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Motivation and Main Problem

● Typical POMDP algorithms are model-based or domain specific

● What if we only have a black-box simulator for the observations (and not the

states)? Then usual MCTS-type methods (e.g. POMCP) don’t work!

● Can we have a model-free approach for POMDP? I.e., can we have a general

POMDP solver to make decision given a black-box simulator only for the

observations, which is the usual practical case?

● Or consider a simpler problem, how can we even understand an unknown

hidden Markov decision process given this its black-box simulator?
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Prior Work

● Decision Making:
○ For MDP, we have model-free MDP: Q-learning, Policy Gradient, etc.

○ For POMDP, we can learn with external-memory; or we can build a framework with strong prior

knowledge like in QMDP-net, so as to learn unknown underlying process from observations

● Understanding Unknown HMM:
○ Recurrent Neural Network or other deep neural-network structure seems to be the only methods

that can learn from black-box hidden Markov model

○ Drawback: RNN can only give conditional observation forecast at next time step! No

understanding of the hidden state or its unconditional propagation (without the

inputs/observations)

● We will focus on how to learn and interpret hidden state for an unknown HMM.
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Underlying Model Assumption
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Particle Propagation

Transit to next state:

Reweight particle:

Bootstrap:
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Observation Forecast
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Loss Function
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Related to reweight network Related to transition network

Both Related to estimation network
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Training Process
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Experiment 1
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Experiment 1 Results

10



Stanford AA229/CS239, Winter 2018

Experiment 2
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Experiment 2 Results
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Discussion of results

● Our preliminary results show the training works.
● Delicate tuning of hyper-parameters is needed to increase training accuracies.
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Future Work

1. Replace current transition/reweight network to posterior sampling to increase

particle efficiencies

2. Test on more complex models

3. Include (historical) actions in the trajectories, and add QMDP-module on

learned hidden states to have a general model-free POMDP methods
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Closely Related Papers 
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