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Main Contribution

e Extend Information-Directed Sampling (IDS) to solving general re-
inforcement learning problems

e Propose practical algorithms to efficiently compute the solution in
both model-based and model-free manners

e Provide insight into the regret bound and caveat of the methods

Introduction

Information-directed sampling (IDS) was proposed in [2] to address
some shortcomings of Thompson sampling (TS) and UCB algorithm
in multi-armed bandit problems, including indirect, camulating, or
irrelevant information. It balances current expected reward and the
reduction in uncertainty about the optimal action. In particular, the
randomized action 7Tt[ D5 at time ¢ is chosen so that
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where D(.A) is the space of all distributions over action space A, A¢(a)
is the expected instantaneous regret and g¢(a) is the information gain
by taking action a.

IDS Properties

e order-optimal regret bound under full information (1/(1/2) log |A|T)
and linear bandit feedback (+/(1/2) log(|.A])dT)

e drastic improvement over TS and UCB in some specific problems

e A+ and ¢; pose great challenge for computation - analytic formula
only exist for a very restricted class of problems

Challenges in Reinforcement Learning More than 1 state, i.e. un-
der MDP M = (S5, A, R, P, p), |S| > 1 and transition probabilities P
and reward distribution /R are unknown.

Methods and Algorithms

We have the following conceptual correspondence between bandit and
reinforcement learning problems.

Bandit Learning Reinforcement Learning

time ¢ episode h

action a policy 1

reward Ry,  total reward Rj, |, = 27;17“? s

We could use the above relation, treat the reinforcement learning prob-
lem as a bandit problem with |A] S| arms, and apply the IDS on this
derived bandit problem. However, neglecting the structure leads to

e intractable computation: |S| is usually large, let alone |A|/S|

e loose bound

E[Regret(IDSRL, H)| < /|A|ISIH (1) H/2

Model-Based: IDSRL

e Decompose RL into |S| bandit problems with mean reward Q) (s, -).

e Estimate information gain from the entire observable chain via cu-
mulative one-step information gains.

To describe the algorithm, we need some notations (h: episode).
e A\ (s,a): expected immediate regret by taking action « at state s.
o/ h.¢(s): cumulative information gain starting from state s, time .
® /s Next state from s by taking action a.

e p;,(s,a,s’): mean transition prob. from s to s’ by taking action a.

1: procedure IDSRL

2 foralls € Sdoljr(s)« 0

3: end for

4 fort <17 —1to0Odo

5 for all s € S do

6 for all « € A do

7 [h,t(sa a) < [(A;S; Zh,s,a)
8: + 23’68 ph<57 a, 8/>[h,t+1<8)
9: end for
10: ih,t(3> — MaX,e A ih,t(sa a)
11: end for
12: end for

13: Compute Ay (s,a) =E [QZ (s, A} S) — Q1 (s,a)|Hy,
14: for all s € S do

TA(s,))?
15- Solve mIPSRL < 416 min (m AN
h,s &y, (5)eD(A) WT[h,O(Sv )

16: end for
17: end procedure

Here, with |S| optimization problems each with variable dimension
| A|, we may be able to obtain poly(|.A|, |S|) regret bound. And when
the state space can be partitioned, we have the following result.

Theorem 1 (Mutual Information Decomposition). Suppose that the
MDP starts with fixed s and has finite horizon of length 'I'. If the state
space is factorized as S = {so} US| U --- U Sp_1, then we have the
following lower bound on mutual information between optimal policy
w* and the observations obtained by following policy .
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where p(t)(so, 1, s') is the t-step transition probability from s to s fol-
lowing L, ,u:'f;t is optimal policy for states in Sy, and Z(s) ~ P(Yi|s).

The theorem implies that / h.0(sp) computed in the algorithm serves
as a lower bound for the real mutual information I (u*; Y7, ..., Y7_q).
Furthermore, in this case, the computation can be simplified in a step-
wise manner and 1s illustrated by the following diagram. We call it
Stepwise IDSRL.
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Model-Free Value Function: IDSVI

e Model the posterior distribution of the parameters 6 using
{0},....00}.

e Compute information ratio based on resulting samples of ()y.

Buffer 1 —> Learner 1 :—>6ﬁ ~

Buffer 2 | —>|Learner 2] > 02

Observation 8 8 %M:CD[ Policy ]

Buffer K | —>(Learner K| »>0X
fis 3
Environment
S )

We can then use empirical mean and variance to approximate the
following values.
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Example: Deep Sea Exploration

e V x N grid. The agent starts from the top left cell, and can take
action in A = {1, 2} at each step. It will move to either the left or
right cell in the next row.

e At each cell, the association of actions with ”left” and right” 1s un-
known.

e Reward 1s 0 1n all but the right bottom cell, in which a treasure gives
you reward 1.
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Figure 1: Deep sea exploration problem [1].

Expert Agent: The agent knows about all the assumptions and has the
correct prior belief. It 1s straightforward to know

Method Expected Episodes

Optimal O(N)
Pure Exploitation oo
Dithering o(2M)
PSRL O(N)
UCRL O(N)
IDSRL O(N)

Table 1: Expected number of episodes to learn an optimal policy.

Knowledgeable Agent: The agent knows part of the assumptions: each
action leads to next row, but is agnostic of which specific cells are more

hke]y (rmher than onlv left or richt mave 1n the nrevioneg cace)
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Figure 2: Horizontal axis is the size of deep sea problem, and vertical axis is learning
time, 1.e. the earliest time that the average reward exceeds 0.5.

Observations

e In the simulation, IDSRL consistently performs better than PSRL 1n
terms of early discovery.

e Information-theoretic criteria help balance exploration and speed up
searching of the optimal policies in early stages.

e We would like to derive non-trivial regret bound for the algorithm
proposed here and at the same time trying to find more effective and
efficient algorithms.
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