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Abstract

We consider the task of predicting behaviour in voting networks, where nodes cor-
respond to candidates/voters and edge signs correspond to positive/negative votes.
Our approach is based on recommender systems and learns latent features from
the networked data that are used subsequently to train a classifier. The latent fea-
tures are learnt by solving a nuclear norm regularized least-squares problem. We
evaluate our method and show better classification performance than previous ap-
proaches that used ad-hoc features in several real-world datasets. We discuss the
applicability of the method to more general signed networks and possible exten-
sions.

Keywords: Social Networks, Recommender Systems, Link Prediction, Edge Polarity Prediction,
Latent Features, Nuclear Norm.

1 Introduction

The vast increase of available digital information comes with many challenges for their analysis.
Very often, this information can be modelled as a network, such as the friendship network in Face-
book or the follower network in Twitter. Network analysis tools can thus provide a methodology to
unravel properties and patterns of behaviour hidden in the data [15]].

Our interest in this paper lies in modelling and predicting social behaviour in voting systems. We
consider an election as a network in which nodes denote individuals (who can be both voters or
candidates) and signed edges represent assessments for one another. We use the underlying structure
of the network to predict voting activity. A very simple example of a voting network is shown in
Figure |1} In this toy example, node j has incoming negative votes from h and 4, and an outgoing
negative vote for k. Node k has another vote, this one positive, from node ¢ and has not participated
in any election as a voter.

Figure 1: A small voting network example. Nodes indicate both candidates and voters when incom-
ing and outgoing links, repectively, are considered.
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Concepts from social status theory have been used to predict the polarity (or sign) of a vote [9, [18].
According to this theory, a positive edge between two nodes, x and y, suggests that x has higher
status than y. Conversely, if the edge is negative, then y has a lower status than z. Building on this
work, Leskovec et al. [[17] developed a method for predicting the sign of an edge using two types of
ad-hoc features computed from structural properties of the network. This approach results in very
good predicting performance and allows to relate the learned models with social theories of balance
and status [4]].

Other approaches combine additional information besides the network structure to address the task
of predicting the existence or sign of an edge. For example, Lee et al. [16]] uses information about the
communication graph, the one formed by the interchange of messages between the users (voters).
They found interesting insights such as users tend to evaluate candidates that they previously had
contact with. Furthermore, they found evidence indicating that a node’s choices are influenced
by their closest contacts. More recently, West et al. [24] analysed two social networks in which
votes are accompanied with a brief text that complements the decision. They combined the network
structure with sentiment analysis (an estimate of the attitude or polarity of the writer expressed in
the text) and they were able to show that the mixed method outperforms the pure ones (only network
oriented, or only sentiment analysis oriented).

Contrary to the aforementioned works that are based on ad-hoc features, we are interested in learn-
ing automatically the features from the data and use them later to make predictions. Our methodol-
ogy is mainly inspired by Recommender Systems (RS) [21]. In RS, the task is to predict the rating
or preference that a user would give to a product. In our case, our goal is to predict an evaluation
(preference) of a voter (the user) for a particular candidate (the product). The advantage of using
this approach is that typical issues and methodology that appear naturally in the task of predicting
voting behaviour, have been traditionally addressed in the literature of recommender systems. For
example, the cold-start problem (how to predict the rating of a new product) or the use of sparsity as
prior knowledge.

In the next section, we introduce the mathematical framework followed by the experimental results.
Finally, we conclude and discuss future work.

2 Problem Definition

We will focus on two main tasks: attendance prediction and polarity prediction, giving more atten-
tion to the latter one. Let G = (V, E) be a signed directed graph, where V' are the nodes (repre-
senting users) and E are the edges (representing votes). We define the adjacency matrix A;; such as
A;; = 1if (,7) € E and zero otherwise and denote the sign of an edge as s(z,y) € {—1,1}, for
(z,y) € E. The two tasks considered in this work are:

Attendance prediction : to predict whether a voter x will participate in the election of candidate y.

Polarity prediction : to determine the polarity of the vote, given that z attends to y election.

Note that both tasks are challenging when little information is available. In this situation, one has to
make model assumptions on the underlying graph that are key in order to have a well-defined and
tractable problem at the same time.

3 General approach

To solve the tasks described in the previous section, we take a Recommender Systems RS approach.
The goal of RS is to predict a user’s preference over products given a previous record of ratings.
This type of information can be viewed as a signed network in which nodes can be users or products
and edges are evaluations from users about products. RS typically use a matrix M of size n X p
where the n rows represent the users, the p columns represent the items and the values M, ; represent
the score of user ¢ to product j. Such structure is called utility matrix [21].

Many RS rely on computing some measure of users similarity, usually based on ratings, to recom-
mend products to users [21]. The result of a query for user’s ¢ preference over a product j is the
weighted sum of 7’s nearest neighbours’ ratings for j. This strategy is called heuristic-based or



memory-based. In this work, we take a different, model-based approach, in which the model (in
our case a feature model and a classifier) is built from the dataset of user ratings. The features of
the classifier are learned by solving a low-rank matrix approximation problem. These features are
subsequently used in a supervised learning setting to learn the parameters of a classifier.

More precisely, our method consists of the following steps:

1. Construct a matrix M of voters and candidates representing the voting network
2. Find a low-dimensional space that summarizes the network by a proper factorization of M

3. Train a classifier using the features previously computed

In most cases, the number of products p is orders of magnitude larger than the average number of
ratings per user. As a consequence, the utility matrix has a lot of missing values, which makes the
task of finding similar voting patterns between users difficult. This condition suffered by the utility
matrix, namely sparsity, is one of the main problems faced by RS. The most common way to address
it is by making a model assumption that the underlying true matrix (which is unknown and we try to
estimate) is indeed sparse and has many missing entries. As we will see, this has proven to be very
useful in practice.

A special trait of voting networks is that nodes can have two types of roles: they can appear as voters
and candidates at the same time. For instance, the node j in Figurem This difference can be used to
address the cold-start problem.

3.1 Feature Selection Step: Low-Rank Approximation of the Utility Matrix

Our approach first learns features from the data. This step can be stated as learning an unknown
parameter, namely a high dimensional matrix M,, p» for which we are only given a very few ob-
servations. This problem is ill-posed and, to make it well defined, we assume that M lies in a
much lower dimensional manifold, meaning that it can be well represented by a low-rank matrix,
ie. M ~ Un xiViexp Where k < min(n, p).

The problem of finding an approximation that minimizes the difference between the original matrix
and the rank optimized one is called low-rank approximation. For this problem, the truncated Singu-
lar Value Decomposition (SVD) provides a solution. SVD factorizes a matrix M into three matrices
M = UXVT such that ¥ is a diagonal matrix whose non-zero cells are called singular values. The
greater the singular value is, the more predictive power the dimension (rows in U and V') has. The
rank of the matrix M is the number of nonzero singular values.

To obtain the aforementioned approximation M, one can minimize the sum of squares error with the
given data using a regularizing term that penalizes high rank solutions. The optimization problem is

min Y (My; — M;;)? + Arank(M), M=UxvT, (1)
M
M;, ;70
where the value of A controls the importance of having a low-rank solution, i.e. for high values of

A, the solutions obtained have a very small rank whereas for small values of ), the solutions are
allowed to have a higher rank.

The optimization problem of equation (I) is combinatorially hard because of the form of the penalty
term (the number of non-zero eigenvalues) [22]]. A possible way to make it tractable is to replace

the penalty by the nuclear norm of M, denoted as HM ||, which is the sum of the eigenvalues of M
min Y (Mj; — Mij)® + A|[ M|, 2)
Mo

Equation is thus an effective convex relaxation of the original problem [3| 6]. The resulting
problem is called nuclear norm regularized least-squares problem.

This formulation is equivalent to the one derived for sparse linear regression [, [10]. The task in
sparse linear regression is to learn the parameters of a linear model to predict the values of a response



variable given n samples, each one consisting of a p-dimensional input vector. For p > n, the
standard least-squares solution requires the inversion of a matrix that is not well defined. A solution
to this problem is to add a penalty to the least-squares error function, as in Equation (Z). The ¢;-
norm penalty on the linear weights (the sum of the absolute values) represents a convex relaxation
of the {y-norm constraint (the number of absolute non-zero values). The ¢;-norm penalty (Lasso
formulation [23]]) is a good compromise between predictive power, interpretability and tractability.
The ¢p-norm penalty (Spike-and-Slab model [7]]) finds which are the relevant features directly, which
is a combinatorial, non-convex problem [12].

Several methods have been derived recently for the nuclear norm regularized least-squares problem,
e.g., the singular value thresholding (SVT) [2]], soft-impute [20]], accelerated proximal gradient ap-
proach [[L1]]. In our work, we use the soft-impute method, introduced by Mazumder et al. [20]]. The
computational complexity of this method is linear in the size of the M. The parameters of this model

are the regularization parameter A and an specific maximum rank () of the approximation M.

3.2 C(lassification Step

In this work, we differentiate between three different feature spaces that use the previous factoriza-
tion M = UXV T,

e Pure Recommender System (PureRS) strategy: in this case, the feature of a voter and a
candidate are given by the ith row of matrix U and the jth column of V', respectively.
The PureRS strategy therefore uses vectors (U; ., Vj ., y; ;) as training examples to learn a
classifier, where y; ; denotes either voting assistance of voter ¢ to the election of candidate
j or vote polarity of voter 7 to candidate 7, depending on the task under consideration.

o Network Recommender System (NetRS) strategy: The NetRS feature space incorporates the
1’s features as a candidate and j’s features as a voter. Thus, the training examples are vectors
of the form (U; ., V; ., U; .., V; ., yi ;). In terms of the underlying network, this corresponds
to account for some edges that the PureRS method would ignore. More precisely, U’s
dimensions synthesize ongoing edges, while V’s dimensions synthesize incoming ones.
When constructing a sample corresponding to edge (i, j) on Figure|l| the PureRS method
would ignore the i incoming edges, like (k, %), and j outgoing ones, like (j, k), as Figure 2]
depicts.

Figure 2: Example of missing (one degree) structure information when constructing s; ; = —1
sample using the PureRS approach. Dashed edges correspond to the omitted part of the graph.

These feature spaces are used to learn different classifiers, which are task specific. As classifiers, we
have used logistic regression and random forests.

4 Experimental Results

We now present some results on different voting networks, as well as other signed networks. We
start showing some results of the performance of the soft-impute algorithm in terms of error in the
matrix completion task and then we show the results on predicting voting polarity and participation.

4.1 Experimental Setup

We tested our algorithm in a voting dataset, the Wikipedia Request-for-Adminship (Wiki-Rfa) dataset
[19]. We also experimented with other two datasets that consist of signed networks. They are
described below. In general, class imbalance was handled by sub-sampling from the positive votes
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Figure 3: Mean square error between the data matrix M and the Soft-Impute approximation M on
the Wiki-Rfa dataset, for different values of the maximum ranks 7,,,x and the regularizer \.

class in the training set, after the optimization described in section@ To evaluate the method, we
partition randomly the data and use 10-fold cross validation over the entire set of votes. We simulate
realistic conditions by reporting performance over the whole testing dataset.

Wikipedia is a free online encyclopedia where articles (almost all) can be edited by any person
as long as they follow certain policies. More precisely, there are users called Admins that have
been granted special permissions to be able to enforce the site’s rules. Moreover, a Request for
Adminship on Wikipedia is a deliberation process by which people cast a (not mandatory) vote to
promote a user to Admin. The data collected by such process induces a signed network in which
nodes are Wikipedia users and votes are links between them that can be positive (+1), negative (—1)
or neutral (0). The corresponding data we use in this study was collected from 2003 until May 2013
and consists on 11,402 users that form 189, 004 distinct voter-candidate pairs from which 76% are
positive. We preprocessed the data by removing all neutral (0) votes, as done in [16]. In case of
multiple votes (repeated voter-candidate pair), the last one was used.

Slashdot, a technology news website created in 1997 that publishes frequently short news posts and
allows its readers to comment on them. This website has been analyzed in several studies [8}[13}/14].
Slashdot allowed its members to categorize each other as friend or foe, meaning that they like or
dislike respectively another user. Such behaviour generates a voting network where nodes are users
and links are tagged with their assessment by each other: friend (+1) or foe (—1). The website link
tagging feature, called Slashdot Zoo was introduced in 2002, and it was crawled in February 2009.
It has 82.144 nodes and 549, 202 edges (77% positive).

Epinions: is a recommendation network to help people make purchase decisions by reading user
product reviews. Users could express their trust between each other. This information was used to
choose which item reviews were shown to a specific user. We consider the directed trust graph of
evaluations, with the nodes representing the users and the links representing the trust values, +1 or
—1, depending if one user tagged another as trusted or untrusted, respectively. The website is now
closed, and the information crawled correspond to all of its data. The corresponding network has
131,828 nodes and 841, 372 edges (85% positive).

4.1.1 Results of Feature Selection

We first analyse the performance of the feature selection step as a function of both the regularization
parameter A and the maximum rank (ryay) of M Figure [3| shows this performance in terms of
the mean square error for the Wiki-Rfa dataset (the other datasets behave similarly). Dashed and
continuous lines correspond to errors in the training and testing set, respectively.

"We used Soft-Impute R library
https://cran.r-project.org/web/packages/softImpute/index.html
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Figure 4: Soft-Impute execution time on the Wiki-Rfa dataset using different matrix ranks (7,x)
{2,4,8,16, 32,64} for different values of the regularizer \.

As we can see, for small values of the maximum rank (r,,x), both training and testing errors grow
as we increase A. On the contrary, for large values of 7,,,x, the training and testing error curves
differ in their profiles. While training error increases with A, testing error decreases. In addition, the
difference between training and testing error also grows proportionally to 7,,«. This behaviour can
be understood in terms of bias and variance tradeoff. The maximum rank parameter r,,x essentially
determines the model complexity (the effective number of parameters to be learned). For large
values of r,,x, We observe strong overfitting (small training errors and large testing errors) with a
difference that is reduced as we increase the regularizer A. This situation corresponds to having a
model that is too expressive (large variance) and essentially fits the noise of the training set. On the
contrary, for small values of 7., both training and testing curves show a similar profile and attain
similar errors, indicating sufficient data to learning a correct model. Most of the error in this case
can be attributed to the model bias.

Figure ] shows running time for different parameter settings. We observe, on one hand, that the
running time is roughly independent of \ for sufficiently small ry,,. On the other hand, we observe
a (seemingly linear) increase as a function of the maximum rank r,,x. Therefore, for a big dataset
it is recommended to use small values of 7,,,,«, as we show later.

4.2 Results on Polarity Prediction

We now show some results on the polarity prediction task. The task is to predict the sign of a vote
(positive or negative) of a participant, given that the voter participates in that election (the edge
exists). In this case, the matrix M takes binary entries M;; that are +1 if voter ¢ voted favourably
for candidate j, and —1 otherwise. In the feature selection step, null votes as well as missing votes
are treated as missing values. In the classification step, an example is defined to belong to the class
1 for positive votes and 2 for negative votes.

To evaluate classification performance, we use two measures: the area under the ROC curve
(AUC/ROC) and the accuracy. The AUC/ROC measures the probability that a randomly chosen
positive sample will be ranked higher than a randomly chosen negative one. The accuracy is just
the number of correctly classified examples divided the total number of examples, in the testing
dataset. We show results for the random forest classifier only, since it generally outperforms logistic
regression in our evaluation.

Tables [T] and [2] show results comparing the NetRS strategy with the PureRS strategy. We can see
that the classification results are very good, and notice a small (but still significant) improvement of
the NetRS strategy over the PureRS one, suggesting a benefit of incorporating the network features.
Comparing the computational time between both strategies (Table [2)), we observe that the NetRS
approach roughly doubles the training time of the PureRS approach, due to the increased feature
space.



Datasets NetRS strategy (Testing set) | PureRS strategy (Testing set)
AUC/ROC Accuracy AUC/ROC Accuracy
WikiRfa 0.90 0.81 0.89 0.80
Slashdot 0.92 0.86 0.89 0.79
Epinions 0.97 0.96 0.96 0.85

Table 1: Polarity prediction task results: comparison between the NetRS and the PureRS strategies
using random forest classifiers. The table contains averaged results over ten runs of 10-fold cross
validation. The data was shuffled for every run (10). Parameters A = 2, r,,x = 4. In all cases, the
standard deviation was smaller than 10~2.

Datasets | Low Rank Approx. | NetRS strategy | PureRS strategy
Wiki-Rfa 23 (1) 140 (6) 64 (1)
Slashdot 166 (28) 838 (118) 421 (85)
Epinions 248 (39) 687 (111) 335 (65)

Table 2: Computation time (in seconds) for the polarity prediction task. The table contains the mean
(standard deviation in parenthesis) of the time required in each of the two steps of our method for
both NetRS and PureRS strategies, on the same experiments as in Table [l The NetRS roughly
doubles the training time of the PureRS, due to the increased feature space.

It is interesting to compare these results with the existing literature. For example, for the Wiki-RfA
dataset, West et al. [24] reported AUC/ROC = 0.82 for 75% of evidence using the network-based
approach (without sentiment analysis) and AUC/ROC = 0.89 using their full model (combining
network and sentiment analysis) Remarkably, our proposed method using the NetRS strategy out-
performs their network-based approach and shows comparable results to the full model, but without
incorporating any textual (content-based) features, as shown in Table|T]

Another related study can be found in Lee et al. [[16] where, in addition to the voting network, they
use additional ad-hoc features from the communication graph (talk pages) that are not considered in
our Wiki-RfA dataset. Their initial results show AUC/ROC = 0.87, which we improve using both
PureRS and NetRS strategies, as table |1|indicates. Furthermore, they boost their initial results to
AUC/ROC = 0.90 when the additional features were used. In this case, our NetRS strategy obtains
comparable results without incorporating the communication graph.

Finally, we also obtain comparable or better results to the ones reported by Leskovec et al. in [17],
although the comparison here is a bit more problematic, since they restrict their analysis to the nodes
that have smaller values of the so-called embedness. Without restricting the node embedness, their
reported performances are very similar to ours when compared with table[T] (see Figure 1 in [17] for
details).

4.3 Results on Attendance Prediction

We now show some results on the attendance prediction task. The task is to predict whether a voter
will participate, i.e. vote, on a given election. As before, the matrix M takes binary entries M;; that
are +1 if voter ¢ voted favourably for candidate j, and —1 otherwise. In the feature selection step,
null votes as well as missing votes are treated as missing values.

The difference with the previous task is in the classification step: here we consider all pairs as sam-
ples (including missing entries), whereas previously we only used those for which there was an entry
in the utility matrix. Notice that, the dataset largely differs in size between the two tasks. In this
case, since all edges are positive samples and missing ones become negative ones, the samples cor-
respond to every pair of users, which results in a huge dataset (approximately 10® training samples)
for the Wiki-RfA dataset.

We show some preliminary results for this task in Table [3] The method performs better than the
baseline (0.5 AUC/ROC). Comparing the type of classifiers, we observe that random forest outper-
formed logistic regression, as before. We can also compare our approach to the one of Lee et al. [16].



AUC/ROC Fit Time(s)
Datasets rmax| Random Forest | Logistic Regression | Random Logistic
Train Test Train Test Forest Regression
Wiki-Rfa 2 10999 | 0917 | 0.845 0.841 412s 3s
4 1.000 | 0.942 | 0.838 0.834 531s 5s

Table 3: Link Prediction task classification and speed performace results using the NetRS strategy.
The table contains the outcome of one 10-fold cross validarion run for each value of Soft-Impute’s
max rank mr € {2,4}, using A = 2 as regularization parameter.

Unlike the previous results in polarity prediction, our method performs slightly better when adding
more latent features, i.e. increasing the low-rank approximation max rank parameter (7yax)-

5 Conclusions and Future Work

Motivated by the theory of recommender systems, we have developed a novel framework for pre-
dicting voting behaviour in social networks. Our approach learns a latent feature space from the
networked data and uses it to train a classifier. The latent features are learned by solving a nu-
clear norm regularized least-squares problem. The method can then be applied not only to voting
networks, but to general signed networks.

We have evaluated our method in two tasks (attendance and polarity prediction) in three different
datasets Wiki-RfA, Slashdot and Epinions, and shown better or comparable performance results
to existing approaches that use ad-hoc designed features. The presented approach, thanks to the
methods used in its different steps, is able to scale up to very large datasets.

We are currently exploring two directions: the first one, is to follow a hybrid strategy. As it is done in
recommender systems, one can use additional, content-based features [[L]. This may help to address
the cold start problem, since those features can be a good source of prior information.

Another interesting direction is related with the interpretability of the obtained features. The result-
ing factorization can be interpreted as the degree of membership of a user to a particular community.
This interpretation suggest that such features can be particularly good to determine communities in
networks. Finally, it is interesting to notice that it is shown how to use the features to predict node
interaction values, but they can also be used for predicting a single node’s attribute or behaviour.
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