
Connecting Quasi-Newton with Extrapolation:

Black-box, Memory Efficient and Line-search Free Acceleration via

Stabilized Anderson Mixing

Junzi Zhang

Stanford ICME, junziz@stanford.edu

Joint works with Stephen Boyd, Anqi Fu, Xin Guo, Anran Hu,
Brendan O’Donoghue, and Renyuan Xu

CME 510 Linear Algebra and Optimization Seminar

November 7, 2019

Junzi Zhang (Stanford University) November 7, 2019 1 / 83

Overview

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 2 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 3 / 83

Fixed-point problems

We consider solving a fixed-point (FP) problem v = F (v), where

F : Rn → Rn is potentially non-smooth.

Assumption: F is non-expansive in l2 (or H-norm1), i.e.,

‖F (v)− F (w)‖2 ≤ ‖v − w‖2 for any v , w ∈ Rn

or contractive in an arbitrary norm ‖ · ‖.
Simplest solution: averaged iteration, a.k.a. Krasnosel’skǐı-Mann

(KM) iteration

vk+1 = Fα(vk) = (1− α)vk + αF (vk), α ∈ (0, 1).

Convergence is robust, but sublinear in theory and slow in practice:

can we (safely) do better?

1‖v‖H =
√
vTHv for some PD matrix H

Junzi Zhang (Stanford University) November 7, 2019 4 / 83

Fixed-point problems

We consider solving a fixed-point (FP) problem v = F (v), where

F : Rn → Rn is potentially non-smooth.

Assumption: F is non-expansive in l2 (or H-norm1), i.e.,

‖F (v)− F (w)‖2 ≤ ‖v − w‖2 for any v , w ∈ Rn

or contractive in an arbitrary norm ‖ · ‖.
Simplest solution: averaged iteration, a.k.a. Krasnosel’skǐı-Mann

(KM) iteration

vk+1 = Fα(vk) = (1− α)vk + αF (vk), α ∈ (0, 1).

Convergence is robust, but sublinear in theory and slow in practice:

can we (safely) do better?

1‖v‖H =
√
vTHv for some PD matrix H

Junzi Zhang (Stanford University) November 7, 2019 4 / 83

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

(Any) convex optimization with no strong convexity

minimizex∈C f (x), C is convex, f is convex and L-strongly smooth.

Projected gradient descent: xk+1 = ΠC

(
xk − 1

L∇f (xk)
)
.

Optimality ⇔ x = F (x), F (x) := ΠC

(
x − 1

L∇f (x)
)
.

Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

Junzi Zhang (Stanford University) November 7, 2019 5 / 83

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

(Any) convex optimization with no strong convexity

minimizex∈C f (x), C is convex, f is convex and L-strongly smooth.
Projected gradient descent: xk+1 = ΠC

(
xk − 1

L∇f (xk)
)
.

Optimality ⇔ x = F (x), F (x) := ΠC

(
x − 1

L∇f (x)
)
.

Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

Junzi Zhang (Stanford University) November 7, 2019 5 / 83

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

(Any) convex optimization with no strong convexity

minimizex∈C f (x), C is convex, f is convex and L-strongly smooth.
Projected gradient descent: xk+1 = ΠC

(
xk − 1

L∇f (xk)
)
.

Optimality ⇔ x = F (x), F (x) := ΠC

(
x − 1

L∇f (x)
)
.

Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

Junzi Zhang (Stanford University) November 7, 2019 5 / 83

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

(Any) convex optimization with no strong convexity

minimizex∈C f (x), C is convex, f is convex and L-strongly smooth.
Projected gradient descent: xk+1 = ΠC

(
xk − 1

L∇f (xk)
)
.

Optimality ⇔ x = F (x), F (x) := ΠC

(
x − 1

L∇f (x)
)
.

Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.

Junzi Zhang (Stanford University) November 7, 2019 5 / 83

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

Discounted Markov decision processes (MDP)

Value iteration: vk+1 = Tvk , where T is the Bellman operator:

(Tv)s = max
a=1,...,A

R(s, a) + γ
∑S

s′=1
P(s, a, s ′)vs′ .

Optimality ⇔ v = Tv .
Contractive in l∞, but still non-differentiable due to max.

Junzi Zhang (Stanford University) November 7, 2019 5 / 83

Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can

be reformulated as “black-box” fixed-point problems.

Examples:

Nash equilibrium in a multiplayer game ⇔ monotone inclusion

problem ⇔ non-smooth non-expansive fixed-point problem.

Junzi Zhang (Stanford University) November 7, 2019 5 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 6 / 83

Acceleration by extrapolation

Algorithm 1 Extrapolation framework

Input: initial point x0, fixed-point mapping F : Rn → Rn.
for k = 0, 1, . . . do

Choose mk (e.g., mk = min{m, k} for some integer m ≥ 0).
Select weights αk

j based on the last mk iterations, with
∑mk

j=0 α
k
j = 1.

vk+1 =
∑mk

j=0 α
k
j F (vk−mk+j).

Such a framework subsumes many different algorithms, among which one

of the most natural and popular method is Anderson acceleration (1965):

minimize ‖
∑mk

j=0 αjG (vk−mk+j)‖2
2 subject to

∑mk
j=0 αj = 1,

where G (v) := v − F (v) is the residual.

Junzi Zhang (Stanford University) November 7, 2019 7 / 83

Literature comments

Also known as Type-II Anderson acceleration (AA-II),

Anderson/Pulay mixing, Pulay’s direct inversion iterative subspace

(DIIS), nonlinear GMRES, minimal polynomial extrapolation (MPE),

reduced rank extrapolation (RRE), etc.

Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications

MLE, matrix completion, K-means, computer vision and deep learning.

Equivalent to multi-secant quasi-Newton methods (see below) –
development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

Extrapolation: good for intuition.
Quasi-Newton: good for derivations.

Junzi Zhang (Stanford University) November 7, 2019 8 / 83

Literature comments

Also known as Type-II Anderson acceleration (AA-II),

Anderson/Pulay mixing, Pulay’s direct inversion iterative subspace

(DIIS), nonlinear GMRES, minimal polynomial extrapolation (MPE),

reduced rank extrapolation (RRE), etc.

Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications

MLE, matrix completion, K-means, computer vision and deep learning.

Equivalent to multi-secant quasi-Newton methods (see below) –
development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

Extrapolation: good for intuition.
Quasi-Newton: good for derivations.

Junzi Zhang (Stanford University) November 7, 2019 8 / 83

Literature comments

Also known as Type-II Anderson acceleration (AA-II),

Anderson/Pulay mixing, Pulay’s direct inversion iterative subspace

(DIIS), nonlinear GMRES, minimal polynomial extrapolation (MPE),

reduced rank extrapolation (RRE), etc.

Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications

MLE, matrix completion, K-means, computer vision and deep learning.

Equivalent to multi-secant quasi-Newton methods (see below) –
development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

Extrapolation: good for intuition.
Quasi-Newton: good for derivations.

Junzi Zhang (Stanford University) November 7, 2019 8 / 83

From extrapolation to quasi-Newton

Recall the selection of αk
j in AA-II (constrained least-squares):

minimize ‖
∑mk

j=0 αjG (vk−mk+j)‖2
2 subject to

∑mk
j=0 αj = 1,

Reformulation: minimize ‖gk − Ykγ‖2

variable γ = (γ0, . . . , γmk−1).
g i = G (v i), Yk = [yk−mk . . . yk−1] with y i = g i+1 − g i for each i .
α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1 and αmk

= 1− γmk−1.

vk+1 =
∑mk

j=0 α
k
j F (vk−mk+j) = vk − Hkg

k ,

Hk := I + (Sk − Yk)(Y T
k Yk)−1Y T

k

Sk = [sk−mk . . . sk−1] with s i = v i+1 − v i for each i .

Hk = argminHYk=Sk
‖H − I‖F : approximate inverse Jacobian of G .

multi-secant type-II Broyden’s (quasi-Newton) method.

Junzi Zhang (Stanford University) November 7, 2019 9 / 83

From extrapolation to quasi-Newton

Recall the selection of αk
j in AA-II (constrained least-squares):

minimize ‖
∑mk

j=0 αjG (vk−mk+j)‖2
2 subject to

∑mk
j=0 αj = 1,

Reformulation: minimize ‖gk − Ykγ‖2

variable γ = (γ0, . . . , γmk−1).
g i = G (v i), Yk = [yk−mk . . . yk−1] with y i = g i+1 − g i for each i .
α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1 and αmk

= 1− γmk−1.

vk+1 =
∑mk

j=0 α
k
j F (vk−mk+j) = vk − Hkg

k ,

Hk := I + (Sk − Yk)(Y T
k Yk)−1Y T

k

Sk = [sk−mk . . . sk−1] with s i = v i+1 − v i for each i .

Hk = argminHYk=Sk
‖H − I‖F : approximate inverse Jacobian of G .

multi-secant type-II Broyden’s (quasi-Newton) method.

Junzi Zhang (Stanford University) November 7, 2019 9 / 83

Type-I Anderson acceleration

Why not consider the type-I counterpart?

Instead of inverse Jacobian (which itself may not exist), consider

Bk := argminBSk=Yk
‖Bk − I‖F : approximate Jacobian of G .

vk+1 = vk − B−1
k gk , with B−1

k = I + (Sk − Yk)(ST
k Yk)−1ST

k .

Junzi Zhang (Stanford University) November 7, 2019 10 / 83

Type-I Anderson acceleration

Why not consider the type-I counterpart?

Instead of inverse Jacobian (which itself may not exist), consider

Bk := argminBSk=Yk
‖Bk − I‖F : approximate Jacobian of G .

vk+1 = vk − B−1
k gk , with B−1

k = I + (Sk − Yk)(ST
k Yk)−1ST

k .

Junzi Zhang (Stanford University) November 7, 2019 10 / 83

Type-I Anderson acceleration

Why not consider the type-I (good) counterpart?

Instead of inverse Jacobian (which itself may not exist), consider

Bk := argminBSk=Yk
‖Bk − I‖F : approximate Jacobian of G .

vk+1 = vk − B−1
k gk , with B−1

k = I + (Sk − Yk)(ST
k Yk)−1ST

k .

Algorithm 2 Type-I Anderson Acceleration (AA-I)

1: for k = 0, 1, . . . do
2: Choose mk ≤ m (e.g., mk = min{m, k} for some integer m ≥ 0).
3: Compute γ̃k = (ST

k Yk)−1(ST
k gk).

4: αk
0 = γ̃k0 , αk

i = γ̃ki − γ̃ki−1 (1 ≤ i ≤ mk − 1) and αk
mk

= 1− γ̃kmk−1.

5: vk+1 =
∑mk

j=0 α
k
j F (vk−mk+j).

Junzi Zhang (Stanford University) November 7, 2019 11 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 12 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)

Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).

Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping

Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)

AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice

AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Takeaway information:

Extrapolation & quasi-Newton method accelerating FP iterations.

Extrapolation (Anderson, 1965)
Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-I AA: approximate the Jacobian of the FP mapping
Type-II AA: approximate the inverse Jacobian of the FP mapping

Good news:

Compared to LBFGS and restarted Broyden:

AA is memory efficient (AA-I with m = 5− 10 beats LBFGS/restarted
Broyden with m = 200− 500)
AA is line-search free: just accept or reject is the best practice
AA is suitable to be used in a completely black-box way

PGD: don’t separate the gradient step and projection

ADMM: don’t separate the primal and dual steps

Junzi Zhang (Stanford University) November 7, 2019 13 / 83

Good news and bad news

Good news:

Figure: Sparse PCA: DM profiles of run time. Left: AA-II v.s. restarted Broyden,
both in SuperSCS. Right: AA-I (SCS 2.x) v.s. AA-II (SuperSCS).

Junzi Zhang (Stanford University) November 7, 2019 14 / 83

Good news and bad news

Bad news:

Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability , and AA-I is more severe.

AA-II: Y T
k Yk (close to) singular (degenerate least-squares system).

AA-I: Bk can be (close to) singular.

Theoretical challenge: local convergence theory exists with further

smoothness assumptions, but no global convergence.

Junzi Zhang (Stanford University) November 7, 2019 15 / 83

Good news and bad news

Bad news:

Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability , and AA-I is more severe.

AA-II: Y T
k Yk (close to) singular (degenerate least-squares system).

AA-I: Bk can be (close to) singular.

Theoretical challenge: local convergence theory exists with further

smoothness assumptions, but no global convergence.

Junzi Zhang (Stanford University) November 7, 2019 15 / 83

Good news and bad news

Bad news: Numerical challenge

Both AA-I and AA-II are subject to potential numerical instability ,

and AA-I is more severe.

0 5 10 15
10

−5

10
−3

10
−1

10
1

10
3

10
5

time (seconds)

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=4.60e−05
time ratio: aa = 9.10e−01, aa1−safe = 2.81e+00

aa2
aa1
original

Figure: Divergence of AA + gradient descent on `2 regularized logistic
regression without stabilization. Left: Failure of AA-I. Right: Failure of
AA-II (Regularized Nonlinear Acceleration, Scieur et al., 2016).

Junzi Zhang (Stanford University) November 7, 2019 16 / 83

Good news and bad news

Bad news: Theoretical challenge

Type-II AA can even provably diverge when applied to the gradient
descent on a one-dimensional smooth unconstrained optimization
problem (Mai & Johansson, 2019).

(Scieur et al., 2016) showed that adding constant quadratic
regularization to the objective leads to local convergence
improvement.
Insufficient for global convergence both in theory and practice.

In general, most of the literature has been focused on AA-II:

AA-I is generally missing both in theory and practice.

Junzi Zhang (Stanford University) November 7, 2019 17 / 83

Good news and bad news

Bad news: Theoretical challenge

Type-II AA can even provably diverge when applied to the gradient
descent on a one-dimensional smooth unconstrained optimization
problem (Mai & Johansson, 2019).

(Scieur et al., 2016) showed that adding constant quadratic
regularization to the objective leads to local convergence
improvement.

Insufficient for global convergence both in theory and practice.

In general, most of the literature has been focused on AA-II:

AA-I is generally missing both in theory and practice.

Junzi Zhang (Stanford University) November 7, 2019 17 / 83

Good news and bad news

Bad news: Theoretical challenge

Type-II AA can even provably diverge when applied to the gradient
descent on a one-dimensional smooth unconstrained optimization
problem (Mai & Johansson, 2019).

(Scieur et al., 2016) showed that adding constant quadratic
regularization to the objective leads to local convergence
improvement.
Insufficient for global convergence both in theory and practice.

In general, most of the literature has been focused on AA-II:

AA-I is generally missing both in theory and practice.

Junzi Zhang (Stanford University) November 7, 2019 17 / 83

Good news and bad news

Bad news: Theoretical challenge

Type-II AA can even provably diverge when applied to the gradient
descent on a one-dimensional smooth unconstrained optimization
problem (Mai & Johansson, 2019).

(Scieur et al., 2016) showed that adding constant quadratic
regularization to the objective leads to local convergence
improvement.
Insufficient for global convergence both in theory and practice.

In general, most of the literature has been focused on AA-II:

AA-I is generally missing both in theory and practice.

Junzi Zhang (Stanford University) November 7, 2019 17 / 83

Goal and contribution

Stabilize AA with convergence beyond differentiability, locality and
non-singularity

The FP mapping of SCS is non-smooth and singular.
Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

Develop a “plug-and-play” acceleration scheme based on the
stabilized AA

View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.
For example, concatenate successive iterates in momentum algorithms.

Junzi Zhang (Stanford University) November 7, 2019 18 / 83

Goal and contribution

Stabilize AA with convergence beyond differentiability, locality and
non-singularity

The FP mapping of SCS is non-smooth and singular.

Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

Develop a “plug-and-play” acceleration scheme based on the
stabilized AA

View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.
For example, concatenate successive iterates in momentum algorithms.

Junzi Zhang (Stanford University) November 7, 2019 18 / 83

Goal and contribution

Stabilize AA with convergence beyond differentiability, locality and
non-singularity

The FP mapping of SCS is non-smooth and singular.
Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

Develop a “plug-and-play” acceleration scheme based on the
stabilized AA

View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.
For example, concatenate successive iterates in momentum algorithms.

Junzi Zhang (Stanford University) November 7, 2019 18 / 83

Goal and contribution

Stabilize AA with convergence beyond differentiability, locality and
non-singularity

The FP mapping of SCS is non-smooth and singular.
Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

Develop a “plug-and-play” acceleration scheme based on the
stabilized AA

View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.
For example, concatenate successive iterates in momentum algorithms.

Junzi Zhang (Stanford University) November 7, 2019 18 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 19 / 83

A generic stabilization scheme

Main idea: modified αk (Hk/Bk) choice and a very relaxed safeguard.

Iterates for k = 1, 2, . . ., (D, ε > 0, M positive integer)

1. Compute vk+1
FP = Fα(vk), gk = vk − vk+1

FP .

2. Update Yk and Sk to include the new information

& Compute a modified αk (Hk/Bk)

3. Compute vk+1
AA =

M∑
j=0

αk
j v

k−M+j+1
FP .

4. If the residual ‖G (vk)‖2 ≤ D‖g0‖2/n
1+ε
AA : (safeguard)

Adopt vk+i = vk+i
AA for i = 1, . . . ,M.

(nAA: # of adopted AA candidates)

5. Otherwise, take vk+1 = vk+1
FP .

Junzi Zhang (Stanford University) November 7, 2019 20 / 83

A generic stabilization scheme

Main idea: modified αk (Hk/Bk) choice and a very relaxed safeguard.

Iterates for k = 1, 2, . . ., (D, ε > 0, M positive integer)

1. Compute vk+1
FP = Fα(vk), gk = vk − vk+1

FP .

2. Update Yk and Sk to include the new information

& Compute a modified αk (Hk/Bk)

3. Compute vk+1
AA =

M∑
j=0

αk
j v

k−M+j+1
FP .

4. If the residual ‖G (vk)‖2 ≤ D‖g0‖2/n
1+ε
AA : (safeguard)

Adopt vk+i = vk+i
AA for i = 1, . . . ,M.

(nAA: # of adopted AA candidates)

5. Otherwise, take vk+1 = vk+1
FP .

Junzi Zhang (Stanford University) November 7, 2019 20 / 83

Motivations of the stabilization tricks

Goal of modified αk : boundedness of Hk and Bk .

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA steps with the vanilla KM iteration steps to
safe-guard the decrease in residual norms G .
Check if the current residual norm is sufficiently small, and replace it
with Fα(x) = (1− α)x + αF (x) whenever not, α ∈ (0, 1). If F is
averaged, just choose α = 1.
Can be seen as a much cheaper alternative to the expensive line-search.

Junzi Zhang (Stanford University) November 7, 2019 21 / 83

Motivations of the stabilization tricks

Goal of modified αk : boundedness of Hk and Bk .

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA steps with the vanilla KM iteration steps to
safe-guard the decrease in residual norms G .
Check if the current residual norm is sufficiently small, and replace it
with Fα(x) = (1− α)x + αF (x) whenever not, α ∈ (0, 1). If F is
averaged, just choose α = 1.
Can be seen as a much cheaper alternative to the expensive line-search.

Junzi Zhang (Stanford University) November 7, 2019 21 / 83

Motivations of the stabilization tricks

Goal of modified αk : boundedness of Hk and Bk .

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA steps with the vanilla KM iteration steps to
safe-guard the decrease in residual norms G .

Check if the current residual norm is sufficiently small, and replace it
with Fα(x) = (1− α)x + αF (x) whenever not, α ∈ (0, 1). If F is
averaged, just choose α = 1.
Can be seen as a much cheaper alternative to the expensive line-search.

Junzi Zhang (Stanford University) November 7, 2019 21 / 83

Motivations of the stabilization tricks

Goal of modified αk : boundedness of Hk and Bk .

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA steps with the vanilla KM iteration steps to
safe-guard the decrease in residual norms G .
Check if the current residual norm is sufficiently small, and replace it
with Fα(x) = (1− α)x + αF (x) whenever not, α ∈ (0, 1). If F is
averaged, just choose α = 1.

Can be seen as a much cheaper alternative to the expensive line-search.

Junzi Zhang (Stanford University) November 7, 2019 21 / 83

Motivations of the stabilization tricks

Goal of modified αk : boundedness of Hk and Bk .

Goal of safe-guard: avoid “wild” and “bad” extrapolation.

Main idea: interleave AA steps with the vanilla KM iteration steps to
safe-guard the decrease in residual norms G .
Check if the current residual norm is sufficiently small, and replace it
with Fα(x) = (1− α)x + αF (x) whenever not, α ∈ (0, 1). If F is
averaged, just choose α = 1.
Can be seen as a much cheaper alternative to the expensive line-search.

Junzi Zhang (Stanford University) November 7, 2019 21 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 22 / 83

Stabilization of AA-I: rank-one update

AA-I ⇐⇒ Type-I Broyden’s rank-one update with orthogonalization:

Proposition

Suppose that Sk is full rank, then Bk can be computed inductively from

B0
k = I as follows:

B i+1
k = B i

k +
(yk−mk+i − B i

ks
k−mk+i)(ŝk−mk+i)T

(ŝk−mk+i)T sk−mk+i
, i = 0, . . . ,mk − 1

with Bk = Bmk
k . Here {ŝ i}k−1

i=k−mk
is the Gram-Schmidt orthogonalization

of {s i}k−1
i=k−mk

, i.e., ŝ i = s i −
∑i−1

j=k−mk

(ŝ j)T s i

(ŝ j)T ŝ j
ŝ j , i = k −mk , . . . , k − 1.

Junzi Zhang (Stanford University) November 7, 2019 23 / 83

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on Bk).

AA-II: add ridge penalty (regularized nonlinear acceleration, 2016)

minimize∑mk
j=0 αj=1 ‖

∑mk
j=0 αjG (vk−mk+j)‖2

2 + λ‖α‖2
2

Help in extreme cases, but impede the convergence in general.

AA-I: Powell-type trick (turns out very helpful also in practice!)

Replace yk−mk+i with ỹk−mk+i = θiky
k−mk+i + (1− θik)B i

ks
k−mk+i ,

where θik = φθ̄(ηik), with ηik =
ŝk−mk+i T (B i

k)−1yk−mk+i

‖ŝk−mk+i‖2
2

,

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄.

|det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible!

Junzi Zhang (Stanford University) November 7, 2019 24 / 83

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on Bk).

AA-II: add ridge penalty (regularized nonlinear acceleration, 2016)

minimize∑mk
j=0 αj=1 ‖

∑mk
j=0 αjG (vk−mk+j)‖2

2 + λ‖α‖2
2

Help in extreme cases, but impede the convergence in general.

AA-I: Powell-type trick (turns out very helpful also in practice!)

Replace yk−mk+i with ỹk−mk+i = θiky
k−mk+i + (1− θik)B i

ks
k−mk+i ,

where θik = φθ̄(ηik), with ηik =
ŝk−mk+i T (B i

k)−1yk−mk+i

‖ŝk−mk+i‖2
2

,

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄.

|det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible!

Junzi Zhang (Stanford University) November 7, 2019 24 / 83

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on Bk).

AA-II: add ridge penalty (regularized nonlinear acceleration, 2016)

minimize∑mk
j=0 αj=1 ‖

∑mk
j=0 αjG (vk−mk+j)‖2

2 + λ‖α‖2
2

Help in extreme cases, but impede the convergence in general.

AA-I: Powell-type trick (turns out very helpful also in practice!)

Replace yk−mk+i with ỹk−mk+i = θiky
k−mk+i + (1− θik)B i

ks
k−mk+i ,

where θik = φθ̄(ηik), with ηik =
ŝk−mk+i T (B i

k)−1yk−mk+i

‖ŝk−mk+i‖2
2

,

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄.

|det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible!

Junzi Zhang (Stanford University) November 7, 2019 24 / 83

Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on Bk).

AA-II: add ridge penalty (regularized nonlinear acceleration, 2016)

minimize∑mk
j=0 αj=1 ‖

∑mk
j=0 αjG (vk−mk+j)‖2

2 + λ‖α‖2
2

Help in extreme cases, but impede the convergence in general.

AA-I: Powell-type trick (turns out very helpful also in practice!)

Replace yk−mk+i with ỹk−mk+i = θiky
k−mk+i + (1− θik)B i

ks
k−mk+i ,

where θik = φθ̄(ηik), with ηik =
ŝk−mk+i T (B i

k)−1yk−mk+i

‖ŝk−mk+i‖2
2

,

φθ̄(η) =

{
1 if |η| ≥ θ̄
1−sign(η)θ̄

1−η if |η| < θ̄.

|det(Bk)| ≥ θ̄mk > 0, and in particular, Bk is invertible!

Junzi Zhang (Stanford University) November 7, 2019 24 / 83

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on Bk).

(ŝk−mk+i)T sk−mk+i = ‖ŝk−mk+i‖2
2 appears in the denominators: but

ŝk−mk+i becomes 0 when mk > n due to orthogonalization.

Solution: update mk = mk−1 + 1. If mk = m + 1 or

‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 1.

Then ‖Bk‖2 ≤ 3(1 + θ̄ + τ)m/τm − 2!

(Re)define Hk := B−1
k : ‖Hk‖2 ≤

(
3

(
1 + θ̄ + τ

τ

)m

− 2

)n−1

/θ̄m.

Junzi Zhang (Stanford University) November 7, 2019 25 / 83

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on Bk).

(ŝk−mk+i)T sk−mk+i = ‖ŝk−mk+i‖2
2 appears in the denominators: but

ŝk−mk+i becomes 0 when mk > n due to orthogonalization.

Solution: update mk = mk−1 + 1. If mk = m + 1 or

‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 1.

Then ‖Bk‖2 ≤ 3(1 + θ̄ + τ)m/τm − 2!

(Re)define Hk := B−1
k : ‖Hk‖2 ≤

(
3

(
1 + θ̄ + τ

τ

)m

− 2

)n−1

/θ̄m.

Junzi Zhang (Stanford University) November 7, 2019 25 / 83

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on Bk).

(ŝk−mk+i)T sk−mk+i = ‖ŝk−mk+i‖2
2 appears in the denominators: but

ŝk−mk+i becomes 0 when mk > n due to orthogonalization.

Solution: update mk = mk−1 + 1. If mk = m + 1 or

‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 1.

Then ‖Bk‖2 ≤ 3(1 + θ̄ + τ)m/τm − 2!

(Re)define Hk := B−1
k : ‖Hk‖2 ≤

(
3

(
1 + θ̄ + τ

τ

)m

− 2

)n−1

/θ̄m.

Junzi Zhang (Stanford University) November 7, 2019 25 / 83

Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on Bk).

(ŝk−mk+i)T sk−mk+i = ‖ŝk−mk+i‖2
2 appears in the denominators: but

ŝk−mk+i becomes 0 when mk > n due to orthogonalization.

Solution: update mk = mk−1 + 1. If mk = m + 1 or

‖ŝk−1‖2 < τ‖sk−1‖2, then reset mk = 1.

Then ‖Bk‖2 ≤ 3(1 + θ̄ + τ)m/τm − 2!

(Re)define Hk := B−1
k : ‖Hk‖2 ≤

(
3

(
1 + θ̄ + τ

τ

)m

− 2

)n−1

/θ̄m.

Junzi Zhang (Stanford University) November 7, 2019 25 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 26 / 83

Stabilization of AA-II: Adaptive Regularization

Our approach:

Add adaptive regularization to the unconstrained formulation.

Change variables to γk ∈ RM (unconstrained LS):

αk
0 = γk0 , α

k
i = γki − γki−1, (i = 1, . . . ,M − 1), αk

M = 1− γkM−1

Adaptive quadratic regularization: (adaptive LS)

minimize ‖gk − Ykγ
k‖2

2 + η
(
‖Sk‖2

F + ‖Yk‖2
F

)
‖γk‖2

2,

where η ≥ 0 is a regularization parameter and

gk = G (vk), yk = gk+1 − gk , Yk = [yk−M . . . yk−1]

sk = vk+1 − vk , Sk = [sk−M . . . sk−1]

Junzi Zhang (Stanford University) November 7, 2019 27 / 83

Stabilization of AA-II: Adaptive Regularization

Our approach:

Add adaptive regularization to the unconstrained formulation.

Change variables to γk ∈ RM (unconstrained LS):

αk
0 = γk0 , α

k
i = γki − γki−1, (i = 1, . . . ,M − 1), αk

M = 1− γkM−1

Adaptive quadratic regularization: (adaptive LS)

minimize ‖gk − Ykγ
k‖2

2 + η
(
‖Sk‖2

F + ‖Yk‖2
F

)
‖γk‖2

2,

where η ≥ 0 is a regularization parameter and

gk = G (vk), yk = gk+1 − gk , Yk = [yk−M . . . yk−1]

sk = vk+1 − vk , Sk = [sk−M . . . sk−1]

Junzi Zhang (Stanford University) November 7, 2019 27 / 83

Stabilization of AA-II: Adaptive Regularization

Our approach:

Add adaptive regularization to the unconstrained formulation.

Change variables to γk ∈ RM (unconstrained LS):

αk
0 = γk0 , α

k
i = γki − γki−1, (i = 1, . . . ,M − 1), αk

M = 1− γkM−1

Adaptive quadratic regularization: (adaptive LS)

minimize ‖gk − Ykγ
k‖2

2 + η
(
‖Sk‖2

F + ‖Yk‖2
F

)
‖γk‖2

2,

where η ≥ 0 is a regularization parameter and

gk = G (vk), yk = gk+1 − gk , Yk = [yk−M . . . yk−1]

sk = vk+1 − vk , Sk = [sk−M . . . sk−1]

Junzi Zhang (Stanford University) November 7, 2019 27 / 83

Stabilization of AA-II: Adaptive Regularization

Our approach:

Adaptive quadratic regularization: (adaptive LS)

minimize ‖gk − Ykγ
k‖2

2 + η
(
‖Sk‖2

F + ‖Yk‖2
F

)
‖γk‖2

2,

Lemma (Bounded approximate inverse Jacobian)

We have vk+1
AA = vk − Hkg

k , where gk = G (vk) is the FP residual at vk ,

and ‖Hk‖2 ≤ 1 + 2/η, where η > 0 is the regularization parameter in the

adaptive LS subproblem.

Junzi Zhang (Stanford University) November 7, 2019 28 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 29 / 83

Global convergence

Theorem

Suppose that f has a fixed-point. Also suppose that f is non-expansive

in l2-norm or contractive in an arbitrary norm. Assume that {xk}∞k=0 is

generated by the generic stabilization scheme wth αk (Hk/Bk) chosen by

either the stabilized AA-I or AA-II . Then we have

lim
k→∞

xk = x?,

where x? = f (x?) is some fixed-point of f .

Key: bounds on Hk and Bk ensure that the deviation is not too much

from the safe-guarding paths.

What if f does not have a fixed-point? Pathological settings to be

discussed later.

Junzi Zhang (Stanford University) November 7, 2019 30 / 83

Global convergence

Theorem

Suppose that f has a fixed-point. Also suppose that f is non-expansive

in l2-norm or contractive in an arbitrary norm. Assume that {xk}∞k=0 is

generated by the generic stabilization scheme wth αk (Hk/Bk) chosen by

either the stabilized AA-I or AA-II . Then we have

lim
k→∞

xk = x?,

where x? = f (x?) is some fixed-point of f .

Key: bounds on Hk and Bk ensure that the deviation is not too much

from the safe-guarding paths.

What if f does not have a fixed-point? Pathological settings to be

discussed later.

Junzi Zhang (Stanford University) November 7, 2019 30 / 83

Global convergence

Theorem

Suppose that f has a fixed-point. Also suppose that f is non-expansive

in l2-norm or contractive in an arbitrary norm. Assume that {xk}∞k=0 is

generated by the generic stabilization scheme wth αk (Hk/Bk) chosen by

either the stabilized AA-I or AA-II . Then we have

lim
k→∞

xk = x?,

where x? = f (x?) is some fixed-point of f .

Key: bounds on Hk and Bk ensure that the deviation is not too much

from the safe-guarding paths.

What if f does not have a fixed-point? Pathological settings to be

discussed later.

Junzi Zhang (Stanford University) November 7, 2019 30 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 31 / 83

Effect of stabilization: AA-II + constant regularization

Figure: Effect of constant regularization (RNA, Scieur et al., 2016): `2 regularized
logistic regression.

Junzi Zhang (Stanford University) November 7, 2019 32 / 83

Effect of stabilization: AA-II + adaptive regularization

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (no-reg)
Residuals (constant-reg)
Residuals (ada-reg)

Figure: Further improvement of adaptive regularization (A2DR, FZB 2019):
Nonnegative least squares.

Junzi Zhang (Stanford University) November 7, 2019 33 / 83

Effect of stabilization: AA-I

Gradient Descent: stabilization from divergence to convergence

0 1000 2000 3000 4000 5000
10

−6

10
−4

10
−2

10
0

10
2

10
4

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=4.60e−05

aa1
aa1−safe
original

0 5 10
10

−6

10
−4

10
−2

10
0

10
2

10
4

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=4.60e−05
time ratio: aa = 8.75e−01, aa1−safe = 1.11e+00

aa1
aa1−safe
original

Figure: Gradient descent: regularized logistic regression. Left: residual norm
versus iteration. Right: residual norm versus time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 34 / 83

Effect of stabilization: AA-I

ISTA: elastic net regression – nonsmoothness coming from shrinkage

0 500 1000 1500 2000 2500
10

−9

10
−7

10
−5

10
−3

10
−1

10
1

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=8.03e+00

aa1
aa1−safe
original

0 20 40 60 80
10

−9

10
−7

10
−5

10
−3

10
−1

10
1

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=8.03e+00
time ratio: aa = 1.45e+00, aa1−safe = 1.01e+00

aa1
aa1−safe
original

Figure: Iterative Shrinkage-Thresholding Algorithm: elastic-net linear regression.
Left: residual norm versus iteration. Right: residual norm versus time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 35 / 83

Effect of stabilization: AA-I

MDP (value iteration) (discount factor γ = 0.99):

0 10 20 30 40 50
10

−6

10
−4

10
−2

10
0

10
2

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=1.61e+01

aa1
aa1−safe
original

0 2 4 6
10

−6

10
−4

10
−2

10
0

10
2

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=1.61e+01
time ratio: aa = 9.84e−01, aa1−safe = 1.03e+00

aa1
aa1−safe
original

Figure: Value iteration: MDP. Left: residual norm versus iteration. Right:
residual norm versus time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 36 / 83

Effect of stabilization: AA-I

Effect of different memories m:

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

10
2

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=1.61e+01

original
aa1,m=2
aa1−safe, m=2
aa1,m=5
aa1−safe, m=5
aa1,m=10
aa1−safe, m=10
aa1,m=20
aa1−safe, m=20
aa1,m=50
aa1−safe, m=50

0 2 4 6 8 10
10

−6

10
−4

10
−2

10
0

10
2

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=1.61e+01

original
aa1,m=2
aa1−safe, m=2
aa1,m=5
aa1−safe, m=5
aa1,m=10
aa1−safe, m=10
aa1,m=20
aa1−safe, m=20
aa1,m=50
aa1−safe, m=50

Figure: Value iteration: memory effect. Left: residual norm versus iteration.
Right: residual norm versus time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 37 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 38 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 39 / 83

SCS as FP

Problem: minimizex cT x , subject to Ax + s = b, s ∈ K.

Algorithm – SCS (C = Rn ×K∗ × R+):

ũk+1 = (I + Q)−1(uk + vk)

uk+1 = ΠC(ũk+1 − vk)

vk+1 = vk − ũk+1 + uk+1.

FP (don’t apply AA to u and v separately):

F (u, v) =

[
ΠC((I + Q)−1(u + v)− v)

v − (I + Q)−1(u + v) + u

]
.

F is non-expansive (in `2), and 0 is always a fixed-point, and so the

global convergence theorem goes through.

Junzi Zhang (Stanford University) November 7, 2019 40 / 83

SCS as FP

Problem: minimizex cT x , subject to Ax + s = b, s ∈ K.

Algorithm – SCS (C = Rn ×K∗ × R+):

ũk+1 = (I + Q)−1(uk + vk)

uk+1 = ΠC(ũk+1 − vk)

vk+1 = vk − ũk+1 + uk+1.

FP (don’t apply AA to u and v separately):

F (u, v) =

[
ΠC((I + Q)−1(u + v)− v)

v − (I + Q)−1(u + v) + u

]
.

F is non-expansive (in `2), and 0 is always a fixed-point, and so the

global convergence theorem goes through.

Junzi Zhang (Stanford University) November 7, 2019 40 / 83

SCS as FP

Problem: minimizex cT x , subject to Ax + s = b, s ∈ K.

Algorithm – SCS (C = Rn ×K∗ × R+):

ũk+1 = (I + Q)−1(uk + vk)

uk+1 = ΠC(ũk+1 − vk)

vk+1 = vk − ũk+1 + uk+1.

FP (don’t apply AA to u and v separately):

F (u, v) =

[
ΠC((I + Q)−1(u + v)− v)

v − (I + Q)−1(u + v) + u

]
.

F is non-expansive (in `2), and 0 is always a fixed-point, and so the

global convergence theorem goes through.

Junzi Zhang (Stanford University) November 7, 2019 40 / 83

Implementation details

We apply the stabilized AA-I to SCS.

Hyper-parameters choice: θ̄ = 0.01, τ = 0.001, D = 106,

ε = 10−6, memory m = 5, averaging weight α = 0.1.

Matrix-free updates: instead of computing and storing Hk , we store

Hk−j ỹk−j and
HT
k−j ŝk−j

ŝTk−j (Hk−j ỹk−j)
for j = 1, . . . ,mk , compute

dk = gk +

mk∑
j=1

(sk−j − (Hk−j ỹk−j))

(
HT
k−j ŝk−j

ŝTk−j(Hk−j ỹk−j)

)T

gk ,

and then update x̃k+1 = xk − dk .

Problem scaling is helpful when matrices are involved.

Junzi Zhang (Stanford University) November 7, 2019 41 / 83

Success of AA-II: SuperSCS

Compared to restarted Broyden:

Figure: DM profile. left: sparse PCA; right: sparse logistic regression.
SuperSCS: fast and accurate large-scale conic optimization. Sopasakis, et
al., 2019.

Junzi Zhang (Stanford University) November 7, 2019 42 / 83

Further success of AA-I: SCS 2.x

Compared to AA-II:

Figure: Sparse PCA. Left: histogram of run time ratio between SuperSCS
(AA-II) and SCS 2.x (AA-I). Right: DM profile of run time.

Still fail for 35% of the test cases.

Junzi Zhang (Stanford University) November 7, 2019 43 / 83

Even further success with stabilized AA-I

SCS: LP – nonsmoothness coming from projections

Implementation in progress in the next version of SCS.

0 500 1000 1500 2000 2500 3000
10

−9

10
−7

10
−5

10
−3

10
−1

10
1

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=8.62e−01

aa1
aa1−safe
original

0 20 40 60 80
10

−9

10
−7

10
−5

10
−3

10
−1

10
1

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=8.62e−01
time ratio: aa = 1.79e+00, aa1−safe = 1.06e+00

aa1
aa1−safe
original

Figure: SCS: linear program. Left: residual norm versus iteration. Right: residual
norm versus time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 44 / 83

Even further success with stabilized AA-I

SCS: SOCP – nonsmoothness coming from projections

Implementation in progress in the next version of SCS.

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

iteration number

‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. iter, res0=8.37e−01

aa1
aa1−safe
original

0 20 40 60
10

−6

10
−4

10
−2

10
0

10
2

time (seconds)
‖
g
(x

k
)‖

2
/
‖
g
(x

0
)‖

2

res v.s. time, res0=8.37e−01
time ratio: aa = 1.89e+00, aa1−safe = 1.05e+00

aa1
aa1−safe
original

Figure: SCS: second-order cone program. Left: residual norm versus iteration.
Right: residual norm versus time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 45 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 46 / 83

a2dr: Anderson Accelerated Douglas-Rachford Splitting

Open-sourced Python Solver for Prox-Affine Distributed Convex

Optimization

Combining AA-II with DRS (Douglas-Rachford Splitting).

Available at https://github.com/cvxgrp/a2dr

Junzi Zhang (Stanford University) November 7, 2019 47 / 83

Prox-affine form of generic convex optimization

We consider the following prox-affine representation/formulation of a

generic convex optimization problem:

minimize
∑N

i=1 fi (xi)

subject to
∑N

i=1 Aixi = b.

with variable x = (x1, . . . , xN) ∈ Rn1+···+nN , Ai ∈ Rm×ni , b ∈ Rm.

fi : Rni → R ∪ {+∞} is closed, convex and proper (CCP).

Each fi can only be accessed through its proximal operator:

proxtfi (vi) = argminxi
(
fi (xi) + 1

2t ‖xi − vi‖2
2

)
.

Junzi Zhang (Stanford University) November 7, 2019 48 / 83

Prox-affine form of generic convex optimization

We consider the following prox-affine representation/formulation of a

generic convex optimization problem:

minimize
∑N

i=1 fi (xi)

subject to
∑N

i=1 Aixi = b.

with variable x = (x1, . . . , xN) ∈ Rn1+···+nN , Ai ∈ Rm×ni , b ∈ Rm.

fi : Rni → R ∪ {+∞} is closed, convex and proper (CCP).

Each fi can only be accessed through its proximal operator:

proxtfi (vi) = argminxi
(
fi (xi) + 1

2t ‖xi − vi‖2
2

)
.

Junzi Zhang (Stanford University) November 7, 2019 48 / 83

Prox-affine form of generic convex optimization

Why prox-affine form?

minimize
∑N

i=1 fi (xi)

subject to
∑N

i=1 Aixi = b.

Separability: suitable for parallel and distributed implementation.

Black-box proximal: suitable for peer-to-peer optimization with

privacy requirements.

New interface: good substitute for the conic standard form.

Cone programs can be represented in prox-affine form by consensus
without complication (but NOT vice versa).
With log, exp, det involved, prox-affine form is much more compact.

Junzi Zhang (Stanford University) November 7, 2019 49 / 83

Prox-affine form of generic convex optimization

Why prox-affine form?

minimize
∑N

i=1 fi (xi)

subject to
∑N

i=1 Aixi = b.

Separability: suitable for parallel and distributed implementation.

Black-box proximal: suitable for peer-to-peer optimization with

privacy requirements.

New interface: good substitute for the conic standard form.

Cone programs can be represented in prox-affine form by consensus
without complication (but NOT vice versa).
With log, exp, det involved, prox-affine form is much more compact.

Junzi Zhang (Stanford University) November 7, 2019 49 / 83

Prox-affine form of generic convex optimization

Why prox-affine form?

minimize
∑N

i=1 fi (xi)

subject to
∑N

i=1 Aixi = b.

Separability: suitable for parallel and distributed implementation.

Black-box proximal: suitable for peer-to-peer optimization with

privacy requirements.

New interface: good substitute for the conic standard form.

Cone programs can be represented in prox-affine form by consensus
without complication (but NOT vice versa).
With log, exp, det involved, prox-affine form is much more compact.

Junzi Zhang (Stanford University) November 7, 2019 49 / 83

Prox-affine form of generic convex optimization

Why prox-affine form?

minimize
∑N

i=1 fi (xi)

subject to
∑N

i=1 Aixi = b.

Separability: suitable for parallel and distributed implementation.

Black-box proximal: suitable for peer-to-peer optimization with

privacy requirements.

New interface: good substitute for the conic standard form.

Cone programs can be represented in prox-affine form by consensus
without complication (but NOT vice versa).

With log, exp, det involved, prox-affine form is much more compact.

Junzi Zhang (Stanford University) November 7, 2019 49 / 83

Prox-affine form of generic convex optimization

Why prox-affine form?

minimize
∑N

i=1 fi (xi)

subject to
∑N

i=1 Aixi = b.

Separability: suitable for parallel and distributed implementation.

Black-box proximal: suitable for peer-to-peer optimization with

privacy requirements.

New interface: good substitute for the conic standard form.

Cone programs can be represented in prox-affine form by consensus
without complication (but NOT vice versa).
With log, exp, det involved, prox-affine form is much more compact.

Junzi Zhang (Stanford University) November 7, 2019 49 / 83

Prox-affine form of generic convex optimization

Why prox-affine form?

minimize
∑N

i=1 fi (xi)

subject to
∑N

i=1 Aixi = b.

Separability: suitable for parallel and distributed implementation.

Black-box proximal: suitable for peer-to-peer optimization with

privacy requirements.

New interface: good substitute for the conic standard form.

Cone programs can be represented in prox-affine form by consensus
without complication (but NOT vice versa).
With log, exp, det involved, prox-affine form is much more compact.

Junzi Zhang (Stanford University) November 7, 2019 49 / 83

a2dr: Solver interface

Interface of a2dr:

x vals, primal, dual, num iters, solve time = a2dr(p list, A list, b)

Try it out! Simply provide a list of proximal functions proxtfi (vi)

(p list), list of Ai ’s (A list), and b (b), and you are done!

Why a2dr?

Hundreds of papers on distributed/parallel optimization every year

Few solvers/softwares are written

Existing good ones: CoCoA(+), TMAC, etc.

Efficient in communication cost
But hard to extend and use for general purposes.
Intended mostly for optimization experts.

Finally: CVXPY + a2dr – Expression tree complier exists: Epsilon

(Wytock et al., 2015).

Junzi Zhang (Stanford University) November 7, 2019 50 / 83

a2dr: Solver interface

Interface of a2dr:

x vals, primal, dual, num iters, solve time = a2dr(p list, A list, b)

Try it out! Simply provide a list of proximal functions proxtfi (vi)

(p list), list of Ai ’s (A list), and b (b), and you are done!

Why a2dr?

Hundreds of papers on distributed/parallel optimization every year

Few solvers/softwares are written

Existing good ones: CoCoA(+), TMAC, etc.

Efficient in communication cost
But hard to extend and use for general purposes.
Intended mostly for optimization experts.

Finally: CVXPY + a2dr – Expression tree complier exists: Epsilon

(Wytock et al., 2015).

Junzi Zhang (Stanford University) November 7, 2019 50 / 83

a2dr: Solver interface

Interface of a2dr:

x vals, primal, dual, num iters, solve time = a2dr(p list, A list, b)

Try it out! Simply provide a list of proximal functions proxtfi (vi)

(p list), list of Ai ’s (A list), and b (b), and you are done!

Why a2dr?

Hundreds of papers on distributed/parallel optimization every year

Few solvers/softwares are written

Existing good ones: CoCoA(+), TMAC, etc.

Efficient in communication cost
But hard to extend and use for general purposes.
Intended mostly for optimization experts.

Finally: CVXPY + a2dr – Expression tree complier exists: Epsilon

(Wytock et al., 2015).

Junzi Zhang (Stanford University) November 7, 2019 50 / 83

a2dr: Solver interface

Interface of a2dr:

x vals, primal, dual, num iters, solve time = a2dr(p list, A list, b)

Try it out! Simply provide a list of proximal functions proxtfi (vi)

(p list), list of Ai ’s (A list), and b (b), and you are done!

Why a2dr?

Hundreds of papers on distributed/parallel optimization every year

Few solvers/softwares are written

Existing good ones: CoCoA(+), TMAC, etc.

Efficient in communication cost
But hard to extend and use for general purposes.
Intended mostly for optimization experts.

Finally: CVXPY + a2dr – Expression tree complier exists: Epsilon

(Wytock et al., 2015).

Junzi Zhang (Stanford University) November 7, 2019 50 / 83

a2dr: Solver interface

Interface of a2dr:

x vals, primal, dual, num iters, solve time = a2dr(p list, A list, b)

Try it out! Simply provide a list of proximal functions proxtfi (vi)

(p list), list of Ai ’s (A list), and b (b), and you are done!

Why a2dr?

Hundreds of papers on distributed/parallel optimization every year

Few solvers/softwares are written

Existing good ones: CoCoA(+), TMAC, etc.

Efficient in communication cost
But hard to extend and use for general purposes.
Intended mostly for optimization experts.

Finally: CVXPY + a2dr – Expression tree complier exists: Epsilon

(Wytock et al., 2015).

Junzi Zhang (Stanford University) November 7, 2019 50 / 83

a2dr: Solver interface

Interface of a2dr:

x vals, primal, dual, num iters, solve time = a2dr(p list, A list, b)

Try it out! Simply provide a list of proximal functions proxtfi (vi)

(p list), list of Ai ’s (A list), and b (b), and you are done!

Why a2dr?

Hundreds of papers on distributed/parallel optimization every year

Few solvers/softwares are written

Existing good ones: CoCoA(+), TMAC, etc.

Efficient in communication cost
But hard to extend and use for general purposes.
Intended mostly for optimization experts.

Finally: CVXPY + a2dr – Expression tree complier exists: Epsilon

(Wytock et al., 2015).

Junzi Zhang (Stanford University) November 7, 2019 50 / 83

Previous Work

Most common approaches for prox-affine formulation (sometimes goes by

the name ”distributed optimization”):

Alternating direction method of multipliers (ADMM).

Douglas-Rachford splitting (DRS).

Augmented Lagrangian method (ALM).

These are typically slow to converge – acceleration techniques:

Adaptive penalty parameters.

Momentum methods.

Quasi-Newton or Newton-type method with line search.

Junzi Zhang (Stanford University) November 7, 2019 51 / 83

Previous Work

Most common approaches for prox-affine formulation (sometimes goes by

the name ”distributed optimization”):

Alternating direction method of multipliers (ADMM).

Douglas-Rachford splitting (DRS).

Augmented Lagrangian method (ALM).

These are typically slow to converge – acceleration techniques:

Adaptive penalty parameters.

Momentum methods.

Quasi-Newton or Newton-type method with line search.

Junzi Zhang (Stanford University) November 7, 2019 51 / 83

Our Method

A2DR: Stabilized AA-II applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free

Why AA-II?

Work better with DRS + prox-affine than type-I AA
Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).

Junzi Zhang (Stanford University) November 7, 2019 52 / 83

Our Method

A2DR: Stabilized AA-II applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free

Why AA-II?

Work better with DRS + prox-affine than type-I AA
Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).

Junzi Zhang (Stanford University) November 7, 2019 52 / 83

Our Method

A2DR: Stabilized AA-II applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free

Why AA-II?

Work better with DRS + prox-affine than type-I AA
Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).

Junzi Zhang (Stanford University) November 7, 2019 52 / 83

Our Method

A2DR: Stabilized AA-II applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free

Why AA-II?

Work better with DRS + prox-affine than type-I AA
Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).

Junzi Zhang (Stanford University) November 7, 2019 52 / 83

Our Method

A2DR: Stabilized AA-II applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free

Why AA-II?

Work better with DRS + prox-affine than type-I AA

Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).

Junzi Zhang (Stanford University) November 7, 2019 52 / 83

Our Method

A2DR: Stabilized AA-II applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free

Why AA-II?

Work better with DRS + prox-affine than type-I AA
Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).

Junzi Zhang (Stanford University) November 7, 2019 52 / 83

Our Method

A2DR: Stabilized AA-II applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free

Why AA-II?

Work better with DRS + prox-affine than type-I AA
Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).

Junzi Zhang (Stanford University) November 7, 2019 52 / 83

Our Method

A2DR: Stabilized AA-II applied to DRS

Why AA?

Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free

Why AA-II?

Work better with DRS + prox-affine than type-I AA
Better stability for general purpose solvers and distributed settings.

prox operators have much larger diversity than solvable cones in SCS.

Why DRS?

Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).

Junzi Zhang (Stanford University) November 7, 2019 52 / 83

Challenges and contribution

Major Challenge:

Pathology: The FP of DRS does not always have a fixed-point

solution (unlike SCS).

Implementation: tuning-free and off-the-shelf.

Theory: First globally convergent type-II AA variant in non-smooth and

potentially pathological settings.

Practice: An open-source Python solver a2dr based on A2DR:

https://github.com/cvxgrp/a2dr.

Junzi Zhang (Stanford University) November 7, 2019 53 / 83

Challenges and contribution

Major Challenge:

Pathology: The FP of DRS does not always have a fixed-point

solution (unlike SCS).

Implementation: tuning-free and off-the-shelf.

Theory: First globally convergent type-II AA variant in non-smooth and

potentially pathological settings.

Practice: An open-source Python solver a2dr based on A2DR:

https://github.com/cvxgrp/a2dr.

Junzi Zhang (Stanford University) November 7, 2019 53 / 83

Challenges and contribution

Major Challenge:

Pathology: The FP of DRS does not always have a fixed-point

solution (unlike SCS).

Implementation: tuning-free and off-the-shelf.

Theory: First globally convergent type-II AA variant in non-smooth and

potentially pathological settings.

Practice: An open-source Python solver a2dr based on A2DR:

https://github.com/cvxgrp/a2dr.

Junzi Zhang (Stanford University) November 7, 2019 53 / 83

Challenges and contribution

Major Challenge:

Pathology: The FP of DRS does not always have a fixed-point

solution (unlike SCS).

Implementation: tuning-free and off-the-shelf.

Theory: First globally convergent type-II AA variant in non-smooth and

potentially pathological settings.

Practice: An open-source Python solver a2dr based on A2DR:

https://github.com/cvxgrp/a2dr.

Junzi Zhang (Stanford University) November 7, 2019 53 / 83

DRS Algorithm

Rewrite problem as (IS is the indicator of set S)

minimize

f (x)︷ ︸︸ ︷∑N

i=1
fi (xi) +

g(x)︷ ︸︸ ︷
IAx=b(x) .

DRS iterates for k = 1, 2, . . .,

x
k+1/2
i = proxtfi (v

k), i = 1, . . . ,N

vk+1/2 = 2xk+1/2 − vk

xk+1 = ΠAv=b(vk+1/2)

vk+1 = vk + xk+1 − xk+1/2

ΠS(v) is Euclidean projection of v onto S .

Junzi Zhang (Stanford University) November 7, 2019 54 / 83

DRS Algorithm

Rewrite problem as (IS is the indicator of set S)

minimize

f (x)︷ ︸︸ ︷∑N

i=1
fi (xi) +

g(x)︷ ︸︸ ︷
IAx=b(x) .

DRS iterates for k = 1, 2, . . .,

x
k+1/2
i = proxtfi (v

k), i = 1, . . . ,N

vk+1/2 = 2xk+1/2 − vk

xk+1 = ΠAv=b(vk+1/2)

vk+1 = vk + xk+1 − xk+1/2

ΠS(v) is Euclidean projection of v onto S .

Junzi Zhang (Stanford University) November 7, 2019 54 / 83

Convergence of DRS

DRS iterations can be conceived as a fixed point (FP) mapping

vk+1 = F (vk)

F is firmly non-expansive.

vk converges to a fixed point of F (if it exists).

xk and xk+1/2 converge to a solution of our problem.

In practice, this convergence is often rather slow.

So we add AA-II.

Junzi Zhang (Stanford University) November 7, 2019 55 / 83

Convergence of DRS

DRS iterations can be conceived as a fixed point (FP) mapping

vk+1 = F (vk)

F is firmly non-expansive.

vk converges to a fixed point of F (if it exists).

xk and xk+1/2 converge to a solution of our problem.

In practice, this convergence is often rather slow.

So we add AA-II.

Junzi Zhang (Stanford University) November 7, 2019 55 / 83

Convergence of DRS

DRS iterations can be conceived as a fixed point (FP) mapping

vk+1 = F (vk)

F is firmly non-expansive.

vk converges to a fixed point of F (if it exists).

xk and xk+1/2 converge to a solution of our problem.

In practice, this convergence is often rather slow.

So we add AA-II.

Junzi Zhang (Stanford University) November 7, 2019 55 / 83

Performance/Stopping Criterion of A2DR

Stop and output xk+1/2 when ‖rk‖2 ≤ εtol = εabs + εrel‖r0‖2:

rkprim = Axk+1/2 − b,

rkdual = 1
t (vk − xk+1/2) + ATλk ,

rk = (rkprim, r
k
dual).

Remark:

Just KKT conditions. Notice that (vk − xk+1/2)/t ∈ ∂f (xk+1/2).
proxf is enough, and no need for access to f or its sub-gradient.

Dual variable is solution to least-squares problem

λk = argminλ ‖rkdual‖2

Junzi Zhang (Stanford University) November 7, 2019 56 / 83

Performance/Stopping Criterion of A2DR

Stop and output xk+1/2 when ‖rk‖2 ≤ εtol = εabs + εrel‖r0‖2:

rkprim = Axk+1/2 − b,

rkdual = 1
t (vk − xk+1/2) + ATλk ,

rk = (rkprim, r
k
dual).

Remark:

Just KKT conditions. Notice that (vk − xk+1/2)/t ∈ ∂f (xk+1/2).
proxf is enough, and no need for access to f or its sub-gradient.

Dual variable is solution to least-squares problem

λk = argminλ ‖rkdual‖2

Junzi Zhang (Stanford University) November 7, 2019 56 / 83

Key lemma to the proof

Lemma (Connecting FP residuals with OPT residuals)

Suppose that lim inf j→∞ ‖G (v j)‖2 ≤ ε for some ε > 0, then

lim inf
j→∞

‖r jprim‖2 ≤ ‖A‖2ε, lim inf
j→∞

‖r jdual‖2 ≤
1

t
ε.

Junzi Zhang (Stanford University) November 7, 2019 57 / 83

Convergence of A2DR

Theorem (Solvable Case)

If the problem is solvable (e.g., feasible and bounded), then

lim inf
k→∞

‖rk‖2 = 0

and the AA candidates are adopted infinitely often. Furthermore, if F has

a fixed point, then

lim
k→∞

vk = v? and lim
k→∞

xk+1/2 = x?,

where v? is a fixed-point of F and x? is a solution to our problem.

Remark. when the proximal operators and projections are evaluated with

errors bounded by ε, then lim infk→∞ ‖rk‖2 = O(
√
ε).

Junzi Zhang (Stanford University) November 7, 2019 58 / 83

Convergence of A2DR

Theorem (Pathological Case)

If the problem is pathological (strongly primal infeasible or strongly dual

infeasible), then

lim
k→∞

(
vk − vk+1

)
= δv 6= 0.

Furthermore, if limk→∞ Axk+1/2 = b, then the problem is unbounded and

‖δv‖2 = t dist(dom f ∗, range(AT)).

Otherwise, it is infeasible and ‖δv‖2 ≥ dist(dom f , {x : Ax = b}) with

equality when the dual problem is feasible.

Junzi Zhang (Stanford University) November 7, 2019 59 / 83

Implementation

Pre-conditioning (convergence greatly improved by rescaling problem):

Replace original A, b, fi with

Â = DAE , b̂ = Db, f̂i (x̂i) = fi (ei x̂i)

D and E are diagonal positive, ei > 0 corresponds to ith block

diagonal entry of E , and chosen by equilibrating A

Proximal operator of f̂i can be evaluated using proximal operator of fi

proxtf̂i (v̂i) = 1
ei

prox(e2
i t)fi

(ei v̂i)

Choice of t (in DRS, proxtfi): t = 1
10

(∏N
j=1 ej

)−2/N
.

Parallelization: multiprocessing package in Python.

Junzi Zhang (Stanford University) November 7, 2019 60 / 83

Implementation

Pre-conditioning (convergence greatly improved by rescaling problem):

Replace original A, b, fi with

Â = DAE , b̂ = Db, f̂i (x̂i) = fi (ei x̂i)

D and E are diagonal positive, ei > 0 corresponds to ith block

diagonal entry of E , and chosen by equilibrating A

Proximal operator of f̂i can be evaluated using proximal operator of fi

proxtf̂i (v̂i) = 1
ei

prox(e2
i t)fi

(ei v̂i)

Choice of t (in DRS, proxtfi): t = 1
10

(∏N
j=1 ej

)−2/N
.

Parallelization: multiprocessing package in Python.

Junzi Zhang (Stanford University) November 7, 2019 60 / 83

Implementation

Pre-conditioning (convergence greatly improved by rescaling problem):

Replace original A, b, fi with

Â = DAE , b̂ = Db, f̂i (x̂i) = fi (ei x̂i)

D and E are diagonal positive, ei > 0 corresponds to ith block

diagonal entry of E , and chosen by equilibrating A

Proximal operator of f̂i can be evaluated using proximal operator of fi

proxtf̂i (v̂i) = 1
ei

prox(e2
i t)fi

(ei v̂i)

Choice of t (in DRS, proxtfi): t = 1
10

(∏N
j=1 ej

)−2/N
.

Parallelization: multiprocessing package in Python.

Junzi Zhang (Stanford University) November 7, 2019 60 / 83

Nonnegative Least Squares (NNLS)

minimize ‖Fz − g‖2
2

subject to z ≥ 0

with respect to z ∈ Rq

Problem data: F ∈ Rp×q and g ∈ Rp

Can be written in standard form with

f1(x1) = ‖Fx1 − g‖2
2, f2(x2) = IRn

+
(x2)

A1 = I , A2 = −I , b = 0

We evaluate proximal operator of f1 using LSQR

Junzi Zhang (Stanford University) November 7, 2019 61 / 83

NNLS: Convergence of ‖r k‖2

p = 104, q = 8000, F has 0.1% nonzeros

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

OSQP and SCS took respectively 349 and 327 seconds, while A2DR only

took 55 seconds.

Junzi Zhang (Stanford University) November 7, 2019 62 / 83

NNLS: Effect of regularization

p = 300, q = 500, F has 0.1% nonzeros

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (no-reg)
Residuals (constant-reg)
Residuals (ada-reg)

Junzi Zhang (Stanford University) November 7, 2019 63 / 83

Sparse Inverse Covariance Estimation

Samples z1, . . . , zp IID from N (0,Σ)

Know covariance Σ ∈ Sq
+ has sparse inverse S = Σ−1

One way to estimate S is by solving the penalized log-likelihood

problem

minimize − log det(S) + tr(SQ) + α‖S‖1,

where Q is the sample covariance, α ≥ 0 is a parameter

Note log det(S) = −∞ when S � 0

Junzi Zhang (Stanford University) November 7, 2019 64 / 83

Sparse Inverse Covariance Estimation

Problem can be written in standard form with

f1(S1) = − log det(S1) + tr(S1Q), f2(S2) = α‖S2‖1,

A1 = I , A2 = −I , b = 0.

Both proximal operators have closed-form solutions.

Junzi Zhang (Stanford University) November 7, 2019 65 / 83

Covariance Estimation: Convergence of ‖r k‖2

p = 1000, q = 100, S has 10% nonzeros

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Junzi Zhang (Stanford University) November 7, 2019 66 / 83

Covariance Estimation: larger examples

Ran A2DR on instances with q = 1200 and q = 2000 (vectorizations on

the order of 106) and compared its performance to SCS:

In the former case, A2DR took 1 hour to converge to a tolerance of

10−3, while SCS took 11 hours to achieve a tolerance of 10−1 and

yielded a much worse objective value.

In the latter case, A2DR converged in 2.6 hours to a tolerance of

10−3, while SCS failed immediately with an out-of-memory error.

Junzi Zhang (Stanford University) November 7, 2019 67 / 83

Covariance Estimation: larger examples

Ran A2DR on instances with q = 1200 and q = 2000 (vectorizations on

the order of 106) and compared its performance to SCS:

In the former case, A2DR took 1 hour to converge to a tolerance of

10−3, while SCS took 11 hours to achieve a tolerance of 10−1 and

yielded a much worse objective value.

In the latter case, A2DR converged in 2.6 hours to a tolerance of

10−3, while SCS failed immediately with an out-of-memory error.

Junzi Zhang (Stanford University) November 7, 2019 67 / 83

Covariance Estimation: larger examples

Ran A2DR on instances with q = 1200 and q = 2000 (vectorizations on

the order of 106) and compared its performance to SCS:

In the former case, A2DR took 1 hour to converge to a tolerance of

10−3, while SCS took 11 hours to achieve a tolerance of 10−1 and

yielded a much worse objective value.

In the latter case, A2DR converged in 2.6 hours to a tolerance of

10−3, while SCS failed immediately with an out-of-memory error.

Junzi Zhang (Stanford University) November 7, 2019 67 / 83

Multi-Task Logistic Regression

minimize φ(W θ,Y) + α
∑L

l=1 ‖θl‖2 + β‖θ‖∗

with respect to θ = [θ1 · · · θL] ∈ Rs×L

Problem data: W ∈ Rp×s and Y = [y1 · · · yL] ∈ Rp×L

Regularization parameters: α ≥ 0, β ≥ 0

Logistic loss function

φ(Z ,Y) =
L∑

l=1

p∑
i=1

log (1 + exp(−YilZil))

Junzi Zhang (Stanford University) November 7, 2019 68 / 83

Multi-Task Logistic Regression

Rewrite problem in standard form with:

f1(Z) = φ(Z ,Y), f2(θ) = α

L∑
l=1

‖θl‖2, f3(θ̃) = β‖θ̃‖∗,

A =

[
I −W 0

0 I −I

]
, x =

 Z

θ

θ̃

 , b = 0

We evaluate proximal operator of f1 using Newton-CG method, and

the rest with closed-form formulae.

Junzi Zhang (Stanford University) November 7, 2019 69 / 83

Multi-Task Logistic: Convergence of ‖r k‖2

p = 300, s = 500, L = 10, α = β = 0.1

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Junzi Zhang (Stanford University) November 7, 2019 70 / 83

Other examples

A (very) brief summary of other examples (see the paper for more details):

l1 trend filtering.

Stratified models.

Single commodity flow optimization (match the performance of

OSQP, and largely outperform SCS).

Optimal control (largely outperform both SCS and OSQP).

Coupled quadratic program (match the performance of OSQP and

SCS).

Remark. The advantage compared to OSQP probably comes from the

inclusion of AA, while the advantage compared to SCS (which includes

type-I AA) is probably due to the more compact standard form

representation.

Junzi Zhang (Stanford University) November 7, 2019 71 / 83

Other examples

A (very) brief summary of other examples (see the paper for more details):

l1 trend filtering.

Stratified models.

Single commodity flow optimization (match the performance of

OSQP, and largely outperform SCS).

Optimal control (largely outperform both SCS and OSQP).

Coupled quadratic program (match the performance of OSQP and

SCS).

Remark. The advantage compared to OSQP probably comes from the

inclusion of AA, while the advantage compared to SCS (which includes

type-I AA) is probably due to the more compact standard form

representation.

Junzi Zhang (Stanford University) November 7, 2019 71 / 83

Summary of A2DR

A2DR is a fast, robust algorithm for solving generic (non-smooth)

convex optimization problems in the prox-affine form.

Parallelized, scalable and memory-efficient.

Consistent and fast convergence with no parameter tuning, and beat

SOTA open source solvers like SCS (2.x) and OSQP in many cases.

Produces primal and dual solutions, or a certificate of

infeasibility/unboundedness.

Python library:

https://github.com/cvxgrp/a2dr

Junzi Zhang (Stanford University) November 7, 2019 72 / 83

https://github.com/cvxgrp/a2dr

Summary of A2DR

A2DR is a fast, robust algorithm for solving generic (non-smooth)

convex optimization problems in the prox-affine form.

Parallelized, scalable and memory-efficient.

Consistent and fast convergence with no parameter tuning, and beat

SOTA open source solvers like SCS (2.x) and OSQP in many cases.

Produces primal and dual solutions, or a certificate of

infeasibility/unboundedness.

Python library:

https://github.com/cvxgrp/a2dr

Junzi Zhang (Stanford University) November 7, 2019 72 / 83

https://github.com/cvxgrp/a2dr

Summary of A2DR

A2DR is a fast, robust algorithm for solving generic (non-smooth)

convex optimization problems in the prox-affine form.

Parallelized, scalable and memory-efficient.

Consistent and fast convergence with no parameter tuning, and beat

SOTA open source solvers like SCS (2.x) and OSQP in many cases.

Produces primal and dual solutions, or a certificate of

infeasibility/unboundedness.

Python library:

https://github.com/cvxgrp/a2dr

Junzi Zhang (Stanford University) November 7, 2019 72 / 83

https://github.com/cvxgrp/a2dr

Summary of A2DR

A2DR is a fast, robust algorithm for solving generic (non-smooth)

convex optimization problems in the prox-affine form.

Parallelized, scalable and memory-efficient.

Consistent and fast convergence with no parameter tuning, and beat

SOTA open source solvers like SCS (2.x) and OSQP in many cases.

Produces primal and dual solutions, or a certificate of

infeasibility/unboundedness.

Python library:

https://github.com/cvxgrp/a2dr

Junzi Zhang (Stanford University) November 7, 2019 72 / 83

https://github.com/cvxgrp/a2dr

Summary of A2DR

A2DR is a fast, robust algorithm for solving generic (non-smooth)

convex optimization problems in the prox-affine form.

Parallelized, scalable and memory-efficient.

Consistent and fast convergence with no parameter tuning, and beat

SOTA open source solvers like SCS (2.x) and OSQP in many cases.

Produces primal and dual solutions, or a certificate of

infeasibility/unboundedness.

Python library:

https://github.com/cvxgrp/a2dr

Junzi Zhang (Stanford University) November 7, 2019 72 / 83

https://github.com/cvxgrp/a2dr

Future Work on A2DR

More work on feasibility detection.

Expand library of proximal operators (non-convex proximal).

User-friendly interface with CVXPY (with the help of Epsilon).

GPU parallelization and cloud computing,

Junzi Zhang (Stanford University) November 7, 2019 73 / 83

1 Motivation and Problem Statement

2 Acceleration: connecting quasi-Newton with extrapolation

Good news and bad news

3 A generic stabilization scheme

Stabilization of AA-I

Stabilization of AA-II

Global convergence: solvable settings

A browse through effect of stabilization

4 Applications

Conic optimization + SCS 2.x

Prox-affine optimization + A2DR

5 Beyond convexity

Junzi Zhang (Stanford University) November 7, 2019 74 / 83

Beyond non-expansiveness (convexity)

Our stabilization technique can actually be extended to generic
non-convex optimization settings.

Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.
Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.

Junzi Zhang (Stanford University) November 7, 2019 75 / 83

Beyond non-expansiveness (convexity)

Our stabilization technique can actually be extended to generic
non-convex optimization settings.

Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.

Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.

Junzi Zhang (Stanford University) November 7, 2019 75 / 83

Beyond non-expansiveness (convexity)

Our stabilization technique can actually be extended to generic
non-convex optimization settings.

Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.
Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.

Junzi Zhang (Stanford University) November 7, 2019 75 / 83

Safe-guards in non-convex optimization

Figure: MLE of MHPs: exponential hawkes. No safe-guards. Left: log-regret v.s.
time (seconds). Right: objective v.s. time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 76 / 83

Safe-guards in non-convex optimization

Figure: MLE of MHPs: synthetic exponential hawkes. With safe-guards. Left:
log-regret v.s. time (seconds). Right: objective v.s. time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 77 / 83

Safe-guards in non-convex optimization

Figure: MLE of MHPs: synthetic power law hawkes. With safe-guards. Left:
log-regret v.s. iterations Right: log-regret v.s. time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 78 / 83

Safe-guards in non-convex optimization

Figure: MLE of MHPs: memetracker dataset + exponential hawkes. With
safe-guards. Left: log-regret v.s. iterations Right: log-regret v.s. time (seconds).

Junzi Zhang (Stanford University) November 7, 2019 79 / 83

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.
Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

Junzi Zhang (Stanford University) November 7, 2019 80 / 83

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.

Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

Junzi Zhang (Stanford University) November 7, 2019 80 / 83

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.
Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

Junzi Zhang (Stanford University) November 7, 2019 80 / 83

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.
Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

Junzi Zhang (Stanford University) November 7, 2019 80 / 83

Future work

Can we extract some general design rules of safe-guards formally?

Find a balance between practical efficiency and theoretical guarantee.
Failure example: apply AA-II to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

More examples for applying AA-I:

Nesterov’s accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

Adaptive choices/line-search of the hyper-parameters in our stabilized

AA-I.

Junzi Zhang (Stanford University) November 7, 2019 80 / 83

References

Zhang, J., O’Donoghue, B, and Boyd, S. P. (2018).

Globally Convergent Type-I Anderson Acceleration for Non-Smooth

Fixed-Point Iterations.

arXiv preprint arXiv:1808.03971.

Fu, A.*, Zhang, J.* and Boyd, S. P. (2019). (*equal contribution)

Anderson Accelerated Douglas-Rachford Splitting.

arXiv preprint arXiv:1908.11482.

X. Guo, A. Hu, R. Xu, and Zhang, J. (2018).

Consistency and Computation of Regularized MLEs for Multivariate

Hawkes Processes.

arXiv preprint arXiv:1810.02955.

Junzi Zhang (Stanford University) November 7, 2019 81 / 83

Acknowledgment

Thanks to Brendan O’Donoghue for his advice on pre-conditioning
and his inspirational ideas of developing solvers with Anderson
acceleration, pioneered by SCS 2.x:

Zhang, J., O’Donoghue, B. and Boyd, S. P. (2018).

Thanks to Anqi Fu for the input to the A2DR part of the slides.

Junzi Zhang (Stanford University) November 7, 2019 82 / 83

Thanks for listening!
Any questions?

Junzi Zhang (Stanford University) November 7, 2019 83 / 83

	Motivation and Problem Statement
	Acceleration: connecting quasi-Newton with extrapolation
	Good news and bad news

	A generic stabilization scheme
	Stabilization of AA-I
	Stabilization of AA-II
	Global convergence: solvable settings
	A browse through effect of stabilization

	Applications
	Conic optimization + SCS 2.x
	Prox-affine optimization + A2DR

	Beyond convexity

