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Fixed-point problems

@ We consider solving a fixed-point problem x = f(x), where
f : R"™ — R" is potentially non-smooth.

Yix|l# = v'xT Hx for some PSD matrix H
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Fixed-point problems

@ We consider solving a fixed-point problem x = f(x), where
f : R"™ — R" is potentially non-smooth.

e Assumption: f is non-expansive in /, (or H-norm?), i.e.,
[£(x) = f(W)ll2 < [Ix = yll2 for any x, y € R”

or contractive in an arbitrary norm || - ||.

@ Simplest solution: averaged iteration, a.k.a. Krasnosel'ski--Mann
(KM) iteration

X1 = (1 — a)xk + af(xX), a € (0,1).

@ Convergence is robust, but sublinear in theory and slow in practice:
can we (safely) do better?

Yix|l# = v'xT Hx for some PSD matrix H
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Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:
@ (Any) convex optimization with no strong convexity
e minimizexcc F(x), C is convex, F is convex and L-strongly smooth.

Z0B2018 (Stanford University) June 14, 2019 5/ 40



Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ (Any) convex optimization with no strong convexity

e minimizexcc F(x), C is convex, F is convex and L-strongly smooth.
o Projected gradient descent: x*™ = N¢ (x¥ — 1 VF(x¥)).

Z0B2018 (Stanford University) June 14, 2019 5/ 40



Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ (Any) convex optimization with no strong convexity

e minimizexcc F(x), C is convex, F is convex and L-strongly smooth.
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Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ (Any) convex optimization with no strong convexity
minimizexcc F(x), C is convex, F is convex and L-strongly smooth.
Projected gradient descent: x*™1 =T¢ (x* — }VF(x¥)).
Optimality < x = f(x), f(x) := ¢ (x — 1 VF(x)).
Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

/ 40
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Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.
Examples:

o Discounted Markov decision processes (MDP)

k

o Value iteration: x¥t1 = Txk, where T is the Bellman operator:

S
— /
(Tx)s = max R(s,a) +~ E o P(s,a,s")xs.

a=1,...,

e Optimality & x = Tx.
o Contractive in Iy, but still non-differentiable due to max.
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Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ Nash equilibrium in a multiplayer game < monotone inclusion
problem < non-smooth non-expansive fixed-point problem.
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© Acceleration: from extrapolation to quasi-Newton
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Acceleration by extrapolation

Algorithm 1 Extrapolation framework

Input: initial point xg, fixed-point mapping f : R" — R".
for k=0,1,... do
Choose my (e.g., mx = min{m, k} for some integer m > 0).
Select weights ak based on the last my iterations, with Z -0 J =1

xk+1 _ijko ka( xk— mk—H)_

Such a framework subsumes many different algorithms, among which one
of the most natural and popular method is Anderson acceleration (1965):

minimize || Y27 cjg(x* "Mk H)[|3 subject to > a; =1,

where g(x) := x — f(x) is the residual.
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Literature comments

@ Also known as Type-Il Anderson acceleration (AA-Il),
Anderson /Pulay mixing, Pulay's direct inversion iterative subspace
(DI1S), nonlinear GMRES, minimal polynomial extrapolation (MPE),
reduced rank extrapolation (RRE), etc.
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Literature comments

@ Also known as Type-ll Anderson acceleration (AA-Il),
Anderson /Pulay mixing, Pulay's direct inversion iterative subspace
(DI1S), nonlinear GMRES, minimal polynomial extrapolation (MPE),
reduced rank extrapolation (RRE), etc.
o Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications
o MLE, matrix completion, K-means, computer vision and deep learning.
e Equivalent to multi-secant quasi-Newton methods (see below) —

development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

o Extrapolation: good for intuition.
o Quasi-Newton: good for derivations.
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From extrapolation to quasi-Newton

@ Recall the selection of aJ’-‘ in AA-1l (constrained least-squares):
minimize || 3-7 ajg(xk=mH)|13 subject to > ai =1,

o Reformulation: minimize ||gx — Yk7||2
o variable v = (70, -, Yme—1)-

o gi=g(x'), Ye = [Ykemi --- Yk_1] with y; = gi41 — g for each i.
o ag =10, & =7 —7i-1for 1 <i<me—1and am =1—vm 1.
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From extrapolation to quasi-Newton

@ Recall the selection of aJ’-‘ in AA-1l (constrained least-squares):
minimize || 3-7 ajg(xk=mH)|13 subject to > ai =1,

o Reformulation: minimize ||gx — Yk7||2

o variable vy = (Y0, - -, Ymc—1)-

o gi=g(x"), Yo = [Vkemy --- Yk_1] with y; = g1 — g for each i.

e ag=", j="7i—yi—1for 1 <i<me—1and am =1—Ym 1.
o xk1 = > aff(xk=mt) = xk — Higy,

o Hy =1+ (Sk — Yk)(YkTYk)_lykT.

o Hj = argmingy, s ||[H — I||r: approximate inverse Jacobian of g.

o multi-secant type-ll (bad) Broyden's (quasi-Newton) method.
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9 Type-l Anderson acceleration and stabilization
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Type-1 Anderson acceleration

e Why not consider the type-l (good) counterpart?
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Type-1 Anderson acceleration

e Why not consider the type-l (good) counterpart?

o Instead of inverse Jacobian (which itself may not exist), consider
By := argmings, _y, ||Bx — I||F: approximate Jacobian of g.

o xkt1 = xk — B lg, with B.' =1+ (Sk — Yi)(S] Ya) 1S/
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Type-1 Anderson acceleration

e Why not consider the type-l (good) counterpart?

o Instead of inverse Jacobian (which itself may not exist), consider
By := argmings, _y, ||Bx — I||F: approximate Jacobian of g.
o xktl = xk Bk_lgk, with Bk_l =1+ (Sk — Yi)(S] Ye) 1S/

Algorithm 2 Type-l Anderson Acceleration (AA-I)

1: for k=0,1,... do

Choose my < m (e.g., mx = min{m, k} for some integer m > 0).
Compute 7% = (S Yi)"X(S/ g«).

ok = A, 0k =3~ 5y (151 < me— 1) and ol = 1- 7, .

= Ty af ).
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Good news and bad news

Good news:

o Compared to AA-II: early experiments applying AA to SCS (a
popular convex optimization solver) show obvious advantage of AA-I
over AA-Il on some benchmark problems.
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Good news and bad news

Good news:

o Compared to AA-II: early experiments applying AA to SCS (a
popular convex optimization solver) show obvious advantage of AA-I
over AA-Il on some benchmark problems.

@ Compared to LBFGS and restarted Broyden:

o AA is memory efficient (AA-I with m =5 — 10 beats LBFGS//restarted
Broyden with m = 200 — 500)

o AA is line-search free: just accept or reject is the best practice

o AA is suitable to be used in a completely black-box way

o PGD: don't separate the gradient step and projection
o ADMM: don't separate the primal and dual steps

@ SCS itself is a non-smooth and non-expansive fixed-point iteration.
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Good news and bad news

Good news:

@ Compared to AA-II:

run time ratio

= SCS5vZ: ALl
SuperSCS: AA-Il

Perfarmance Ratio

Figure: Left: histogram of run time ratio between SuperSCS (AA-Il) and
SCS v2 (AA-1). Right: DM profile of run time.
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Good news and bad news

Good news:

o Compared to restarted Broyden::
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Problems solved (%)
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e BuperSCS, AA, mem = 10
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Good news and bad news

Bad news:

@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-l is more severe.

o AA-Il: Y] Y, (close to) singular (degenerate least-squares system).
o AA-Il: Bk can be (close to) singular.
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@ Theoretical challenge: local convergence theory exists with further
smoothness assumptions, but no global convergence.
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Good news and bad news

Bad news:
@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-l is more severe.
o AA-Il: Y] Y, (close to) singular (degenerate least-squares system).
o AA-I: By can be (close to) singular.
@ Theoretical challenge: local convergence theory exists with further
smoothness assumptions, but no global convergence.
@ In general, most of the literature has been focused on AA-II:
o AA-l is generally missing both in theory and practice.
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Good news and bad news

Bad news:
@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-l is more severe.

res v.s. time, res0=4.60e-05
, timeratio: aa = 9.10e-01, aal-safe = 2.81e+00
0

—aa2 10

10 —original

10°

== Gradient

Jlo) — flz")

—— Nesterov

2| | —o— RNAS
| 10
10 x o Acc. S

. 0 z 4 & ] 10
10
5 10 15 . x10°
time (seconds) Gradient oracle calls

Figure: Convergence of Anderson accelerated gradient descent on ¢,
regularized logistic regression without stabilization. Left: AA-I vs AA-II.
Right: AA-1l v.s. stabilized AA-Il (Regularized Nonlinear Acceleration,
Scieur et al., 2016.)
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Goal and contribution

o Stabilize AA-I with convergence beyond differentiability, locality and
non-singularity
o Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.
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Goal and contribution

o Stabilize AA-I with convergence beyond differentiability, locality and
non-singularity

o Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

@ Develop a “plug-and-play” acceleration scheme based on the
stabilized AA-I

o View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.

o For example, concatenate successive iterates in momentum algorithms.
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Stabilization of AA-I: rank-one update

AA-1 <= Type-| Broyden's rank-one update with orthogonalization:

Proposition

Suppose that Sy is full rank, then By can be computed inductively from
BE = | as follows:

. <
; 7 (yk—mk+i - BLSk—mk-H)Sk— 1 .
B,’<+1:BL+ — Mt =0, ., me—1

T .
Sk—my4-iSk—my+i

with By = B™*. Here {5;}¥ is the Gram-Schmidt orthogonalization

§'si

B — @ — J ° _
of{s,,kmk,le.,s,—s, Z kmkATASJ’ i=k—my, ..., k—1.
35j

lkmk
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Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By).
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Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By).

o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)

minimizesme 1 | 2% ajg (XM H)E + Mlad3

Help in extreme cases, but impede the convergence in general.
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Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By)

o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)
minimizesme 1 | 2% ajg (XM H)E + Mlad3

Help in extreme cases, but impede the convergence in general.
o AA-I: Powell-type trick (turns out helpful also in practice!)

o Replace yx—m,+i with Jx_m i = GLYk—mk+i +(1- QL)BLSk—mk+ix
i : . N T piy—1 .
where 0} = ¢5(n}), with nj, = Skomyti (Bi)™ Vi +i

8 my 1113 '
ba(n) = 1 _ifg[ >0
T e e ) < 4,
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Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By)

o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)
minimizesme 1 | 2% ajg (XM H)E + Mlad3

Help in extreme cases, but impede the convergence in general.
o AA-I: Powell-type trick (turns out helpful also in practice!)

o Replace yx—m,+i with Jx_m i = QZYk—kari +(1- QL)BLSk—mHi,
i . . N T piy—1 .
where 0} = ¢5(n}), with nj, = Skomyti (Bi)™ Vi +i

8 my 1113 !
o) = 1 _ifg[ >0
T e e ) < 4,

o |det(By)| > 6™ > 0, and in particular, By is invertible!
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Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).
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Goal of re-start: avoid blow-up (“upper bound” on By).

2T _la 12 : : )
© S v iSkemyti = ||Sk—m,+ill5 appears in the denominators: but
Sk—m,+i becomes 0 when my > n due to orthogonalization.
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Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).

2T _la 12 : : )
© S v iSkemyti = ||Sk—m,+ill5 appears in the denominators: but
Sk—m,+i becomes 0 when my > n due to orthogonalization.

@ Solution: update m = my_1+1. f me=m+1or
I3k—1ll2 < T|sk—1]|2, then reset my = 1.

Z0B2018 (Stanford University) June 14, 2019 21 / 40



Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).
° §[_mk+,sk_mk+,- = ||§k_mk+,-||% appears in the denominators: but
Sk—m,+i becomes 0 when my > n due to orthogonalization.
@ Solution: update m = my_1+1. f me=m+1or
I3k—1ll2 < T|sk—1]|2, then reset my = 1.

o Then ||Byll2 <3(1+80+7)" /7™ — 2!
= m n—1
1+0 _
o (Re)define Hy := B ': ||Hil2 < (3 (i> - 2) /6m.
~
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Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid "wild" and "bad” extrapolation.
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@ Main idea: interleave AA-I steps with the vanilla KM iteration steps
to safe-guard the decrease in residual norms g.
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Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid "wild" and "bad” extrapolation.
@ Main idea: interleave AA-I steps with the vanilla KM iteration steps
to safe-guard the decrease in residual norms g.
@ Check if the current residual norm is sufficiently small, and replace it
with f,(x) = (1 — a)x + af(x) whenever not.
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Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid "wild" and "bad” extrapolation.
@ Main idea: interleave AA-I steps with the vanilla KM iteration steps
to safe-guard the decrease in residual norms g.
@ Check if the current residual norm is sufficiently small, and replace it
with f,(x) = (1 — a)x + af(x) whenever not.
@ Can be seen as a cheap alternative to the expensive line-search.
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@ Our algorithm
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Stabilized AA-I

Combine Powell-type regularization, re-start checking and safe-guard
checking (with some simplifications using Woodbury formula, etc.)

Algorithm 3 Stablized Type-l Anderson Acceleration (AA-I-S)

1:

N o agrwnN

9:
10:
11:
12:

Input: initial point xg, fixed-point mapping f : R” — R”", regularization constants
0, 7, a € (0,1), safe-guarding constants D, € > 0, max-memory m > 0.
Initialize Ho =1, mo = naa =0, U= |lgol|2, and compute xt =% = fa(xo).
for k=1, 2, ... do
mg = mg—1+ 1.
Compute si_1 = X¥ — x*71, yp 1 = g(%%) — g(x*71).

N k—2 Sk—1 A
Compute §—1 = s—1 — 3,2 ]§T§,- 5.
If me=m+1or|S-1l]2 < 7||sk—1|l2 {Re-start checking}

reset mg =1, §x_1 = sx_1, and Hx_1 = 1.

Update Hy with {Powell-type regularization}, compute **! = x¥ — H,g.

If g < DU(nAA +1)~0+) {Safe-guard checking}
X _Xk+1, naa = naa + 1.

else x*1 = £,(x").
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Global convergence

Suppose that f is non-expansive in l-norm or contractive in an arbitrary
norm, and assume that {x* }22 o is generated by Algorithm 3. Then we

k

have limy_,o0 x* = x*, where x* = f(x*).

Key: bounds on Hy and By ensure that the deviation is not too much
from the safe-guarding paths.
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Implementation details

o Hyper-parameters choice: § = 0.01, 7 = 0.001, D = 10°,
¢ = 107° memory m = 5, averaging weight a = 0.1.

o Matrix-free updates: instead of computing and storing H,, we store
T gk—j

Pheifics 209 g 5

for j=1,..., mg, compute

my HIZ— S j T
di = gk + Z(Skfj — (Hk—j¥x—j)) (J—)> gk
=1

S0 i (Hie—jYi—j

and then update %K1 = xk — dj.

o Problem scaling is helpful when matrices are involed.
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© Numerical examples
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More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x¥*1 = f(x*) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):
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More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x¥*1 = f(x*) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):

@ Problem 1: find x € CN D.

o Algorithm — alternating projection: x*1 = f(x*) = N¢(Np(x¥)).
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More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x¥*1 = f(x*) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):
@ Problem 1: find x € CND.
o Algorithm — alternating projection: x*1 = f(x*) = N¢(Np(x¥)).
o FP: x = M¢(Np(x¥)).
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More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x*1 = £(x¥) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):
@ Problem 2: minimize, F(x)+ u|x||1.
o Algorithm — ISTA: xk1 = S (xk — aVF(x¥)), with
Sk(x)i = sign(x;)(|xi| — k)4 fori=1,...,n.
e FP: x = 5,,(x — aVF(x)).
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More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into x*1 = £(x¥) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):

e Problem 3: minimize, Y. ; Fi(x).

@ Algorithm — consensus DRS:

Xt = argmin,, Fi(x;) + (1/2a)|x — 2|3,

z,-k“ = z,-k + 25K+t — x,-kJrl —zk i=1,...,m

o FP: f defined as the mapping from z¥ to zK*1

@ Wrong approach: apply AA to both x and z.
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More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into xk*1 = f(x*) by concatenation
and neglecting (intermediate variables).

Apart from PGD (minycc F(x)) and value iteration (MDP):
@ Problem 4: minimize, ¢’ x, subject to Ax+s=b, s € K.
e Algorithm — SCS (C =R" x £* x Ry):

ak+1 — (/ + Q)fl(uk + Vk)
u L = Ne(ak+t — vk)

JRHL — Jk _ pkl

1% + uk+1.

e FP (don't apply AA to u and v separately):

Fluv) = | MeU + Q7 (u+v) —v)
v+ Q) Y u+v)+u
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More examples: Problem + ALG < black-box FP

General idea: rewrite an algorithm into xk*1 = f(x¥) by concatenation
and neglecting (intermediate variables).
Apart from PGD (minycc F(x)) and value iteration (MDP):

@ Problem 5: minimize, %XTAX +bTx+c.
o Algorithm: momentum GD: xK*1 = xk — a(Axk + b) + B(xk — xk=1).
o FP (concatenate two successive iterates):

x' — a(Ax' + b) + B(x" — x)
X/

f(x',x) =

@ Remember to concatenate, don't simply neglect x¥~1 as in RNA.
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Numerical examples

Gradient Descent: stabilization from divergence to convergence

res v.s. iter, res0=4.60e-05 res v.s. time, res0=4.60e—-05
time ratio: aa = 8.75e-01, aal-safe = 1.11e+00
4 —aal
10 ——aal-safe 10° —aal
—original —— aal-safe
—original

llg(@*)ll2/ g () |2
lg(@®)ll2/1lg ()2

0 1000 2000 3000 4000 5000 0 5 10
iteration number time (seconds)

Figure: Gradient descent: regularized logistic regression. Left: residual norm
versus iteration. Right: residual norm versus time (seconds).
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Numerical examples

SCS (ADMM): SOCP — nonsmoothness coming from projections

res v.s. iter, res0=8.37e-01

res v.s. time, res0=8.37e-01

10 time ratio: aa = 1.89e+00, aal-safe = 1.05e+00
—aal 10 T T T
——aal-safe —aal
——original ——aal-safe
10° o —original
= =10
% N
— 8
= N3
= .2 =
=10 S107
4 =
= B
= =
= =
10" 107
10° 10°
0 200 400 600 800 1000 0 20 40 60

iteration number

time (seconds)

Figure: SCS: second-order cone program. Left: residual norm versus iteration.

Right: residual norm versus time (seconds).

Z0B2018 (Stanford University)

June 14, 2019

30 / 40



Numerical examples

ISTA: elastic net regression — nonsmoothness coming from shrinkage

res v.s. iter, res0=8.03e+00 res v.s. time, res0=8.03e+00
10" time ratio: aa = 1.45e+00, aal-safe = 1.01e+00
—aal 10"
——aal-safe —aal
107 —original —— aal-safe|
10 —original
=10 B
= =10°
= =
= =
.5 =
s10 %107
= ~
= =
107 1 107
1079 L L L L 1079 L L
0 500 1000 1500 2000 2500 0 20 40 80
iteration number time (seconds)

Figure: Iterative Shrinkage-Thresholding Algorithm: elastic-net linear regression.
Left: residual norm versus iteration. Right: residual norm versus time (seconds).
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Numerical examples

MDP (value iteration) (discount factor v = 0.99):

res v.s. iter, res0=1.61e+01

10
—aal
——aal-safe
\ ——original
. 10° 1
E
=
=107
&
=
107
10°
0 10 20 30 40 50

iteration number

llg(z")ll2/llg(x)2

res v.s. time, res0=1.61e+01
time ratio: aa = 9.84e-01, aal-safe = 1.03e+00

10 T
—aal
/[\,/\N\'\ —— aal-safe
\rr —original

10°

107

107

10°

0

4
time (seconds)

Figure: Value iteration: MDP. Left: residual norm versus iteration. Right:

residual norm versus time (seconds).
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Numerical examples

Effect of different memories m:

res v.s. iter, res0=1.61e+01

— original
== aal,m=2
— aal-safe, m=2
= = aal,m=5
——— aal-safe, m=5

—— aal-safe, m=10
aal,m=20
aal-safe, m=20

- = aal,m=50

aal-safe, m=50

0 10

20 30 40 50 60
iteration number

res v.s. time, res0=1.61e+01

—— original
- - aalm=2
—— aal-safe, m=2

—— aal-safe, m=10
aal,m=20
aal-safe, m=20

- - aal,m=50

—— aal-safe, m=50

6
time (seconds)

Figure: Value iteration: memory effect. Left: residual norm versus iteration.
Right: residual norm versus time (seconds).
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o Starting point: Early empirical success in applying AA-I to SCS, but
unstable performance
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o Starting point: Early empirical success in applying AA-I to SCS, but
unstable performance
o Destination:
o the first globally convergent Anderson acceleration variant under very
relaxed conditions.
o online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).
o flexible applications to many different problems/algorithms with
general black-box fixed-point reformulation, with stable performance.
o Now being implemented and tested in SCS 2.0.
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Beyond non-expansiveness (convexity)

@ Our stabilization technique can actually be extended to generic
non-convex optimization settings.
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Beyond non-expansiveness (convexity)

@ Our stabilization technique can actually be extended to generic
non-convex optimization settings.
o Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.
o Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.
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Safe-guards in non-convex optimization

log regret v.s. time (seconds): no safeguards objective v s_time (seconds): no safeguards

50
45 -20000
840 2 0000
% g
E 35 £
g g -60000
= )
L 30 ©
80000
25
-100000
0 50 100 150 200 250 0 50 100 150 200 250
time (seconds) time (seconds)

Figure: MLE of MHPs: exponential hawkes. No safe-guards. Left: log-regret v.s.
time (seconds). Right: objective v.s. time (seconds).
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Safe-guards in non-convex optimization

log regret v.s. time (ssconds) objective v.s. time (seconds)

5000
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~10000
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2 ]
. 5 -15000
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=3 . 20000
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N 25000
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Figure: MLE of MHPs: exponential hawkes. With safe-guards. Left: log-regret
v.s. time (seconds). Right: objective v.s. time (seconds).
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Future work

o Can we extract some general design rules of safe-guards formally?

Z0B2018 (Stanford University) June 14, 2019 38 / 40



o Can we extract some general design rules of safe-guards formally?
e Find a balance between practical efficiency and theoretical guarantee.

Z0B2018 (Stanford University) June 14, 2019 38 / 40



o Can we extract some general design rules of safe-guards formally?

e Find a balance between practical efficiency and theoretical guarantee.

o Failure example: apply AA-Il to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

Z0B2018 (Stanford University) June 14, 2019 38 / 40



o Can we extract some general design rules of safe-guards formally?

e Find a balance between practical efficiency and theoretical guarantee.

o Failure example: apply AA-Il to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

@ More examples for applying AA-I:

o Nesterov's accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Z0B2018 (Stanford University) June 14, 2019 38 / 40



o Can we extract some general design rules of safe-guards formally?

e Find a balance between practical efficiency and theoretical guarantee.

o Failure example: apply AA-Il to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

@ More examples for applying AA-I:

o Nesterov's accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

@ Adaptive choices/line-search of the hyper-parameters in our stabilized
AA-L.
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Thanks for listening!

Any questions?
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