
From Extrapolation to Quasi-Newton:
Stabilizing Type-I Anderson Mixing for Memory-Efficient, Line-Search

Free and Black-Box Acceleration

Junzi Zhang

Stanford ICME, junziz@stanford.edu

Joint works with Brendan O’Donoghue, Anqi Fu, Stephen P. Boyd
Xin Guo, Anran Hu and Renyuan Xu

June 14, 2019

ZOB2018 (Stanford University) June 14, 2019 1 / 40

Overview

1 Motivation and Problem Statement

2 Acceleration: from extrapolation to quasi-Newton

3 Type-I Anderson acceleration and stabilization

4 Our algorithm

5 Numerical examples

ZOB2018 (Stanford University) June 14, 2019 2 / 40

1 Motivation and Problem Statement

2 Acceleration: from extrapolation to quasi-Newton

3 Type-I Anderson acceleration and stabilization

4 Our algorithm

5 Numerical examples

ZOB2018 (Stanford University) June 14, 2019 3 / 40

Fixed-point problems

We consider solving a fixed-point problem x = f (x), where

f : Rn → Rn is potentially non-smooth.

Assumption: f is non-expansive in l2 (or H-norm1), i.e.,

‖f (x)− f (y)‖2 ≤ ‖x − y‖2 for any x , y ∈ Rn

or contractive in an arbitrary norm ‖ · ‖.
Simplest solution: averaged iteration, a.k.a. Krasnosel’skǐı-Mann

(KM) iteration

xk+1 = (1− α)xk + αf (xk), α ∈ (0, 1).

Convergence is robust, but sublinear in theory and slow in practice:

can we (safely) do better?

1‖x‖H =
√
xTHx for some PSD matrix H

ZOB2018 (Stanford University) June 14, 2019 4 / 40

Fixed-point problems

We consider solving a fixed-point problem x = f (x), where

f : Rn → Rn is potentially non-smooth.

Assumption: f is non-expansive in l2 (or H-norm1), i.e.,

‖f (x)− f (y)‖2 ≤ ‖x − y‖2 for any x , y ∈ Rn

or contractive in an arbitrary norm ‖ · ‖.
Simplest solution: averaged iteration, a.k.a. Krasnosel’skǐı-Mann

(KM) iteration

xk+1 = (1− α)xk + αf (xk), α ∈ (0, 1).

Convergence is robust, but sublinear in theory and slow in practice:

can we (safely) do better?

1‖x‖H =
√
xTHx for some PSD matrix H

ZOB2018 (Stanford University) June 14, 2019 4 / 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

(Any) convex optimization with no strong convexity

minimizex∈C F (x), C is convex, F is convex and L-strongly smooth.

Projected gradient descent: xk+1 = ΠC

(
xk − 1

L∇F (xk)
)
.

Optimality ⇔ x = f (x), f (x) := ΠC

(
x − 1

L∇F (x)
)
.

Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

ZOB2018 (Stanford University) June 14, 2019 5 / 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

(Any) convex optimization with no strong convexity

minimizex∈C F (x), C is convex, F is convex and L-strongly smooth.
Projected gradient descent: xk+1 = ΠC

(
xk − 1

L∇F (xk)
)
.

Optimality ⇔ x = f (x), f (x) := ΠC

(
x − 1

L∇F (x)
)
.

Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

ZOB2018 (Stanford University) June 14, 2019 5 / 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

(Any) convex optimization with no strong convexity

minimizex∈C F (x), C is convex, F is convex and L-strongly smooth.
Projected gradient descent: xk+1 = ΠC

(
xk − 1

L∇F (xk)
)
.

Optimality ⇔ x = f (x), f (x) := ΠC

(
x − 1

L∇F (x)
)
.

Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

ZOB2018 (Stanford University) June 14, 2019 5 / 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

(Any) convex optimization with no strong convexity

minimizex∈C F (x), C is convex, F is convex and L-strongly smooth.
Projected gradient descent: xk+1 = ΠC

(
xk − 1

L∇F (xk)
)
.

Optimality ⇔ x = f (x), f (x) := ΠC

(
x − 1

L∇F (x)
)
.

Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

ZOB2018 (Stanford University) June 14, 2019 5 / 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

Discounted Markov decision processes (MDP)

Value iteration: xk+1 = Txk , where T is the Bellman operator:

(Tx)s = max
a=1,...,A

R(s, a) + γ
∑S

s′=1
P(s, a, s ′)xs′ .

Optimality ⇔ x = Tx .
Contractive in l∞, but still non-differentiable due to max.

ZOB2018 (Stanford University) June 14, 2019 5 / 40

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

Nash equilibrium in a multiplayer game ⇔ monotone inclusion

problem ⇔ non-smooth non-expansive fixed-point problem.

ZOB2018 (Stanford University) June 14, 2019 5 / 40

1 Motivation and Problem Statement

2 Acceleration: from extrapolation to quasi-Newton

3 Type-I Anderson acceleration and stabilization

4 Our algorithm

5 Numerical examples

ZOB2018 (Stanford University) June 14, 2019 6 / 40

Acceleration by extrapolation

Algorithm 1 Extrapolation framework

Input: initial point x0, fixed-point mapping f : Rn → Rn.
for k = 0, 1, . . . do

Choose mk (e.g., mk = min{m, k} for some integer m ≥ 0).
Select weights αk

j based on the last mk iterations, with
∑mk

j=0 α
k
j = 1.

xk+1 =
∑mk

j=0 α
k
j f (xk−mk+j).

Such a framework subsumes many different algorithms, among which one

of the most natural and popular method is Anderson acceleration (1965):

minimize ‖
∑mk

j=0 αjg(xk−mk+j)‖2
2 subject to

∑mk
j=0 αj = 1,

where g(x) := x − f (x) is the residual.

ZOB2018 (Stanford University) June 14, 2019 7 / 40

Literature comments

Also known as Type-II Anderson acceleration (AA-II),

Anderson/Pulay mixing, Pulay’s direct inversion iterative subspace

(DIIS), nonlinear GMRES, minimal polynomial extrapolation (MPE),

reduced rank extrapolation (RRE), etc.

Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications

MLE, matrix completion, K-means, computer vision and deep learning.

Equivalent to multi-secant quasi-Newton methods (see below) –
development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

Extrapolation: good for intuition.
Quasi-Newton: good for derivations.

ZOB2018 (Stanford University) June 14, 2019 8 / 40

Literature comments

Also known as Type-II Anderson acceleration (AA-II),

Anderson/Pulay mixing, Pulay’s direct inversion iterative subspace

(DIIS), nonlinear GMRES, minimal polynomial extrapolation (MPE),

reduced rank extrapolation (RRE), etc.

Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications

MLE, matrix completion, K-means, computer vision and deep learning.

Equivalent to multi-secant quasi-Newton methods (see below) –
development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

Extrapolation: good for intuition.
Quasi-Newton: good for derivations.

ZOB2018 (Stanford University) June 14, 2019 8 / 40

Literature comments

Also known as Type-II Anderson acceleration (AA-II),

Anderson/Pulay mixing, Pulay’s direct inversion iterative subspace

(DIIS), nonlinear GMRES, minimal polynomial extrapolation (MPE),

reduced rank extrapolation (RRE), etc.

Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications

MLE, matrix completion, K-means, computer vision and deep learning.

Equivalent to multi-secant quasi-Newton methods (see below) –
development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

Extrapolation: good for intuition.
Quasi-Newton: good for derivations.

ZOB2018 (Stanford University) June 14, 2019 8 / 40

From extrapolation to quasi-Newton

Recall the selection of αk
j in AA-II (constrained least-squares):

minimize ‖
∑mk

j=0 αjg(xk−mk+j)‖2
2 subject to

∑mk
j=0 αj = 1,

Reformulation: minimize ‖gk − Ykγ‖2

variable γ = (γ0, . . . , γmk−1).
gi = g(x i), Yk = [yk−mk

. . . yk−1] with yi = gi+1 − gi for each i .
α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1 and αmk

= 1− γmk−1.

xk+1 =
∑mk

j=0 α
k
j f (xk−mk+j) = xk − Hkgk ,

Hk := I + (Sk − Yk)(Y T
k Yk)−1Y T

k .
Hk = argminHYk=Sk

‖H − I‖F : approximate inverse Jacobian of g .
multi-secant type-II (bad) Broyden’s (quasi-Newton) method.

ZOB2018 (Stanford University) June 14, 2019 9 / 40

From extrapolation to quasi-Newton

Recall the selection of αk
j in AA-II (constrained least-squares):

minimize ‖
∑mk

j=0 αjg(xk−mk+j)‖2
2 subject to

∑mk
j=0 αj = 1,

Reformulation: minimize ‖gk − Ykγ‖2

variable γ = (γ0, . . . , γmk−1).
gi = g(x i), Yk = [yk−mk

. . . yk−1] with yi = gi+1 − gi for each i .
α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1 and αmk

= 1− γmk−1.

xk+1 =
∑mk

j=0 α
k
j f (xk−mk+j) = xk − Hkgk ,

Hk := I + (Sk − Yk)(Y T
k Yk)−1Y T

k .
Hk = argminHYk=Sk

‖H − I‖F : approximate inverse Jacobian of g .
multi-secant type-II (bad) Broyden’s (quasi-Newton) method.

ZOB2018 (Stanford University) June 14, 2019 9 / 40

1 Motivation and Problem Statement

2 Acceleration: from extrapolation to quasi-Newton

3 Type-I Anderson acceleration and stabilization

4 Our algorithm

5 Numerical examples

ZOB2018 (Stanford University) June 14, 2019 10 / 40

Type-I Anderson acceleration

Why not consider the type-I (good) counterpart?

Instead of inverse Jacobian (which itself may not exist), consider

Bk := argminBSk=Yk
‖Bk − I‖F : approximate Jacobian of g .

xk+1 = xk − B−1
k gk , with B−1

k = I + (Sk − Yk)(ST
k Yk)−1ST

k .

ZOB2018 (Stanford University) June 14, 2019 11 / 40

Type-I Anderson acceleration

Why not consider the type-I (good) counterpart?

Instead of inverse Jacobian (which itself may not exist), consider

Bk := argminBSk=Yk
‖Bk − I‖F : approximate Jacobian of g .

xk+1 = xk − B−1
k gk , with B−1

k = I + (Sk − Yk)(ST
k Yk)−1ST

k .

ZOB2018 (Stanford University) June 14, 2019 11 / 40

Type-I Anderson acceleration

Why not consider the type-I (good) counterpart?

Instead of inverse Jacobian (which itself may not exist), consider

Bk := argminBSk=Yk
‖Bk − I‖F : approximate Jacobian of g .

xk+1 = xk − B−1
k gk , with B−1

k = I + (Sk − Yk)(ST
k Yk)−1ST

k .

Algorithm 2 Type-I Anderson Acceleration (AA-I)

1: for k = 0, 1, . . . do
2: Choose mk ≤ m (e.g., mk = min{m, k} for some integer m ≥ 0).
3: Compute γ̃k = (ST

k Yk)−1(ST
k gk).

4: αk
0 = γ̃k0 , αk

i = γ̃ki − γ̃ki−1 (1 ≤ i ≤ mk − 1) and αk
mk

= 1− γ̃kmk−1.

5: xk+1 =
∑mk

j=0 α
k
j f (xk−mk+j).

ZOB2018 (Stanford University) June 14, 2019 12 / 40

Good news and bad news

Good news:

Compared to AA-II: early experiments applying AA to SCS (a

popular convex optimization solver) show obvious advantage of AA-I

over AA-II on some benchmark problems.

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

SCS itself is a non-smooth and non-expansive fixed-point iteration.

ZOB2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

Compared to AA-II: early experiments applying AA to SCS (a

popular convex optimization solver) show obvious advantage of AA-I

over AA-II on some benchmark problems.

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)

AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

SCS itself is a non-smooth and non-expansive fixed-point iteration.

ZOB2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

Compared to AA-II: early experiments applying AA to SCS (a

popular convex optimization solver) show obvious advantage of AA-I

over AA-II on some benchmark problems.

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice

AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

SCS itself is a non-smooth and non-expansive fixed-point iteration.

ZOB2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

Compared to AA-II: early experiments applying AA to SCS (a

popular convex optimization solver) show obvious advantage of AA-I

over AA-II on some benchmark problems.

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

SCS itself is a non-smooth and non-expansive fixed-point iteration.

ZOB2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

Compared to AA-II: early experiments applying AA to SCS (a

popular convex optimization solver) show obvious advantage of AA-I

over AA-II on some benchmark problems.

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

SCS itself is a non-smooth and non-expansive fixed-point iteration.

ZOB2018 (Stanford University) June 14, 2019 13 / 40

Good news and bad news

Good news:

Compared to AA-II:

Figure: Left: histogram of run time ratio between SuperSCS (AA-II) and
SCS v2 (AA-I). Right: DM profile of run time.

ZOB2018 (Stanford University) June 14, 2019 14 / 40

Good news and bad news

Good news:

Compared to restarted Broyden::

Figure: DM profile. left: sparse PCA; right: sparse logistic regression.
SuperSCS: fast and accurate large-scale conic optimization. Sopasakis, et
al., 2019.

ZOB2018 (Stanford University) June 14, 2019 15 / 40

Good news and bad news

Bad news:

Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability , and AA-I is more severe.

AA-II: Y T
k Yk (close to) singular (degenerate least-squares system).

AA-I: Bk can be (close to) singular.

Theoretical challenge: local convergence theory exists with further

smoothness assumptions, but no global convergence.

In general, most of the literature has been focused on AA-II:

AA-I is generally missing both in theory and practice.

ZOB2018 (Stanford University) June 14, 2019 16 / 40

Good news and bad news

Bad news:

Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability , and AA-I is more severe.

AA-II: Y T
k Yk (close to) singular (degenerate least-squares system).

AA-I: Bk can be (close to) singular.

Theoretical challenge: local convergence theory exists with further

smoothness assumptions, but no global convergence.

In general, most of the literature has been focused on AA-II:

AA-I is generally missing both in theory and practice.

ZOB2018 (Stanford University) June 14, 2019 16 / 40

Good news and bad news

Bad news:

Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability , and AA-I is more severe.

AA-II: Y T
k Yk (close to) singular (degenerate least-squares system).

AA-I: Bk can be (close to) singular.

Theoretical challenge: local convergence theory exists with further

smoothness assumptions, but no global convergence.

In general, most of the literature has been focused on AA-II:

AA-I is generally missing both in theory and practice.

ZOB2018 (Stanford University) June 14, 2019 16 / 40

Good news and bad news

Bad news:

Numerical challenge: both AA-I and AA-II are subject to potential

numerical instability , and AA-I is more severe.

0 5 10 15
10

−5

10
−3

10
−1

10
1

10
3

10
5

time (seconds)

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=4.60e−05
time ratio: aa = 9.10e−01, aa1−safe = 2.81e+00

aa2
aa1
original

Figure: Convergence of Anderson accelerated gradient descent on `2

regularized logistic regression without stabilization. Left: AA-I vs AA-II.
Right: AA-II v.s. stabilized AA-II (Regularized Nonlinear Acceleration,
Scieur et al., 2016.)

ZOB2018 (Stanford University) June 14, 2019 17 / 40

Goal and contribution

Stabilize AA-I with convergence beyond differentiability, locality and
non-singularity

Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

Develop a “plug-and-play” acceleration scheme based on the
stabilized AA-I

View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.
For example, concatenate successive iterates in momentum algorithms.

ZOB2018 (Stanford University) June 14, 2019 18 / 40

Goal and contribution

Stabilize AA-I with convergence beyond differentiability, locality and
non-singularity

Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

Develop a “plug-and-play” acceleration scheme based on the
stabilized AA-I

View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.
For example, concatenate successive iterates in momentum algorithms.

ZOB2018 (Stanford University) June 14, 2019 18 / 40

Stabilization of AA-I: rank-one update

AA-I ⇐⇒ Type-I Broyden’s rank-one update with orthogonalization:

Proposition

Suppose that Sk is full rank, then Bk can be computed inductively from

B0
k = I as follows:

B i+1
k = B i

k +
(yk−mk+i − B i

ksk−mk+i)ŝ
T
k−mk+i

ŝTk−mk+i sk−mk+i
, i = 0, . . . ,mk − 1

with Bk = Bmk
k . Here {ŝi}k−1

i=k−mk
is the Gram-Schmidt orthogonalization

of {si}k−1
i=k−mk

, i.e., ŝi = si −
∑i−1

j=k−mk

ŝTj si

ŝTj ŝj
ŝj , i = k −mk , . . . , k − 1.

ZOB2018 (Stanford University) June 14, 2019 19 / 40

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on Bk).

AA-II: add ridge penalty (regularized nonlinear acceleration, 2016)

minimize∑mk
j=0 αj=1 ‖

∑mk
j=0 αjg(xk−mk+j)‖2

2 + λ‖α‖2
2

Help in extreme cases, but impede the convergence in general.

AA-I: Powell-type trick (turns out helpful also in practice!)

Replace yk−mk+i with ỹk−mk+i = θikyk−mk+i + (1− θik)B i
ksk−mk+i ,

where θik = φθ̄(ηik), with ηik =
ŝk−mk+i

T (B i
k)−1yk−mk+i

‖ŝk−mk+i‖2
2

,

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄.

|det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible!

ZOB2018 (Stanford University) June 14, 2019 20 / 40

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on Bk).

AA-II: add ridge penalty (regularized nonlinear acceleration, 2016)

minimize∑mk
j=0 αj=1 ‖

∑mk
j=0 αjg(xk−mk+j)‖2

2 + λ‖α‖2
2

Help in extreme cases, but impede the convergence in general.

AA-I: Powell-type trick (turns out helpful also in practice!)

Replace yk−mk+i with ỹk−mk+i = θikyk−mk+i + (1− θik)B i
ksk−mk+i ,

where θik = φθ̄(ηik), with ηik =
ŝk−mk+i

T (B i
k)−1yk−mk+i

‖ŝk−mk+i‖2
2

,

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄.

|det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible!

ZOB2018 (Stanford University) June 14, 2019 20 / 40

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on Bk).

AA-II: add ridge penalty (regularized nonlinear acceleration, 2016)

minimize∑mk
j=0 αj=1 ‖

∑mk
j=0 αjg(xk−mk+j)‖2

2 + λ‖α‖2
2

Help in extreme cases, but impede the convergence in general.

AA-I: Powell-type trick (turns out helpful also in practice!)

Replace yk−mk+i with ỹk−mk+i = θikyk−mk+i + (1− θik)B i
ksk−mk+i ,

where θik = φθ̄(ηik), with ηik =
ŝk−mk+i

T (B i
k)−1yk−mk+i

‖ŝk−mk+i‖2
2

,

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄.

|det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible!

ZOB2018 (Stanford University) June 14, 2019 20 / 40

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on Bk).

AA-II: add ridge penalty (regularized nonlinear acceleration, 2016)

minimize∑mk
j=0 αj=1 ‖

∑mk
j=0 αjg(xk−mk+j)‖2

2 + λ‖α‖2
2

Help in extreme cases, but impede the convergence in general.

AA-I: Powell-type trick (turns out helpful also in practice!)

Replace yk−mk+i with ỹk−mk+i = θikyk−mk+i + (1− θik)B i
ksk−mk+i ,

where θik = φθ̄(ηik), with ηik =
ŝk−mk+i

T (B i
k)−1yk−mk+i

‖ŝk−mk+i‖2
2

,

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄.

|det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible!

ZOB2018 (Stanford University) June 14, 2019 20 / 40

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on Bk).

ŝTk−mk+i sk−mk+i = ‖ŝk−mk+i‖2
2 appears in the denominators: but

ŝk−mk+i becomes 0 when mk > n due to orthogonalization.

Solution: update mk = mk−1 + 1. If mk = m + 1 or

‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 1.

Then ‖Bk‖2 ≤ 3(1 + θ̄ + τ)m/τm − 2!

(Re)define Hk := B−1
k : ‖Hk‖2 ≤

(
3

(
1 + θ̄ + τ

τ

)m

− 2

)n−1

/θ̄m.

ZOB2018 (Stanford University) June 14, 2019 21 / 40

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on Bk).

ŝTk−mk+i sk−mk+i = ‖ŝk−mk+i‖2
2 appears in the denominators: but

ŝk−mk+i becomes 0 when mk > n due to orthogonalization.

Solution: update mk = mk−1 + 1. If mk = m + 1 or

‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 1.

Then ‖Bk‖2 ≤ 3(1 + θ̄ + τ)m/τm − 2!

(Re)define Hk := B−1
k : ‖Hk‖2 ≤

(
3

(
1 + θ̄ + τ

τ

)m

− 2

)n−1

/θ̄m.

ZOB2018 (Stanford University) June 14, 2019 21 / 40

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on Bk).

ŝTk−mk+i sk−mk+i = ‖ŝk−mk+i‖2
2 appears in the denominators: but

ŝk−mk+i becomes 0 when mk > n due to orthogonalization.

Solution: update mk = mk−1 + 1. If mk = m + 1 or

‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 1.

Then ‖Bk‖2 ≤ 3(1 + θ̄ + τ)m/τm − 2!

(Re)define Hk := B−1
k : ‖Hk‖2 ≤

(
3

(
1 + θ̄ + τ

τ

)m

− 2

)n−1

/θ̄m.

ZOB2018 (Stanford University) June 14, 2019 21 / 40

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on Bk).

ŝTk−mk+i sk−mk+i = ‖ŝk−mk+i‖2
2 appears in the denominators: but

ŝk−mk+i becomes 0 when mk > n due to orthogonalization.

Solution: update mk = mk−1 + 1. If mk = m + 1 or

‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 1.

Then ‖Bk‖2 ≤ 3(1 + θ̄ + τ)m/τm − 2!

(Re)define Hk := B−1
k : ‖Hk‖2 ≤

(
3

(
1 + θ̄ + τ

τ

)m

− 2

)n−1

/θ̄m.

ZOB2018 (Stanford University) June 14, 2019 21 / 40

Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA-I steps with the vanilla KM iteration steps

to safe-guard the decrease in residual norms g .

Check if the current residual norm is sufficiently small, and replace it

with fα(x) = (1− α)x + αf (x) whenever not.

Can be seen as a cheap alternative to the expensive line-search.

ZOB2018 (Stanford University) June 14, 2019 22 / 40

Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA-I steps with the vanilla KM iteration steps

to safe-guard the decrease in residual norms g .

Check if the current residual norm is sufficiently small, and replace it

with fα(x) = (1− α)x + αf (x) whenever not.

Can be seen as a cheap alternative to the expensive line-search.

ZOB2018 (Stanford University) June 14, 2019 22 / 40

Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA-I steps with the vanilla KM iteration steps

to safe-guard the decrease in residual norms g .

Check if the current residual norm is sufficiently small, and replace it

with fα(x) = (1− α)x + αf (x) whenever not.

Can be seen as a cheap alternative to the expensive line-search.

ZOB2018 (Stanford University) June 14, 2019 22 / 40

Stabilization of AA-I: 3. Safe-guard checking

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA-I steps with the vanilla KM iteration steps

to safe-guard the decrease in residual norms g .

Check if the current residual norm is sufficiently small, and replace it

with fα(x) = (1− α)x + αf (x) whenever not.

Can be seen as a cheap alternative to the expensive line-search.

ZOB2018 (Stanford University) June 14, 2019 22 / 40

1 Motivation and Problem Statement

2 Acceleration: from extrapolation to quasi-Newton

3 Type-I Anderson acceleration and stabilization

4 Our algorithm

5 Numerical examples

ZOB2018 (Stanford University) June 14, 2019 23 / 40

Stabilized AA-I

Combine Powell-type regularization, re-start checking and safe-guard

checking (with some simplifications using Woodbury formula, etc.)

Algorithm 3 Stablized Type-I Anderson Acceleration (AA-I-S)

1: Input: initial point x0, fixed-point mapping f : Rn → Rn, regularization constants
θ̄, τ, α ∈ (0, 1), safe-guarding constants D, ε > 0, max-memory m > 0.

2: Initialize H0 = I , m0 = nAA = 0, Ū = ‖g0‖2, and compute x1 = x̃1 = fα(x0).
3: for k = 1, 2, . . . do
4: mk = mk−1 + 1.
5: Compute sk−1 = x̃k − xk−1, yk−1 = g(x̃k)− g(xk−1).

6: Compute ŝk−1 = sk−1 −
∑k−2

j=k−mk

ŝTj sk−1

ŝTj ŝj
ŝj .

7: If mk = m + 1 or ‖ŝk−1‖2 < τ‖sk−1‖2 {Re-start checking}
8: reset mk = 1, ŝk−1 = sk−1, and Hk−1 = I .
9: Update Hk with {Powell-type regularization}, compute x̃k+1 = xk − Hkgk .

10: If ‖gk‖ ≤ DŪ(nAA + 1)−(1+ε) {Safe-guard checking}
11: xk+1 = x̃k+1, nAA = nAA + 1.
12: else xk+1 = fα(xk).

ZOB2018 (Stanford University) June 14, 2019 24 / 40

Global convergence

Theorem

Suppose that f is non-expansive in l2-norm or contractive in an arbitrary

norm, and assume that {xk}∞k=0 is generated by Algorithm 3. Then we

have limk→∞ xk = x?, where x? = f (x?).

Key: bounds on Hk and Bk ensure that the deviation is not too much

from the safe-guarding paths.

ZOB2018 (Stanford University) June 14, 2019 25 / 40

Implementation details

Hyper-parameters choice: θ̄ = 0.01, τ = 0.001, D = 106,

ε = 10−6, memory m = 5, averaging weight α = 0.1.

Matrix-free updates: instead of computing and storing Hk , we store

Hk−j ỹk−j and
HT
k−j ŝk−j

ŝTk−j (Hk−j ỹk−j)
for j = 1, . . . ,mk , compute

dk = gk +

mk∑
j=1

(sk−j − (Hk−j ỹk−j))

(
HT
k−j ŝk−j

ŝTk−j(Hk−j ỹk−j)

)T

gk ,

and then update x̃k+1 = xk − dk .

Problem scaling is helpful when matrices are involed.

ZOB2018 (Stanford University) June 14, 2019 26 / 40

1 Motivation and Problem Statement

2 Acceleration: from extrapolation to quasi-Newton

3 Type-I Anderson acceleration and stabilization

4 Our algorithm

5 Numerical examples

ZOB2018 (Stanford University) June 14, 2019 27 / 40

More examples: Problem + ALG ⇔ black-box FP

General idea: rewrite an algorithm into xk+1 = f (xk) by concatenation

and neglecting (intermediate variables).

Apart from PGD (minx∈C F (x)) and value iteration (MDP):

Problem 1: find x ∈ C ∩ D.

Algorithm – alternating projection: xk+1 = f (xk) = ΠC (ΠD(xk)).

FP: x = ΠC (ΠD(xk)).

ZOB2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG ⇔ black-box FP

General idea: rewrite an algorithm into xk+1 = f (xk) by concatenation

and neglecting (intermediate variables).

Apart from PGD (minx∈C F (x)) and value iteration (MDP):

Problem 1: find x ∈ C ∩ D.

Algorithm – alternating projection: xk+1 = f (xk) = ΠC (ΠD(xk)).

FP: x = ΠC (ΠD(xk)).

ZOB2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG ⇔ black-box FP

General idea: rewrite an algorithm into xk+1 = f (xk) by concatenation

and neglecting (intermediate variables).

Apart from PGD (minx∈C F (x)) and value iteration (MDP):

Problem 1: find x ∈ C ∩ D.

Algorithm – alternating projection: xk+1 = f (xk) = ΠC (ΠD(xk)).

FP: x = ΠC (ΠD(xk)).

ZOB2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG ⇔ black-box FP

General idea: rewrite an algorithm into xk+1 = f (xk) by concatenation

and neglecting (intermediate variables).

Apart from PGD (minx∈C F (x)) and value iteration (MDP):

Problem 1: find x ∈ C ∩ D.

Algorithm – alternating projection: xk+1 = f (xk) = ΠC (ΠD(xk)).

FP: x = ΠC (ΠD(xk)).

ZOB2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG ⇔ black-box FP

General idea: rewrite an algorithm into xk+1 = f (xk) by concatenation

and neglecting (intermediate variables).

Apart from PGD (minx∈C F (x)) and value iteration (MDP):

Problem 2: minimizex F (x) + µ‖x‖1.

Algorithm – ISTA: xk+1 = Sαµ(xk − α∇F (xk)), with

Sκ(x)i = sign(xi)(|xi | − κ)+ for i = 1, . . . , n.

FP: x = Sαµ(x − α∇F (x)).

ZOB2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG ⇔ black-box FP

General idea: rewrite an algorithm into xk+1 = f (xk) by concatenation

and neglecting (intermediate variables).

Apart from PGD (minx∈C F (x)) and value iteration (MDP):

Problem 3: minimizex
∑m

i=1 Fi (x).

Algorithm – consensus DRS:

xk+1
i = argminxi Fi (xi) + (1/2α)‖xi − zki ‖2

2,

zk+1
i = zki + 2x̄k+1 − xk+1

i − z̄k , i = 1, . . . ,m.

FP: f defined as the mapping from zk to zk+1.

Wrong approach: apply AA to both x and z .

ZOB2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG ⇔ black-box FP

General idea: rewrite an algorithm into xk+1 = f (xk) by concatenation

and neglecting (intermediate variables).

Apart from PGD (minx∈C F (x)) and value iteration (MDP):

Problem 4: minimizex cT x , subject to Ax + s = b, s ∈ K.

Algorithm – SCS (C = Rn ×K∗ × R+):

ũk+1 = (I + Q)−1(uk + vk)

uk+1 = ΠC(ũk+1 − vk)

vk+1 = vk − ũk+1 + uk+1.

FP (don’t apply AA to u and v separately):

f (u, v) =

[
ΠC((I + Q)−1(u + v)− v)

v − (I + Q)−1(u + v) + u

]
.

ZOB2018 (Stanford University) June 14, 2019 28 / 40

More examples: Problem + ALG ⇔ black-box FP

General idea: rewrite an algorithm into xk+1 = f (xk) by concatenation

and neglecting (intermediate variables).

Apart from PGD (minx∈C F (x)) and value iteration (MDP):

Problem 5: minimizex
1
2x

TAx + bT x + c .

Algorithm: momentum GD: xk+1 = xk −α(Axk +b) +β(xk − xk−1).

FP (concatenate two successive iterates):

f (x ′, x) =

[
x ′ − α(Ax ′ + b) + β(x ′ − x)

x ′

]
.

Remember to concatenate, don’t simply neglect xk−1 as in RNA.

ZOB2018 (Stanford University) June 14, 2019 28 / 40

Numerical examples

Gradient Descent: stabilization from divergence to convergence

0 1000 2000 3000 4000 5000
10

−6

10
−4

10
−2

10
0

10
2

10
4

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=4.60e−05

aa1
aa1−safe
original

0 5 10
10

−6

10
−4

10
−2

10
0

10
2

10
4

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=4.60e−05
time ratio: aa = 8.75e−01, aa1−safe = 1.11e+00

aa1
aa1−safe
original

Figure: Gradient descent: regularized logistic regression. Left: residual norm
versus iteration. Right: residual norm versus time (seconds).

ZOB2018 (Stanford University) June 14, 2019 29 / 40

Numerical examples

SCS (ADMM): SOCP – nonsmoothness coming from projections

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=8.37e−01

aa1
aa1−safe
original

0 20 40 60
10

−6

10
−4

10
−2

10
0

10
2

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=8.37e−01
time ratio: aa = 1.89e+00, aa1−safe = 1.05e+00

aa1
aa1−safe
original

Figure: SCS: second-order cone program. Left: residual norm versus iteration.
Right: residual norm versus time (seconds).

ZOB2018 (Stanford University) June 14, 2019 30 / 40

Numerical examples

ISTA: elastic net regression – nonsmoothness coming from shrinkage

0 500 1000 1500 2000 2500
10

−9

10
−7

10
−5

10
−3

10
−1

10
1

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=8.03e+00

aa1
aa1−safe
original

0 20 40 60 80
10

−9

10
−7

10
−5

10
−3

10
−1

10
1

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=8.03e+00
time ratio: aa = 1.45e+00, aa1−safe = 1.01e+00

aa1
aa1−safe
original

Figure: Iterative Shrinkage-Thresholding Algorithm: elastic-net linear regression.
Left: residual norm versus iteration. Right: residual norm versus time (seconds).

ZOB2018 (Stanford University) June 14, 2019 31 / 40

Numerical examples

MDP (value iteration) (discount factor γ = 0.99):

0 10 20 30 40 50
10

−6

10
−4

10
−2

10
0

10
2

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=1.61e+01

aa1
aa1−safe
original

0 2 4 6
10

−6

10
−4

10
−2

10
0

10
2

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=1.61e+01
time ratio: aa = 9.84e−01, aa1−safe = 1.03e+00

aa1
aa1−safe
original

Figure: Value iteration: MDP. Left: residual norm versus iteration. Right:
residual norm versus time (seconds).

ZOB2018 (Stanford University) June 14, 2019 32 / 40

Numerical examples

Effect of different memories m:

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

10
2

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=1.61e+01

original
aa1,m=2
aa1−safe, m=2
aa1,m=5
aa1−safe, m=5
aa1,m=10
aa1−safe, m=10
aa1,m=20
aa1−safe, m=20
aa1,m=50
aa1−safe, m=50

0 2 4 6 8 10
10

−6

10
−4

10
−2

10
0

10
2

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=1.61e+01

original
aa1,m=2
aa1−safe, m=2
aa1,m=5
aa1−safe, m=5
aa1,m=10
aa1−safe, m=10
aa1,m=20
aa1−safe, m=20
aa1,m=50
aa1−safe, m=50

Figure: Value iteration: memory effect. Left: residual norm versus iteration.
Right: residual norm versus time (seconds).

ZOB2018 (Stanford University) June 14, 2019 33 / 40

Summary

Starting point: Early empirical success in applying AA-I to SCS, but

unstable performance

Destination:

the first globally convergent Anderson acceleration variant under very
relaxed conditions.
online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).
flexible applications to many different problems/algorithms with
general black-box fixed-point reformulation, with stable performance.
Now being implemented and tested in SCS 2.0.

ZOB2018 (Stanford University) June 14, 2019 34 / 40

Summary

Starting point: Early empirical success in applying AA-I to SCS, but

unstable performance

Destination:

the first globally convergent Anderson acceleration variant under very
relaxed conditions.

online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).
flexible applications to many different problems/algorithms with
general black-box fixed-point reformulation, with stable performance.
Now being implemented and tested in SCS 2.0.

ZOB2018 (Stanford University) June 14, 2019 34 / 40

Summary

Starting point: Early empirical success in applying AA-I to SCS, but

unstable performance

Destination:

the first globally convergent Anderson acceleration variant under very
relaxed conditions.
online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).

flexible applications to many different problems/algorithms with
general black-box fixed-point reformulation, with stable performance.
Now being implemented and tested in SCS 2.0.

ZOB2018 (Stanford University) June 14, 2019 34 / 40

Summary

Starting point: Early empirical success in applying AA-I to SCS, but

unstable performance

Destination:

the first globally convergent Anderson acceleration variant under very
relaxed conditions.
online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).
flexible applications to many different problems/algorithms with
general black-box fixed-point reformulation, with stable performance.

Now being implemented and tested in SCS 2.0.

ZOB2018 (Stanford University) June 14, 2019 34 / 40

Summary

Starting point: Early empirical success in applying AA-I to SCS, but

unstable performance

Destination:

the first globally convergent Anderson acceleration variant under very
relaxed conditions.
online pre-conditioning/stabilization tricks useful both in theory and
practice (Powell, re-start and safe-guard).
flexible applications to many different problems/algorithms with
general black-box fixed-point reformulation, with stable performance.
Now being implemented and tested in SCS 2.0.

ZOB2018 (Stanford University) June 14, 2019 34 / 40

Beyond non-expansiveness (convexity)

Our stabilization technique can actually be extended to generic
non-convex optimization settings.

Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.
Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.

ZOB2018 (Stanford University) June 14, 2019 35 / 40

Beyond non-expansiveness (convexity)

Our stabilization technique can actually be extended to generic
non-convex optimization settings.

Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.

Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.

ZOB2018 (Stanford University) June 14, 2019 35 / 40

Beyond non-expansiveness (convexity)

Our stabilization technique can actually be extended to generic
non-convex optimization settings.

Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.
Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.

ZOB2018 (Stanford University) June 14, 2019 35 / 40

Safe-guards in non-convex optimization

Figure: MLE of MHPs: exponential hawkes. No safe-guards. Left: log-regret v.s.
time (seconds). Right: objective v.s. time (seconds).

ZOB2018 (Stanford University) June 14, 2019 36 / 40

Safe-guards in non-convex optimization

Figure: MLE of MHPs: exponential hawkes. With safe-guards. Left: log-regret
v.s. time (seconds). Right: objective v.s. time (seconds).

ZOB2018 (Stanford University) June 14, 2019 37 / 40

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.
Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

ZOB2018 (Stanford University) June 14, 2019 38 / 40

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.

Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

ZOB2018 (Stanford University) June 14, 2019 38 / 40

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.
Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

ZOB2018 (Stanford University) June 14, 2019 38 / 40

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.
Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

ZOB2018 (Stanford University) June 14, 2019 38 / 40

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.
Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

ZOB2018 (Stanford University) June 14, 2019 38 / 40

References

Zhang, J., O’Donoghue, B, and Boyd, S. P. (2018).

Globally Convergent Type-I Anderson Acceleration for Non-Smooth

Fixed-Point Iterations.

arXiv preprint arXiv:1808.03971.

X. Guo, A. Hu, R. Xu, and Zhang, J. (2018).

Consistency and Computation of Regularized MLEs for Multivariate

Hawkes Processes.

arXiv preprint arXiv:1810.02955.

ZOB2018 (Stanford University) June 14, 2019 39 / 40

Thanks for listening!
Any questions?

ZOB2018 (Stanford University) June 14, 2019 40 / 40

	Motivation and Problem Statement
	Acceleration: from extrapolation to quasi-Newton
	Type-I Anderson acceleration and stabilization
	Our algorithm
	Numerical examples

