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Abstract

In this paper, we introduce the class of priority planning strategies for suppressing
SIS epidemics taking place in a network. This is performed via dynamic allocation
of treatment resources with limited efficiency to the infected nodes, according to
a precomputed priority-order. Using recent theoretical results that highlight the
role of the maxcut of a node ordering and the extinction time of an epidemic, we
propose a simple and efficient strategy called MaxCut Minimization (MCM) that
outperforms competing state-of-the-art strategies in simulated epidemic scenarios.

1 Introduction

Diffusion processes arise in systems involving agents whose behaviors depend on their close en-
vironments. Many recent articles have considered the problem of influence maximization [1, 2],
which is to maximize the spread of a diffusion process. Although critical in real-life situations, the
dynamic suppression of undesired information or social diffusion processes has received relatively
less attention. In public health, epidemiologists study scenarios in which the spread of a virus needs
to be controlled. Moreover, various analogues emerge in modern information networks in which a
diffusion can be engineered to be viral and may cause positive, but sometimes also hugely negative,
social and economic effects [3, 4, 5].

The control of diffusion processes has been studied in various fields in the past, including epidemi-
ology and computer networks resilience. The respective literature can generally be divided in three
complementary lines of research, the third of which is the line where our work lays:
a) Static vaccination strategies. Most of the epidemic literature focuses on static control actions

such as permanently removing a set of edges or nodes of the network [6, 7, 8, 9, 10]. In this case,
the available budget is considered fixed, and the effect of a control action permanent [11, 12].

b) Budget optimization. Complementary to resource allocation, the determination of the budget size
to be spent at each time step, which aims to fulfill cost and efficiency constraints, is critical for
the resulting strategy. Several such studies assume that the network administrator is capable of
storing resources for later use [13, 14, 15]. Also, a usual simplifying assumption is the uniform
mixing, i.e. the infected nodes are uniformly scattered in the network. Therefore, these studies
do not address the problem of how exactly to allocate the resources on the nodes of the network,
but rather estimate the budget size that can cause a desired macroscopic result.

c) Dynamic resource allocation. A few studies consider dynamic strategies for allocating resources
for dealing with epidemics. One of the most well-known such strategy is contact-tracing [16]
that consists in healing the neighbors of infected nodes. In practice, this approach was shown
inefficient in containing an epidemic, especially when it is beyond a very initial state. In the
definition of efficient strategies, among many graph features, the role of the cutwidth has already
been underlined in [17, 18] and [19] independently. In this paper, we further explore the power
of this particular concept to analyze and control epidemics in a large variety of contexts from the
viewpoint of the diffusion and the resource allocation process.

Dynamic resource allocation (DRA) strategies [19, 20] aim to suppress undesired Susceptible-
Infected-Susceptible (SIS) diffusion processes. To this end, they consider a budget of resources

1



and each of them represents a targeted and temporal action that can affect the behavior of an indi-
vidual node of the network. The network administrator is allowed to change the distribution of a set
of treatment resources as the diffusion takes place. However, reacting in an online fashion to fast
spreading phenomena is difficult to achieve.

Our major contribution is the introduction of a particular class of DRA strategies called priority
planning that rely on a priority-order precomputed offline. The strategy heals the infected nodes
following the priority-order and, this way, manages to gradually suppress the diffusion. Using recent
theoretical results [19] that highlight the connection between the maxcut of such a priority-order of
the nodes and the extinction time of an SIS epidemic from a network, we propose and implement an
efficient strategy called MaxCut Minimization (MCM).

The most related method to MCM is the CURE policy [17] which was developed independently to
our work. Notable differences are that: i) MCM algorithm is more intuitive and applies to a more
general setting with important additional aspects such as node self-recovery and the allocation of
multiple treatment resources, ii) in contrast with the theoretical work in [17], we also provide a
test bed for experimental assessment of healing strategies on benchmark real networks and others
artificially generated, and iii) we experimentally show that MCM is more efficient than CURE and
other possible approaches to create a priority-order based on the related literature.

2 Setup and main definitions

2.1 Epidemic and control model

We consider the standard Susceptible-Infected-Susceptible (SIS) diffusion model [21] which is
widely used and allows for theoretical analysis. Let G=(V, E) be a network of N = |V| nodes
with adjacency matrix A, where Aij =1 if i 6= j and edge (i, j)∈E , else Aij =0. Let also 0 and 1
be vectors of size N that are, respectively, all-zeros and all-ones, and 1{·} be the indicator function.
A state vector X(t)∈RN represents the state of the diffusion process via the nodes’ infection states:
for each node i∈{1, ..., N}, Xi(t)= 1 if node i is infected at time t, else Xi(t)= 0. We assume
no incubation period, therefore, a node becomes contagious upon infection. Let the control action
be represented as a resource allocation vector ρ(t), where ρi(t)> 0 iff a resource is being given to
node i at time t. In such a case, we say that node i is being healed by the resource. Following the
formalism of [22], we model an epidemic under a control action as a stochastic process with the
following transition rates:

Xi(t) : 0→ 1 at rate β
∑
j AjiXj(t);

Xi(t) : 1→ 0 at rate δ + ρi(t),
(1)

where β is the transmission rate over an edge, and δ is the self-recovery rate, both being essential
characteristics of the infection.

We consider dynamic resource allocation (DRA) strategies that only depend on the current and
past network states X(t′≤ t). In other words, a DRA strategy ρ(t) is a stochastic process that
is adapted to the natural filtration associated to X(t). In addition to this constraint, we also
limit the amount of resources in the network by r and on each node by ρ. Hence, for any t> 0,
‖ρ(t)‖1 =

∑
i∈V ρi(t)≤ r and ‖ρ(t)‖∞= maxi∈V ρi(t)≤ ρ.

Extinction time. In order to account for the criticality of the contagion, we will consider the standard
quality measure of expected extinction time:

τx= min{t∈R+|X(0)=x, X(t)=0} .

The extinction time depends on the chosen DRA strategy, and the main quality measure that we
will consider in this work is its expectation E[τx]. Note that this expectation is never infinite, and
may present sub-critical (respectively super-critical) behavior [22], in the sense that E[τx] may be
upper bounded by a polynomial function (respectively lower bounded by an exponential function)
of the network size N . In the super-critical regime, the extremely long extinction time implies that
the epidemic will reach a stable behavior, a case where we consider that the DRA strategy is not
efficient enough to remove the epidemic.
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Figure 1: Two priority-orders (from left to right) leading to different maxcuts: C∗(`)= 3 for (a) and C∗(`′)= 1
for (b). The cut (vertical red line) separates the nodes in two sets (white are healthy, and red are infected). The
second priority-order `′ is optimal and the network has a cutwidthW =1.

2.2 Maxcut and cutwidth

The strategy we propose in the Sec. 3 relies on creating a fixed linear arrangement (i.e. an ordering)
of the network nodes, that we call priority-order. Formally, a priority-order is a bijective mapping
` : V →{1, ..., N} of the N nodes of the network s.t. `(v) is the position of node v in the order.
The importance of the graph-theoretic concept of cutwidth [23] for containing epidemics has been
recently pointed out [17, 19]. Here we provide a definition adapted to our priority-order notations.
Definition 1 (Maxcut of a priority-order). For a network with N nodes and adjacency matrix A,
and for a given priority-order `, the maxcut of ` is defined as:

C∗(`) = max
c=1,...,N

∑
i,j
Aij1{`(vi) < c ≤ `(vj)}. (2)

Furthermore, the minimal value of the maxcut over all possible priority-orders is an inherent prop-
erty of the network structure known as cutwidth, which we denote asW = min` C∗(`). Fig. 1 illus-
trates two priority-orders for a small network and their respective maxcut (see Definition 1). The
priority-order of Fig. 1(b) is better, indeed optimal, with maxcut equal to the cutwidth of the network.

3 The MaxCut Minimization strategy

3.1 Priority planning: a healing plan to gradually remove a contagion

The control action ρ(t) of a dynamic resource allocation (DRA) strategy depends on the history of
variations of the diffusion process X(t). In this work, we introduce priority planning: a novel class
of DRA strategies that involve a priority-order )see Sec. 2.2) accounting for the criticality of each
node w.r.t. the overall diffusion process. This concept is formally defined below.
Definition 2 (Priority planning). Priority planning is a DRA strategy under limited budget r and
resource threshold ρ that distributes resources to the top-q infected nodes according to a fixed
priority-order ` of the network nodes, where q is the number of nodes such that the allocated amount
of resources matches the available resource budget r. More specifically, the strategy heals the first
q(t)= min{d rρe,

∑
iXi(t)} infected nodes according to the respective mapping `, and allocates

the resource budget as follows:

ρi(t) =

{ r
d rρ e

if Xi(t) = 1 and `(vi) ≤ θ(t);
0 otherwise,

(3)

where θ(t) is a threshold adjusted s.t.
∑
i 1{ρi(t)>0}= q(t).

This definition may be regarded as a description of a class of simple planning strategies for the
removal of a contagion: a healing plan, i.e. a priority-order for healing the nodes, is determined
prior to the beginning of the diffusion and is followed no matter how the diffusion process evolves.
The plan proceeds from the first to the last node in the priority-order, hence aims to remove gradually
the contagion from the network. In what follows, we refer interchangeably to a priority-order and
its corresponding mapping `.

Recent theoretical results [17, 19] highlighted the role of the maxcut of a priority-order for assessing
the quality of a priority-planning strategy. More specifically, under technical assumptions on the
structure of the network, the extinction time behaves linearly w.r.t. the number of nodes if and only
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if the resource budget r is lower than βC∗(`), i.e. the spreading rate multiplied by the maxcut of
the priority-order. This means that a priority-order with lower maxcut would in essence lower the
size of the resource budget needed to accomplish the worst step of the plan, and thus remove the
infection from the network. Following this idea, we propose the novel DRA srategy for arbitrary
networks, called MaxCut Minimization (MCM), that distributes resources to infected nodes in the
priority-order that minimizes C∗(`). Given a network G, we compute, prior to the diffusion process,
a priority-order `

MCM
(G) with minimum maxcut C∗(`):

`
MCM

(G) = argmin
`
C∗(`). (4)

This is done using any available optimization algorithm for this problem. Then, during the diffusion,
the strategy distributes the resource budget to the infected nodes according to the order `

MCM
(G).

Alg. 1 presents the pseudocode of our strategy.

3.2 Maxcut optimization and implementation

Minimum maxcut linear arrangement. Finding a priority-order of a network with minimum C∗(`)
can be performed under the framework of linear arrangement (LA) problems [24, 25, 26], and
specifically the minimum maxcut linear arrangement (MMLA) problem1. MMLA is an NP-hard
combinatorial problem since all node permutations should be examined in order to find the optimal
C∗(`). However, approximation heuristics do exist in literature [25, 26]. One of the major difficulties
of this problem is that the cost function to optimize is extremely flat in the search space, i.e. slight
changes in the arrangement will most probably not change C∗(`).
Relaxation of the MMLA problem. For the latter reasons, we propose to relax the MMLA problem
and instead of their maximum to optimize the sum of the cuts. This is known as the minimum linear
arrangement (MLA) and is part of the larger class of minimum p-sum linear arrangement problems
(MpLA) [27, 28] that minimize the following functional:

MpLA : φ(G, `) =
(∑

i,j
Aij |`(vi)− `(vj)|p

)
1/p
. (5)

For p=1, a simple calculation shows that MLA minimizes the average cut in the linear arrangement,
instead of its maximum for MMLA (see Definitions 1). MLA is easier than MMLA and more suited
to gradient descent or simulated annealing methods, and it produces a smoother priority-order w.r.t.
the cuts at each position of the ordering.

Practical implementation. MLA and MMLA are very challenging problems and, interestingly, most
related works on their optimization conduct experiments on relatively small benchmark networks
for which the optimal cost is not known. Designing a procedure that can be applied on large social
networks with tens of thousands of nodes is by itself a remarkable contribution. We should also note
that MCM strategy seeks for a priority-order with as low as possible maxcut, but not necessarily the
optimal one. The MLA solver we developed for our simulations follows the steps below and uses a
hierarchical approach to take advantage of the group structure of social and contact networks:

s1) first, we identify dense clusters by applying spectral clustering and we order those clusters
(considered as high-level nodes) using spectral sequencing [29],

s2) then, we compute a good ordering of the nodes inside each cluster independently using
spectral sequencing followed by an iterative approach which is based on random node
swaps (swap heuristics inspired by [30]),

s3) finally, the swap-based approach is reapplied to optimize the overall ordering.

Scalability. The scalability of the MCM strategy is highly dependent on the employed offline algo-
rithm for finding the optimal node order. The whole process described above achieves fairly good
results in reasonable time. Since spectral clustering and spectral sequencing depend on the computa-
tion of eigenvectors for the highest eigenvalues of anN ×N sparse matrix with |E| non-zero entries,
the overall complexity of the algorithm is O(|V|+ |E|) [31]. Hence, MCM is generally scalable to
the size of real social and contact networks. It is worth noticing that, for networks that are close to

1In the related literature, a linear arrangement is formally defined exactly as the priority-order (see Sec. 2.2).
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Algorithm 1 MCM strategy
B Prior to the diffusion process:
Compute the priority-order `= `MCM (G) by minimiz-
ing the maxcut C∗(`)
Order the nodes of G according to `, i.e. compute the
node list (v1, ..., vN ) s.t. ∀i∈{1, ..., N}, `(vi)= i

B During the diffusion process:
Input: network G, state vector X(t), resource

budget r, resource threshold ρ
Output: the resource allocation vector ρ(t)

q ← d r
ρ
e

if
∑
iXi(t) < q then

return r
q
X(t)

end if
ρ(t)← 0 // a zero vector inRN

budget← q

i← 1

while budget > 0 do
if Xvi(t) = 1 then
ρvi(t)← r

q

budget← budget− 1

end if
i← i+ 1

end while
return ρ(t)
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Figure 2: Epidemic threshold w.r.t. the maxcut for
random networks of 1,000 nodes (δ=1, β=10).

planar and can be embedded in the 2D plane without many edge intersections (e.g. contact net-
works), the clustering step could be skipped since the spectral sequencing method is a good initial
approximation that can be refined with a node swapping process.

4 Experimental results

4.1 Setup and competitors

In the experimental study, we compare MCM against five DRA strategies, which are grouped into
three types: static vaccination by comparing to centrality-based priority-orders, uniform mixing by
considering a random allocation of resources, and a state-of-the-art direct competitor:

• Most neighbors (MN): gives priority to high degree nodes, hence aims to first remove the
contagion from the network’s core before dealing with the periphery.

• Least neighbors (LN): gives priority to low degree nodes and works conversely to MN.

• Largest reduction in spectral radius (LRSR): gives priority to nodes whose removal will
lead to the maximum decrease of the spectral radius of the adjacency matrix of the resulting
network, and is a state-of-the-art method from the vaccination literature [7].

• Random baseline (RAND): the resources is assigned to d rρe nodes at random at each time.

• CURE policy (CURE): this is a state-of-the-art method developed in parallel to our work
[17]. CURE follows a healing plan with minimal maxcut, called crusade. A crusade can
be considered to be a priority-order similar to that of MCM, however in [17] this was
formulated as a sequence of nested bags which differ by one node each time.

A brief summary of the most significant differences between our work and the work in [17] is given
in Sec. 1. An additional practical difference is that, when many reinfections occur, CURE enters
a waiting phase in order to return to a previous step of the removal plan. This waiting phase is
triggered when the number of infected nodes before the position of the front exceeds r

8d , where d is
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Figure 3: Simulation of an SIS epidemic in the GermanSpeedway network ((a) and (b), N =1168) and the
OpenFlights airport network ((c) and (d), N =2939), under various DRA strategies (δ=0, ρ= r, and β=1).

the maximum degree of the network. In practice, this threshold value can be very small, and we will
see in our experiments that this may lead to substantial delay, or even failure of the healing plan.

For all the experiments, we consider a fixed number of treatments q ∈{1, ..., 100} leading to ρ= r
q .

4.2 Quality of the theoretical bound

Fig. 2 shows the relationship between the maxcut C∗(`) and the resource threshold r∗ under a specific
priority planning and budget. The resource threshold is computed by running simulations with a
fixed number of treatments q, and finding the resource budget above which the strategy is able to
remove the epidemic. Each plotted point is a simulation with fixed network, number of treatments,
and epidemic parameters β and δ. To cover a wide range of scenarios, each of the 100 points plotted
in each subfigure of Fig. 2 involves: i) the priority-order of a DRA control strategy, randomly chosen
among MCM, RAND, MN, LN, and LRSR, ii) a fixed q value, set at random in {1, ..., 100}, and iii) a
random network of 1,000 nodes, constructed by employing at random a generator for: Erdös-Rényi,
preferential attachment, small-world, geometric random [32], and 2D regular grids (see details on
these networks in [33]).

According to the results illustrated in Fig. 2, the resource threshold is always below, but very close,
to βC∗(`) which seems to be a very good approximation of the former. The very stable, nearly
linear, behavior holds even for low infectivity where the random self-recoveries of nodes become
more significant (Fig. 2(b)). Overall, this result justifies the minimization of C∗(`) as a proxy for
removing a contagion with less resources.

4.3 Empirical evaluation of simulated contagion on real networks

In this section, we perform simulations on two real networks matching different use cases of DRA
strategies: the GermanSpeedway network [34] for analyzing the growth of an epidemic through road
network, and the OpenFlights airport network [35] for epidemics spreading through air routes. In
order to compare to the CURE policy, we consider a simplified setting (matching the limitations set
in [17]) for the experiments on the GermanSpeedway network and OpenFlights aiport network: we
use only one treatment (q=1) and let no self-healing (δ=0).

GermanSpeedway network. This is the German Autobahn network from [34]. Due to the spatial
properties of road networks, the respective graph is symmetric, with a single connected component,
and close to being planar (i.e. a graph embedding on the plane would create only very few edge
intersections other than the endpoint connections). It contains 1,168 nodes and 1,243 edges, while
the degree distribution is particularly flat: 101 nodes are leaves, 971 nodes have degree 2, and 96
nodes have degree 3. Finally, the maximum degree is d=12.

Two scenarios of SIS epidemics with different resource budget r are shown in Fig. 3(a) and Fig. 3(b).
In both of them, MN and RAND are the worst strategies. MCM is the best performing strategy,
and all the other strategies are strongly affected by the resource budget. LRSR is the second best
performing strategy, although the low budget causes an increase in the extinction by a factor of 7.
CURE policy presents a behavior with characteristic ups-and-downs, which is due to its waiting
phase. Even for a high resource budget, entering the waiting phase can happen with non negligible
probability (see Fig. 3(b) for an example of such a scenario) and largely degrade the performances
of the CURE policy. The capacity of the strategies to remove the epidemics is correctly predicted by
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their maxcut values, with CURE to be an exception since its behavior largely depends on whether
or not the strategy enters its waiting phase. Specifically, the maxcut values for the strategies are:
650± 50 for RAND, 379 for MN and LN, 104 for LRSR, and 29 for CURE and MCM.

OpenFlights airport network. This network represents the US air traffic for the year 2010 [35]. The
nodes are the US airports, plus those non-US airports connected through flights with the former. We
used a symmetric, undirected, and unweighted version of this network containing 2,939 nodes in a
single connected component with 30,501 edges. For this network, d=242.

Fig. 3(c) and Fig. 3(d) presents two epidemic scenarios similar to Fig. 3(a) and Fig. 3(b). MCM is the
best performing strategy and the least affected by the variation in the resource efficiency. LRSR, on
the other hand, fails completely with a low resource budget, which is due to the fact that its maxcut
is located at the beginning of the considered node ordering. The CURE strategy presents again an
unstable behavior as an effect of its waiting phase, which also shows that the conditions under which
this policy gets into the waiting phase are not rare at all and can be catastrophic. Indeed, CURE is
outperformed even by RAND in these simulations. Again, the capacity of the strategies to remove
the epidemics is correctly predicted by their maxcuts (except CURE): 7,800±100 for RAND, 7,504
for MN and LN, 6,223 for LRSR, and 2,231 for CURE and MCM.

In agreement with our previous analysis, our results show that: i) the uniform mixing hypothesis
leads to a massive drop in efficiency, since MCM substantially outperforms the RAND strategy,
ii) despite being efficient in the static vaccination problem, centrality-based priority-orders are sub-
optimal for the DRA problem, iii) the βC∗(`) value can be used as a good criterion for assessing the
quality of a priority-order, iv) the CURE policy fails to be effective in practical applications due to
its waiting phase, and v) MCM outperforms all its competitors in all our experiments.

5 Conclusion

In this paper, we presented priority planning, a novel class of dynamic strategies for allocating
resources on the nodes of an arbitrary network in order to suppress an undesired SIS diffusion
process. We presented the MaxCut Minimization (MCM) strategy, that distributes resources to nodes
following a priority-order with minimum maxcut and provided a practical MCM algorithm that
includes an efficient solver for the minimum linear arrangement problem suitable for large networks.
Finally, we provided a test bed for experimental assessment of healing strategies on benchmark real
networks and others artificially generated.

Our experimental results verified that, for a wide range of network types, the maxcut is indeed a
good approximation of the epidemic threshold under a given strategy. Moreover, the MCM strategy
outperformed other competing strategies in simulations on real-world networks that are interesting
for the practical application of epidemic control policies.

As part of our future work, we plan to study some theoretical aspects of the MCM strategy, as well
as to investigate the robustness of the method to noise or uncertainty regarding the network structure.
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