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Abstract

Signed social networks are social networks with edges indicative of both trust
and distrust. We propose novel game theoretic centrality measures for signed net-
works, which first generalize degree-based centrality from nodes to sets, and then
compute individual node centralities using the concept of Shapley Value. We de-
rive closed form expressions for the Shapley Value for most of these measures.
Moreover, we demonstrate that some of these measures give improved AP (av-
erage precision) compared to net positive in-degree for the task of detecting troll
users, in the Slashdot signed network.

1 Introduction

Signed networks [1] are networks with both positive and negative interactions between nodes. They
may occur as explicit edges, as in the Slashdot [2]] and Epinions [3] social networks, or be inferred
from interactions such as administrator elections on Wikipedia [4] or conversations on Twitter [3]].
Mathematically, a signed network can be specified as (V, Et, E~), where V is the set of vertices,
with ET and E~ being sets of directed edges of the form (a, b), denoting a trusts b or a distrusts b,
for £ and E~ respectively.

In a social network, a centrality measure assigns each node a value, which denotes its importance
within the network. The notion of importance may vary based on the application, leading to a wide
variety of such measures, based on position [6], betweenness [7, [8] and prestige[9]. A centrality
measure for a signed network needs to incorporate two sources of information and the interplay
between them - namely the positive and negative edges. This, in addition to the imbalance in
real-world signed networks between positive and negative edges, makes defining signed network
centrality measures a non-trivial task.

A simple centrality measure for signed social networks, first proposed in [2], is the simple net pos-
itive in- degree, also called Fans Minus Freaks (FMF) centrality measure - where fans are nodes
with positive edges to pointing to the node under consideration, while freaks are the one with neg-
ative edges. Other measures, such as eigenvector centrality [9] and PageRank [10], have also been
generalized to signed networks.

A disadvantage of some of these centrality measures is that they consider every node in isolation
when computing the centrality. This ignores the synergy between nodes, where a node is important
by virtue of its combination with other groups of nodes. Moreover, ignoring the synergy can also
make some of these centrality measures vulnerable to attacks wherein groups of nodes work together,
as noted in [[L1], to boost their individual centralities or reduce other nodes’s centralities. One
approach to incorporate this synergy is to define a cooperative game, which assigns a value to every
possible subset of nodes C' C V given by the characteristic function v(C') of the game. The value



assigned to a node is a weighted sum of the marginal contributions it makes to the values of all
possible subsets, also known as the Shapley Value (SV). SV based centrality provides an intuitive
way of capturing a node’s centrality in combination with different groups of other nodes in the
network.

1.1 Shapley Value Centrality - Preliminaries

A cooperative game is defined by a set of agents A = {aj,as...ayn} and a characteristic function
v() : P(A) — R, where P(A) represents the power set of A, and R is the set of real numbers.
v(C') essentially maps every C' C A to a real number, which represents the payoff of the subset,
or the coalition |'| Generally, v(C') is defined such that v(¢) = 0, where ¢ is the null set, which
corresponds to the coalition with no agents.

Shapley value, first proposed in [12]], is a way of distributing the payoff of the grand coalition (the
coalition of all agents) amongst each agent. It proposes that the individual payoff of an agent should
be determined by considering the marginal contribution of the agent to every possible coalition it is
a part of. Such a scheme of distribution is also found to obey certain desirable criteria.

Let 7 € II(A) be a permutation of A, and let C; (%) denote the coalition of all the predecessors of
agent a; in 7, then the Shapley value is defined as

1 . .
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For defining a SV based centrality measure on a graph G = (V, E) , we consider A = V. v(C) is
defined such that it represents the a measure of power/centrality/influence of the coalition C'. The
centrality of each node v; is then given by its Shapley value SV (v;).

1.2 Computing the SV

Earlier methods for SV based centrality, such as [13]] used a Monte-Carlo sampling based approxi-
mation to compute SV (v;) for each v;. This essentially involves uniformly sampling a large number
of permutations from IT(V'), and then finding the average marginal contribution of v; as per the def-
inition above. This approach is expensive (since one has to sample a large number of permutations),
as well as inexact. Moreover, since the number of permutations grows as O(n!), where n = |V] is
the number of vertices in the graph.

[14] first proposed that by defining v(C') conveniently, one could compute the SV exactly in closed
form. This approach is naturally more preferable than the MC sampling based one, although it
requires defining v, such that SV can be easily derived using arguments from probability and com-
binatorics.

2 Contributions

To the best of our knowledge, ours is the first work to define cooperative game theoretic centrality
measures for signed social networks. Moreover, we are also the first to evaluate such measures for a
centrality-based ranking task, in traditional or signed networks. Earlier works have evaluated these
measures for other tasks such as influence maximization [13], or selecting gatekeeper nodes [15].
Here, we consider the task of ranking users to detect trolls or malicious users in a social network.
Intuitively, these users are expected to have a a highly negative reputation amongst the users of
the network. In the availability of ground truth about trolls, one can evaluate a signed network
centrality measure by considering how low these “trolls” rank in a list of users ranked according to
the measure.

3 Measures

We now define several Shapley value based centrality measures for directed, signed networks, given
by G = (V, ET, E~), where each edge (a,b) € ET denotes a trusts b and each edge (a,b) € E~
denotes a distrusts b. We take G to be a signed, directed network, since in the context of Slashdot, a

'The terms subset and coalition are used here interchangeably



positive/negative edge denotes that user a approves/disapproves or trusts/distrusts user b’s content.
Hence, the directionality is of importance.

Each of our measures is based on a different definition of v(C'). We denote the positive and negative
in-degrees by d; (V') and d;, (V), and the corresponding out-degrees by d", ,(V') and d;,,, (V). The
positive and negative in-neighbor sets are denoted by N, (V) and N, (V), and the corresponding
out-neighbor sets by N\, (V) and N, (V).

3.1 Game Definitions & Closed Form Expressions

3.1.1 Fans Minus Freaks (FMF)

This is a simple generalization of the degree centrality measure to directed, signed networks. More
formally,

We attempt to generalize this measure to sets of nodes by appropriate definitions of v(C'), and then
compute individual centralities of nodes using the SV of v.

3.1.2 Net Positive Fringe (NPF)

We first define the sets v (C) and v~ (C) [} v*(C) is the set of all nodes v, such that

o v; has atleast one positive out-neighbor v; € C OR
® V; € C

The second clause results from the intuitive assumption that v; always trusts itself. v~ (C) is the set
of all nodes v; such that v; has atleast one negative out-neighbor v; € C. Note that v; itself may be
present inside or outside the coalition, and this does not affect v~ (C'). The characteristic function
v(C) is given by
v(C) = v (C)] - v (O)]

We can think of the v(C') as the difference between two characteristic functions, namely |v(C)]
and |v~(C)|. Hence the SV (v;) of v will be the difference between the Shapley values SV (v;)
and SV~ (v;) for the characteristic functions |v+(C)| and |[v~(C')|. Let us refer to these games as
Game 1 and Game 2 respectively.

e Game1l

Consider a permutation 7 sampled uniformly from II(V). Let C be the set of nodes pre-
ceding v; in the coalition. Let v; by any node € V. Note that v; could also be v; itself.
We denote B,, ,; as the random variable denoting the contribution made by v; through
v;. Here, “v; through v;” means that as a result of v; being added to C, what is the effect
on the membership of v; in v (C'). The Shapley Value of SV (v;) of v;, is then given by
> _v;ev ElBu, v,]. Note that since we are taking the expectation over a permutation drawn
uniformly from II(V'), it is equivalent to averaging over every possible permutation.

Now, we can easily see that B,, ,,, can be non-zero only if v; € v; U N;(vi), since in all
other cases, v; can neither be added or removed from v (C) as a result of v; being added.
Now, consider the case where v; € v; U N (v;). E[B,, ,,,] will be equal to the fraction of

permutations in which v; is able to add v; to the set v+ (C'). This can happen only if v; is
neither itself in C, nor is any other out-neighbor of v;. Note that as a result, the event of v;

adding v; only depends on the ordering of these d.\. ; (v;) + 1 nodes within the permutation.

Hence , we can directly consider the ordering of these nodes, ignoring the other nodes in
our calculation. v; must be the first node amongst these d\,,(v;) + 1 in the permutation T,
for it to contribute v;. Hence,

(dgue (v))!
(dgu(vy) + 1!
B 1
 (dgu(v)) +1)

“Note the slight overloading of v here. v and v~ denote sets, not real values

E[Bvi,vj] =




Now, SV (v;), the Shapley value of Game 1, is consequently given by

SVt = > !

vy €0sONE (w2) (dgue(vi) +1)

e Game 2
Using arguments similar to Game 1, we get

_ 1
SV = X T

v; €N, (vq)

Note that the +1 term in the denominator for the SV T (v;) expression is not present here,
since the node v; cannot add itself to v~ (C)

The final expression of SV (v;) for the NPF game is thus given by

Z 1 Z 1

SV ’Ui = _— —_—

(v 4o (dou(v) +1) * o (dou(v5))
v €EV;UNT (v;) v; EUN, (v;)

The time taken to compute the NPF, Ty pr would be given by

Tnpr = O0(Y (14 dj,(v) + di, (v))
veV
Tnpr =0V + E)

3.1.3 Fringe Of Absolute Trust (FAT)

Note that we refer to v+ (C') and v~ (C), as defined in the previous game. In this game, a node is
included in the coalition’s value if it satisfies both the conditions below

o It either belongs to the coalition or has a positive out neighbor in the coalition.

e It does not have a negative out neighbor in the coalition.

The intuition underlying this measure is that every node contributing to the set’s value should be
such that it does not distrust any node in the set. Most signed networks have more positive edges
than negative ones. For instance, Slashdot has only 23.9% of its edges marked as negative. Hence,
the negative edges may be interpreted strongly as an explicit “vote of distrust”. Note that distrusting
even a single member in the coalition removes a node from the coalition’s value.

Previous work proposes similarly motivated solutions to overcome imbalance. For instance, in [16]],
the authors undersample the positive edges to be equal to the negative edges.

If node v; € N;{l(vi) U v;, then By, o, is +1 if v; is the first of any of the out-neighbours of

v; (positive or negative) or the node v; itself to occur in the permutation. This is because if a
vk, € N (vj) Uwvjis in C, without any negative out neighbor of v; being in C, then v; already is
such that v; € v+ (C) — v~ (C). Also, if any negative out neighbor of v; € C, then v; can never

belong to v (C) — v~ (C'), hence adding v; to C would have no effect. This argument holds good

even if v; = v; . Therefore, for v; € N;/(vi) Uw;

1
- djut(’uj) + d;ut(vj) + 1

E[Bu; v,]

Now consider v; € N, (v;). We can see that B,, ,,; # 0 iff

e Anode vy € N, (v;) Uv, belongs to C

¢ No negative out-neighbor v;, of v; belongs to C.



In fact, B,, »; = —1 if both the conditions above are satisfied. The expectation is given by

—4t .
Sami W (e G al i (vg) — o))

r=1
(dii! (vg) +1)!

E[B’Uiﬂ)j] = -

where d/ (vj) = dfy (v5) + dgy (V)

out

Note that (7;) represents the number of ways of choosing r distinct things from n distinct things.
Since computing factorials for large values can become infeasible in code due to limits on the value
of variables, we simplify the expression into a product of fractions form.

[Tzt (dgu(vj) — = + @)
[Tozi (di (vj) =z + @)

gt
1 z=d g,y

= dtOtal(Uj) +1

out

v;)+1

E[By, ;]

r=1
The final expression for SV (v;) for NPF is given by
- Y

vj€v;UN;" (vl)uNﬁb(vl)

The complexity of computing FAT, Tr a7 would be

Trar =0 di,(v)) + 1+ di, (1) (A%,)°)
veV
Tpar = O(V + E+ E(AL,)")

+

where A_,; is the maximum positive out degree.

3.1.4 Negated Fringe Of Absolute Distrust (NFADT)

This game is in some sense like FAT, but with the roles of distrust and trust reversed. v(C') here is
given by —|v~ (C') — v (C)|. The negative sign is because [v~ (C') — v+ (C)| would be a measure of
disrepute (negative reputation). We omit the expression here for the sake of brevity. The complexity
expression of NFADT would be similar to that of T 47, with A} . replaced by A

out

3.1.5 Net Trust Votes (NTV)

The intuition underlying this measure is that the collective importance of a group of nodes is the net
number of “votes” or edges in its favour, by nodes outside the group.

Given a coalition C, let ET be the set of positive in-edges from a node outside the coalition to a
node in the coalition. Similarly, £/~ is the set of negative in-edges from a node outside the coalition
into the coalition. Note that we do not consider internal edges in either term. In the NTV game,
v(C) is given by |[ET| — |E~|. Let us now consider the derivation of a closed form expression for
this game. Consider the node v; being added to the C'. v; can contribute to the value of |E™| — |E~|
in four different ways, as stated below

1. Positive out-edges from v; to nodes v, € C'. These edges become internal when v; is added
to the coalition, decreasing the value of |[ET| — |E~| by 1.

2. Negative out-edges from v; to nodes v, € C. These edges become internal when v; is
added to the coalition, increasing the value of |[E™| — |[E~| by 1.

3. Positive in-edges from vy, v; ¢ C to v;. These edges become a part of E™, increasing
v(C)by 1

4. Negative in-edges from vy, vy, ¢ C to v;. These edges become a part of £, decreasing
v(C) by 1.

Consider case 1. This case only happens for v;, v; € N, (v;). For this event to happen, v; €
C. In other words, it should precede v; in the permutation. This will happen in exactly half the



permutations, and will result in a contribution of _71 The cumulative contribution as a result of case

i 1 dd, (i)

Pwillbe 3o ens w0 ~2 = =75
i i i ibuti i 1 dous (i)
Symmetrically, in case 2, the cumulative contribution will be Zvj ENTL(vi) 2 = —ouli s,

Case 3 can only happen for v;, v; € N;L(vi). Here v; should follow v; in the permutation i.e.
it should not be in C. This will happen in exactly half the permutations. Hence, the cumulative

. . dt (v; . . .
contribution will be Zvje N 1 — % Symetrically in case 4, we have the cumulative

H(vi) 2
contribution given by > - (v3) —% = —dT(UL) Summing over the contributions from the 4
J in\"?
cases we get

SV/(0) = 3(d5,(09) = iy (1) = 5 (@e(07) — ()

This expression also exhibits a relation to status theory [1l], where a positive edge from a to b,
indicates that b has a higher status than a, while a negative edge indicates the opposite. Thus for a
node a, there are d;f, (v;) + d,,(v;) nodes with a status lower than it, and d;,, (v;) + d.},,, (v;) nodes
with a status higher than it. The expression above, is in some sense, an indicator of the node’s status
relative to its neighbors. Since this expression involves only the node degrees, Tnyry = O(V),
provided we maintain the in-degrees and out-degrees separately.

3.2 k-Hop NPF

We can generalize the NPF measure to k hops, considering the sets of in-neighbours N; (v, k) and
N, (vi, k) to be the set of neighbors within a distance of k-hops using in-edges. The notion of a
path being positive or negative is determined using the principle “The enemy of my enemy is my
friend”, motivated by balance theory [1l]. However, unlike the traditional balance theory setting, we
consider the direction of the edges i.e. we only consider paths where edges are pointing from the
source to the destination.

The sign of the path is given by the product of its edge signs. Note that N;! (v;, k) and N;, (v;, k)
may now have a non-zero intersection unlike the simple one-hop neighbor sets. Hence, we do not
generalize the FFAT and N F ADT measures to the & hop case, since these measures do not consider
the neighbor sets independently.

3.3 Strong Balance Shapley Value (SBSV)

This measure has its motivation in balance theory [17], which has also been used in the literature
to define energy functions [[18]], to characterize a signed graph’s stability. Balanced triads (where
the product of signs is positive) are considered stable and having negative energy, while unbalanced
triads are considered unstable. Here, we consider the un-normalizedE]energy of a set of nodes C as
the number of balanced triads minus the number of unbalanced triads.

V(C) = Z _Sijsjksik (l)

{vi,vj,v}€T(C)

where T'(C') is the set of triads in C, and s;; represents the sign of the edge between ¢ and j. We can
easily see that the marginal contribution of a node ¢ to C' would be only dependent on the number
of triangles v; is a part of. If the other two nodes of a triad to which ¢ belongs are already present in
C, then ¢ can make a marginal contribution through the triad. For a given pair of adjacent neighbors
j and k of a node i, this will only happen in % of the permutations. Thus, the shapley value SV (v;)
will be given by

1
SV (vi) = Z g(_Sijsjksik) 2)

{vj,vr},v; EN(vK),v;,vK EN(v;)

The time complexity Tspsy will be O(Y, oy (dio!™ (v:))?).

3We do not normalize the energy by the largest possible number of triads ('g‘), or the total number of
triangles, since this makes computing the closed form difficult



Table 1: Comparison of Measures For Troll Detection

Approach | InTop96 | AP | MAP-5 | MAP-10 | MAP-20
FMF 10 0.031 | 0.031 0.033 0.033
NTV 7 0.044 | 0.043 0.045 0.042
NPF 18 0.104 | 0.104 0.107 0.108
FAT 15 0.092 | 0.092 0.094 0.093

NFADT 19 0.130 | 0.131 0.134 0.133
2 Hop FMF 25 0.158 | 0.157 0.153 0.155
3 Hop FMF 7 0.023 | 0.025 0.025 0.025
2 Hop NPF 16 0.148 | 0.139 0.143 0.152
3 Hop NPF 22 0.193 | 0.193 0.193 0.192

WBSV 4 0.039 | 0.039 0.039 0.038

SBSV 4 0.024 | 0.024 0.024 0.023

3.4 Weak Balance Shapley Value (WBSV)

Weak balance is a variant of balance theory [16], according to which the triad with three negative
signs (all nodes are mutual enemies), is not considered as unbalanced. As a result, triads where s;;,
51 and s;;, are all —1 are not included in the value function, and consequently, in the Shapley Value.
The time complexity will be the same as that of WBSV.

3.5 Evaluation and Results

We consider the task of ranking users to detect trolls in the Slashdot signed networkﬂ with 96 users
annotated as trolls. The network has 71512 nodes, with 487751 edges. About 24% of these edges
are negative.

We evaluate a centrality measure by first ranking the nodes of the graph in ascending order according
to them, and then evaluating these ranklists based on how high the ground truth trolls rank in them.
For evaluation, we consider two metrics

1. The number of trolls in the top g elements of the ranklist, where g is the number of ground
truth trolls

2. The average precision (AP) metric from IR [19], with the trolls corresponding to “relevant
documents”. The metric is defined as follows

=2 P(k) x Mal(k)
AP = _— (3)
2

Here, P(k) is the precision (fraction of ground truth trolls) in the top k elements of the
ranklist. Mal(k) is 1 if the kth user is a troll, while g is the number of ground truth trolls.
n is the size of the ranklist.

Besides computing these for the full graph, we also compute the mean of the AP (MAP) over 50
subgraphs formed by deleting 5 %, 10 % and 20% of the nodes. We observe that the NPF, FAT and
NFADT measures perform considerably better than FMF, both on the full graph as well as on each
of the random subsamples. Moreover, the 3-Hop NPF gives the highest average precision amongst
all the measures, while the performance of k-Hop FMF decreases when we go to 3 hops.

4 Conclusion

We propose here, for the first time, cooperative game theoretic Shapley Value based centrality measures for a
signed social network. Furthermore, we demonstrate that Shapley Value based generalizations of even a simple
measure such as FMF can detect trolls more effectively.

*http://konect.uni-koblenz.de/networks/slashdot-zoo



5 Future Work

The set of measures we propose here are based on notions of degree or number of k-hop neighbors, for a subset
of nodes. In the future, we could look at exploring other notions, such as community score (e.g modularity) of a
subset. Moreover, we could look at evaluating the proposed measures for other centrality-based ranking tasks,
such as retrieving relevant publications for understanding a given publication, based on a signed citation net-
work (Citations could be thought of as positive or negative based on whether the cited publication is criticized
or praised).
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