From Extrapolation to Quasi-Newton:

Stabilizing Type-l Anderson Mixing for Memory-Efficient, Line-Search

Free and Black-Box Acceleration

Junzi Zhang

Stanford ICME, junziz@stanford.edu

Joint works with Brendan O’Donoghue, Anqi Fu, Stephen P. Boyd
Xin Guo, Anran Hu and Renyuan Xu

June 14, 2019

ZOB2018 (Stanford University) June 14, 2019

@ Motivation and Problem Statement

e Acceleration: from extrapolation to quasi-Newton
© Type-l Anderson acceleration and stabilization
@ Our algorithm

© Numerical examples

ZOB2018 (Stanford University) June 14, 2019 2 /40

© Motivation and Problem Statement

ZOB2018 (Stanford University) June 14, 2019 3 /40

Fixed-point problems

@ We consider solving a fixed-point problem x = f(x), where
f : R"™ — R" is potentially non-smooth.

Yix|l# = v'xT Hx for some PSD matrix H

ZOB2018 (Stanford University) June 14, 2019 4/ 40

Fixed-point problems

@ We consider solving a fixed-point problem x = f(x), where
f : R"™ — R" is potentially non-smooth.

e Assumption: f is non-expansive in /, (or H-norm?), i.e.,
[£(x) = f(W)ll2 < [Ix = yll2 for any x, y € R”

or contractive in an arbitrary norm || - ||.

@ Simplest solution: averaged iteration, a.k.a. Krasnosel'ski--Mann
(KM) iteration

X1 = (1 — a)xk + af(xX), a € (0,1).

@ Convergence is robust, but sublinear in theory and slow in practice:
can we (safely) do better?

Yix|l# = v'xT Hx for some PSD matrix H

Z0B2018 (Stanford University) June 14, 2019 4 /40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:
@ (Any) convex optimization with no strong convexity
e minimizexcc F(x), C is convex, F is convex and L-strongly smooth.

Z0B2018 (Stanford University) June 14, 2019 5/ 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ (Any) convex optimization with no strong convexity

e minimizexcc F(x), C is convex, F is convex and L-strongly smooth.
o Projected gradient descent: x*™ = N¢ (x¥ — 1 VF(x¥)).

Z0B2018 (Stanford University) June 14, 2019 5/ 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ (Any) convex optimization with no strong convexity

e minimizexcc F(x), C is convex, F is convex and L-strongly smooth.
o Projected gradient descent: x*™ = N¢ (x¥ — 1 VF(x¥)).
o Optimality & x = f(x), f(x) := ¢ (x — 1 VF(x)).

Z0B2018 (Stanford University) June 14, 2019 5/ 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ (Any) convex optimization with no strong convexity
minimizexcc F(x), C is convex, F is convex and L-strongly smooth.
Projected gradient descent: x*™1 =T¢ (x* — }VF(x¥)).
Optimality < x = f(x), f(x) := ¢ (x — 1 VF(x)).
Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

/ 40

Z0B2018 (Stanford University) June 14, 2019 5/

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.
Examples:

o Discounted Markov decision processes (MDP)

k

o Value iteration: x¥t1 = Txk, where T is the Bellman operator:

S
— /
(Tx)s = max R(s,a) +~ E o P(s,a,s")xs.

a=1,...,

e Optimality & x = Tx.
o Contractive in Iy, but still non-differentiable due to max.

Z0B2018 (Stanford University) June 14, 2019

5/

40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ Nash equilibrium in a multiplayer game < monotone inclusion
problem < non-smooth non-expansive fixed-point problem.

Z0B2018 (Stanford University) June 14, 2019 5/ 40

© Acceleration: from extrapolation to quasi-Newton

ZOB2018 (Stanford University) June 14, 2019 6 / 40

Acceleration by extrapolation

Algorithm 1 Extrapolation framework

Input: initial point xg, fixed-point mapping f : R" — R".
for k=0,1,... do
Choose my (e.g., mx = min{m, k} for some integer m > 0).
Select weights ak based on the last my iterations, with Z -0 J =1

xk+1 _ijko ka(xk— mk—H)_

Such a framework subsumes many different algorithms, among which one
of the most natural and popular method is Anderson acceleration (1965):

minimize || Y27 cjg(x* "Mk H)[|3 subject to > a; =1,

where g(x) := x — f(x) is the residual.

Z0B2018 (Stanford University) June 14, 2019

Literature comments

@ Also known as Type-Il Anderson acceleration (AA-Il),
Anderson /Pulay mixing, Pulay's direct inversion iterative subspace
(DI1S), nonlinear GMRES, minimal polynomial extrapolation (MPE),
reduced rank extrapolation (RRE), etc.

Z0B2018 (Stanford University) June 14, 2019 8 /40

Literature comments

@ Also known as Type-Il Anderson acceleration (AA-Il),
Anderson /Pulay mixing, Pulay's direct inversion iterative subspace
(DI1S), nonlinear GMRES, minimal polynomial extrapolation (MPE),
reduced rank extrapolation (RRE), etc.

o Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications

o MLE, matrix completion, K-means, computer vision and deep learning.

Z0B2018 (Stanford University) June 14, 2019 8 /40

Literature comments

@ Also known as Type-ll Anderson acceleration (AA-Il),
Anderson /Pulay mixing, Pulay's direct inversion iterative subspace
(DI1S), nonlinear GMRES, minimal polynomial extrapolation (MPE),
reduced rank extrapolation (RRE), etc.
o Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications
o MLE, matrix completion, K-means, computer vision and deep learning.
e Equivalent to multi-secant quasi-Newton methods (see below) —

development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

o Extrapolation: good for intuition.
o Quasi-Newton: good for derivations.

Z0B2018 (Stanford University) June 14, 2019 8 /40

From extrapolation to quasi-Newton

@ Recall the selection of aJ’-‘ in AA-1l (constrained least-squares):
minimize || 3-7 ajg(xk=mH)|13 subject to > ai =1,

o Reformulation: minimize ||gx — Yk7||2
o variable v = (70, -, Yme—1)-

o gi=g(x'), Ye = [Ykemi --- Yk_1] with y; = gi41 — g for each i.
o ag =10, & =7 —7i-1for 1 <i<me—1and am =1—vm 1.

Z0B2018 (Stanford University) June 14, 2019 9 /40

From extrapolation to quasi-Newton

@ Recall the selection of aJ’-‘ in AA-1l (constrained least-squares):
minimize || 3-7 ajg(xk=mH)|13 subject to > ai =1,

o Reformulation: minimize ||gx — Yk7||2

o variable vy = (Y0, - -, Ymc—1)-

o gi=g(x"), Yo = [Vkemy --- Yk_1] with y; = g1 — g for each i.

e ag=", j="7i—yi—1for 1 <i<me—1and am =1—Ym 1.
o xk1 = > aff(xk=mt) = xk — Higy,

o Hy =1+ (Sk — Yk)(YkTYk)_lykT.

o Hj = argmingy, s ||[H — I||r: approximate inverse Jacobian of g.

o multi-secant type-ll (bad) Broyden's (quasi-Newton) method.

Z0B2018 (Stanford University) June 14, 2019 9 /40

9 Type-l Anderson acceleration and stabilization

ZOB2018 (Stanford University) June 14, 2019 10 / 40

Type-1 Anderson acceleration

e Why not consider the type-l (good) counterpart?

Z0B2018 (Stanford University) June 14, 2019 11 / 40

Type-1 Anderson acceleration

e Why not consider the type-l (good) counterpart?

o Instead of inverse Jacobian (which itself may not exist), consider
By := argmings, _y, ||Bx — I||F: approximate Jacobian of g.

o xkt1 = xk — B lg, with B.' =1+ (Sk — Yi)(S] Ya) 1S/

Z0B2018 (Stanford University) June 14, 2019 11 / 40

Type-1 Anderson acceleration

e Why not consider the type-l (good) counterpart?

o Instead of inverse Jacobian (which itself may not exist), consider
By := argmings, _y, ||Bx — I||F: approximate Jacobian of g.
o xktl = xk Bk_lgk, with Bk_l =1+ (Sk — Yi)(S] Ye) 1S/

Algorithm 2 Type-l Anderson Acceleration (AA-I)

1: for k=0,1,... do

Choose my < m (e.g., mx = min{m, k} for some integer m > 0).
Compute 7% = (S Yi)"X(S/ g«).

ok = A, 0k =3~ 5y (151 < me— 1) and ol = 1- 7, .

= Ty af).

Z0B2018 (Stanford University) June 14, 2019 12 / 40

Good news and bad news

Good news:

o Compared to AA-II: early experiments applying AA to SCS (a
popular convex optimization solver) show obvious advantage of AA-I
over AA-Il on some benchmark problems.

Z0B2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

o Compared to AA-II: early experiments applying AA to SCS (a
popular convex optimization solver) show obvious advantage of AA-I
over AA-Il on some benchmark problems.

@ Compared to LBFGS and restarted Broyden:

o AA is memory efficient (AA-l with m =5 — 10 beats LBFGS /restarted
Broyden with m = 200 — 500)

Z0B2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

o Compared to AA-II: early experiments applying AA to SCS (a
popular convex optimization solver) show obvious advantage of AA-I
over AA-Il on some benchmark problems.

@ Compared to LBFGS and restarted Broyden:

o AA is memory efficient (AA-l with m =5 — 10 beats LBFGS /restarted
Broyden with m = 200 — 500)
o AA is line-search free: just accept or reject is the best practice

Z0B2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

o Compared to AA-II: early experiments applying AA to SCS (a
popular convex optimization solver) show obvious advantage of AA-I
over AA-Il on some benchmark problems.

@ Compared to LBFGS and restarted Broyden:

o AA is memory efficient (AA-I with m =5 — 10 beats LBFGS//restarted
Broyden with m = 200 — 500)

o AA is line-search free: just accept or reject is the best practice

o AA is suitable to be used in a completely black-box way

o PGD: don't separate the gradient step and projection
o ADMM: don't separate the primal and dual steps

Z0B2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

o Compared to AA-II: early experiments applying AA to SCS (a
popular convex optimization solver) show obvious advantage of AA-I
over AA-Il on some benchmark problems.

@ Compared to LBFGS and restarted Broyden:

o AA is memory efficient (AA-I with m =5 — 10 beats LBFGS//restarted
Broyden with m = 200 — 500)

o AA is line-search free: just accept or reject is the best practice

o AA is suitable to be used in a completely black-box way

o PGD: don't separate the gradient step and projection
o ADMM: don't separate the primal and dual steps

@ SCS itself is a non-smooth and non-expansive fixed-point iteration.

Z0B2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

@ Compared to AA-II:

run time ratio

= SCS5vZ: ALl
SuperSCS: AA-Il

Perfarmance Ratio

Figure: Left: histogram of run time ratio between SuperSCS (AA-Il) and
SCS v2 (AA-1). Right: DM profile of run time.

ZOB2018 (Stanford University) June 14, 2019 14 / 40

Good news and bad news

Good news:

o Compared to restarted Broyden::

100

Problems solved (%)

. —— SuperSCS, AA, mem=5 | |
e BuperSCS, AA, mem = 10
|

-

— SCE .
— BuperSCS, RB, mem = 50
SuperSCS, KB, mem = 100

Figure:

al., 2019.

ZOB2018 (Stanford University)

a 10
Performance ratio

20 a0

Problems solved (%)

£

va

s BuperSCS, RB, mem = 50

— BuperSCE, AA, mem = 5
| —— SuperSCS, AA, mem = 10

SuperSCS, BB, mem = 100

2 a
Performance ratio

DM profile. left: sparse PCA; right: sparse logistic regression.
SuperSCS: fast and accurate large-scale conic optimization. Sopasakis, et

June 14, 2019

Good news and bad news

Bad news:

@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-l is more severe.

o AA-Il: Y] Y, (close to) singular (degenerate least-squares system).
o AA-Il: Bk can be (close to) singular.

Z0B2018 (Stanford University) June 14, 2019 16 / 40

Good news and bad news

Bad news:

@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-l is more severe.

o AA-Il: Y] Y, (close to) singular (degenerate least-squares system).
o AA-Il: Bk can be (close to) singular.
@ Theoretical challenge: local convergence theory exists with further
smoothness assumptions, but no global convergence.

Z0B2018 (Stanford University) June 14, 2019 16 / 40

Good news and bad news

Bad news:
@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-l is more severe.
o AA-Il: Y] Y, (close to) singular (degenerate least-squares system).
o AA-I: By can be (close to) singular.
@ Theoretical challenge: local convergence theory exists with further
smoothness assumptions, but no global convergence.
@ In general, most of the literature has been focused on AA-II:
o AA-l is generally missing both in theory and practice.

Z0B2018 (Stanford University) June 14, 2019 16 / 40

Good news and bad news

Bad news:
@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-l is more severe.

res v.s. time, res0=4.60e-05
, timeratio: aa = 9.10e-01, aal-safe = 2.81e+00
0

—aa2 10

10 —original

10°

== Gradient

Jlo) — flz")

—— Nesterov

2| | —o— RNAS
| 10
10 x o Acc. S

. 0 z 4 &] 10
10
5 10 15 . x10°
time (seconds) Gradient oracle calls

Figure: Convergence of Anderson accelerated gradient descent on ¢,
regularized logistic regression without stabilization. Left: AA-I vs AA-II.
Right: AA-1l v.s. stabilized AA-Il (Regularized Nonlinear Acceleration,
Scieur et al., 2016.)

Z0B2018 (Stanford University) June 14, 2019 17 / 40

Goal and contribution

o Stabilize AA-I with convergence beyond differentiability, locality and
non-singularity
o Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

Z0B2018 (Stanford University) June 14, 2019 18 / 40

Goal and contribution

o Stabilize AA-I with convergence beyond differentiability, locality and
non-singularity

o Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

@ Develop a “plug-and-play” acceleration scheme based on the
stabilized AA-I

o View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.

o For example, concatenate successive iterates in momentum algorithms.

Z0B2018 (Stanford University) June 14, 2019 18 / 40

Stabilization of AA-I: rank-one update

AA-1 <= Type-| Broyden's rank-one update with orthogonalization:

Proposition

Suppose that Sy is full rank, then By can be computed inductively from
BE = | as follows:

. <
; 7 (yk—mk+i - BLSk—mk-H)Sk— 1 .
B,’<+1:BL+ — Mt =0, ., me—1

T .
Sk—my4-iSk—my+i

with By = B™*. Here {5;}¥ is the Gram-Schmidt orthogonalization

§'si

B — @ — J ° _
of{s,,kmk,le.,s,—s, Z kmkATASJ’ i=k—my, ..., k—1.
35j

lkmk

Z0B2018 (Stanford University) June 14, 2019 19 / 40

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By).

Z0B2018 (Stanford University) June 14, 2019 20 / 40

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By).

o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)

minimizesme 1 | 2% ajg (XM H)E + Mlad3

Help in extreme cases, but impede the convergence in general.

Z0B2018 (Stanford University) June 14, 2019 20 / 40

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By)

o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)
minimizesme 1 | 2% ajg (XM H)E + Mlad3

Help in extreme cases, but impede the convergence in general.
o AA-I: Powell-type trick (turns out helpful also in practice!)

o Replace yx—m,+i with Jx_m i = GLYk—mk+i +(1- QL)BLSk—mk+ix
i : . N T piy—1 .
where 0} = ¢5(n}), with nj, = Skomyti (Bi)™ Vi +i

8 my 1113 '
ba(n) = 1 _ifg[>0
T e e) < 4,

Z0B2018 (Stanford University) June 14, 2019 20 / 40

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By)

o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)
minimizesme 1 | 2% ajg (XM H)E + Mlad3

Help in extreme cases, but impede the convergence in general.
o AA-I: Powell-type trick (turns out helpful also in practice!)

o Replace yx—m,+i with Jx_m i = QZYk—kari +(1- QL)BLSk—mHi,
i . . N T piy—1 .
where 0} = ¢5(n}), with nj, = Skomyti (Bi)™ Vi +i

8 my 1113 !
o) = 1 _ifg[>0
T e e) < 4,

o |det(By)| > 6™ > 0, and in particular, By is invertible!

Z0B2018 (Stanford University) June 14, 2019 20 / 40

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).

Z0B2018 (Stanford University) June 14, 2019 21 / 40

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).

2T _la 12 : :)
© S v iSkemyti = ||Sk—m,+ill5 appears in the denominators: but
Sk—m,+i becomes 0 when my > n due to orthogonalization.

Z0B2018 (Stanford University) June 14, 2019 21 / 40

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).

2T _la 12 : :)
© S v iSkemyti = ||Sk—m,+ill5 appears in the denominators: but
Sk—m,+i becomes 0 when my > n due to orthogonalization.

@ Solution: update m = my_1+1. f me=m+1or
I3k—1ll2 < T|sk—1]|2, then reset my = 1.

Z0B2018 (Stanford University) June 14, 2019 21 / 40

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).
° §[_mk+,sk_mk+,- = ||§k_mk+,-||% appears in the denominators: but
Sk—m,+i becomes 0 when my > n due to orthogonalization.
@ Solution: update m = my_1+1. f me=m+1or
I3k—1ll2 < T|sk—1]|2, then reset my = 1.

o Then ||Byll2 <3(1+80+7)" /7™ — 2!
= m n—1
1+0 _
o (Re)define Hy := B ': ||Hil2 < (3 (i> - 2) /6m.
~

Z0B2018 (Stanford University) June 14, 2019 21 / 40

Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid "wild" and "bad” extrapolation.

Z0B2018 (Stanford University) June 14, 2019 22 / 40

Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid "wild" and "bad” extrapolation.

@ Main idea: interleave AA-I steps with the vanilla KM iteration steps
to safe-guard the decrease in residual norms g.

Z0B2018 (Stanford University) June 14, 2019 22 / 40

Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid "wild" and "bad” extrapolation.
@ Main idea: interleave AA-I steps with the vanilla KM iteration steps
to safe-guard the decrease in residual norms g.
@ Check if the current residual norm is sufficiently small, and replace it
with f,(x) = (1 — a)x + af(x) whenever not.

Z0B2018 (Stanford University) June 14, 2019 22 / 40

Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid "wild" and "bad” extrapolation.
@ Main idea: interleave AA-I steps with the vanilla KM iteration steps
to safe-guard the decrease in residual norms g.
@ Check if the current residual norm is sufficiently small, and replace it
with f,(x) = (1 — a)x + af(x) whenever not.
@ Can be seen as a cheap alternative to the expensive line-search.

Z0B2018 (Stanford University) June 14, 2019 22 / 40

@ Our algorithm

ZOB2018 (Stanford University) June 14, 2019 23 /

Stabilized AA-I

Combine Powell-type regularization, re-start checking and safe-guard
checking (with some simplifications using Woodbury formula, etc.)

Algorithm 3 Stablized Type-l Anderson Acceleration (AA-I-S)

1:

N o agrwnN

9:
10:
11:
12:

Input: initial point xg, fixed-point mapping f : R” — R”", regularization constants
0, 7, a € (0,1), safe-guarding constants D, € > 0, max-memory m > 0.
Initialize Ho =1, mo = naa =0, U= |lgol|2, and compute xt =% = fa(xo).
for k=1, 2, ... do
mg = mg—1+ 1.
Compute si_1 = X¥ — x*71, yp 1 = g(%%) — g(x*71).

N k—2 Sk—1 A
Compute §—1 = s—1 — 3,2]§T§,- 5.
If me=m+1or|S-1l]2 < 7||sk—1|l2 {Re-start checking}

reset mg =1, §x_1 = sx_1, and Hx_1 = 1.

Update Hy with {Powell-type regularization}, compute **! = x¥ — H,g.

If g < DU(nAA +1)~0+) {Safe-guard checking}
X _Xk+1, naa = naa + 1.

else x*1 = £,(x").

Z0B2018 (Stanford University) June 14, 2019 24 / 40

Global convergence

Suppose that f is non-expansive in l-norm or contractive in an arbitrary
norm, and assume that {x* }22 o is generated by Algorithm 3. Then we

k

have limy_,o0 x* = x*, where x* = f(x*).

Key: bounds on Hy and By ensure that the deviation is not too much
from the safe-guarding paths.

Z0B2018 (Stanford University) June 14, 2019 25 / 40

Implementation details

o Hyper-parameters choice: § = 0.01, 7 = 0.001, D = 10°,
¢ = 107° memory m = 5, averaging weight a = 0.1.

o Matrix-free updates: instead of computing and storing H,, we store
T gk—j

Pheifics 209 g 5

for j=1,..., mg, compute

my HIZ— S j T
di = gk + Z(Skfj — (Hk—j¥x—j)) (J—)> gk
=1

S0 i (Hie—jYi—j

and then update %K1 = xk — dj.

o Problem scaling is helpful when matrices are involed.

Z0B2018 (Stanford University) June 14, 2019 26 / 40

© Numerical examples

ZOB2018 (Stanford University) June 14, 2019 27 / 40

More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x¥*1 = f(x*) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):

ZOB2018 (Stanford University)

June 14, 2019 28 / 40

More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x¥*1 = f(x*) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):

@ Problem 1: find x € CND.

ZOB2018 (Stanford University)

June 14, 2019 28 / 40

More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x¥*1 = f(x*) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):

@ Problem 1: find x € CN D.

o Algorithm — alternating projection: x*1 = f(x*) = N¢(Np(x¥)).

Z0B2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x¥*1 = f(x*) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):
@ Problem 1: find x € CND.
o Algorithm — alternating projection: x*1 = f(x*) = N¢(Np(x¥)).
o FP: x = M¢(Np(x¥)).

Z0B2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x*1 = £(x¥) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):
@ Problem 2: minimize, F(x)+ u|x||1.
o Algorithm — ISTA: xk1 = S (xk — aVF(x¥)), with
Sk(x)i = sign(x;)(|xi| — k)4 fori=1,...,n.
e FP: x = 5,,(x — aVF(x)).

Z0B2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x*1 = £(x¥) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):

e Problem 3: minimize, Y. ; Fi(x).

@ Algorithm — consensus DRS:

Xt = argmin,, Fi(x;) + (1/2a)|x — 2|3,

z,-k“ = z,-k + 25K+t — x,-kJrl —zk i=1,...,m

o FP: f defined as the mapping from z¥ to zK*1

@ Wrong approach: apply AA to both x and z.

Z0B2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into xk*1 = f(x*) by concatenation
and neglecting (intermediate variables).

Apart from PGD (minycc F(x)) and value iteration (MDP):
@ Problem 4: minimize, ¢’ x, subject to Ax+s=b, s € K.
e Algorithm — SCS (C =R" x £* x Ry):

ak+1 — (/ + Q)fl(uk + Vk)
u L = Ne(ak+t — vk)

JRHL — Jk _ pkl

1% + uk+1.

e FP (don't apply AA to u and v separately):

Fluv) = | MeU + Q7 (u+v) —v)
v+ Q) Y u+v)+u

Z0B2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into xk*1 = f(x¥) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):

@ Problem 5: minimize, %XTAX +bTx+c.
o Algorithm: momentum GD: xK*1 = xk — a(Axk + b) + B(xk — xk=1).
o FP (concatenate two successive iterates):

x' — a(Ax' + b) + B(x" — x)
X/

f(x',x) =

@ Remember to concatenate, don't simply neglect x¥~1 as in RNA.

Z0B2018 (Stanford University) June 14, 2019 28 / 40

Numerical examples

Gradient Descent: stabilization from divergence to convergence

res v.s. iter, res0=4.60e-05 res v.s. time, res0=4.60e—-05
time ratio: aa = 8.75e-01, aal-safe = 1.11e+00
4 —aal
10 ——aal-safe 10° —aal
—original —— aal-safe
—original

llg(@*)ll2/ g () |2
lg(@®)ll2/1lg ()2

0 1000 2000 3000 4000 5000 0 5 10
iteration number time (seconds)

Figure: Gradient descent: regularized logistic regression. Left: residual norm
versus iteration. Right: residual norm versus time (seconds).

ZOB2018 (Stanford University) June 14, 2019 29 / 40

Numerical examples

SCS (ADMM): SOCP — nonsmoothness coming from projections

res v.s. iter, res0=8.37e-01

res v.s. time, res0=8.37e-01

10 time ratio: aa = 1.89e+00, aal-safe = 1.05e+00
—aal 10 T T T
——aal-safe —aal
——original ——aal-safe
10° o —original
= =10
% N
— 8
= N3
= .2 =
=10 S107
4 =
= B
= =
= =
10" 107
10° 10°
0 200 400 600 800 1000 0 20 40 60

iteration number

time (seconds)

Figure: SCS: second-order cone program. Left: residual norm versus iteration.

Right: residual norm versus time (seconds).

Z0B2018 (Stanford University)

June 14, 2019

30 / 40

Numerical examples

ISTA: elastic net regression — nonsmoothness coming from shrinkage

res v.s. iter, res0=8.03e+00 res v.s. time, res0=8.03e+00
10" time ratio: aa = 1.45e+00, aal-safe = 1.01e+00
—aal 10"
——aal-safe —aal
107 —original —— aal-safe|
10 —original
=10 B
= =10°
= =
= =
.5 =
s10 %107
= ~
= =
107 1 107
1079 L L L L 1079 L L
0 500 1000 1500 2000 2500 0 20 40 80
iteration number time (seconds)

Figure: Iterative Shrinkage-Thresholding Algorithm: elastic-net linear regression.
Left: residual norm versus iteration. Right: residual norm versus time (seconds).

Z0B2018 (Stanford University) June 14, 2019 31/ 40

Numerical examples

MDP (value iteration) (discount factor v = 0.99):

res v.s. iter, res0=1.61e+01

10
—aal
——aal-safe
\ ——original
. 10° 1
E
=
=107
&
=
107
10°
0 10 20 30 40 50

iteration number

llg(z")ll2/llg(x)2

res v.s. time, res0=1.61e+01
time ratio: aa = 9.84e-01, aal-safe = 1.03e+00

10 T
—aal
/[\,/\N\'\ —— aal-safe
\rr —original

10°

107

107

10°

0

4
time (seconds)

Figure: Value iteration: MDP. Left: residual norm versus iteration. Right:

residual norm versus time (seconds).

Z0B2018 (Stanford University)

June 14, 2019

32 /40

Numerical examples

Effect of different memories m:

res v.s. iter, res0=1.61e+01

— original
== aal,m=2
— aal-safe, m=2
= = aal,m=5
——— aal-safe, m=5

—— aal-safe, m=10
aal,m=20
aal-safe, m=20

- = aal,m=50

aal-safe, m=50

0 10

20 30 40 50 60
iteration number

res v.s. time, res0=1.61e+01

—— original
- - aalm=2
—— aal-safe, m=2

—— aal-safe, m=10
aal,m=20
aal-safe, m=20

- - aal,m=50

—— aal-safe, m=50

6
time (seconds)

Figure: Value iteration: memory effect. Left: residual norm versus iteration.
Right: residual norm versus time (seconds).

June 14, 2019 33 /40

o Starting point: Early empirical success in applying AA-I to SCS, but
unstable performance

Z0B2018 (Stanford University) June 14, 2019 34 / 40

o Starting point: Early empirical success in applying AA-I to SCS, but
unstable performance
o Destination:

o the first globally convergent Anderson acceleration variant under very
relaxed conditions.

Z0B2018 (Stanford University) June 14, 2019 34 / 40

o Starting point: Early empirical success in applying AA-I to SCS, but
unstable performance
o Destination:

o the first globally convergent Anderson acceleration variant under very
relaxed conditions.

o online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).

Z0B2018 (Stanford University) June 14, 2019 34 / 40

o Starting point: Early empirical success in applying AA-I to SCS, but
unstable performance
o Destination:
o the first globally convergent Anderson acceleration variant under very
relaxed conditions.
o online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).
o flexible applications to many different problems/algorithms with
general black-box fixed-point reformulation, with stable performance.

Z0B2018 (Stanford University) June 14, 2019 34 / 40

o Starting point: Early empirical success in applying AA-I to SCS, but
unstable performance
o Destination:
o the first globally convergent Anderson acceleration variant under very
relaxed conditions.
o online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).
o flexible applications to many different problems/algorithms with
general black-box fixed-point reformulation, with stable performance.
o Now being implemented and tested in SCS 2.0.

Z0B2018 (Stanford University) June 14, 2019 34 / 40

Beyond non-expansiveness (convexity)

@ Our stabilization technique can actually be extended to generic
non-convex optimization settings.

Z0B2018 (Stanford University) June 14, 2019 35/ 40

Beyond non-expansiveness (convexity)

@ Our stabilization technique can actually be extended to generic
non-convex optimization settings.

o Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.

Z0B2018 (Stanford University) June 14, 2019 35/ 40

Beyond non-expansiveness (convexity)

@ Our stabilization technique can actually be extended to generic
non-convex optimization settings.
o Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.
o Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.

Z0B2018 (Stanford University) June 14, 2019 35/ 40

Safe-guards in non-convex optimization

log regret v.s. time (seconds): no safeguards objective v s_time (seconds): no safeguards

50
45 -20000
840 2 0000
% g
E 35 £
g g -60000
=)
L 30 ©
80000
25
-100000
0 50 100 150 200 250 0 50 100 150 200 250
time (seconds) time (seconds)

Figure: MLE of MHPs: exponential hawkes. No safe-guards. Left: log-regret v.s.
time (seconds). Right: objective v.s. time (seconds).

Z0B2018 (Stanford

June 14, 2019 36 / 40

Safe-guards in non-convex optimization

log regret v.s. time (ssconds) objective v.s. time (seconds)

5000

4

~10000

=3
2]
. 5 -15000
&
E’ g
€ 5
=3 . 20000
g1 g

N 25000

0 5 100 150 200 250 00 0 50 100 150 200 250 300
time (seconds) time (seconds)

Figure: MLE of MHPs: exponential hawkes. With safe-guards. Left: log-regret
v.s. time (seconds). Right: objective v.s. time (seconds).

Z0B2018 (Stanford University) June 14, 2019 37 / 40

Future work

o Can we extract some general design rules of safe-guards formally?

Z0B2018 (Stanford University) June 14, 2019 38 / 40

o Can we extract some general design rules of safe-guards formally?
e Find a balance between practical efficiency and theoretical guarantee.

Z0B2018 (Stanford University) June 14, 2019 38 / 40

o Can we extract some general design rules of safe-guards formally?

e Find a balance between practical efficiency and theoretical guarantee.

o Failure example: apply AA-Il to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

Z0B2018 (Stanford University) June 14, 2019 38 / 40

o Can we extract some general design rules of safe-guards formally?

e Find a balance between practical efficiency and theoretical guarantee.

o Failure example: apply AA-Il to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

@ More examples for applying AA-I:

o Nesterov's accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Z0B2018 (Stanford University) June 14, 2019 38 / 40

o Can we extract some general design rules of safe-guards formally?

e Find a balance between practical efficiency and theoretical guarantee.

o Failure example: apply AA-Il to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

@ More examples for applying AA-I:

o Nesterov's accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

@ Adaptive choices/line-search of the hyper-parameters in our stabilized
AA-L.

Z0B2018 (Stanford University) June 14, 2019 38 / 40

References

ﬁ Zhang, J., O'Donoghue, B, and Boyd, S. P. (2018).
Globally Convergent Type-1 Anderson Acceleration for Non-Smooth
Fixed-Point Iterations.
arXiv preprint arXiv:1808.03971.

[§ X. Guo, A. Hu, R. Xu, and Zhang, J. (2018).
Consistency and Computation of Regularized MLEs for Multivariate
Hawkes Processes.
arXiv preprint arXiv:1810.02955.

Z0B2018 (Stanford University) June 14, 2019 39 / 40

Thanks for listening!

Any questions?

Z0B2018 (Stanford University) June 14, 2019 40 / 40

	Motivation and Problem Statement
	Acceleration: from extrapolation to quasi-Newton
	Type-I Anderson acceleration and stabilization
	Our algorithm
	Numerical examples

