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Fixed-point problems

e We consider solving a fixed-point (FP) problem v = F(v), where
F :R"™ — R" is potentially non-smooth.

Yv|l# = V'vT Hv for some PD matrix H
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Fixed-point problems

e We consider solving a fixed-point (FP) problem v = F(v), where
F :R"™ — R" is potentially non-smooth.

e Assumption: F is non-expansive in l (or H-norm?), i.e.,
|F(v) — F(w)|]2 < ||v — wl|2 for any v, w € R"

or contractive in an arbitrary norm || - ||.

@ Simplest solution: averaged iteration, a.k.a. Krasnosel'ski--Mann
(KM) iteration

vitl = FL(vF) = (1 — a)vk + aF(vF), a € (0,1).

@ Convergence is robust, but sublinear in theory and slow in practice:
can we (safely) do better?

Yv|l# = V'vT Hv for some PD matrix H
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Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:
@ (Any) convex optimization with no strong convexity
e minimizeyec f(x), C is convex, f is convex and L-strongly smooth.
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Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ (Any) convex optimization with no strong convexity
minimize,cc f(x), C is convex, f is convex and L-strongly smooth.
Projected gradient descent: x*™1 =T¢ (xk — V£ (x¥)).
Optimality < x = F(x), F(x) := MN¢ (x — 1 V£(x)).
Projection is non-differentiable and non-expansive, but non-contractive
without strong convexity.
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Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:
o Discounted Markov decision processes (MDP)
o Value iteration: vkl = Tvk where T is the Bellman operator:

s
— /
(Tv)s = Max R(s,a) +~ E . P(s,a,s")vs.

e Optimality & v = Tv.
o Contractive in Iy, but still non-differentiable due to max.
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Why non-smooth non-expansive fixed-point problems?

Many (potentially complicated) algorithms in optimization and beyond can
be reformulated as “black-box” fixed-point problems.
Examples:

@ Nash equilibrium in a multiplayer game < monotone inclusion
problem < non-smooth non-expansive fixed-point problem.
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© Acceleration: connecting quasi-Newton with extrapolation
@ Good news and bad news
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Acceleration by extrapolation

Algorithm 1 Extrapolation framework

Input: initial point xg, fixed-point mapping F : R"” — R".
for k=0,1,... do
Choose my (e.g., mx = min{m, k} for some integer m > 0).
Select weights ak based on the last my iterations, with Z -0 J =1

vk+1 _ijko ij( vk— mk+J)_

Such a framework subsumes many different algorithms, among which one
of the most natural and popular method is Anderson acceleration (1965):

minimize || Y27 o G(vA"™H)||3 subject to YT oy = 1,
where G(v) := v — F(v) is the residual.
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Literature comments

@ Also known as Type-Il Anderson acceleration (AA-Il),
Anderson /Pulay mixing, Pulay's direct inversion iterative subspace
(DI1S), nonlinear GMRES, minimal polynomial extrapolation (MPE),
reduced rank extrapolation (RRE), etc.
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Literature comments

@ Also known as Type-ll Anderson acceleration (AA-Il),
Anderson /Pulay mixing, Pulay's direct inversion iterative subspace
(DI1S), nonlinear GMRES, minimal polynomial extrapolation (MPE),
reduced rank extrapolation (RRE), etc.
o Widely used in computational quantum chemistry and material
sciences, and recently introduced to optimization applications
o MLE, matrix completion, K-means, computer vision and deep learning.
e Equivalent to multi-secant quasi-Newton methods (see below) —

development separated from the main-stream, connection established
very recently in Fang and Saad 2009.

o Extrapolation: good for intuition.
o Quasi-Newton: good for derivations.
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From extrapolation to quasi-Newton

@ Recall the selection of aJ’-‘ in AA-1l (constrained least-squares):
e my i k— +7\112 H my JR—
minimize || >0 oy G(vF ™ )||5 subject to Y oy =1,

o Reformulation: minimize ||g% — Y72
o variable v = (70, -+ -, Yme—1)-
o g =G(V), Ye=[yFm™ ... y* " with y' = g1 — g/ for each i.
o ag=", =7 —7i—1forL<i<my—1and am =1—"vym 1.
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From extrapolation to quasi-Newton

@ Recall the selection of aJ’-‘ in AA-1l (constrained least-squares):

minimize || J'-":"OaJ-G(vk_’"kH)H% subject to 3° T a; =1,
o Reformulation: minimize ||g% — Y72

o variable v = (70, -+ -, Yme—1)-
o g =G(V), Ye=[yFm™ ... y* " with y' = g1 — g/ for each i.
o ag="0, @j =7 —vi—1for 1<i<mg—1and am =1—ym 1.
o vkl = Z}":ko aJ’-‘F(vk_mkH) = vk — Hegk,
o Hy:=1+ (Sk — Yk)(YkTYk)_IYkT
o S, =[s""m ... s*" with s’ = v/T* — v/ for each i.

o Hy = argmingy, s ||H —I||F: approximate inverse Jacobian of G.
o multi-secant type-ll Broyden's (quasi-Newton) method.
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Type-1 Anderson acceleration

@ Why not consider the type-l counterpart?
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Type-1 Anderson acceleration

@ Why not consider the type-l counterpart?

o Instead of inverse Jacobian (which itself may not exist), consider
By := argmings, _y, ||Bx — I||F: approximate Jacobian of G.
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Type-1 Anderson acceleration

e Why not consider the type-l (good) counterpart?

o Instead of inverse Jacobian (which itself may not exist), consider
By := argmings, _y, ||Bx — I||F: approximate Jacobian of G.

o vkl = vk — B gy with Byt =1+ (Sk — Yi)(S! i) 1S/

Algorithm 2 Type-l Anderson Acceleration (AA-I)

1: for k=0,1,... do

Choose my < m (e.g., mx = min{m, k} for some integer m > 0).
Compute 7% = (5] Yi)~1(S] g").

af =58, of =5F =K, (1<i<me—1)and af, =1—-5K ;.

vkl — EJ’_":kO ajl_(F(Vk_mk"l‘j)_
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Takeaway information:
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Good news and bad news

Takeaway information:
o Extrapolation & quasi-Newton method accelerating FP iterations.
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Multi-secant quasi-Newton method (Fang & Saad, 2009).
Type-l AA: approximate the Jacobian of the FP mapping

Type-ll AA: approximate the inverse Jacobian of the FP mapping

Good news:

@ Compared to LBFGS and restarted Broyden:

o AA is memory efficient (AA-l with m =5 — 10 beats LBFGS /restarted
Broyden with m = 200 — 500)
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Good news and bad news

Takeaway information:
o Extrapolation & quasi-Newton method accelerating FP iterations.
o Extrapolation (Anderson, 1965)
o Multi-secant quasi-Newton method (Fang & Saad, 2009).

o Type-l AA: approximate the Jacobian of the FP mapping
o Type-ll AA: approximate the inverse Jacobian of the FP mapping

Good news:

@ Compared to LBFGS and restarted Broyden:
o AA is memory efficient (AA-l with m =5 — 10 beats LBFGS /restarted
Broyden with m = 200 — 500)

o AA is line-search free: just accept or reject is the best practice
o AA is suitable to be used in a completely black-box way

o PGD: don't separate the gradient step and projection
o ADMM: don't separate the primal and dual steps
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Good news and bad news

Good news:

Problems solved (%)
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Figure: Sparse PCA: DM profiles of run time. Left: AA-Il v.s. restarted Broyden,
both in SuperSCS. Right: AA-l (SCS 2.x) v.s. AA-Il (SuperSCS).
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Good news and bad news

Bad news:

@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-| is more severe.
o AA-II: Y, Yk (close to) singular (degenerate least-squares system).
o AA-I: Bk can be (close to) singular.
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Good news and bad news

Bad news:

@ Numerical challenge: both AA-I and AA-II are subject to potential
numerical instability, and AA-| is more severe.

o AA-II: Y, Yk (close to) singular (degenerate least-squares system).
o AA-I: Bk can be (close to) singular.
@ Theoretical challenge: local convergence theory exists with further
smoothness assumptions, but no global convergence.
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Good news and bad news

Bad news: Numerical challenge

@ Both AA-I and AA-II are subject to potential numerical instability,
and AA-Il is more severe.

res v.s. time, res0=4.60e-05
time ratio: aa = 9.10e-01, aal-safe = 2.81e+00

—aa2
—aal
—original

Tlag) — flz")

w x

10 0 2 4 6 8 10
5 10 15 . x10°
time (seconds) Gradient oracle calls

Figure: Divergence of AA + gradient descent on /¢, regularized logistic
regression without stabilization. Left: Failure of AA-l. Right: Failure of
AA-Il (Regularized Nonlinear Acceleration, Scieur et al., 2016).
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Good news and bad news

Bad news: Theoretical challenge

@ Type-ll AA can even provably diverge when applied to the gradient
descent on a one-dimensional smooth unconstrained optimization
problem (Mai & Johansson, 2019).
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regularization to the objective leads to local convergence
improvement.
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Good news and bad news

Bad news: Theoretical challenge

@ Type-ll AA can even provably diverge when applied to the gradient
descent on a one-dimensional smooth unconstrained optimization
problem (Mai & Johansson, 2019).

o (Scieur et al., 2016) showed that adding constant quadratic
regularization to the objective leads to local convergence
improvement.

o Insufficient for global convergence both in theory and practice.

@ In general, most of the literature has been focused on AA-II:

o AA-l is generally missing both in theory and practice.
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Goal and contribution

e Stabilize AA with convergence beyond differentiability, locality and
non-singularity
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Goal and contribution

e Stabilize AA with convergence beyond differentiability, locality and
non-singularity
o The FP mapping of SCS is non-smooth and singular.
o Surprise: stabilization also improves convergence consistently over
both the original AA-I and AA-II.

@ Develop a “plug-and-play” acceleration scheme based on the
stabilized AA

e View an arbitrary unaccelerated algorithm as a black-box fixed-point
iteration problem.

o For example, concatenate successive iterates in momentum algorithms.
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© A generic stabilization scheme
@ Stabilization of AA-I
@ Stabilization of AA-II
@ Global convergence: solvable settings
@ A browse through effect of stabilization
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A generic stabilization scheme

e Main idea: modified o (Hy/By) choice and a very relaxed safeguard.
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A generic stabilization scheme

e Main idea: modified o (Hy/By) choice and a very relaxed safeguard.

o lterates for k =1,2,..., (D, € > 0, M positive integer)

1. Compute vidt = F,(vF), g5 =vF— vt

2. Update Y\ and Sy to include the new information
& Compute a modified o (Hy/Bx)

M
3. Compute v/i‘:{l = ozjkvép M+
j=0
4. If the residual ||G(v¥)|2 < D||g%2/nske: (safeguard)
Adopt vF+ = VKX’ fori=1,..., M.

(nAA # of adopted AA candidates)

5. Otherwise, take v<t1 = v,f,;H.
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Motivations of the stabilization tricks

e Goal of modified a*: boundedness of Hy and B.
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e Goal of modified a*: boundedness of Hy and B.
@ Goal of safe-guard: avoid "wild" and "bad” extrapolation.
e Main idea: interleave AA steps with the vanilla KM iteration steps to
safe-guard the decrease in residual norms G.
o Check if the current residual norm is sufficiently small, and replace it
with Fo(x) = (1 — a)x + aF(x) whenever not, a € (0,1). If F is
averaged, just choose a = 1.
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Motivations of the stabilization tricks

e Goal of modified a*: boundedness of Hy and B.
@ Goal of safe-guard: avoid "wild" and "bad” extrapolation.

e Main idea: interleave AA steps with the vanilla KM iteration steps to
safe-guard the decrease in residual norms G.

o Check if the current residual norm is sufficiently small, and replace it
with Fo(x) = (1 — a)x + aF(x) whenever not, a € (0,1). If F is
averaged, just choose a = 1.

o Can be seen as a much cheaper alternative to the expensive line-search.
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@ Motivation and Problem Statement

© Acceleration: connecting quasi-Newton with extrapolation

9 A generic stabilization scheme
@ Stabilization of AA-I

e Applications

© Beyond convexity
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Stabilization of AA-I: rank-one update

AA-| <= Type-l Broyden’s rank-one update with orthogonalization:

Proposition

Suppose that Sy is full rank, then By can be computed inductively from
BE = | as follows:

(yk—mk—H _ B;;sk—mk—i—i)(gk—mk—i—i)T

i+l _ pi 7 _
B, =B+ ()T skt , 1=0,....m.—1

with By = BJ'*. Here {5} is the Gram-Schmidt orthogonalization

(sj)Ts'AJ- .
of{s P k mk,le =5 —Z =k— mk(SJ)TSJ , i=k—mg, ..., k—1

lkmk

v
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Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By).
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o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)
minimizesm 1 || 7% @ G(vE ™) + A3

Help in extreme cases, but impede the convergence in general.
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Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By).

o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)
minimizesm 1 || 7% @ G(vE ™) + A3

Help in extreme cases, but impede the convergence in general.
@ AA-I: Powell-type trick (turns out very helpful also in practice!)
o Replace yk=mti with ghk=meti = @i yk=miti 4 (1 — g7 ) Bl sk=meti,

. . . . ak—m +iT iy—1 k—my+i
where 01 = ¢5(ni), with ni, = = - ||§k(i3,f,2+,-”y% —,
1 if |n] > @
o5(n) =9 1- 9 _
9 sl if ) < g

Junzi Zhang (Stanford University) November 7, 2019

24 / 83



Stabilization of AA-I: 1. Powell-type regularization

Goal of regularization: avoid close to singularity (“lower bound” on By).

o AA-Il: add ridge penalty (regularized nonlinear acceleration, 2016)
minimizesm 1 || 7% @ G(vE ™) + A3

Help in extreme cases, but impede the convergence in general.
@ AA-I: Powell-type trick (turns out very helpful also in practice!)
o Replace yk=mti with ghk=meti = @i yk=miti 4 (1 — g7 ) Bl sk=meti,

. . . . ak—m +iT iy—1 k—my+i
where 01 = ¢5(ni), with ni, = = - ||§k(i3,f,2+,-”y% —,
1 if |n] > @
o5(n) =9 1- 9 _
9 sl if ) < g

o |det(By)| > 0™ >0, and in particular, By is invertible!
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Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).
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Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).
o (8k=miti)T gh=mti — || gk=m+i||12 appears in the denominators: but
sk=mti hecomes 0 when my > n due to orthogonalization.

@ Solution: update m = my_1+1. f me=m+1or
185712 < 7||s¥71||2, then reset my = 1.
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Stabilization of AA-I: 2. Re-start checking

Goal of re-start: avoid blow-up (“upper bound” on By).
o (8k=miti)T gh=mti — || gk=m+i||12 appears in the denominators: but
sk=mti hecomes 0 when my > n due to orthogonalization.
@ Solution: update m = my_1+1. f me=m+1or
185712 < 7||s¥71||2, then reset my = 1.
o Then ||Bkll2 <3(1+6+7)"/7m — 2!

= m n—1
140 _
o (Re)define Hy := B, ': ||Hkll2 < (3 (;) - 2) /0™
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@ Motivation and Problem Statement

© Acceleration: connecting quasi-Newton with extrapolation

9 A generic stabilization scheme

@ Stabilization of AA-II

e Applications

© Beyond convexity
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Stabilization of AA-Il: Adaptive Regularization

Our approach:

o Add adaptive regularization to the unconstrained formulation.
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Stabilization of AA-Il: Adaptive Regularization

Our approach:
o Add adaptive regularization to the unconstrained formulation.

o Change variables to v € RM (unconstrained LS):
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Stabilization of AA-Il: Adaptive Regularization

Our approach:
o Add adaptive regularization to the unconstrained formulation.

o Change variables to v € RM (unconstrained LS):

0416276(7 all'(:fyrk_%!:17 (i:17"'7M_1)7 alli/lzl_’}'k/l—l

e Adaptive quadratic regularization: (adaptive LS)
minimize [|lg% — Yiey¥[13 + n (IISkllE + 1YillE) [1v¥13,
where n > 0 is a regularization parameter and

gk — G(Vk), yk — gk+1 o gk7 Yk — [yk—M o yk—l]

k k+1 k Sk _ [Ska o Skfl]
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Stabilization of AA-Il: Adaptive Regularization

Our approach:
e Adaptive quadratic regularization: (adaptive LS)

minimize [|g" — Yiey¥[13 +n (I Sllz + 11 ilE) [1v¥13,

Lemma (Bounded approximate inverse Jacobian)

We have viit = vk — Hygk, where gk = G(v¥) is the FP residual at v,
and ||Hk|l2 < 1+ 2/n, where n > 0 is the regularization parameter in the
adaptive LS subproblem.
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@ Motivation and Problem Statement

© Acceleration: connecting quasi-Newton with extrapolation

9 A generic stabilization scheme

@ Global convergence: solvable settings

e Applications

© Beyond convexity
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Global convergence

Theorem

Suppose that f has a fixed-point. Also suppose that f is non-expansive
in h-norm or contractive in an arbitrary norm. Assume that {x* heo Is
generated by the generic stabilization scheme wth o (Hy /By ) chosen by
either the stabilized AA-I or AA-II . Then we have

lim xk = x*

)
k—00

where x* = f(x*) is some fixed-point of f.
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k—o00

where x* = f(x*) is some fixed-point of f.

Key: bounds on Hy and By ensure that the deviation is not too much
from the safe-guarding paths.
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Global convergence

Theorem

Suppose that f has a fixed-point. Also suppose that f is non-expansive
in h-norm or contractive in an arbitrary norm. Assume that {x* heo Is
generated by the generic stabilization scheme wth o (Hy /By ) chosen by
either the stabilized AA-I or AA-II . Then we have

lim xk = x*,
k—o00

where x* = f(x*) is some fixed-point of f.

Key: bounds on Hy and By ensure that the deviation is not too much
from the safe-guarding paths.

What if f does not have a fixed-point? Pathological settings to be
discussed later.
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@ Motivation and Problem Statement

© Acceleration: connecting quasi-Newton with extrapolation

© A generic stabilization scheme

@ A browse through effect of stabilization

e Applications

© Beyond convexity
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Effect of stabilization: AA-Il + constant regularization

Slze) — fla®)

—#— (radient

== Nesterov
=0 RNA 5
B Acc. 5

2

Gradient oracle calls

Figure: Effect of constant regularization (RNA, Scieur et al., 2016): ¢, regularized

logistic regression.
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Effect of stabilization: AA-Il + adaptive regularization

—— Residuals (no-reg)
10" 1 ——— Residuals (constant-reg)
—— Residuals (ada-reg)
10—1 4
10—3 4
10—5 4
1077 T

0 2(')0 4(')0 6(')0 800 1000

Figure: Further improvement of adaptive regularization (A2DR, FZB 2019):
Nonnegative least squares.
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Effect of stabilization: AA-I

Gradient Descent: stabilization from divergence to convergence

res v.s. iter, res0=4.60e-05 res v.s. time, res0=4.60e—-05
time ratio: aa = 8.75e-01, aal-safe = 1.11e+00
4 —aal
10 ——aal-safe 10° —aal
—original —— aal-safe
—original

llg(@*)ll2/ g () |2
lg(@®)ll2/1lg ()2

0 1000 2000 3000 4000 5000 0 5 10
iteration number time (seconds)

Figure: Gradient descent: regularized logistic regression. Left: residual norm
versus iteration. Right: residual norm versus time (seconds).
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Effect of stabilization: AA-I

ISTA: elastic net regression — nonsmoothness coming from shrinkage

res v.s. iter, res0=8.03e+00 res v.s. time, res0=8.03e+00
10" time ratio: aa = 1.45e+00, aal-safe = 1.01e+00
—aal 10"
——aal-safe —aal
107 —original —— aal-safe|
10 —original
=10 B
= =10°
= =
= =
.5 =
s10 %107
= ~
= =
107 1 107
1079 L L L L 1079 L L
0 500 1000 1500 2000 2500 0 20 40 80
iteration number time (seconds)

Figure: Iterative Shrinkage-Thresholding Algorithm: elastic-net linear regression.
Left: residual norm versus iteration. Right: residual norm versus time (seconds).
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Effect of stabilization: AA-I

MDP (value iteration) (discount factor v = 0.99):

res v.s. iter, res0=1.61e+01 res v.s. time, res0=1.61e+01
time ratio: aa = 9.84e-01, aal-safe = 1.03e+00

—aal 10

——aal-safe —aal
\ ——original ——aal-safe
10° ] \r —original

©

= =10
S &

= K]
510 =,
= =10
Z =

= B

s kX

= 5

=
o
=
e
L

-6 -6
10 0 10 20 30 40 50 10 0

2 4
iteration number time (seconds)

Figure: Value iteration: MDP. Left: residual norm versus iteration. Right:
residual norm versus time (seconds).
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Effect of stabilization: AA-I

Effect of different memories m:

res v.s. iter, res0=1.61e+01

— original
== aal,m=2
— aal-safe, m=2
= = aal,m=5
——— aal-safe, m=5

—— aal-safe, m=10
aal,m=20
aal-safe, m=20

- = aal,m=50

aal-safe, m=50

0 10

20 30 40 50 60
iteration number

res v.s. time, res0=1.61e+01

—— original
- - aalm=2
—— aal-safe, m=2

—— aal-safe, m=10
aal,m=20
aal-safe, m=20

- - aal,m=50

—— aal-safe, m=50

6
time (seconds)

Figure: Value iteration: memory effect. Left: residual norm versus iteration.
Right: residual norm versus time (seconds).
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e Applications
@ Conic optimization + SCS 2.x
@ Prox-affine optimization + A2DR
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@ Motivation and Problem Statement

© Acceleration: connecting quasi-Newton with extrapolation

9 A generic stabilization scheme

e Applications
@ Conic optimization + SCS 2.x

© Beyond convexity
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SCS as FP

@ Problem: minimize, ¢’ x, subject to Ax +s=b, s € K.
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SCS as FP

@ Problem: minimize, ¢’ x, subject to Ax +s=b, s € K.
o Algorithm — SCS (C =R" x £* x R,):
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SCS as FP

@ Problem: minimize, ¢’ x, subject to Ax +s=b, s € K.
o Algorithm — SCS (C =R" x £* x R,):

ﬁk—l-l — (/ + Q)—l(uk + Vk)
uk+1 — nc(ﬁk+1 _ vk)

N NN T S

e FP (don't apply AA to u and v separately):

_ [ Ne((T+ Q) Hutv) —v)
Flo) =1 204 @ Yt v) +

@ F is non-expansive (in ¢2), and 0 is always a fixed-point, and so the
global convergence theorem goes through.
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Implementation details

o We apply the stabilized AA-I to SCS.

o Hyper-parameters choice: § = 0.01, 7 = 0.001, D = 10°,
¢ = 107° memory m = 5, averaging weight a = 0.1.
o Matrix-free updates: instead of computing and storing H,, we store

T & .
Hk—jsk_J

_'N — T 717  ~ f / = 1 o« .. ,
Hy—jyk—j and T ) or j , ..., Mg, compute

my HIZ— '§kfj T
dk =gk + Y (sk—j — (Hk—jiu—j)) | =—2——| &«
,z:; ! T 8 (Hieiig)

and then update %K1 = xk — dj.

@ Problem scaling is helpful when matrices are involved.
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Success of AA-Il: SuperSCS

@ Compared to restarted Broyden:

100 T T 100

75 / /.

— SCE .
— BuperSCS, RB, mem = 50

. SuperSCS, KB, mem = 100
2 —— SuperSCS, AA, mem = 5
e BuperSCS, AA, mem = 10
I

1 2 a 10 20 al 1 2 i
Performance ratio Performance ratio

v

— 505 -
s BuperSCS, RB, mem = 50
SuperSCS, BB, mem = 100
— BuperSCE, AA, mem = 5
| = BuperSCS, AA, mem = 10

Problems solved (%)
Problems solved (%)

Figure: DM profile. left: sparse PCA; right: sparse logistic regression.
SuperSCS: fast and accurate large-scale conic optimization. Sopasakis, et
al., 2019.
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Further success of AA-I: SCS 2.x

o Compared to AA-II:

run time ratio

— SC5vZ: AAL
SuperSCS: AA-

0 10*
Performance Ratio

Figure: Sparse PCA. Left: histogram of run time ratio between SuperSCS
(AA-11) and SCS 2.x (AA-I). Right: DM profile of run time.

o Still fail for 35% of the test cases.
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Even further success with stabilized AA-I

SCS: LP — nonsmoothness coming from projections
@ Implementation in progress in the next version of SCS.

res v.s. iter, res0=8.62e-01 res v.s. time, res0=8.62e—-01
10" time ratio: aa = 1.79e+00, aal-safe = 1.06e+00
—aal 10"
——aal-safe —aal
107" —original —aal-safe
10 ——original
CIP =
< 10 B -3
= =10
= =
= =
0,5 = -
210 % 10 K
= s
= =
107 107
10° 10°
0 500 1000 1500 2000 2500 3000 0 20 40 60 80
iteration number time (seconds)

Figure: SCS: linear program. Left: residual norm versus iteration. Right: residual
norm versus time (seconds).
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Even further success with stabilized AA-I

SCS: SOCP — nonsmoothness coming from projections
@ Implementation in progress in the next version of SCS.

res v.s. iter, res0=8.37e-01 res v.s. time, res0=8.37e-01
10° time ratio: aa = 1.89e+00, aal-safe = 1.05e+00
—aal 10°
——aal-safe —aal
—original — aa_l_—safe
o 10° o —— original
= =10
g =
G g
= 8
= ~
=2 >
% 10 E 1072
< o
= 8
= ~
= =
107" 107
6 -6
10 0 200 400 600 800 1000 10 0 20 40 60
iteration number time (seconds)

Figure: SCS: second-order cone program. Left: residual norm versus iteration.
Right: residual norm versus time (seconds).
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@ Motivation and Problem Statement

© Acceleration: connecting quasi-Newton with extrapolation

9 A generic stabilization scheme

e Applications
@ Prox-affine optimization + A2DR

© Beyond convexity
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a2dr: Anderson Accelerated Douglas-Rachford Splitting

@ Open-sourced Python Solver for Prox-Affine Distributed Convex
Optimization

e Combining AA-Il with DRS (Douglas-Rachford Splitting).

@ Available at https://github.com/cvxgrp/a2dr
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Prox-affine form of generic convex optimization

We consider the following prox-affine representation /formulation of a
generic convex optimization problem:

minimize E,Nzl fi(xi)
subject to Z,N:l Aix; = b.

with variable x = (x1,...,xy) € R™T MW A, € R™" b R™.
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Prox-affine form of generic convex optimization

We consider the following prox-affine representation /formulation of a
generic convex optimization problem:

minimize E,Nzl fi(xi)
subject to Z,NII Aix; = b.

with variable x = (x1,...,xy) € R™T MW A, € R™" b R™.
o fi : R" — RU {400} is closed, convex and proper (CCP).

@ Each f; can only be accessed through its proximal operator:

proxtﬁ,(v,-) = argmin,, (f,-(x,-) + %Hx,- — v,||§) .
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Prox-affine form of generic convex optimization

Why prox-affine form?

minimize Z,N:1 fi(xi)
subject to Z,N:1 Aix; = b.

o Separability: suitable for parallel and distributed implementation.
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@ Separability: suitable for parallel and distributed implementation.

o Black-box proximal: suitable for peer-to-peer optimization with
privacy requirements.

@ New interface: good substitute for the conic standard form.
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@ Separability: suitable for parallel and distributed implementation.

o Black-box proximal: suitable for peer-to-peer optimization with
privacy requirements.

@ New interface: good substitute for the conic standard form.
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Prox-affine form of generic convex optimization

Why prox-affine form?

minimize Z,N:1 fi(xi)
subject to Z,N:1 Aix; = b.

@ Separability: suitable for parallel and distributed implementation.

o Black-box proximal: suitable for peer-to-peer optimization with
privacy requirements.

@ New interface: good substitute for the conic standard form.

e Cone programs can be represented in prox-affine form by consensus
without complication (but NOT vice versa).
o With log, exp, det involved, prox-affine form is much more compact.
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a2dr: Solver interface

Interface of a2dr:

x_vals, primal, dual, num_iters, solve_time = a2dr (p_list ,Alist, b)

Try it out! Simply provide a list of proximal functions prox,(v;)
(p-list), list of A;'s (A_list), and b (b), and you are done!
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a2dr: Solver interface

Interface of a2dr:

x_vals, primal, dual, num_iters, solve_time = a2dr (p_list ,Alist, b)

Try it out! Simply provide a list of proximal functions prox,(v;)
(p-list), list of A;'s (A_list), and b (b), and you are done!

Why a2dr?
@ Hundreds of papers on distributed/parallel optimization every year
@ Few solvers/softwares are written

e Existing good ones: CoCoA(+), TMAC, etc.

o Efficient in communication cost
e But hard to extend and use for general purposes.
o Intended mostly for optimization experts.
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a2dr: Solver interface

Interface of a2dr:
x_vals, primal, dual, num_iters, solve_time = a2dr (p_list ,Alist, b)

Try it out! Simply provide a list of proximal functions prox,(v;)
(p-list), list of A;'s (A_list), and b (b), and you are done!
Why a2dr?

@ Hundreds of papers on distributed/parallel optimization every year

@ Few solvers/softwares are written
e Existing good ones: CoCoA(+), TMAC, etc.

o Efficient in communication cost
e But hard to extend and use for general purposes.
o Intended mostly for optimization experts.

Finally: CVXPY + a2dr — Expression tree complier exists: Epsilon
(Wytock et al., 2015).
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Most common approaches for prox-affine formulation (sometimes goes by
the name " distributed optimization”):

@ Alternating direction method of multipliers (ADMM).
e Douglas-Rachford splitting (DRS).

@ Augmented Lagrangian method (ALM).
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Most common approaches for prox-affine formulation (sometimes goes by
the name " distributed optimization”):

@ Alternating direction method of multipliers (ADMM).
e Douglas-Rachford splitting (DRS).
o Augmented Lagrangian method (ALM).

These are typically slow to converge — acceleration techniques:
o Adaptive penalty parameters.
@ Momentum methods.

@ Quasi-Newton or Newton-type method with line search.
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Our Method

A2DR: Stabilized AA-II applied to DRS
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Our Method

A2DR: Stabilized AA-II applied to DRS
o Why AA?
o Fast and cheap: As fast as (quasi-)Newton acceleration, but as memory
efficient as adaptive penalty and momentum, and line-search free
o Why AA-II?
o Work better with DRS + prox-affine than type-1 AA
o Better stability for general purpose solvers and distributed settings.
@ prox operators have much larger diversity than solvable cones in SCS.
o Why DRS?
o Allows for a natural NEFP representation (ADMM not), and amenable
to proximal evaluation (ALM not).
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Challenges and contribution

Major Challenge:

o Pathology: The FP of DRS does not always have a fixed-point
solution (unlike SCS).
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Challenges and contribution

Major Challenge:

o Pathology: The FP of DRS does not always have a fixed-point
solution (unlike SCS).

o Implementation: tuning-free and off-the-shelf.

Theory: First globally convergent type-Il AA variant in non-smooth and
potentially pathological settings.
Practice: An open-source Python solver a2dr based on A2DR:

https://github.com/cvxgrp/a2dr.

Junzi Zhang (Stanford University) November 7, 2019 53 /83



DRS Algorithm

@ Rewrite problem as (Zs is the indicator of set S)

fd g(x)

——
minimize Z,_ i(xi) + Zax=p(x) .
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DRS Algorithm

@ Rewrite problem as (Zs is the indicator of set S)

fd g(x)

N —
minimize Zi:l fi(xi) + Zax=b(x) .

o DRS iterates for k =1,2,...,

k+1/2 k .
X; =prox,(v©), i=1,...,N

JKHL/2 o k12 K
k+1 k+1/2
XK = Ma,_p(VETH?)

KL _ ko gkt k)2

Ms(v) is Euclidean projection of v onto S.
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Convergence of DRS

e DRS iterations can be conceived as a fixed point (FP) mapping

F is firmly non-expansive.

o v converges to a fixed point of F (if it exists).

o x¥ and xk*1/2 converge to a solution of our problem.
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Convergence of DRS

e DRS iterations can be conceived as a fixed point (FP) mapping

F is firmly non-expansive.

o v converges to a fixed point of F (if it exists).

o x¥ and xk*1/2 converge to a solution of our problem.

In practice, this convergence is often rather slow.
So we add AA-II.
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Performance/Stopping Criterion of A2DR

e Stop and output x¥T1/2 when ||r¥||2 < eto) = €abs + €rel[| |2

k k+1/2
rprim Ax / — b,

réa = T(vF = xKT2) 4 ATAK,

rk:(rk k )

prim> Fual
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Performance/Stopping Criterion of A2DR

e Stop and output x¥T1/2 when ||r¥||2 < eto) = €abs + €rel[| |2

k k+1/2
Fyim = AX* Y2 — b,
k _ 1/ k k+1/2 Ty k
Fhual = H(vVF = XKT12) 4 ATAK,
k _ (,k k
r _(rprim7rdual)‘

@ Remark:

o Just KKT conditions. Notice that (v — x¥+1/2) /t € Of (x*+1/2).
e prox, is enough, and no need for access to f or its sub-gradient.

@ Dual variable is solution to least-squares problem

AKX = argminy (|72
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Key lemma to the proof

Lemma (Connecting FP residuals with OPT residuals)

Suppose that liminfj_,« | G(v/)||]2 < € for some € > 0, then

i o 1
liminf |y fl2 < 1Allze,  liminf [l yll2 < Ze
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Convergence of A2DR

Theorem (Solvable Case)
If the problem is solvable (e.g., feasible and bounded), then

liminf ||r¥[l2 = 0

k—o0
and the AA candidates are adopted infinitely often. Furthermore, if F has
a fixed point, then

k+1/2 _

lim vk = v* and lim x x*,

k—o00 k—o00

where v* is a fixed-point of F and x* is a solution to our problem.

Remark. when the proximal operators and projections are evaluated with
errors bounded by e, then liminf, . ||r¥]|2 = O(Ve).
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Convergence of A2DR

Theorem (Pathological Case)

If the problem is pathological (strongly primal infeasible or strongly dual
infeasible), then

lim (vk = vk“) =9Jv #0.
k—o0

Furthermore, if limy_soo AxKt1/2 = b, then the problem is unbounded and
|6v||]2 = t dist(dom f* range(AT)).

Otherwise, it is infeasible and ||0v||2 > dist(dom f, {x : Ax = b}) with
equality when the dual problem is feasible.
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Implementation

Pre-conditioning (convergence greatly improved by rescaling problem):

@ Replace original A, b, f; with
A=DAE, b=Db, £(%)="f(e)

@ D and E are diagonal positive, e; > 0 corresponds to ith block
diagonal entry of E, and chosen by equilibrating A

@ Proximal operator of f: can be evaluated using proximal operator of f;

prox,z(V;) = el,Prox(eft)f,-(eiOi)
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Implementation

Pre-conditioning (convergence greatly improved by rescaling problem):
@ Replace original A, b, f; with

~

A=DAE, b=Db, £(%)="f(e)

@ D and E are diagonal positive, e; > 0 corresponds to ith block
diagonal entry of E, and chosen by equilibrating A

@ Proximal operator of f; can be evaluated using proximal operator of f;
AN 1 ~
proxtﬁ(v;) = e_,Prox(eft)f,-(eiVi)

—2/N
Choice of t (in DRS, prox.;): t = % (HN:1 ej> .
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Implementation

Pre-conditioning (convergence greatly improved by rescaling problem):
@ Replace original A, b, f; with

A=DAE, b=Db, £(%)="f(e)

@ D and E are diagonal positive, e; > 0 corresponds to ith block
diagonal entry of E, and chosen by equilibrating A

@ Proximal operator of f; can be evaluated using proximal operator of f;
AN 1 ~
proxtﬁ(v;) = e_,Prox(eft)f,-(eiVi)

—2/N
Choice of t (in DRS, prox.;): t = % (HJN:1 ej) .

Parallelization: multiprocessing package in Python.
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Nonnegative Least Squares (NNLS)

minimize  ||Fz — g||3
subjectto z>0

with respect to z € R9
@ Problem data: F € RP*9 and g € R?

@ Can be written in standard form with

A(xa) = [IFa —gl5,  f(x) =TIr (x2)
Ai=1, Ay=—I, b=0

@ We evaluate proximal operator of f; using LSQR
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NNLS: Convergence of ||r¥||,

p = 10% g = 8000, F has 0.1% nonzeros

—— Residuals (DRS)
10t 4 —— Residuals (A2DR)
107! A
1073 A
1075 A
1077

0 200 400 600 800 1000

OSQP and SCS took respectively 349 and 327 seconds, while A2DR only
took 55 seconds.
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NNLS: Effect of regularization

p =300, g = 500, F has 0.1% nonzeros

—— Residuals (no-reg)
10* —— Residuals (constant-reg)
—— Residuals (ada-reg)
10—1 4
10—3 4
10—5 4
1077 T

0 200 400 600 800 1000
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Sparse Inverse Covariance Estimation

e Samples z1,..., 2, IID from N(0,X)
@ Know covariance ¥ € Si has sparse inverse S = ¥ !

@ One way to estimate S is by solving the penalized log-likelihood
problem

minimize — logdet(S) + tr(SQ) + «||S||1,

where @ is the sample covariance, a > 0 is a parameter

o Note logdet(S) = —oco when S % 0
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Sparse Inverse Covariance Estimation

@ Problem can be written in standard form with

f1(51) = — |ogdet(51) -l-tr(le), f2(52) = Oz||52||1,
Air=1, A =-I, b=0.

@ Both proximal operators have closed-form solutions.

Junzi Zhang (Stanford University) November 7, 2019 65 / 83



Covariance Estimation: Convergence of ||r]|»

p = 1000, g = 100, S has 10% nonzeros

—— Residuals (DRS)
10* —— Residuals (A2DR)
10—1 .
10—3 .
10—5 .
10_7 T T T T T T
0 200 400 600 800 1000
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Covariance Estimation: larger examples

Ran A2DR on instances with ¢ = 1200 and g = 2000 (vectorizations on
the order of 10°) and compared its performance to SCS:
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Ran A2DR on instances with ¢ = 1200 and g = 2000 (vectorizations on
the order of 10°) and compared its performance to SCS:
@ In the former case, A2DR took 1 hour to converge to a tolerance of
10~3, while SCS took 11 hours to achieve a tolerance of 10~! and
yielded a much worse objective value.
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Covariance Estimation: larger examples

Ran A2DR on instances with ¢ = 1200 and g = 2000 (vectorizations on
the order of 10°) and compared its performance to SCS:

@ In the former case, A2DR took 1 hour to converge to a tolerance of
10~3, while SCS took 11 hours to achieve a tolerance of 10~! and
yielded a much worse objective value.

@ In the latter case, A2DR converged in 2.6 hours to a tolerance of
1073, while SCS failed immediately with an out-of-memory error.
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Multi- Task Logistic Regression

minimize  ¢(W8,Y) +a Sk 16ill2 + B/0]|«

with respect to § = [0y - --6;] € R*¥t
o Problem data: W € RP*S and Y = [y; ---y1] € RP*t
@ Regularization parameters: a > 0,5 >0

o Logistic loss function

L

$(Z,Y)=> > log(1+exp(—YiZy))

I=1 i=1
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Multi- Task Logistic Regression

@ Rewrite problem in standard form with:

L
A(Z)=d(Z,Y), HO)=a) |0l £(8) =510,
=1

A:[/ —w o]’ L

0o I - , b=0

@ N

@ We evaluate proximal operator of f; using Newton-CG method, and
the rest with closed-form formulae.

Junzi Zhang (Stanford University)
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Multi-Task Logistic: Convergence of ||r¥||

p =300, s=500, L=10,a =3 =0.1

—— Residuals (DRS)
10* —— Residuals (A2DR)
10—1 .
10—3 .
10—5 .
10_7 T T T T T T
0 200 400 600 800 1000
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Other examples

A (very) brief summary of other examples (see the paper for more details):
@ /; trend filtering.
o Stratified models.

@ Single commodity flow optimization (match the performance of
OSQP, and largely outperform SCS).

e Optimal control (largely outperform both SCS and OSQP).

e Coupled quadratic program (match the performance of OSQP and
SCS).
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Other examples

A (very) brief summary of other examples (see the paper for more details):

@ /; trend filtering.

o Stratified models.

@ Single commodity flow optimization (match the performance of
OSQP, and largely outperform SCS).

e Optimal control (largely outperform both SCS and OSQP).

e Coupled quadratic program (match the performance of OSQP and
SCS).

Remark. The advantage compared to OSQP probably comes from the
inclusion of AA, while the advantage compared to SCS (which includes
type-I AA) is probably due to the more compact standard form
representation.

Junzi Zhang (Stanford University) November 7, 2019 71/ 83



Summary of A2DR

@ A2DR is a fast, robust algorithm for solving generic (non-smooth)
convex optimization problems in the prox-affine form.
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@ A2DR is a fast, robust algorithm for solving generic (non-smooth)
convex optimization problems in the prox-affine form.

o Parallelized, scalable and memory-efficient.

o Consistent and fast convergence with no parameter tuning, and beat
SOTA open source solvers like SCS (2.x) and OSQP in many cases.

@ Produces primal and dual solutions, or a certificate of
infeasibility /unboundedness.
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Summary of A2DR

@ A2DR is a fast, robust algorithm for solving generic (non-smooth)
convex optimization problems in the prox-affine form.

o Parallelized, scalable and memory-efficient.

o Consistent and fast convergence with no parameter tuning, and beat
SOTA open source solvers like SCS (2.x) and OSQP in many cases.

@ Produces primal and dual solutions, or a certificate of
infeasibility /unboundedness.

@ Python library:
https://github.com/cvxgrp/a2dr
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Future Work on A2DR

More work on feasibility detection.

Expand library of proximal operators (non-convex proximal).
User-friendly interface with CVXPY (with the help of Epsilon).

GPU parallelization and cloud computing,
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© Beyond convexity
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Beyond non-expansiveness (convexity)

@ Our stabilization technique can actually be extended to generic
non-convex optimization settings.
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Beyond non-expansiveness (convexity)

@ Our stabilization technique can actually be extended to generic
non-convex optimization settings.
o Safe-guard becomes central here (unlike non-expansive cases), and
need to be exclusive designed for each algorithm.
o Example: We proposed Anderson accelerated iPALM [GHXZ2018]
with an exclusive safe-guard for iPALM for computing the MLEs
multivariate Hawkes processes.
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Safe-guards in non-convex optimization

log regret v.s. time (seconds): no safeguards objective v s_time (seconds): no safeguards
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Figure: MLE of MHPs: exponential hawkes. No safe-guards. Left: log-regret v.s.
time (seconds). Right: objective v.s. time (seconds).
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Safe-guards in non-convex optimization

log regret v s_ time {seconds) objective v.s. time (seconds)
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Figure: MLE of MHPs: synthetic exponential hawkes. With safe-guards. Left:
log-regret v.s. time (seconds). Right: objective v.s. time (seconds).
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Safe-guards in non-convex optimization

log regret v.s. iteration log regret v.s. time (seconds)

loa(objmax - obj}
~

log(abjmax - obj}
I

] 100 200 200 400 500 ] 100 200 200 400 500
fteration time (seconds)

Figure: MLE of MHPs: synthetic power law hawkes. With safe-guards. Left:
log-regret v.s. iterations Right: log-regret v.s. time (seconds).
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Safe-guards in non-convex optimization

o 100 200 300 400 500 0 100 200 300

400 50 600 700
iteration

time (seconds)

Figure: MLE of MHPs: memetracker dataset + exponential hawkes. With
safe-guards. Left: log-regret v.s. iterations Right: log-regret v.s. time (seconds).
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Future work

o Can we extract some general design rules of safe-guards formally?
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decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

@ More examples for applying AA-I:

o Nesterov's accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).
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o Can we extract some general design rules of safe-guards formally?

e Find a balance between practical efficiency and theoretical guarantee.

o Failure example: apply AA-Il to Nesterov, but require monotonic
decrease in the objective values, which breaks the non-monotonic
acceleration of Nesterov.

@ More examples for applying AA-I:

o Nesterov's accelerated gradient descent, Frank-Wolfe, stochastic
gradient descent and its variants (e.g., ADAM), ... (a ongoing tutorial
paper).

@ Adaptive choices/line-search of the hyper-parameters in our stabilized
AA-L.
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Thanks for listening!

Any questions?
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