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Motivation and Main Problem

e Typical POMDP algorithms are model-based or domain specific

e \What if we only have a black-box simulator for the observations (and not the
states)? Then usual MCTS-type methods (e.g. POMCP) don’t work!

e Can we have a model-free approach for POMDP? |.e., can we have a general
POMDP solver to make decision given a black-box simulator only for the
observations, which is the usual practical case?

e Or consider a simpler problem, how can we even understand an unknown

hidden Markov decision process given this its black-box simulator?
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Prior Work

® Decision Making:
o For MDP, we have model-free MDP: Q-learning, Policy Gradient, etc.
o For POMDP, we can learn with external-memory; or we can build a framework with strong prior

knowledge like in QMDP-net, so as to learn unknown underlying process from observations

e Understanding Unknown HMM:
o Recurrent Neural Network or other deep neural-network structure seems to be the only methods
that can learn from black-box hidden Markov model
o Drawback: RNN can only give conditional observation forecast at next time step! No
understanding of the hidden state or its unconditional propagation (without the

inputs/observations)

e We will focus on how to learn and interpret hidden state for an unknown HMM.
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Underlying Model Assumption

True Model Definition

Hidden states start from some prior distribution:
so ~ p(+)
Hidden states transit as in the dynamics:

St NP(' | St—l)

Observations are generated from:

or ~ o(- | s¢)
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Particle Propagation

Transit to next state:

St ~ P | Se—1,i)
Reweight particle:

W5 = p(Ot \ St,i)

Bootstrap:

Transition Network

Sti:=1Tp(z,8-14:) 2z~ N(0,1)

Reweight Network W, ;
(2

Wii = Og(Sti,01) Wy = M
Zj:l €

Boostrap resample {s;;} from {5;;,w;}
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6,5 — Fg(gt)

Estimation Network

Observation Forecast

Residual Definition

e k-step pre-fit residual: y,,_p = 0t — E [O¢|o1.4—r] = 0y — E[E[O|s¢] [01.4—&]

e post-fit residual: y; = 0oy — E[O¢fo1.¢] = 0y — E[E [O¢]s¢] [01:4]

Residual from PF Network
The K-step pre-fit residual from PF network is:

| M
Yt|t— K = Ot — M ;Fg(gt,i)

where §; ; = Ty(-, $;—1,) recursively for K times, until $;_x11,; = To(-, St— ki)
The post-fit residual from PF network is:

M
Yt|t = Ot — Z we,i Fg (St,i)

=1
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Loss Function

Related to reweight network Related to transition network
Reweight Network Transition Network
Wi = Og(5¢.4,01) Sti:=Tp(z,S5¢—1,)

TZt 1 (yt|t+2kz 0 (lc—i—l)?yt k|t— K)

Both Related to estimation network
6t — F 90 (§t)

Estimation Network
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Training Process

Back Propagate The following is how to train PF network from a simulator:

1. Generate og.r from simulator.
2. Generate s ; ~ prior, use forward propagate to get {s,;} fort =1,...,T;i=1,..., M.
3. The following steps are repeated % times in tensorflow:

(a) Random pick time index 71, ...,77 from ¢t =1,...,T.

(b) Apply one gradient descend by minimizing the following loss in tensorflow

L

K-1
Loss(0; {sr,,i}) : Z(yim Z k+1 2yﬂ—"|ﬁ )
k=0

j=1
Specifically, for each j compute independently,
i. Compute {§ij¢, W), i}fwl via forward propagate from 7; — 1 to 7;, given {S‘rj—l,i}gl from step 2

oe M
e Yryjry = 0ry = Dimy Wry i FG (57,0)

iii. Forallt=1,..., M, compute 1ndependently' Spji = Ty(-, §Tj_1’i) recursively for K times, until
8rj—K+1i = T9( Sr—K i), given {STJ K,i}ie, from step 2
iv. Forallk=0,..., K =1, yr, _pjr,—K = Or;—k — o ZZ L FS (87 —k.i)

4. goto step 1.
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Experiment 1

3.2 Experiment 1: Linear Gaussian Model
True model:
St = FSt_l +c1 + €1t
o = Hsy +co+ ey

where s;,¢1, €14 are dimension d, vectors; o4, ca, €2, are dimension d, vectors. €14 ~ N(0,Q), €2, ~ N(0, R).

And for initial state, we assume sg ~ N(c1, Q).

PF Network:
St =Ty(z, s5¢-1) = Wh[si—1, 2] + by

o1 = FQ(5;) = Wasy + by

Wi = Og(5t,01) = o(Wyo (W3[5, 0¢] + b3) + bs)
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Experiment 1 Results
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Experiment 2

3.3 Experiment 2: Classic Non-Linear Model

True model:

St—1 St—1
St = 5 —+ 25?{9%_1 + 8COS(12t) + €1,t

7
Oy = E +€27t

where s¢, €14, 0, €24 are all scalers. so =0, €14 ~ N(0, 0.12), ear ~ N(0,1)

PF Network:
5y = Ty(z, 84—1) = fully connected two layer

oy = Fg(5;) = fully connected two layer

Wi = Og(5¢, 0¢) = fully connected two layer
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Experiment 2 Results

160
—— DPFN prefit 0 —— DPFN postfit
1000 { N —— KM prefit 0 140 1 —— KM postfit
| —— DPFN prefit 1
| —— KM prefit 1
' —— DPFN prefit 2 1207
800 - | pr
[ —— KM prefit 2
i 100 A
—— DPFN prefit 3
—— KM prefit 3
600 - premit 2 80 -
DPFN prefit 4
—— KM prefit 4
60
400 A
40
200 - 20 1
=
0 .
0 50 100 150 200 0 50 100 150 200

Stanford AA229/CS239, Winter 2018




Discussion of results

e Our preliminary results show the training works.
e Delicate tuning of hyper-parameters is needed to increase training accuracies.
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Future Work

1. Replace current transition/reweight network to posterior sampling to increase
particle efficiencies

2. Test on more complex models

3. Include (historical) actions in the trajectories, and add QMDP-module on

learned hidden states to have a general model-free POMDP methods
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