an
unreliable approach to modelling a continuing stream of simultaneous output and price decisions by Þrms in
a dynamic world.

3 See also Arvan (1985), which focussed on general existence problems, assumed Cournot competition,
and assumed only a two period horizon. Inventories have also been used by Rotemberg and Saloner(1989) to
examine collusion incentives in otherwise standard oligopoly models; this paper focusses on non-supergame
phenomena
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of some �perishables�, such as �fresh� milk. In most industries, unsold output does not

decay immediately, and unexpectedly heavy demand can be met out of inventories as well

as current output.

Adding inventories to our analysis is really not new, since they are implicit in all oligopoly

models if those models are to be taken as snapshots of a dynamic reality. The assumptions

implicit in oligopoly models are, however, never mentionned. One way to view the Cournot

and Bertrand models is that they implicitly assume that any nonzero level of inventories is

inÞnitely painful for Þrms; therefore, the Bertrand model forces each Þrm to produce realized

output, and the Cournot forces each Þrm to sell all output. Inventories are more explicitly

present and somewhat more reasonably handled in Kreps and Scheinkman, and Davidson

and Deneckere, where the value of unsold output is zero. However, in these models, there is

a cost to not having enough output to meet demand, implying that the marginal value of

inventories in equilibrium has a discontinuity at zero. If we were at the end of time or if the

good were inÞnitely perishable, the zero marginal valuation of inventories is reasonable, but

outside of those cases a smoother treatment of the valuation of inventories is more reasonable.

We are going to make less extreme assumptions concerning the costs of inventory holding.

The advantage of adding inventories to our analysis is also clear when we want to inves-

tigate particular issues of how investment and output are distorted for strategic purposes.

Since we do not have to make a choice between price and quantity as the strategic variable,

results concerning such issues cannot be sensitive to that choice. An appeal to strategic

complementarities will not suffice since we will have a mixture of strategic substitutes and

complements. We also argue that there is no tractibility excuse for focussing on the simpler

Bertrand and Cournot models.

One approach may be to just add a value function for inventories. That, however, is

not an appropriate way to proceed since then results will depend critically on the arbitrary

assumptions made concerning the valuation of inventories. In reality, the value of inventories

is not exogenous to the game since it is determined by the nature of future competition.

Furthermore, changes in the nature of competition, such as when a merger occurs, will affect

the valuation of inventories. Therefore, if we want to examine issues related to changes in
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market structure, it is not legitimate to treat the valuation of inventories as being exogenous.

Therefore, we specify the cost of inventories, a natural technical parameter, but then examine

games of arbitrary duration. In this way we do not let arbitrary speciÞcations of the terminal

valuation of inventories affect the results. In this way (as well as others) this approach differs

from that of Friedman (1988) who also discusses price and quantity competition, but with a

two-stage game.

We examine the basic nature of competition, determining when the dynamic equilibrium

looks Cournot, Bertrand, or of some intermediate nature. In order to focus clearly on the

main ideas we examine linear-quadratic models, a particularly tractable class. These models

assume quadratic utility functions, quadratic inventory holding cost functions, and quadratic

production costs. If we stopped here, some may argue that the contest was rigged because

our model does not allow for the precommitment aspect of output which is part of the appeal

of the Cournot model, as formalized in Kreps and Scheinkman. To examine these arguments,

we next also allow adjustment costs. With these models, we will examine not only the actual

equilibrium prices, but also the strategic effects of investment, learning curves, and strategic

incentive manipulation, issues which are all sensitive to strategic formulation.

In these models we generally Þnd that neither model is consistently a better approxima-

tion of our dynamic game. If short-run marginal costs are invariant to the rate of current

and past output and investment, then the Bertrand model appears to do better, where by

�better� we mean that prices tended to be closer to the static Bertrand level. However,

if there are substantial decreasing returns to scale or adjustment costs, then the Cournot

model does better in predicting the long-run nature of equilibrium. Our computational ap-

proach is able to make some judgments about the likelihood of these cases. For example,

examination of the structural parameter values in a linear-quadratic version of our model

and their implication for the critical elasticities indicates that the adjustment costs must be

relatively high for the Cournot model�s predictions to dominate.

Some aspects of linear-quadratic structures are unappealing; for example, they assume

that inventory holding costs are symmetric around some cost-minimizing level, and negative

inventories are permissible. To address concerns of robustness along those dimensions, ??
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discusses numerical partial differential equation techniques which can be used to examine

general models. A discussion of those results would take us far aÞeld from the basic story

here, however initial results indicate that linear-quadratic model results are robust to more

reasonable speciÞcations of inventory holding costs. However, much more work is needed.

2: General Model

We Þrst describe a general duopoly model of differentiated products with inventories,

abstracting from adjustment costs, learning, and investment. Firm i faces a demand for its

product in period t equal to dit = D
i (p1t , p

2
t ), i = 1, 2. To assure the continuity of proÞts

in prices, we assume that each Þrm�s demand is a continuous function of both Þrms� prices.

While this rules out the case of perfect substitutes, it is an inessential restriction since we

can come arbitrarily close to the perfect substitutes case. Note that the presence of some

imperfect substitution implies that the Bertrand equilibrium price will not be marginal cost.

We assume that production costs for Þrm i in period t equal a convex function of output,

Ci(q
i
t). If Þrm i�s inventory at the beginning of period t is I it , the cost to Þrm i of holding

inventory is assumed to be a convex function of I it , Hi(I
i
t), i = 1, 2, t, i = 1, 2. At this point

we allow negative inventories. They can be thought of as unÞlled orders, with the holding

cost representing the cost of keeping customers happy waiting for delivery. The possibility

of negative inventories is not pleasing, but we will make speciÞcations which should reduce

any undesirable properties which might arise. For example, we may assume that a positive

level of inventories is desirable for standard operations management reasons. For example,

grocery stores carry inventories of milk, not for competitive reasons but to minimize han-

dling costs. In fact, the only way to avoid having inventories of milk held by someone is to

have cows behind the store, certainly not a low cost alternative. Since we will usually make

assumptions about H which model these considerations, our equilibria will generally involve

positive inventories. In that case, negative inventories are contingencies which are away

from the equilibrium paths which we will compute, hopefully making assumptions about

these contingencies less important. While there may be some weaknesses in our formulation

of inventories, these assumptions allow us to tractably examine price and quantity compe-

tition in a truly dynamic model, and are more realistic than the assumptions implicit in
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conventional oligopoly analysis.

In each period, each Þrm independently chooses both the price of its good and its level of

output for that period. If output exceeds demand, the unsold output is put into inventory,

and if demand exceeds output then inventory is drawn down to cover the excess. Firm i�s

inventory evolves according to

I it+1 = (1− δ)(I it + qit − dit)

indicating that next period�s inventories equals current inventories plus net additions less

depreciation, at rate of δ ∈ [0, 1), between today and tomorrow.
Note that this formulation of inventories assumes that the good is somewhat durable, but

that our formulation of demand assumed that only current prices affect demand, implying

that there is no durability from the consumers� perspective. We justify this on several

grounds. First, there may be substantial economies of scale in storage, making it impractical

for individuals to store the good. For example, would you buy milk from your neighbor,

even if it had the same expiration date as that in the store? Second, the point of introducing

inventories into our analysis is to allow Þrms to choose price and quantity, and as long as the

goods are not signiÞcantly durable, ignoring consumer storage should not affect our results

concerning price and output substantially.

Within any period, the Þrm incurs production and inventory maintenance costs, and

earns income from sales. The net income in period t equals

πi(pt, qt, It) = p
i
t D

i(p1t , p
2
t )− Ci(qit)−Hi(I it)

where pt = (p
1
t , p

2
t ) and qt = (q

1
t , q

2
t ).

We assume that inventories are perfectly observed by both Þrms at the beginning of

each period. This implies that we have a complete information dynamic game. We focus

on the closed-loop equilibrium 4 of our long-but-Þnite-horizon games. In our case, closed-

loop equilibria are those subgame perfect equilibria in which each player�s strategy is only a

4 Some game theorists have recently begun using the phrase �Markov perfect equilibria� to describe what
appears to be the same concept as was earlier deÞned to be �closed-loop equilibria.� Since this paper uses
the old technology and extensions of this model will naturally use the literature which still uses the original
terminology, I will also use the original terminology.

7



function of the current level of inventories. These restrictions are important. For example,

inventories have been studied as a tool of implicit collusion (see Rotemberg and Salonar), but

only in inÞnite-horizon models. Our focus on closed-loop equilibria in Þnite horizon games

will not Þnd such equilibria since our Þnite-horizon equilibria will be unique. We choose to

examine the purely noncooperative equilibria since we want to make comparisons with the

predictions of the static models, which are always purely noncooperative.

It is clear, however, that our results will be important for considerations of noncooper-

atively supported cooperation. The possibility of tacit collusion depends on the strategic

formulation, with collusion being easier with price competition. The closed-loop equilibria

computed here can serve as the building blocks for constructing trigger strategy equilibria

which implement tacit collusion, and evaluating whether the Bertrand or Cournot model is

better at predicting the viability of tacit collusion.

The state variable, I, of the game is the vector of the Þrms� beginning-of-period inventory

holdings, (I1, I2). Closed-loop equilibria can be expressed as solutions to a pair of dynamic

programming equations since each Þrm is solving a dynamic programming problem given

the strategy of its opponent. We deÞne the value function of each Þrm to be a function of I:

V i(I) = max
pi,qi

n
πi(p, q, I) + βV i

³
(1− δ)(I + q − d)

´o
We need examine only pure strategy equilibria. If I is the current state of inventories

then P 1 (I) will denote its equilibrium choice for p1 and Q1 (I) will denote its choice for q1.

P 2 (I) and Q2 (I) will denote Þrm two�s equilibrium strategies. Finally, if Q ≡ (Q1, Q2) and
P ≡ (P 1, P 2), then

I+ (I) = (1− δ) (I +Q(I)−D
³
P (I)

´
expresses the equilibrium value of next period�s inventories if the current inventory holdings

are I.

The Þrst-order condition for Þrm one�s choice of p1 implies that P 1 (I) satisÞes

P 1d11(P
1, P 2) + d1(P 1, P 2) = β(1− δ)

³
V 11 (I

+(I)) d11 + V
1
2 (I

+(I)) d21
´

and Þrm two�s equilibrium choice for q1 must satisfy

C01 (q
1) = βV 11

³
I+ (I)

´
(1− δ)
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Existence and uniqueness are nontrivial problems in general, but are easily handled in the

case of the linear-quadratic speciÞcation which we study below. We shall Þrst discuss the

qualitative features indicated by the Þrst-order conditions.

The price condition states that the current marginal revenue of lowering price is equated

with the marginal impact on the equilibrium value to Þrm one of the inventory levels and

the output condition equates the marginal cost of current production with its contribution

to the next period�s value of the game to Þrm one. If the demands were independent, that

is, the demand for each good is unaffected by the price of the other, then one solution is that

each Þrm ignores the other and chooses a monopoly strategy. In this case, the Þrst-order

conditions for price and quantity imply

p1d11 + d
1 = C 0(q1) d11

which is the standard marginal revenue equals marginal cost condition. In general, we have

p1d11 + d
1 = C 0(q1) d11 + β(1− δ)V 12 d21

implying that marginal revenue equals marginal cost plus the marginal value to Þrm one of

an increase in Þrm two�s inventories. If ηij is the elasticity of demand for good i with respect

to pj , we can rewrite this as

p1 (1 + 1/η11) = C
0(q1) + β(1− δ)V 12 (η21/η11) (d2/d1)

In this case of substitutes, η21 > 0.

It is natural to examine the case V 12 < 0 since this says that Þrm one�s proÞts decline

as Þrm two�s inventories rise. This is natural since inventories are a low cost source of

output for the rival; hence, large inventories likely reduce the marginal cost of fulÞlling

demand making a rival more aggressive. If V 12 < 0 the Þrst-order condition shows that the

standard monopoly pricing formula is augmented by a positive term representing the ratio of

elasticities and demands, and V 12 /p1. Under these conditions, the inventory game acts as if

we took the static game and increased marginal cost, indicating a less competitive outcome

than the static Bertrand case. While this observation is suggestive, we must of course wait

for a complete analysis to see if V 12 < 0 in general.
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Theorem 1 is immediate from the Þrst-order conditions.

Theorem 1: If the marginal cost of production, C 0(q), is constant over q ∈ [−∞,∞], then
the set of equilibrium outcomes include the collection of static Bertrand equilibrium prices.

In general, if V 12 < 0 then price exceeds the static Bertrand equilibrium prices.

Proof: Let I∗ be the level of inventories which minimizes the present value of inventory

holding costs. Consider the strategy of charging a price consistent with some Bertrand

equilibrium, and producing enough output so as to begin the next period with inventory

equal to I∗. The value functions for these strategies satisfy the equilibrium conditions stated

above.

Theorem 1 indicates that the Bertrand model is better under conditions where inventory

holding has no impact on the equilibrium marginal costs since marginal costs are constant.

Note that any static Bertrand equilibrium may result. Their may be others, but Theorem 1

shows that the Bertrand equilibrium are always present in these cases. In cases where equilib-

rium is unique, as in the linear-quadratic models examined below, the Bertrand equilibrium

is the only equilibrium.

3: Linear-Quadratic Model

The general model is difficult to examine. While existence is not a serious problem5 it is

unlikely that we would be able to determine any qualitative properties about equilibrium. In

order to obtain precise results, we will examine a simple linear duopoly model of differentiated

products with inventories.

We assume that Þrm i faces a demand for its product equal to

di = aipi − bipj − ci, i, j = 1, 2, i 6= j

We assume that production costs for Þrm i equal

Ci(qi) = miqi + niq
2
i , i = 1, 2.

5 For example, if the model were formulated in continuous time with a Brownian noise additive shock to
the state variables, then existence of equilibria with smooth value functions for the Þrms could be proved
using standard existence theorems for stochastic differential games.
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The inventory technology is also given a linear-quadratic speciÞcation in order to maintain

tractability. The cost to Þrm i of holding an inventory Ii equals

Hi(I
i) = hiI

i + gi(I
i)2 , i = 1, 2.

with inventories following I it+1 = (1− δ) (I it + qit − dit).
While the linear-quadratic speciÞcation has some unappealing properties when viewed

globally (e.g., negative inventories are possible), as long as hi is sufficiently negative the

efficient level of inventories is positive, a reasonable assumption. Hopefully, our linear-

quadratic speciÞcation operates essentially as only a local restriction on the nature of the

inventory holding costs. Below we discuss ways to check this presumption.

The resulting game between the two Þrms is a simple linear-quadratic game with well-

understood properties. We will assume that the game has an inÞnite horizon, but examine

only the equilibria which are limits of Þnite horizon games. Given the linear-quadratic

speciÞcation of the game, there is only one such equilibrium. This equilibrium is also known

as the closed-loop equilibria since it is a subgame perfect equilibria in which each Þrm�s

strategy depends only on the current state of the game, i.e., the inventory holdings.

We will base our analysis on the variable yt,

yt ≡ [1, I1t , q1t, p1t, I2t , q2t, p2t, ]0

and the vector of control variables is

xt ≡ [q1t, p1t, q2t, p2t]0

Since proÞts equal

πi(y) = a1p
2
1 − b1p1p2 − c1p1 −m1q1 − n1q21/2− h1I1 − g1(I1)2

we can express the game�s payoffs as a quadratic form,

πi(yt) = (1/2) y
0
tRiyt, i = 1, 2

where R1 can be

R1 =



0 −h1 −m1 −c1 0 0 0
−h1 −2g1 0 0 0 0 0
−m1 0 −n1 0 0 0 0
−c1 0 0 2a1 0 0 −b1
0 0 0 0 0 0 0
0 0 0 −b1 0 0 0


11



and R2 is similary deÞned.

The law of motion can be expressed as

yt = Ayt−1 +Bxt

where the coefficients are:

A =



1 0 0 0 0 0 0
(1− δ)c1 1− δ 1− δ −(1− δ)a1 0 0 (1− δ)b1

0 0 0 0 0 0 0
0 0 0 0 0 0 0

(1− δ)c2 0 0 (1− δ)b2 1− δ 1− δ −(1− δ)a2
0 0 0 0 0 0 0
0 0 0 0 0 0 0



and

B =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1


The solution to V i (see any reference on linear-quadratic games, Kydland (1975) being

a good one) takes the form of coupled Ricatti equations and can be computed recursively

given a terminal valuation for inventories. Suppose that the solution to V i is a quadratic

form:

vit(yt−1) = (1/2) y0t−1Sit yt−1

DeÞne B to be

B = [b1, b2]

Let Ht be

Ht =
·
b01
P
1t

b02
P
2t

¸
where Σit is

Σit = Rt + βSi, t+1, i = 1, 2
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The Þrst-order conditions for Þrm 1 when choosing x1t ≡ (p1t, q1t) imply that

0 = b01Σ1tb1x1t + b
0
1Σ1tb2x2t + b

0
1Σ1tAyt−1

First-order conditions for Þrm 2 imply a symmetric condition. If we combine these two

systems of linear equations, we Þnd that the equilibrium rule is

xt = Gtyt−1

where

Gt = (HtB)
−1HtA

Furthermore, the quadratic form for the current value function is

Sit = (A+BGt)
0Σit(A+BGt)

The foregoing equations form a recursive set of matrix conditions. If period T were the

last period and SiT were Þrm i�s Þnal payoff, then we can compute the payoff for periods

t < T by iterating the above process. Theorem 2 is standard; see, for example, Kydland.

Theorem 2: There exists a unique closed-loop sequence of equilibria given any concave

terminal valuation function.

One of the special, but useful, features of a linear-quadratic framework is the certainty

equivalence property. More speciÞcally, if the laws of motion for the state variables are

subject to additive shocks, then the equilibrium strategies for the stochastic game are the

same as for the deterministic game. Such additive shocks could come from noise in either

production or demand. Therefore, we will be able to interpret our results as applying to

such stochastic environments.

4: Adjustment Costs, Investment, and Learning

The model described in the previous section is too simple to be of much interest. At

this point we add details which make the model more realistic, albeit still conÞned to a

linear-quadratic framework.

One argument for the Cournot model is that it corresponds to the observation that it is

much easier to alter one�s price than one�s output. Firms are locked into a scale of production
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by previous investment choices, whereas prices are set at the last moment before a sale. This

intuition lies at the heart of the Kreps and Scheinkman analysis.

This consideration is largely absent in our model so far since, other than through in-

ventories, current decisions have no impact on future conditions. In fact, inventories cannot

represent any adjustment cost since an unexpectedly high inventory, possibly arising from

unexpectedly high output in the previous period, will often lead to reduced output today,

just the opposite from what an adjustment costs story would indicate. In order to consider

the Kreps-Scheinkman argument we add adjustment costs to our model. More precisely, we

now assume that total production costs for Þrm i in period t equal

Ci(qit) = miqit + niq
2
it + γi(qit − qi,t−1)2/2.

This, of course, means adding the outputs of each Þrm to the list of state variables.

This structure allows us to distinguish between short-run and long-run costs. The adjust-

ment costs are part of short-run marginal costs. However, in a steady state they contribute

nothing to total costs. Hence, mi and ni represent the long-run marginal cost function.

We will often focus on the case ni = 0 since that is the case of linear long-run costs, the

assumption in Kreps and Scheinkman.

As we discussed in the introduction, investment and learning have received attention in

the literature on preemption, with the results often relying on a Cournot speciÞcation. To

examine this sensitivity, we will add both learning and investment to our model. To do so,

we now make mi, Þrm i�s marginal cost at zero output, a state variable obeying the law

mi, t+1 = −λiqit − µifit + ψimit + (1− ψi)m̄

where fit is Þrm i�s investment effort at t, and m̄ is the long-run marginal cost if there is

neither output nor investment. We assume that the cost of investment effort is

ξifi + θif
2
i

We assume λi, µi, ξi, θi, and ψi, and are all positive, and ψi ≤ 1. This speciÞcation models
both learning and investment since previous output and investment reduce current costs. The
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assumptions concerning ψ help to keep the equation stable since they generate a tendency

for m to return to m̄.

Adding adjustment costs, learning, and investment to our model allows us to address a

much richer set of issues. We should note, however, that the strictures of the LQ form limit

the robustness of the analysis. For example, investment here causes the marginal cost curve

to shift out in a parallel fashion. A CRTS speciÞcation for technology in terms of capital

and labor, such as Cobb-Douglas, would instead have investment in capital cause a clockwise

rotation of the marginal cost curve. While we cannot model this in the LQ model, we will

focus our discussion on aspects of the results which are most likely to be robust.

5: Steady-State Prices and Equilibrium Reactions

We shall now begin comparing the results of our dynamic model with the Cournot and

Bertrand models. The Þrst index we use for this is the steady state price of our dynamic

model. A focus on the steady state is proper since the system will spend almost all of its life

there. Examination of the price is also important since that will be strongly related to the

allocative efficiency of equilibrium. Then we will examine the reactions in the equilibrium

strategies. This will tell us about biases in resource allocation due to strategic effects.

We cannot solve for the equilibrium in a reduced form fashion. However, numerical

computation of equilibrium is easy. We shall examine a range of examples, focussing on

their steady-state prices and the equilibrium strategies when the horizon is long. Table 1

summarizes the results. In Table 1, we assume a utility function over the two goods equal

to

U(x, y) = −(x+ y)2 + (x+ y)−B(x− y)2 +M

where M is money expended on other goods. This utility function is symmetric in the two

goods, and by varying B we can represent any symmetric quadratic utility function. When

B = 1 the products have independent demand, and when B = 0 they are perfect substitutes.

We will allow B = .5, .15, and .02; the value of B is displayed in the Þrst column of each

panel. In the next Þve columns, we vary the adjustment cost parameter, allowing γ = 0.0,

0.5, 2.0, 10.0, and 50.0 as we go left to right. We assume that m̄i = 30. The last column

in the Þrst two panels give the equilibrium price and quantity for the static Cournot case.
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Finally, the numeraire is chosen so that demand for each good is zero if the price for each

good is 100.

Table 1: Linear-Quadratic Model, No Investment, No Learning
mbar=30, n=0, g=100, h=0, δ = 0, cinvl=0, cinvq=2, ainv=0, lrn = 0

γ = 0 .5 2.0 10.0 50.0 Cournot
Equilibrium Price
B = 0.50 58.00 58.20 58.56 59.10 59.44 60.00
0.15 44.49 46.32 48.89 51.66 53.04 55.56
0.02 32.64 37.54 43.02 47.49 49.47 53.64
Equilibrium Output
0.50 10.50 10.45 10.36 10.22 10.13 10.00
0.15 13.88 13.42 12.77 12.08 11.74 11.11
0.02 16.84 15.61 14.24 13.12 12.63 11.59
Price-to-Marginal Cost Ratio
0.50 1.93 1.94 1.95 1.97 1.98
0.15 1.48 1.54 1.62 1.72 1.76
0.02 1.08 1.25 1.43 1.58 1.64
Bertrand vs. Cournot
0.50 0 0.10 0.28 0.55 0.72
0.15 0 0.17 0.39 0.64 0.77
0.02 0 0.23 0.49 0.71 0.80
Own Price Elasticity
0.50 -2.07 -2.09 -2.12 -2.17 -2.19
0.15 -3.07 -3.31 -3.67 -4.09 -4.33
0.02 -12.36 -15.32 -19.25 -23.06 -24.96
Cross Price Elasticity
0.50 0.69 0.69 0.70 0.72 0.73
0.15 2.27 2.44 2.71 3.02 3.20
0.02 11.87 14.72 18.49 22.16 23.98
Elasticity of Marginal Cost
0.50 0.00 0.17 0.69 3.41 16.90
0.15 0.00 0.22 0.85 4.03 19.56
0.02 0.00 0.26 0.95 4.38 21.05
Output Reaction to Output
0.50 0 -0.03 -0.06 -0.06 -0.03
0.15 0 -0.15 -0.21 -0.15 -0.07
0.02 0 -0.47 -0.38 -0.20 -0.09
Price Reaction to Output
0.50 0 -0.12 -0.40 -0.99 -1.50
0.15 0 -0.31 -0.95 -1.98 -2.73
0.02 0 -0.52 -1.36 -2.48 -3.24

We make assumptions concerning the inventories which hopefully minimize any idiosyn-

cratic role they play. We assume that the cost-minimizing level of inventories is zero and that

the inventory holding cost function has very high curvature. This is in an approximation

implicit in conventional Bertrand and Cournot analysis that inventories are prohibitively

costly. Centering the cost function at zero implies that the dynamically efficient level of

inventories is nearly zero; if this were not true then some output in each period would be
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devoted to replacing depreciated inventory, forcing the Þrm to operate at a higher point on

the marginal cost curve, and making comparisons with the static model difficult. The high

curvature assumption is made to eliminate other perversities, such as negative inventories,

from playing a role. We also assume that δ = 0. These restrictions are sensible at this point

since the purpose of this exercise is not to focus on inventories as a strategic tool, but rather

to compare the dynamic model with the static models.

In Tables 1 we focus on one basic case; the text below will discuss the impact of per-

turbations involving investment and learning. The basic case, described in Table 1, assumes

a CRTS technology, ni = 0, no investment, µi = 0, and no learning, λi = 0. Hence the

marginal and average cost are both 30. The various panels of Table 1 display the results.

The �Equilibrium Price� panel gives the steady-state price for each pair of B and γ. The

Þnal column is the Cournot price. Of course, Theorems 1 and 2 tell us that the Þrst column

of prices is the static Bertrand price. To get a handle on the relation between our equilibria

and the static Cournot and Bertrand predictions, we look at the �Bertrand vs. Cournot�

panel. The number measures the closeness to the Cournot price relative to the Bertrand

price. SpeciÞcally, if the number is .1, then the steady state price in that case equals the

Bertrand price plus ten per cent of the Cournot-Bertrand difference.

The results are informative and conform to some intuitive arguments. Generally speak-

ing, as long as adjustment costs are small, implying that the slope of the marginal cost

function is not large, the steady state price is close to the Bertrand level, as indicated by

Theorem 1. However, as adjustment costs and the slope in marginal cost become signiÞcant,

the steady state price is more like the Cournot price, a result similar to that of Kreps and

Scheinkman.

The critical role of adjustment costs is intuitively clear. This can be explained in our

model by considering the Þrms� equilibrium reaction functions. Suppose both Þrms were

charging the Bertrand price. If one Þrm unexpectedly raised its price, then it would lose

sales and enjoy an increase in its inventory, whereas its competitor would have to deplete

its inventory to satisfy unanticipated demand. This would, in the short-run, raise the the

competitor�s marginal cost since it would now have to increase output above its long-run
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level to get back to the desired level of inventories. The Þrst Þrm could could continue to

sell at the old rate and produce at a lower rate and lower marginal cost, but charge a higher

price since its competitor�s marginal cost has increased, for its output. Since we began with

the Bertrand equilibrium, the static effects on the Þrst Þrm�s proÞts of this deviation are nil,

whereas the dynamic effects are beneÞcial. Therefore, Þrms will want to raise price above

the Bertrand level. As the costs of adjustment rise, this ability to increase one�s opponent�s

short-run costs also increases, leading to greater incentives to raise price.

However, a close examination of the quantitative side of our equilibria shows that the

results are not too supportive of the Cournot model as a model of long-run equilibrium. This

is indicated by the panel labeled �Elasticity of Marginal Cost.� The numbers in that panel

tell the percentage increase in marginal cost which would accompany a one per cent increase

in output. This is a measure of slope for the marginal cost curve. For example, in the Cobb-

Douglas case, if capital share is one-third, then this elasticity is .5. We see that the cases

where the steady-state price is more than halfway to the Cournot level correspond to high

marginal cost elasticities. We say high because the interest rate is chosen to correspond to

a time period of a year. The results here are even less supportive of the welfare implications

of the Cournot model, since, if goods are nearly perfect substitutes, even when the price is

eighty per cent of the way to Cournot, the efficiency cost is only two-thirds of the Cournot

model.

These results tend to support the basic intuition of Kreps and Scheinkman, that if past

actions create a very steep marginal cost function, then the result will be similar to the

Cournot price. The advantage of our approach is that we were not distracted by the details

of rationing in off-equilibrium nodes of the game. Also, we can examine these arguments in

the context of a more realistic game.

The next several panels of Table 1 gives descriptive indices for the steady states of each

case. We see that the price-marginal cost ratios are within a broad, but sensible, as are

the own- and cross-price elasticities. These are displayed to show that the examples are not

perverse in the underlying structural paramaterizations.

The rest of the panels examine the equilibrium reactions to one�s opponents past behav-
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ior, as well as to one�s own deviations. Since Table 1 assumes that investment expenditures

do not affect anything, all reactions to investment decisions are zero. Of more interest are the

price and quantity reactions. First note that when adjustment costs are zero, Þrms do not

react to their competitor�s output decisions, nor does a Þrm respond to a competitor�s price

deviation. If an opponent raises his price, his opponent�s current sales increases, implying

an increase his output in the next period to bring inventories back to the target level. All

these facts were implied by Theorem 1.

In general, with positive adjustment costs, we Þnd that an increase yesterday in a com-

petitor�s output causes a Þrm to reduce its price and output today. This appears to be a

Cournot-like reaction. On the other hand, Þrms react to price increases by increasing price

and output, a Bertrand-like reaction. In our model, we really appear to have an intermediate

situation. In the static Cournot model, Þrms cannot alter output, and in the static Bertrand

model, Þrms are not allowed to alter their prices. In our dynamic model, the descriptions of

the true reactions have both Cournot and Bertrand features.

I will argue, however, that the reactions are more Bertrand than Cournot in substance.

This is seen by considering whether a Þrm beneÞts form his competitor�s reactions. Suppose

that we had just a Cournot model with adjustment costs. Then extra output by a Þrm today

would cause his competitor to reduce his output in the future, a beneÞcial reaction. On the

other hand, if we had a dynamic Bertrand model, a price reduction (resulting in higher

output) will cause a competitor to reduce future prices, a harmful reaction. In this model,

a choice to increase output or to reduce price will cause a competitor to react by, among

other things, reducing future prices. Since the equilibria are stable with positive roots, the

competitor�s reaction dampens over time, but never changes sign. Therefore, procompetitive

deviations prompt harmful reactions from competitors, an important feature of the static

Bertrand model.

With this framework, we can make some distinctions which are not possible in a stylized,

two-period analysis. The adjustment costs and the rising marginal cost curves correspond

to two different contributions to marginal costs. If n = 0, but adjustment costs are high,

we have a situation where the short-run marginal cost curve is nearly vertical at any point
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in time, but the long-run marginal cost curve is ßat. Our initial results indicate one needs

to make strong assumptions about adjustment costs in order to come close to the Cournot

outcome. Other computations show that the Cournot model becomes a better approximation

when n > 0, i.e., an increasing long-run marginal cost curve, even without adjustment costs.

The Cournot outcome is approximated by moderate choices for n and adjustment costs.

The third case of n < 0 is also of interest, particularly since our focus is on oligopolistic

industries where one possible reason for concentration is declining marginal costs. In this

case, calculations not displayed here show that the steady-state price may actually fall below

the static Bertrand price (remember, the static Bertrand price is above marginal cost).

Therefore, the static Bertrand and Cournot equilibria do not even bracket the long-run

possibilities in our dynamic model. The intuition for this result is straightforward. Suppose

that both Þrms are charging the Bertrand price. If one Þrm cuts its price a little and increases

its output to satisfy the extra demand, then its competitor will lose sales and have higher

inventories than anticipated. This increase in inventories will imply that the competitor

need not produce as much tomorrow, causing it to operate at a higher marginal cost in the

presence of falling marginal costs. The opposite argument also explains why prices move

towards the Cournot level as the marginal cost curve steepens.

The relation between the slope of the marginal cost and the equilibrium price-cost margin

raises some interesting possibilities for price-cost margins over time. Recently, there has been

substantial interest in the question of how price-cost margins move over the business cycles

(see Domowitz, Hubbard, and Petersen (1986), and Hall). Suppose that there are persistent

shocks to demand, as in a business cycle. If the short-run cost function displays decreasing

returns to scale, then the Þrms operate at a steeper region of their marginal cost functions

when demand is high than when demand is low. Since price-cost margins in our model

are greater when the marginal cost curve is steeper, this suggests that price-cost margins

are greater when demand is high. While there have been other arguments predicting the

movement of price-cost margins, this version is purely noncooperative and makes general

and unbiased assumptions about demand and costs. Unfortunately, this conjecture can be

investigated only in nonlinear versions of our model.
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While comparing steady-state prices may provide some useful information, it is unlikely

that the closeness of the steady-state price to either the Bertrand or Cournot price will tell

us anything about issues other than allocative efficiency. Any speciÞc question should be

reexamined in this model to determine which static model is a better approximant. The

nature of the reactions will be particularly important in addressing these questions. We

next reexamine some speciÞc problems in strategic interaction where the results have been

sensitive to strategic formulation.

The cases of learning and investment were investigated by allowing various choices for

µ and λ. The case of learning only was modelling in Table 2 by choosing λ1 = λ2 = .1

This resulted in lower prices and greater output, of course. The reactions were very similar,

except for the price reaction to a competitor�s price. When adjustment costs were low, an

increase in a competitor�s price caused a Þrm to react by reducing price. This is because a

Þrm has unanticipated sales when a competitor raises his price, resulting in greater output

in the future and, because of the learning, lower costs. However, in the presence of nontrivial

adjustment costs, the reaction returned to being positive as in Table 1.

Table 2: Linear-Quadratic Model, Investment, No Learning
mbar=30, n=0, g=100, h=0, δ = 0, cinvl=0, cinvq=2, ainv=1, lrn = 0

γ = 0 .5 2.0 10.0 50.0 Cournot
Equilibrium Price
0.50 56.5763 56.7803 57.1406 57.7004 58.0646 58.6525
0.15 42.3165 44.0834 46.6685 49.5817 51.0854 53.8081
0.02 29.9916 34.0788 39.8715 44.7756 47.0277 51.6642
Equilibrium Output
0.50 10.8559 10.8049 10.7149 10.5749 10.4839 10.3369
0.15 14.4209 13.9791 13.3329 12.6046 12.2286 11.5480
0.02 17.5021 16.4803 15.0321 13.8061 13.2431 12.0839
Marginal Cost
0.50 27.6272 27.6243 27.6222 27.6290 27.6419
0.15 27.2686 27.1812 27.1362 27.1814 27.2477
0.02 27.2462 26.5945 26.6720 26.8792 27.0130
Price-to-Marginal Cost Ratio
0.50 2.0478 2.0555 2.0686 2.0884 2.1006
0.15 1.5518 1.6218 1.7198 1.8241 1.8748
0.02 1.1008 1.2814 1.4949 1.6658 1.7409
Output Reaction to Investment
0.50 -0.0321 -0.0235 -0.0126 -0.0031 -0.0004
0.15 -0.2051 -0.1114 -0.0424 -0.0076 -0.0009
0.02 -1.9907 -0.3286 -0.0767 -0.0108 -0.0013
Price Reaction to Investment
0.50 -0.0857 -0.0837 -0.0717 -0.0392 -0.0133
0.15 -0.2140 -0.2155 -0.1702 -0.0790 -0.0244
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0.02 -0.3123 -0.3550 -0.2431 -0.0994 -0.0291

In all cases, however, the decision to increase output will cause a competitor to reduce

his price, a harmful reaction. Therefore, at the margin, the strategic effects reduce learning,

as in the Bertrand model, not the Cournot model.

Table 3 next examines the case of investment (but no learning) by taking the basic case

studied in Table 1, but setting µ1 = µ2 = 1.0. Since the investment reactions are nontrivial

in this case, we include these in Table 3. The important results are that a Þrm reduces its

price in response to a competitor�s investment. This is a harmful reaction, implying that, at

the margin, investment will be reduced due to strategic effects, as in the Bertrand model.

Table 3: Linear-Quadratic Model with Learning, No Investment
mbar=30, n=0, g=100, h=0, δ = 0, cinvl=0, cinvq=2, ainv=0, lrn = 0.1

γ = 0 .5 2.0 10.0 50.0 Cournot
Equilibrium Price
0.50 56.75 56.97 57.34 57.91 58.28 59.40
0.15 42.15 44.11 46.88 49.89 51.39 54.78
0.02 28.57 33.94 40.14 45.18 47.42 52.77
Equilibrium Output
0.50 10.81 10.75 10.66 10.52 10.42 10.14
0.15 14.46 13.97 13.28 12.52 12.15 11.30
0.02 17.85 16.51 14.96 13.70 13.14 11.80
Marginal Cost
0.50 28.91 28.92 28.93 28.94 28.95
0.15 28.55 28.60 28.67 28.74 28.78
0.02 28.21 28.34 28.50 28.63 28.68
Output Reaction to Output
0.50 -0.003 -0.03 -0.06 -0.06 -0.03
0.15 -0.019 -0.16 -0.22 -0.15 -0.07
Price Reaction to Output
0.50 -0.01 -0.12 -0.40 -0.99 -1.50
0.15 -0.02 -0.33 -0.96 -1.98 -2.73
0.02 -0.04 -0.54 -1.38 -2.49 -3.25

6: Comparisons with Dynamic Cournot and Bertrand Equilibrium

In the previous analysis, we compared our dynamic equilibrium with the static Cournot

and static Bertrand equilibria. It is more appropriate to compare our dynamic equilibria

with the dynamic equilibria which would result if we had kept the usual Cournot or Bertrand

speciÞcation. In this section we do that, showing how our model differs from both Cournot

and Bertrand in interesting ways.

We will consider two alternatives, assuming in both cases linear demand and quadratic

short-run costs. First, we will call the Cournot game the dynamic game where Þrms choose
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output in each period, prices are set so as to clear the market, no inventories are allowed,

and there are quadratic adjustment costs in output. Second, we will call the Bertrand game

the dynamic game where Þrms choose price in each period, with output being automatically

set so as to satisfy demand, no inventories are allowed, and with quadratic adjustment costs

in output. Again, the equilibria can be calculated as before since the games are both still

LQ games. We will focus on the effects of increasing the adjustment cost parameter since it

played an important role in parameterizing the Kreps-Scheinkman intuition.

The results were interesting for both the Bertrand and Cournot games. In the Cournot

game, when adjustment costs are absent the steady state price is the static Cournot price. As

adjustment costs rise, the steady state price falls. The intuition is simple. In the presence of

adjustment costs, an increase in output today causes a fall in tomorrow�s short-run marginal

cost and an increase in output, which in turn causes a competitor to reduce output, a

favorable response. If the Þrms were at the static Cournot equilibrium, the static effect of

raising output would be zero but the dynamic effect would be positive. Hence, we expect

the Þrms to raise output above the Cournot level.

The Bertrand result is initially surprising. In the absence of adjustment costs the steady

state price is the static Bertrand price. The knee-jerk conjecture is that as adjustment costs

rise, steady-state price should rise because the Bertrand model usually gives the opposite

result. One effect would argue for that conjecture: if I raise my price today, I reduce current

output, precommitting myself to a higher cost curve tomorrow, which should cause a higher

price from my competitor, a beneÞcial response. However, note that our Bertrand model is

not a complete complement of the Cournot model. The complement of the Cournot model

would have adjustment costs only on prices, not output. In that case, adjustment costs

would cause prices to increase. However, since this is not a macroeconomics paper, we put

adjustment costs on output only. In our Bertrand model, there is a second effect. If I raise

my price today, I will also cause demand to rise for my competitor, automatically raising

his output and lowering his future marginal cost curve. Since own costs are more important

than a competitor�s costs, the net result is that if I raise my price today, my competitor

lowers his price tomorrow, a damaging response. Therefore, in a Bertrand model prices also

23



fall as adjustment costs increase. The dominant effect is that by lowering my price today, I

raise my competitor�s costs and future prices, and lower mine.

A comparison of the three models shows that our hybrid model differs from both the dy-

namic Bertrand and Cournot models since it yields the static Bertrand price in the absence

of adjustment costs, but then yields higher prices as adjustment costs increase. Given the

close relationship between the hybrid model and the Bertrand model seen above, the differ-

ences here are particularly revealing. In the hybrid model, if I raise my price my opponent

meets the extra demand initially out of inventory, thereby raising his future marginal cost

curve. My competitor is allowed to respond in the short-run by either raising price or output,

a reasonable description of real-life ßexibility. In the Bertrand, however, my competitor is

forced to immediately raise output. That speciÞcation limits my competitor�s ßexibility of

response in an unrealistic fashion and turns out to be substantively important.

7: Comparisons with Stackelberg Equilibria

Another common game form examined in oligopoly theory is that of Stackelberg lead-

ership. In these games, one Þrm is allowed to move Þrst, followed by other Þrms who know

the leader�s (irreversible) move. These games are used to model asymmetric market power.

Sometimes it is advantageous to be a leader, but not always (see Bulow et al.). For example,

in Cournot oligopoly it is advantageous to be the leader since one can precommit to a high

output, and this commitment will cause the followers to reduce their output, a favorable

response for the leader.

In a dynamic world, each Þrm is both a leader and a follower. There is no natural

asymmetry in timing when one takes a dynamic game perspective. However, there are various

asymmetries which are possible. For example, Þrms may differ in their adjustment costs,

their inventory costs, or their production costs. The structural asymmetries may lead to

asymmetries in solutions which differ from the asymmetries implied by static Nash-Cournot

game forms.

In fact, one such asymmetry does lead to Stackelberg-like results. Suppose that the Þrms

differ in their adjustment costs, with Þrm 1 having higher adjustment costs. Then we Þnd

that in the steady state of the dynamic game, Þrm 1 has a higher market share, charges a
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higher price, and makes more proÞts. The intuition for this is clear. If Þrm 1 increases output

today, then his future costs are reduced. Output today acts as a precommitment device for

output tomorrow. If Þrm 1 has higher adjustment costs, then it is a stronger precommitment

device for him then Þrm 2. On seeing an increase in output by Þrm 1, Þrm 2 will know of the

precommitment, and will be able to adjust accordingly since his adjustment costs are lower.

Such downward adjustments in output are good for Þrm 1. Therefore, knowing of Þrm 2�s

propensity to adjust and react favorably, Þrm 1 will be more likely to increase his output.

The result is that Þrm 1 has a larger market share, as if he were a Stackelberg leader.

This is just one example of where a structural asymmetry results in an asymmetry which

is missing in any static analysis. Recall that one of the reasons for using Cournot analysis

is the difficulty in adjusting output. We see here that asymmetries in that adjustment lead

to an outcome different from the static Cournot outcome. Other asymmetries are also likely

to result in important difference, and will be pursued in further work.

8: General SpeciÞcations

While somewhat informative, linear-quadratic models bring many special features to the

analysis, some of which are unappealing. For example, the inventory holding cost function

is symmetric and even permits negative inventories. It is even possible to have price above

the choke price and negative output. One would never examine cases where the steady state

or any equilibrium path from a sensible initial condition possessed any of these perverse

properties.

However, that is not enough for a subgame perfect analysis since it is possible that our

treatment of these off-equilibrium path states will affect the equilibrium. Some considerations

indicate that it is unlikely that this is a severe problem. For example, in optimal growth

models, which possess structures similar to this model, behavior in any neighborhood of

the steady state is invariant to substantial changes in production and utility speciÞcations

outside of the path to the steady state. In this model, while a Þrm may be allowed to run

negative levels of inventories, it is unclear why there would be any advantage as long as the

holding costs were not trivial. However, even if we don�t believe that these problems are

likely to be important, it would be desirable to make some check.
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Another problem is, of course, the fact that linear demand and cost functions are special.

For example, monopolists facing linear demand will increase price by less than a dollar if they

experience a one dollar increase in (constant) average costs, whereas a monopolist facing a

constant elasticity of demand will increase price by more than a dollar. Also, there are many

aspects of industrial strategy which we would like to examine which do not Þt easily into a

linear-quadratic framework, such as investment and learning curves. These considerations

all demand a way to check the robustness of our results.

In this section, we will outline an approach which can be used to address these concerns.

We will take a continuous time approach, appealing to the theory of differential games. Let

ui ≡ (pi, qi), u ≡ (u1, u2), U i = (P i, Qi), and U ≡ (U1, U2). The state variable is again
the level of inventories, now following the differential equation

úI = f i (u, I) ≡ qi − di (p1, p2)− δIi

If V i(I) is the current value of future proÞts of Þrm i if the current state is I, then the

Bellman equation for Þrm i is given by the partial differential equation

0 = max
ui

{πi(ui, U−i(I), I) + V ij (I) f j(ui, U−i(I), I)}− ρV (I) (1.i)

These equations imply the system

0 = πiu` (U(I), I) + V
i
j (I) f

j
u`

(2.i.`)

0 = πi (U(I), I) + V ij (I)f
j(U, I)− ρV i(I) (3.i)

Therefore, equations (2) and (3) express 6 conditions that any solutions to V i(I) and U i(I)

must satisfy.

There are numerous techniques in the numerical partial differential equation literature for

handling equations such as these. We chose a straightforward implementation of minimum

weighted residual techniques. For a general discussion of these techniques and their appli-

cations to economic problems, see Judd (1989). While judiciously chosen Þnite-difference

techniques may be more efficient, these techniques do not rely on subtle choices of differ-

encing schemes. Instead they exploit smoothness properties which we expect to hold in

equilibrium. They also are familiar to economists since they correspond to commonly used
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ideas in (nonlinear) econometrics, and can be simply programmed. The basic idea is simple.

The true solutions, V 1(I) and V 2(I), lie in an inÞnite dimensional space, e.g., the space of

differentiable functions. It is impossible to search over that entire space for functions which

satisfy (1.i). Instead we shall specify a Þnite-dimensional space of functions and Þnd that

element which �best Þts� the system (1.i). The crucial elements of a minimum weighted

residual approach are therefore, Þrst, deÞning the space of functions over which we search,

and, second, deÞning a measure of Þt.

One speciÞc approach is to take our candidate V i from the space of functions of the form

V i(I1, I2) = Σ
n
k, `=1 a

i
k, ` ϕk(I1) ϕ` (I2) (4)

where {ϕj} is the sequence of Chebyshev polynomials over [0, Ī] where Ī is chosen sufficiently
large so as to be sure that the steady state inventory levels lie well below Ī. (SpeciÞcally,

this is equivalent to assuming that any inventory in excess of Ī shrinks instantly to Ī.)

For each guess of the coefficients in (4), we substitute each V i into the right hand side of

(1.i). The result will generally be a nonzero function, ei(I1, I2), representing the error of the

approximation.

To measure the goodness of Þt of an approximation, one can use one of several ap-

proaches. A least-squares approach deÞnes a scalar index of the overall Þtness,

F =
Z Ī
0

Z Ī
0
(e1(I1, I2)

2 + e2(I1, I2)
2) dI1 dI2

The least-squares method chooses the approximation which 6 solves the Þnite-dimensional

nonlinear optimization problem

min
aik, `

F

The aik, ` coefficients then give us a V
i which we take to be an approximate solution to (1.i).

Alternative choices for the Þnite-dimensional space of candidate approximations and the

measure of Þt may be made. This choice was made because the Chebyshev polynomials

are orthogonal, and are used in approximation theory to produce approximations which

nearly minimize the maximum absolute error. The least squares measure of Þt is easy

6 More precisely, we used a weighted collocation method since a Gauss-Lagrange quadrature method was
used to calculate the L2 norm of the error.
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and tractable. In fact, this method strongly resembles recently developed techniques in

nonparametric econometrics. Many of the same considerations which govern the quality of

Þt apply here.

In order to test the robustness of our results, we added a (small) term proportional to I−1

to the inventory holding cost function. This makes it costly to hold very small inventories and

impossible to hold negative inventories. The initial results are limited. However, in those

cases where the steady-state inventories were nonnegative in the original linear-quadratic

model, the new steady state was only slightly different in terms of equilibrium output and

price. It appears that the option of negative inventories which exists in linear-quadratic

models is unimportant if the steady state has positive inventories.

The general value of this approach is obvious. Many exercises become possible. For

example, the issue of price-cost margins becomes tractable with these techniques. Also,

investment is another Þrm decision which can be distorted for strategic reasons, with the

direction of the distortion depending on the nature of strategic interaction. A natural spec-

iÞcation for investment is that it pushes the short-run marginal cost curve to the right in

an equiproportionate fashion. Since this cannot be modelled in a linear-quadratic model, a

nonlinear model is necessary. We anticipate many applications of these techniques in future

work.

9: Conclusion

We have explored basic issues of market conduct and performance in a dynamic model

which allows Þrms to choose both output and price. In some cases, equilibrium looks like

Cournot or Bertrand, but in general outcomes are spread out between these extremes. Con-

stant marginal costs and no adjustment costs implies Bertrand outcomes, but both steeply

rising marginal costs and high adjustment costs imply Cournot outcomes. This dynamic

model also allows us to examine Þrm behavior without imposing untenable restrictions con-

cerning behavior. For example, identiÞcation of these structural relationships will assist in

determining whether observations correspond to noncooperative behavior, the only behavior

assumption made here.

While only a few substantive questions were examined here, the linear-quadratic frame-

28



work developed is capable of incorporating other aspects of reality, such as investment,

learning curves, cost-cutting R&D, and private information about demand and technology.

Numerical analysis of nonlinear models will allow us to incorporate many of these elements.

In summary, there is no reason to limit strategies to either prices or quantities when exam-

ining questions of market conduct and performance.
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