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Abstract

In contrast to traditional social networks, signed ones encode both relations of
affinity and disagreement. Community discovery in this kind of networks has
been successfully addressed using the Potts model, originated in statistical me-
chanics to explain the magnetic dipole moments of atomic spins. However, due
to the computational complexity of finding an exact solution, it has not been ap-
plied to many real-world networks yet. We propose a novel approach to compute
an approximated solution to the Potts model applied to the context of community
discovering, which is based on a continuous convex relaxation of the original prob-
lem using hinge-loss functions. We show empirically the benefits of the proposed
method in comparison with loopy belief propagation in terms of the communities
discovered. We illustrate the scalability and effectiveness of our approach by ap-
plying it to the network of voters of the European Parliament that we have crawled
for this study. This large-scale and dense network comprises about 300 votings pe-
riods on the actual term involving a total of more than 730 voters. Remarkably,
the two major communities are those created by the european-antieuropean antag-
onism, rather than the classical right-left antagonism.

1 Introduction

Many complex human interactions can be represented as social networks: graphs that encode differ-
ent kinds of relations between a set of actors [[L]. The problem of detecting communities in social
networks consists in finding a suitable clustering or grouping of the nodes in the graph such that
individuals with similar behaviour are grouped together. This is a widely studied problem [2, 3| |4].
Community discovery has become relevant in many areas, including demographic distribution [5],
knowledge identification [[6] and many more.

Traditionally, community discovery only considered relations of agreement or affinity between
members. Many real social networks, however, also contain negative relations representing op-
position or disagreement [7} |8]]. For these signed networks, the problem of community discovery
becomes much more challenging due to the different nature of its interactions. It requires not only
different models to understand these relations, but also scalable methods that work well in very large
networks.

One of the models that has been recently proposed for this goal is the Potts model [9], originated
in statistical mechanics to explain the magnetic dipole moments of atomic spins. The problem of
finding communities in a network can be expressed as a probabilistic inference problem using the
Potts model in which social actors correspond to atomic spins and their social affinity correspond
to the magnetic forces between spins. However, due to the computational complexity of finding an
exact solution for this model, it has not been applied to many real networks yet.
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Table 1: Inference methods for estimating the MAP state of Equation

TYPE METHODS

Exact Junction Tree
Variational MaxProd, Linearized Max Prod, Fast Unfolding, Eigenvector
Stochastic ~ Monte Carlo Sampling

In this paper, we propose a novel approach to compute an approximate solution to the Potts model
applied to the context of community discovering in social networks. The proposed method is based
on a continuous convex relaxation of the original Potts model using hinge-loss functions. This
relaxation makes the inference problem scalable to large-scale networks while retaining a good
approximation accuracy.

We evaluate the performance of our approach on a real-world dataset that we have crawled for this
study: the network of voters of the European Parliament. This large dataset includes about 300
votings of the actual term and represents a very interesting voting network: it has more than 730
members, which results in a dataset composed of more than 2 - 105 votes in total and thus around
1.5 - 107 indirect pairwise interactions.

2 Problem Statement

We consider a signed network as a connected undirected graph G = (V, E) whose edges F are
labeled by {1, —1}, representing agreement or disagreement between pair of nodes, respectively.

Given k € IN, our purpose is to assign each node v;,i = 1,...,|V| to one of k communities
¢ € {1,...,k}, taking into account the signs of the edges. This is called a k-community configura-
tion.

Intuitively, given a proper k-community configuration, vertices that belong to the same community
should have agreement relations while they should disagree with vertices belonging to other commu-
nities. We say that a network is k-balanced if and only if there exists a k-community configuration
such that every edge between communities is negative and every edge within communities is posi-
tive. General networks are unbalanced, which means that, given a k-community configuration, there
are some negative edges within clusters and some positive edges between clusters. These edges are
called frustrated edges [[10]. The alternative problem is then to find a k-community configuration
that minimizes the number of frustrated edges. This can be done by minimizing the function:
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where 0;,0; € {1,...,k} are the target variables representing the communities, 6(c;,0;) = 1 if

o; = o; and 0 otherwise and A;; is the i, j-th entry of the adjacency matrix. The first term in the
sum counts the number of negative edges within communities and the second one the number of
positive edges between communities.

Finding a k-community configuration that minimizes the frustration is equivalent to finding the max-
imum a posteriori (MAP) state of the following probability distribution (also known as Boltzmann
distribution) defined over all possible configurations:
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This is known in the literature as the Potts Model [[11,(9]].

The main problem is that computing the MAP state of Equation (2)) is an inference task which
is computationally hard, since it requires in the worst case to evaluate an exponential number of
assignments. It can not be done in general using exact methods. An exact method and some approx-
imate inference methods [12] are outlined in table E} While all of them can be used to compute or
approximate Equation (2), they are general purpose inference methods and are not intended for the
specific task we are considering.



3 A Convex Inference Approach

In this section we propose a novel approach to approximate the MAP state that is based in a relax-
ation of the original problem as a continuous convex problem. The relaxation expresses the problem
as a combination of hinge-loss functions. The hope is that the solution to this new continuous prob-
lem is a good approximation to the hard, discrete problem.

3.1 Probabilistic similarity logic

Hinge-Loss functions are at the core of Hinge-Loss Markov Random Fields (HL-MRFs), a recent
method introduced in [13] to make probabilistic inference tractable on relational networks. It has
been successfully used in collective classification [14], knowledge graph identification [15]] or sen-
timent analysis in social networks [16].

HL-MRFs were motivated in Probabilistic Similarity Logic (PSL) [17], a general-purpose frame-
work for probabilistic reasoning about similarity in relational domains such as the social networks
we are considering. PSL represents the entities of the domain as logical atoms and allows to define
first order logical rules that capture the dependency structure of these entities. Some of these rules
are soft in the sense that they may not be completely fulfilled, but we just look for the joint state
that better satisfies them. Other rules are hard in the sense that they must hold for a state being
considered. Furthermore, each soft rule has a non-negative weight that captures the rule relative
importance. Based on this structure, PSL builds a joint probabilistic model over all atoms. The
inference problem is to find the most probable state of the open atoms given the evidence.

The problem of finding a k-community configuration that minimizes the frustrated edges can be
naturally expressed in the PSL language, defining one atom for each possible community each node
can belong to: belongT o(v;, ¢) for anode v; of G and a community ¢ € {1,..., k}. Furthermore, if
two nodes v; and v; are connected by a positive edge, we will use the expression positive(v;, v;),
whereas if they are connected by a negative edge, we will use negative(v;, v;). Observe that, for
both expressions, the symmetric case has to be considered, since the network is undirected. We thus
define the following rules:

e If v; and v; are connected by a positive edge, the community of v; and v; should match, so
we define the soff rule: belongT'o(v;, c) A positive(v;,v;) Ai # j = belongTo(vj, ¢), for
each community c.

e If v; and v; are connected by a negative edge, the community of v; and v; should be
different, so we define the soft rule: belongTo(v;,c) A negative(v;,vj) Ni # j =
—belongTo(v;, c), for each community c.

e Since every community should have at least one node, we want to define a prior by assign-
ing an initial node v{ to each community c, thus we define the soft rules belongTo(vy, c) <
TRUE and belongTo(v§,c') < FALSE, for ¢ # ¢, for each community c.

e Finally, since each node belongs to exactly one community, we state the hard rule:
belongTo(v;, ¢) < A, —belongTo(v;, ') that basically ensures that the soft truth val-

ues of belongT o(v;, ) for all possible ¢ will sum up 1.

3.2 Hinge-Loss Markov Random Fields

We have defined our relational domain by specifying the soft and hard rules over the set of atoms.
The atoms can be seen as a continuous relaxation of the original discrete binary variables, which
now take values in the range [0, 1]. We now define a joint probability distribution over these different
states of our problem. In particular, we want to define a probability function whose MAP state is the
one which satisfies best the soft rules (we will talk about the hard ones in a moment). In other words,
this probability function will measure the distance to satisfaction of the soft rules. Note that these
rules behave as boolean logic with the difference that their atoms can take continuous values instead
of binary ones. Following this reasoning, it means that the rule’s implication would be satisfied
when the value of the antecedent is equal or larger than the value of the consequent. This can be
expressed using the following functions:

Definition 1. Let x = (x1,...,x,) be a vector of R™. A hinge-loss function is a function of the
form ®(x) = max{l(z),0}", where l is a linear function and m € N*.



Although hinge-loss functions are not strict metric functions, they are convex and a linear combi-
nation of hinge-loss function can actually become a metric. For these reasons, they were suggested
in [[13] to measure the distance to satisfaction of the soft rules. In particular, for a soft rule R, we
define the hinge-loss function:

d(R) : max {/\(3331, ceXB,) — \/(le, e ,xHS),O}m 3)

where xp,, 2, are the variables of atoms B;, H; in the space of states and A(zp,,...,5,)
and \/(xg,,...,xH,) are functions that make d(R) hinge-loss. So far, we have only considered
soft rules. As stated before, hard rules are those that need to be fully satisfied by the solution.
They can be considered as constraints on the domain of states that are translated to linear equali-
ties/inequalities using A and V.

In conclusion, inference on a PSL program (also known as hinge-loss minimization) is equivalent
to finding the state that minimizes the distance to satisfaction function induced by the soft rules, in
a constrained domain of [0, 1]", defined by linear equalities and inequalities induced by the hard
rules. The following definition summarizes this:

Definition 2. Let x = (x1,...,x,) be a vector of R™. Let {®;(x)}7_; be a a set of hinge-loss
functions over x and {\;}i_, positive weights corresponding to each rule r. Let X be a domain
defined by X = {x € R"|g;(x) < 0, f;(x) = 0} where g;(z) and f;(x) are linear functions. The
hinge-loss minimization problem is defined by:

min Z Ai®;(x), subjectto x € X

where \; is the positive weight of the i-th hinge-loss term.

3.2.1 Expressing the Potts Model as a Hinge-Loss Problem

Now that we have formulated the hinge-loss minimization problem and showed its equivalence to
an inference problem, we translate the PSL rules defined in the previous section to a hinge-loss
minimization problem.

Given a number of communities £ and a k-community configuration, for a node v;, let o; be a
random variable defined by the community of v;. Let 2§ = p(o; = ¢). Then:

e For each positive edge (v;, v;), we define the hinge-loss functions max{z{ — z$,0} and
max{z§ — zf,0}, Ve € {1,...,k}

e For each negative edge (vl,v]) define the hinge-loss functions max{z§ — x ,0} and
max{z§ — zf,0},Ve,d € {1,... k},c £ d

e Additionally, for each community ¢, assign an initial node vg to ¢, by defining the hinge-
loss function max{1 — z§,0} and max{xzd,0},Vec # d

e We choose all weights A; to be equal to 1 for the sake of simplicity.

Putting all together, we have the following hinge-loss minimization problem:

k k k
min Y (A;; Y Y SHL(xf,z9)™ +A+ZSHL x$,2)™) + Y SHL(xf, 1)™
,J c=1d=1,d#c c=1
k
subject to Zx? =1,0<zf,i=1,...,|V]
c=1

where SHL(z, y)™ = max{z — y,0}" + max{y — z,0}™.

Given a vertex v; and a solution to the previous problem, we assign v; to the most likely community,
ie. g; = {¢|lzf = max. x§}.
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Figure 1: Results for k = 2 as a function of the network unbalance. The hinge-loss method approx-
imates better the structural balance of the synthetic network compared to Loopy MaxProd.

3.2.2 Finding a Global Optimum

To find the optimum of the previous convex minimization problem, we use the Alternating Direction
Method of Multipliers [18]. This method breaks the original problem into a set of easier convex
optimization problems, the complexity of each one depends on m, the exponent of the hinge terms.
We use the variant presented in [19], which contains an improvement for m € {1, 2} that allows to
perform the optimize in very large networks.

We will see in the next section that taking m; = mo = ms = 2 works much better, probably
because it penalizes more the neutral state, where ¢ = 1/k.

4 Experiments with Synthetic Networks

Now we evaluate our proposed method in networks generated using realistic models of network
growth. They provide a ground truth to quantify the impact of the different parameters of the model
and the robustness of the method in different conditions, such as the number of underlying com-
munities, their distribution or the proportion of negative and positive edges. We construct a signed
network with given £ communities by adapting the method proposed by [20]. We apply our method
and compare its results against two other inference algorithms: the junction tree (JT) [21], which
provides exact results but it is only feasible in small networks and loopy belief propagation [22],
which provides approximate solutions, but can be applied to larger networks. BP provides exact
marginals on trees, but can also be useful as an approximate algorithm on general graphs with cy-
cles [12] 23]. Since we are interested in approximating the MAP state instead of the single variable
marginals, we use a variant which replaces the sum operator with a max, known as Loopy Max-
Product (or Min-Sum) algorithm and we will refer to it as Loopy MaxProd.

We first evaluate our method Hinge-Loss on networks with k¥ = 2 underlying communities and
several configurations of parameter values. We start by analyzing the accuracy of Hinge-Loss as
we vary the parameter Pyppalanced: the amount of unbalance of the network between the underlying
communities. For large values of pynpatanceds the proportion of frustrated edges is higher and thus
the problem becomes more difficult. We measure performance in terms of the structural balance,
introduced in [24]: this is just the proportion of non frustrated edges for a concrete k-community
configuration, i.e. the number of non frustrated edges divided by the total number of edges. We
obtain the ground truth using the Exact method and another approximation using Loopy MaxProd.

We show results for n = 100, k = 2 and a quadratic form, which gives a much better performance:
in fact is always better than the result produced by Loopy MaxProd, as showed in Figure[I] This is
probably due to the fact that quadratic hinge-loss terms penalize more those communities configu-
rations that contain negative edges within communities.

It has been established a mean unbalance value of Pynpatanceda =~ 0.22 in real social networks [24].
Observe that for this value we have that the hinge-loss approximations is a 0.93 of the exact result.



Figure 2: Example of community structure generated for pyupaiancea = 0.15. Positive edges are de-
picted in blue and negative edges in red. The color of the node indicates the community membership.

Detecting three or more communities is a much more challenging task since the problem is not a
binary classification problem any more. However, in the experiments done, we have proved that the
performance of our method is always better than Loopy MaxProd. Figure 2] shows an example of a
generated network for a k¥ = 3 communities.

Regarding computational complexity and scalability of the algorithm, solving a hinge-loss mini-
mization problem using the Alternating Direction Method of Multipliers tends to be linear in the
number of rules of the problem, and this has been proved by our experiments [19]. In our case,
the complexity is of the order of the number of edges times the square of number of communities,
O(mk?). For a fixed number of communities this complexity is equivalent to the linear approxima-
tion of loopy BP proposed in [25]. So, our method is not only better than loopy BP but its complexity
is equivalent to the complexity of some of its approximations.

5 The community structure of the European parliament

Finally, we analyze the network induced by the votings on the European Parliament. The goal of this
analysis is to discover different underlying communities without using the actual party memberships.

The European Parliament represents a very interesting voting network: it has 751 members and 8
political groups. The voting process does not have party discipline, i.e. the members can be unloyal
to their political group in some votings. We focus in 730 members only, since 21 of them were
substituted in the middle of the term.

We have scrapped 300 votings events from the actual term, from May 2014 to June 2015|'| In a
voting event, each parliament member has one of the following possibilities: it can vote for, vote
against, abstain, not vote and be absent. For simplicity, we only consider for and against votes.

We first combine all the votings events to represent the European Parliament as a signed network.
We give less relevance to the votings with large agreement between the members by considering the
discrepancy of a voting, which is defined as the entropy of a voting event.

"We crawled the website http: //www.votewatch.eu/|to obtain the data.
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Figure 3: Communities obtained by our method for k& = 3.

Let n; and ng, be the number of for and against votes in the voting r, respectively (nj,, = n'y +ng).

We define the discrepancy of the voting r as

r

n n'’ r n
Hr — _ 7”f lOg Tf _ Ta Ta
Mot Mot Mot Mot
For two different parliament members v;, v;, we define:
, %, if both voted for
L if both voted against
D Niot
i, g)" =
—H, max (=L, 22} if voted different
Niot " Miot
0, otherwise.

We compute the edge sign between members v; and v; by thresholding the sum of A(z, j)" over all
votings 7. After this, the resulting network has 92, 810 positive edges and 111, 579 negative edges.

The results are very enlightening and even surprising from the social point of view, specially when
compared with the actual political groups. We summarize them:

For k = 2, we get very differentiated
blocks: those created by the european-
antieuropean antagonism, rather than the
classical right-left antagonism. The case
of the Green party is very interesting: al-
though it is theoretically in the opposi-
tion, in our community configuration is in-
cluded in the block of the commission ma-
jority, with the socialists, ALDE, and the
popular party.

For k = 3, the pro-european block breaks
down as shown in Figure 3} the Green
party feels uncomfortable with this right
and center political parties, but it is not as
radical as the parties in the other group, so
almost the entire party forms a separated
community while the anti-european block
remains stable.

Figure 4: Communities obtained by our method for
k=5.

For k = 4, one of the communities is conformed by the socialists, ALDE and the popular party, but

now the anti-european block starts to break.

In particular, the GUE-NGL, a radical left party, is in

one separated community. This makes sense, since the rest of the parties of the anti-european block
are conservatives (ECR) or even more right wing (NI).



For k = 5 (Figure [), the pro-european group remains stable, but now the green and the GUE-
NGL parties (both left-wing) belong to the same community. On the other hand, the ECR party
forms one separated community, and the NI and EFDD parties (both right-wing) remain in the
same community. Finally we have a very small community that contains a mixture of different
parties. So our algorithm is able to detect the european-antieuropean antagonism but also the right-
left antagonism.

We can conclude that the proposed approach is an efficient method to discover groups that are hidden
and become visible at different scales.

6 Conclusions

Discovering community structure in signed networks is one of the most important open problems in
order to better understand network function and evolution mechanisms. We have presented a method
to compute an approximate solution to the Potts model based on a continuous convex relaxation of
the original problem using hinge-loss functions. We have shown the effectiveness of the proposed
method in artificial and real networks, including the large European parliament network. These
results help to understand the behaviour of the political european groups. Our method is able to
discover non-trivial communities in terms of the classical antagonism, as well as by their european-
antieuroepean antagonism. The proposed methodology allows to discover this structure efficiently
and this makes our approach potentially applicable in other large networks.
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