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Abstract

Tensor factorization is an important approach to multiway data analysis. How-
ever, real-world tensor data often encompass complex interactions among tensor
elements, and are extremely sparse and of huge size. Despite the success of ex-
iting approaches, they are either not powerful enough to model the complex in-
teractions or extreme sparsity in data. To overcome these limits, we propose a
new tensor factorization model in this paper. It employs Gaussian process (GP)
to capture the complex nonlinear relationships between tensor modes, and em-
ploys random functions over any subset of tensor elements to avoid the expensive
computation of Kronecker products and to flexibly incorporate meaningful ten-
sor entries for training. To scale up the model to large tensor data, we propose
a distributed variational inference algorithm on MAPREDUCE, which uses a tight
variational evidence lower bound (ELBO) to improve inference quality and to
prevent inefficient Expectation-Maximization procedure. In implementation, we
design non-key-value MAP-REDUCE to prevent expensive data shuffling and to
fully exploit the memory-cache mechanism in efficient MAPREDUCE systems,
such as SPARK. Experimental results have demonstrated our method’s advan-
tages in both the predictive performance and computational efficiency over the
existing approaches; moreover, our approach shows promising results in the ap-
plication of Click-Through-Rate (CTR) prediction for online advertising.

1 Introduction

Multiway data, described by tensors, are common in real applications. For example, online ad-
vertising data can be represented by a tensor with three modes (user, advertisement, context) and
patient-medicine response by a tensor with four modes (person, medicine, biomarker, time). Given
tensor-valued data, the goal is to capture hidden relationships embedded in data and to predict unob-
served entries (e.g., unknown click behavior for online advertisement). This is usually done through
tensor factorization. However, the design of a tensor factorization algorithm for real-world appli-
cations can be challenging, because i) the interaction between tensor modes may be complex and
highly nonlinear; ii) tensor data are usually very sparse and consist of very few nonzero elements;
and iii) tensor data are often of huge size, often containing millions of nonzero entries and billions
of zeros entries.
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While many tensor factorization algorithms have been proposed, they rarely address all these
challenges. Standard multilinear methods, such as Tucker decomposition [15] and CANDE-
COMP/PARAFAC (CP) [4] are difficult to model complex and nonlinear interactions between tensor
modes. Although nonlinear methods such as Infinite Tucker Decomposition(InfTucker) [16] and its
extensions [17, 18], can overcome this limit by using tensor-variate Gaussian processes (GP) [16],
they are computationally expensive since the Kronecker product between the covariances of all the
modes forces the GP to rigidly model an entire tensor. What’s more, they are incapable to model the
extreme sparsity of data, i.e., the imbalanced amount of nonzero entries. As we know, in real data,
most zero elements are meaningless—they are just missing or unobserved, thus employing all the
zero entries in the modelling may affect the factorization quality and lead to biased prediction.

To address these issues, we propose a new and flexible nonlinear tensor factorization model. The
model places Gaussian process priors over tensor entries, which means that the input is constructed
by concatenating latent factors in each mode and the nonlinear relationship is captured by various
kernel functions. In this way, the covariance function is free of the Kronecker product structure,
and thus the model is more flexible to incorporate meaningful elements for training. Furthermore,
to make the model scalable to large data, a distributed variational inference algorithm is developed
based on MAPREDUCE: It employs a tight variational evidence lower bound (ELBO) on the optimal
variational posteriors, which is derived by functional derivatives and nonlinear equations, to improve
inference quality and to prevent inefficient EM procedure; it maintains a whole gradient vector in
each MAPPER and remove (key,value) pairs to prevent expensive data shuffling, and to fully exploit
the memory-cache mechanism in efficient MAPREDUCE systems, such as SPARK, for fast training.

For evaluation, our model is first examined on four small real world datasets where most of tensor
factorization methods are feasible. It shows that our method obtains higher prediction accuracy than
InfTucker and other multilinear methods. Then the examination on large tensor data with millions of
nonzero elements has shown that our method can obtain much better predictive performance than Gi-
gaTensor, the state-of-the-art large-scale multilinear factorization algorithm, and significantly better
than or comparable to scalable nonlinear methods based on tensor-variate GP. Moreover, our method
achieves faster training speed and enjoys almost linear scalability on the number of computational
nodes. Finally, our model is applied to CTR prediction for online advertising and achieves a 20%
improvement over the broadly used logistic regression and linear SVM.

2 Background

A K-mode tensor is denoted byM ∈ Rm1×...×mK , where the k-th mode has mk dimensions. The
tensor entry at location i (i = (i1, . . . , iK)) is denoted by mi. The tensor M can be flatten into
a vector, denoted by vec(M), where the entry i = (i1, . . . , iK) in M is mapped to the entry at
position j = iK +

∑K−1
k=1 (ik − 1)

∏K
t=k+1mt in vec(M).

Given a tensorW ∈ Rr1×...×rK and a matrix U ∈ Rs×rk , a mode-k tensor-matrix product between
W and U is denoted byW ×k U, which is a tensor of size r1 × . . .× rk−1 × s× rk+1 × . . .× rK .
The element-wise calculation is (W ×k U)i1...ik−1jik+1...iK =

∑rk
ik=1 wi1...iKujik .

Typical multilinear tensor factorization methods include Tucker and CANDECOMP/PARAFAC
(CP). The Tucker decomposition is defined by

M = [[W; U(1), . . . ,U(K)]] =W ×1 U(1) ×2 . . .×K U(K) (1)
where W ∈ Rr1×...×rK is the core tensor, and U(k) ∈ Rmk×rk is the k-th latent factor matrix.
CP decomposition can be considered as a special instance of Tucker decomposition where the core
tensorW is restricted to be diagonal, i.e., r1 = . . . = rK and wi1...iK 6= 0 only if i1 = . . . = iK .

The infinite Tucker decomposition (InfTucker) is a nonlinear tensor factorization model based on
tensor-variate Gaussian process [16]. It can be derived from Tucker decomposition: First, we assign
element-wise standard normal prior over the core tensor W in Equation (1); by marginalizing out
W , we can obtain the marginal distribution of tensorM given the latent factors:

p(M|U(1), . . . ,U(K)) = N (vec(M); 0,Σ(1) ⊗ . . .⊗ Σ(K)) (2)

where Σ(k) = U(k)U(k)> and ⊗ is the Kronecker product. The kernel trick is then used to model
nonlinear relationships: Each row ukt of the latent factors U(k) is replaced with a nonlinear feature
transformation φ(ukt ) and then an equivalent nonlinear covariance matrix Σ(k) = k(U(k),U(k))
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is used to replace U(k)U(k)>, where k(·, ·) is the covariance function. After feature mapping, the
(invisible) core tensor W actually obtains the dimension of mapped feature vector in each mode,
which could be infinite. Since the covariance of vec(M) is a function of the latent factors U =
{U(1), . . . ,U(K)}, Equation (2) actually defines a Gaussian process (GP) on tensor, namely tensor-
variate GP [16], where the input are based on the latent factors U . Further, the standard Laplace prior
is assigned over U to encourage sparse estimation for easy interpretation. GivenM, the observed
tensor Y is sampled from a noisy model p(Y|M). For example, we can use Gaussian models and
probit models for continuous and binary observations respectively. Thus the joint probability of
InfTucker is p(Y,M,U) = p(U)p(M|U)p(Y|M).

3 Model
Although InfTucker and its extensions [17, 18] can capture nonlinear interactions in data via tensor-
variate GP, they can suffer from the extreme sparsity in real data. The reason is that the covariance
is a Kronecker product between the covariances over all the modes, i.e., {Σ(1), . . . ,Σ(K)} (see
Equation (2)). Each Σ(k) is of size mk ×mk and the full covariance is of size

∏
kmk ×

∏
kmk.

Thus the GP is enforced to model the entire tensor associated with the latent factors U , including
all zeros and nonzero elements; there is no way to model a (meaningful) subset of entries instead.
However, the real-world tensors are usually extremely sparse, with huge number of zero elements
and a tiny portion of nonzero elements. On one hand, because most zero elements are meaningless—
they are actually missing or unobserved, using them may affect the tensor factorization quality and
lead to biased prediction; on the other hand, incorporating massive zero elements into GP models
can result in large covariance matrix and high computational cost. Although [17, 18] improved the
scalability by modelling subtensors instead, the sampled subtensors can still be very sparse. Even
worse, because their size has to be small for fast computation, it is often easy to sample ones not
containing any nonzero elements. This may further incur numerical instability in model estimation.

To address these issues, we propose a new, flexible Gaussian process tensor factorization model.
While keeping the nonlinear modelling power, the model disposes of the Kronecker product struc-
ture in covariance and can use any set of tensor entries for training, rather than use an entire tensor ex-
clusively. Specifically, given tensorM∈ Rm1×...×mK , for each tensor entry mi (i = (i1, . . . , iK)),
we construct an input xi by concatenating the corresponding latent factors in all the modes:
xi = [u

(1)
i1
, . . . ,u

(K)
iK

], where u
(k)
ik

is the ik-th row in latent factor matrix U(k) for mode k. Note that

u
(k)
ik

is a 1×mk vector and xi is a 1×
∑K
j=1mj vector. We assume that there is an underlying func-

tion f : R
∑K

j=1mj → R such that mi = f(xi) = f([u
(1)
i1
, . . . ,u

(K)
iK

]). This function is unknown
and can be complex and nonlinear. To learn the function, we assign a Gaussian process prior over f :
For any set of tensor entries S = {i1, . . . , iN}, the function values fS = {f(xi1), . . . , f(xiN )} are
distributed according to a multivariate Gaussian distribution with mean 0 and covariance decided by
XS = {xi1 , . . . ,xiN }: p(fS |U) = N (fS |0, k(XS ,XS)) where k(·, ·) is a (nonlinear) covariance
function. Note that k(xi,xj) = k([u

(1)
i1
, . . . ,u

(K)
iK

], [u
(1)
j1
, . . . ,u

(K)
jK

]) and there is no Kronecker
product structure, and any set of tensor entries can be used for training. To prevent from learning
bias toward zero, we can use a set of entries with balanced zeros and nonzeros; further, domain
knowledge can be incorporated to choose meaningful entries for training.

We further assign a standard normal prior over the latent factors U ; given tensor entries m =
[mi1 , . . . ,miN ], the observed tensor entries y = [yi1 , . . . , yiN ] are sampled from a noisy model
p(y|m). In this paper, we deal with both continuous and binary observations. For continuous data,
we use Gaussian model, p(y|m) = N (y|m, βI) and the joint probability is

p(y,m,U) =
∏K

t=1
N (vec(U(t))|0, I)N (m|0, k(XS ,XS))N (y|m, βI) (3)

where S = [i1, . . . , iN ]. For binary data, we use probit model: We first introduce augmented
variables z = [z1, . . . , zN ] and then decompose the probit model into p(zj |mij ) = N (zj |mij , 1)
and p(yij |zj) = 1(yij = 0)1(zj ≤ 0) + 1(yij = 1)1(zj > 0) where 1(·) is an indicator function.
Then the joint probability is

p(y, z,m,U) =
∏K

t=1
N (vec(U(t))|0, I)N (m|0, k(XS ,XS))N (z|m, I)

·
∏

j
1(yij = 0)1(zj ≤ 0) + 1(yij = 1)1(zj > 0). (4)
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4 Distributed Variational Inference

We now present our distributed variational inference algorithm in MAPREDUCE framework.

4.1 Variational Evidence Lower Bound Based on Sparse Gaussian Process

First, because the GP prior term p(m|U) couples all the latent factors together and makes parallel in-
ference very difficult, we derive a tractable variational evidence lower bound (ELBO) for distributed
inference, following the sparse Gaussian process framework [14].

Specifically, by introducing a set of inducing points B = {b1, . . . ,bp} and latent targets v and
applying Jensen’s inequality twice, a tractable ELBO of the proposed model for real-valued tensor
is given by log(p(y,U|B)) ≥ L1 where

L1 = log(p(U)) +

∫
q(v)(log(p(v|B))− log(q(v))) +

∑
j

∫
q(v)Fv(yij , β)dv (5)

where q(v) is the variational posterior of the latent targets v, Fv(yij , β) =∫
log
(
N (yij |mij , β)

)
N (mij |µj , σj)dmij , µj = k(xij ,B)K−1

BBv and σj = Σ(j, j) =

k(xij ,xij ) − k(xij ,B)K−1
BBk(B,xij ). The ELBO for the binary tensor has a similar form to

Equation (5) except that an extra variational posterior q(z) =
∏
j q(zj) is introduced for the probit

likelihood (See Equation (4)): log(p(y,U|B)) ≥ L2 where

L2 = log(p(U)) +

∫
q(v)(log(p(v|B))− log(q(v)))

+
∑

j

∫
q(v)

∫
q(zj)Fv(zj , 1)dzjdv +

∑
j
q(zj) log(

p(yij |zj)
q(zj)

) (6)

4.2 Tight Bound with Optimal Variational Posteriors

Variational inference maximizes the ELBO to estimate the latent factors U , the pseudo input B, and
the posteriors q(v) and q(z). Typically, an Expectation-Maximization (EM) algorithm is used: In
the E-step, we update the variational posteriors q(v) and q(z) given U and B; in the M-step, we
optimize U and B with q(v) and q(z) fixed. Although widely used, this algorithm may be low
efficient and not suitable for parallelization, because the updating is sequential: Every step (E or M)
depends on the previous step and it may take long time to converge.

To enable efficient distributed inference, we remove the E step, by using a tighter bound only de-
pending on U and B:

L∗1(U ,B) = maxq(v) L1(q(v),U ,B), L∗2(U ,B) = maxq(v),q(z) L2(q(v), q(z),U ,B).
Then we only need to estimate U and B via distributed optimization. After the optimal U and B
are obtained, we can calculate q(v) and q(z) accordingly. This not only avoids the sequential EM
procedure, but also improves the inference quality, because a tighter ELBO is used.

Specifically, we calculate the functional derivatives with respect to q(v) and q(z) and solve the
optimal q(v) and q(z) by setting the functional derivatives to 0. Substituting them into L1 and L2,
we obtain the tight ELBO. For real-valued tensor, we can derive that

L∗1 =
n

2
log(β) +

1

2
log |KBB | −

1

2
log |KBB + βA1| −

1

2
βA2 −

1

2
βA3 +

β

2
tr(K−1

BBA1)

− 1

2

∑K

k=1
‖U(k)‖2F +

1

2
β2tr(a>4 (KBB + βA1)−1)a4) + const, (7)

where A1 =
∑
j k(B,xij )k(xij ,B), A2 =

∑
j y

2
ij

, A3 =
∑
j k(xij ,xij ), a4 =

∑
j k(B,xij )yij ,

and ‖ · ‖F is Frobenius norm.

The tight ELBO for binary tensor is more complex, because q(v) and q(z) are coupled in the original
ELBO (Equation (6)). To obtain the tight ELBO, we first fix q(z) and follows the same way as in the
continuous case to obtain an intermediate bound, L̂2(q(z),U ,B) = maxq(v) L2(q(v), q(z),U ,B).
Then we use functional derivatives to calculate the optimal q(z). It turns out that each optimal q(zi)
is a truncated Gaussian:q∗(zj) ∝ N (zj |cj〈zj〉, 1)1

(
(2yij − 1)zj ≥ 0

)
, and 〈zj〉 can be obtained by

solving the following nonlinear equation: 〈zj〉 = cj〈zj〉 +
(2yij−1)N (cj〈zj〉;0,1)

Φ
(

(2yij−1)cj〈zj〉
) where 〈·〉 denotes
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the expectation under the variational posterior, cj = k(xij ,B)(KBB + KBSKSB)−1k(B,xij ) and
Φ(·) is the cumulative function for standard Gaussian. The nonlinear equation is guaranteed to have
a solution. Substituting the optimal q(z) in L̂2, we can obtain a tight ELBO L∗2 that has a form very
similar to L∗1 for the real-valued case.

4.3 Distributed Inference on Tight Bound

Given the tight ELBO, we develop distributed algorithm to optimize the latent factors U and the
inducing points B. First, for continuous data, we can see from (7) that the major calculation is on
terms A1, A2, A3 and a4. Due to their additive form over tensor entries, their gradient with respect
to U and B (as well as the hyperparameters) also have additive forms over tensor entries. The
derivation of the full gradient is long and tedious and we omit it here.We distribute the computation
over multiple computational nodes (MAP step) and then collect the results to calculate L∗1 and the
gradient ∇L∗1 (REDUCE step). Then a standard optimization framework is used, such as gradient
descent and L-BFGS. For binary data, although we do not have an analytical form ofL∗2, the gradient
∇L∗2 can be calculated by first solving the nonlinear equations to obtain q∗(z) and then substituting
it into L̂2 and taking gradient as if q∗(z) is constant: ∂L̂2(q∗(z),φ)

∂φ where φ = {U ,B}, because

q∗(z)’s parameters ψ has ∂ψ
∂φ = 0. Compared with the continuous case, the extra computation is to

solve the nonlinear equation for each tensor entry ij used in the model. This can also be distributed
in MAP step.

4.3.1 Efficient Non-Key-Value Map-Reduce

To avoid expensive data shuffling, we discard the standard key-value Map-Reduce design. Instead,
on each MAPPER, a whole gradient vector is maintained for all the parameters, including U , B and
the hyperparameters. Then the gradients are calculated according to the allocated tensor entries and
stored in the whole gradient vector. After calculation, each MAPPER sends out the whole gradi-
ent vector; the REDUCER simply sums them all to obtain the full gradient; there is no extra data
sorting. Efficient MAPREDUCE systems, such as SPARK, can highly optimize non-shuffling MAP
and REDUCE, where most of the data are buffered in memory and massive disk I/Os are prevented;
however, with data shuffling, the performance degrades severely [2]. Therefore, our algorithm can
fully use the memory-cache mechanism to achieve fast inference.

5 Related work
There are many excellent works for tensor factorization, such as [11, 1, 10, 12, 13]. However, they
are mainly based on multilinear factorization schemes, like CP, and are difficult to model nonlinear
relationships and to discover complex patterns in data. Infinite Tucker decomposition [16], and
its distributed extension, DinTucker [17] address this issue by modelling tensors or subtensors via
tensor-variate GP. Further in [18], the Dirichlet process mixture prior is combined with the tensor-
variate GP to find unknown latent clusters in tensor modes. Despite the nonlinear modelling power,
these methods may suffer from the extreme sparsity in real-world tensor data; this stems from the
kronekcer product structure in the covariance of tensor-variate GP; it requires to model an entire
tensor, no matter whether an element is meaningful or not. By contrast, our flexible GP factorization
method removes the Kronecker product restriction and can model any set of tensor entries; it can use
a balanced zero and nonzero elements to prevent biased learning; it allows users to select meaningful
entries with domain knowledge. In theory, all these nonlinear factorization models are instances of
random function prior models [8] in exchangeable multidimensional arrays.

Our distributed variational inference algorithm is based on sparse GP, an efficient approximation
framework to scale up GP models. Many works have been proposed for sparse GP. An excellent
review of these works are given in [9]. Recently, in [14] a variational learning framework for sparse
GP is proposed, based on which a tight variational lower bound for distributed inference of GP
regression and GPLVM [7] is developed in [3]. While using similar variational framework, our
works aims for tensor factorization; moreover, we obtain the tight ELBO not only for continuous
data, but also for binary data; the latter is more challenging, because the tight ELBO does not have an
analytical form; we address this problem by solving a nonlinear equation, with solution guaranteed;
further, we develop an efficient, accurate method to calculate the ELBO and its gradient; our methods
can also be used for distributed GP classification.
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Figure 1: The prediction results on small datasets. The results are averaged over 5 runs.
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Figure 2: Prediction accuracy on large tensor data. The results are averaged over 50 test datasets.

6 Experiment
6.1 Missing Value Prediction
Datasets. First, four small datasets were used to examine the predictive performance of the proposed
model: (1) Alog, a real-valued tensor of size 200 × 100 × 200, was extracted from an access log
from a file management system. It describes a three-way interaction (user, action, resource) and
contains 0.33% nonzero entries.(2) AdClick, a real-valued tensor of size 80× 100× 100, describing
(user, publisher, advertisement) clicks. It was extracted from an online advertisement click log and
contains 2.39% nonzero entries. (3) Enron, a binary tensor extracted from the Enron email dataset
(www.cs.cmu.edu/˜./enron/) and depicting three-way relationships (sender, receiver, time).
It contains 203 × 203 × 200 elements, of which 0.01% are nonzero. (4) NellSmall, a binary tensor
extracted from the NELL knowledge base (rtw.ml.cmu.edu/rtw/resources), of size 295×
170 × 94. It depicts the knowledge predicts (entity, relationship, entity). The data contains 0.05%
nonzero elements.

Competing methods. We compared our approach with the following tensor factorization meth-
ods: CP, nonnegative CP (NN-CP) [11], high order SVD (HOSVD) [6], Tucker, infinite Tucker
decomposition (InfTucker) [16] and its extension (InfTuckerEx) which uses Dirichlet process mix-
ture (DPM) prior to model latent clusters and local tensor-variate GP to perform scalable, online
factorization [18]. Note that InfTucker and InfTuckerEx are nonlinear factorization approaches.

Parameter settings. We used the same test setting in [18]: The number of the latent factors was
chosen from {3, 5, 8, 10}. All the methods were evaluated by a 5-fold cross validation: The nonzero
entries were randomly split into 5 folds and 4 folds were used for training; the remaining non-zero
entries and 0.1% zero entries were used for test so that the evaluation will not be dominated by the
large portion of zero entries. We followed [18] to select parameters for InfTucker and InfTuckerEx
except that the kernel form was also selected in another cross-validation; for our model, we consis-
tently used 100 inducing points and a balanced training set: In addition to the nonzero entries, we
randomly sampled the same number of zero entries; we made sure they do not overlap with the test
zero elements. Our model used ARD kernel and the kernel parameters were estimated jointly with
the latent factors. We examined our distributed inference algorithm with two optimization frame-
works, gradient descent and L-BFGS (denoted by Ours-GD and Ours-LBFGS respectively). For
comprehensive evaluation, we also examined CP on balanced training entries generated in the same
way as for our model, denoted by CP-2. The mean squared error (MSE) is used to evaluate predic-
tive performance on Alog and Click and area-under-curve (AUC) on Enron and Nell. The average
results from the 5-fold cross validation are reported.

Results. As shown on Figure 1, our model achieves higher prediction accuracy than InfTucker,
and a better or comparable accuracy than InfTuckerEx. A t-test shows that our model outperforms
InfTucker significanlty (p < 0.05) in almost all the cases. Although InfTuckerEx uses DPM prior to
improve factorization, our model still obtains significantly better prediction on Alog and AdClick and
comparable or better performance on Enron and NellSmall. This might be attributed to our model’s
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flexibility of using balanced training entries to prevent learning bias (toward massive zeros). Similar
improvement can be observed from CP to CP-2. Finally, our model largely outperforms all the
remaining methods, showing the advantage of nonlinear factorization.

6.2 Scalability with regard to the Number of Machines

5 10 15 20
1

3

5

C
/R

n

Number of Machines

Figure 3: The scal-
ability of our dis-
tributed inference al-
gorithm.

To examine the scalability of the proposed distributed inference algorithm,
we used the following real-world large datasets: (1) ACC, A real-valued ten-
sor describing three-way interactions (user, action, resource) in a code repos-
itory management system [18]. The tensor is of size 3K×150×30K, where
0.009% are nonzero. (2) DBLP: a binary tensor depicting a three-way bib-
liography relationship (author, conference, keyword) [18]. The tensor was
extracted from DBLP database and contains 10K × 200 × 10K elements,
where 0.001% are nonzero entries. (3) NELL: a binary tensor representing
the knowledge predicts, in the form of (entity, entity, relationship) [17]. The
tensor size is 20K × 12.3K × 280 and 0.0001% are nonzero.

The scalability of our distributed inference algorithm was examined with regard to the number of
machines on ACC dataset. The number of latent factors was set to 3. We ran our algorithm based on
gradient descent. The results are shown in Figure 3. The Y-axis shows the reciprocal of the running
time multiplied by a constant—which corresponds to the running speed. As we can see, the speed
of our algorithm scales up linearly to the number of machines.

6.3 Large Tensor Analysis
We then compared our approach with three state-of-the-art large scale tensor factorization methods:
GigaTensor [5], Distributed infinite Tucker decomposition (DinTucker) [17], and InfTuckerEx. Both
GigaTensor and DinTucker are developed on HADOOP, while InfTuckerEx uses online learning. Our
model was implemented on SPARK. We ran Gigatensor, DinTucker and our approach on a large
YARN cluster and InfTuckerEx on a single computer.

The number of latent factors were set to 3 for ACC and DBLP, and 5 for NELL. We randomly chose
80% of nonzero entries for training, and then sampled 50 test datasets from the remaining entries.
For ACC and DBLP, each test dataset comprises 200 nonzero elements and 1, 800 zero elements;
for NELL, each test dataset contains 200 nonzero elements and 2, 000 zero elements.

Figure 2 shows the predictive performance. It turns out that our approach consistently outperforms
GigaTensor and DinTucker on all the three datasets; our approach outperforms InfTuckerEx on ACC
and DBLP and is slightly worse than InfTuckerEx on NELL; note again that InfTuckerEx uses DPM
prior to enhance factorization while our model does not; finally, all the nonlinear factorization meth-
ods improve GigaTensor, a distributed CP factorization algorithm by a large margin, confirming the
advantages of nonlinear factorization on large data. In terms of speed, our algorithm is much faster
than GigaTensor and DinTucker. For example, on DBLP dataset, the average per-iteration running
time were 1.04, 15.4 and 20.5 minutes for our model, GigaTensor and DinTucker respectively.

6.4 Application on Click-Through-Rate Prediction
Finally, we applied our tensor factorization approach on Click-Through-Rate (CTR) prediction for
online advertising. We used the online ads click log from a major Internet company, from which
we extracted a four mode tensor (user, advertisement, publisher, page-section). We used the first
three days’s log on May 2015, trained our model on one day’s data and used it to predict the click
behaviour on the next day. We extracted the same number of non-clicks as the clicks for training and
testing. For comparison, we used popular Logistic regression and linear SVM models, where each
tensor entry is represented by a set of binary features according to the indices of each entity in the
entry. The results are reported in Table 1, in terms of AUC. It can be shown that our model improves
Logistic regression and Linear SVM by a large margin, on average 20.7% and 20.4% respectively.
Thus it shows a promising potential of applying our model on CTR prediction task.

Table 1: CTR prediction accuracy on the first three days of May 2015. ”1-2” means using May 1st’s
data for training and May 2nd’s data for testing; similar are ”2-3” and ”3-4”.

Method 1-2 2-3 3-4
Logistic regression 0.7360 0.7337 0.7538
Linear SVM 0.7414 0.7332 0.7540
Our model 0.8907 0.8897 0.9036
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7 Conclusion
We propose a new nonlinear tensor factorization model. By disposing of the Kronecker product
covariance structure, the model can exploit data sparsity and is flexible to incorporate meaningful
tensor elements for training. Moreover, an efficient distributed variational inference algorithm is
developed based on MAPREDUCE framework. The algorithm optimizes a tight ELBO, prevents
inefficient EM and expensive data shuffling procedures, and fully exploit the memory-cache mech-
anism in efficient MAPREDUCE systems, such as SPARK.
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