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Main Contribution
• Extend Information-Directed Sampling (IDS) to solving general re-

inforcement learning problems

• Propose practical algorithms to efficiently compute the solution in
both model-based and model-free manners

• Provide insight into the regret bound and caveat of the methods

Introduction
Information-directed sampling (IDS) was proposed in [2] to address
some shortcomings of Thompson sampling (TS) and UCB algorithm
in multi-armed bandit problems, including indirect, cumulating, or
irrelevant information. It balances current expected reward and the
reduction in uncertainty about the optimal action. In particular, the
randomized action πIDSt at time t is chosen so that

πIDS
t ∈ arg min

π∈D(A)

{
Ψt(π) :=

(Ea∼π∆t(a))2

Ea∼πgt(a)

}
,

whereD(A) is the space of all distributions over action spaceA, ∆t(a)
is the expected instantaneous regret and gt(a) is the information gain
by taking action a.

IDS Properties
• order-optimal regret bound under full information (

√
(1/2) log |A|T )

and linear bandit feedback (
√

(1/2) log(|A|)dT )

• drastic improvement over TS and UCB in some specific problems

•∆t and gt pose great challenge for computation - analytic formula
only exist for a very restricted class of problems

Challenges in Reinforcement Learning More than 1 state, i.e. un-
der MDPM = (S,A,R,P , ρ), |S| > 1 and transition probabilities P
and reward distributionR are unknown.

Methods and Algorithms
We have the following conceptual correspondence between bandit and
reinforcement learning problems.

Bandit Learning Reinforcement Learning

time t episode h
action a policy µ

reward Rt,a total reward Rh,µ = Στt=1r
h,µ
t

We could use the above relation, treat the reinforcement learning prob-
lem as a bandit problem with |A||S| arms, and apply the IDS on this
derived bandit problem. However, neglecting the structure leads to

• intractable computation: |S| is usually large, let alone |A||S|

• loose bound

E[Regret(IDSRL, H)] 6
√
|A||S|H(µ∗0)H/2

Model-Based: IDSRL
•Decompose RL into |S| bandit problems with mean rewardQ∗h(s, ·).
• Estimate information gain from the entire observable chain via cu-

mulative one-step information gains.

To describe the algorithm, we need some notations (h: episode).

•∆h(s, a): expected immediate regret by taking action a at state s.

• Ĩh,t(s): cumulative information gain starting from state s, time t.

•Zh,s,a: next state from s by taking action a.

• ph(s, a, s′): mean transition prob. from s to s′ by taking action a.

1: procedure IDSRL
2: for all s ∈ S do Ĩh,T (s)← 0
3: end for
4: for t← T − 1 to 0 do
5: for all s ∈ S do
6: for all a ∈ A do
7: Ĩh,t(s, a)← I(A∗h,s;Zh,s,a)

8: +
∑
s′∈S ph(s, a, s′)Ĩh,t+1(s)

9: end for
10: Ĩh,t(s)← maxa∈A Ĩh,t(s, a)
11: end for
12: end for
13: Compute ∆h(s, a) = E

[
Q∗h

(
s, A∗h,s

)
−Q∗h(s, a)|Hh

]
14: for all s ∈ S do

15: Solve πIDSRL
h,s ∈ arg minω(s)∈D(A)

(πT∆h(s, ·))2

πT Ĩh,0(s, ·)
16: end for
17: end procedure

Here, with |S| optimization problems each with variable dimension
|A|, we may be able to obtain poly(|A|, |S|) regret bound. And when
the state space can be partitioned, we have the following result.

Theorem 1 (Mutual Information Decomposition). Suppose that the
MDP starts with fixed s0 and has finite horizon of length T . If the state
space is factorized as S = {s0} ∪ S1 ∪ · · · ∪ ST−1, then we have the
following lower bound on mutual information between optimal policy
µ∗ and the observations obtained by following policy µ.

I(µ∗;Y1, . . . , YT−1) >
T−2∑
t=0

∑
s′∈St

p(t)(s0, µ, s
′)I(µ∗St;Zt+1(s′)),

where p(t)(s0, µ, s
′) is the t-step transition probability from s0 to s′ fol-

lowing µ, µ∗St is optimal policy for states in St, and Zt(s) ∼ P(Yt|s).

The theorem implies that Ĩh,0(s0) computed in the algorithm serves
as a lower bound for the real mutual information I(µ∗;Y1, . . . , YT−1).
Furthermore, in this case, the computation can be simplified in a step-
wise manner and is illustrated by the following diagram. We call it
Stepwise IDSRL.

Model-Free Value Function: IDSVI

•Model the posterior distribution of the parameters θh using
{θ1
h, . . . , θ

K
h }.

• Compute information ratio based on resulting samples of Qθ.

We can then use empirical mean and variance to approximate the
following values.

•∆s
h(a) := E

θ̃h

[
Q̃h
θ̃h

(s, a∗)− Q̃h
θ̃h

(s, a)
]

• vsh(a) := V ar
θ̃h

(
Q̃h
θ̃h

(s, a)
)

• πIDSVI
h,s ∈ arg minω∈D(A) (πT∆s

h)2/πTvsh

Example: Deep Sea Exploration

•N × N grid. The agent starts from the top left cell, and can take
action in A = {1, 2} at each step. It will move to either the left or
right cell in the next row.

•At each cell, the association of actions with ”left” and ”right” is un-
known.

• Reward is 0 in all but the right bottom cell, in which a treasure gives
you reward 1.

Figure 1: Deep-sea exploration: a simple example where deep exploration is critical.

there is a chest. There is an additional reward of 1 (treasure) or cost of 1 (bomb) when the
“right” action is selected at that cell. Conditioned on the M, this reward is deterministic,
so once the agent discovers whether there is treasure or a bomb, she knows in subsequent
episodes whether she wants to reach or avoid that cell. In particular, given knowledge ofM,
the optimal policy is to select the “right” action in every time period if there is treasure and,
otherwise, to choose the “left” action in every time period. Doing so accumulates a reward
of 0.99 if there is treasure and 0 if there is a bomb. It is interesting to note that a policy that
randomly explores by selecting each action with equal probability is highly unlikely to reach
the chest. In particular, the probability such a policy reaches that cell in any given episode
is (1/2)N . Hence, the expected number of episodes before observing the chest’s content is
2N . Even for a moderate value of N = 50, this is over a quintillion episodes.

Let us now discuss the agent’s beliefs, or state of knowledge, about the MDP M, prior
to the first episode. The agent knows everything about M except:

• Action associations. At each state, the agent does not know which action index is
associated with “right” or ”left”, and assigns equal probability to either association.
These associations are independent across states.

• Reward. The agent does not know whether the chest contains treasure or a bomb and
assigns equal probability to each of these possibilities.

Before learning action associations and rewards, the distribution over optimal value at the
initial state is given by P(V ∗M(s0) = 0.99) = P(V ∗M(s0) = 0) = 1/2. Because the MDP is
deterministic, when an agent transitions from any state, she learns the action associations

8

Figure 1: Deep sea exploration problem [1].

Expert Agent: The agent knows about all the assumptions and has the
correct prior belief. It is straightforward to know

Method Expected Episodes

Optimal Θ(N)
Pure Exploitation ∞

Dithering Θ(2N )
PSRL Θ(N)
UCRL Θ(N)
IDSRL Θ(N)

Table 1: Expected number of episodes to learn an optimal policy.

Knowledgeable Agent: The agent knows part of the assumptions: each
action leads to next row, but is agnostic of which specific cells are more
likely (rather than only left or right move in the previous case).
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Figure 2: Horizontal axis is the size of deep sea problem, and vertical axis is learning
time, i.e. the earliest time that the average reward exceeds 0.5.

Observations
• In the simulation, IDSRL consistently performs better than PSRL in

terms of early discovery.
• Information-theoretic criteria help balance exploration and speed up

searching of the optimal policies in early stages.
•We would like to derive non-trivial regret bound for the algorithm

proposed here and at the same time trying to find more effective and
efficient algorithms.
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