

Information Directed Reinforcement Learning

Junyang Qian & Junzi Zhang

Department of Statistics, Institute for Computational & Mathematical Engineering

Main Contribution

- Extend Information-Directed Sampling (IDS) to solving general reinforcement learning problems
- Propose *practical* algorithms to efficiently compute the solution in both model-based and model-free manners
- Provide insight into the regret bound and caveat of the methods

Introduction

Information-directed sampling (IDS) was proposed in [2] to address some shortcomings of Thompson sampling (TS) and UCB algorithm in multi-armed bandit problems, including **indirect**, **cumulating**, or **irrelevant information**. It balances current expected reward and the reduction in uncertainty about the optimal action. In particular, the randomized action π_t^{IDS} at time t is chosen so that

$$\pi_t^{IDS} \in \arg \min_{\pi \in \mathcal{D}(\mathcal{A})} \left\{ \Psi_t(\pi) := \frac{(\mathbb{E}_{a \sim \pi} \Delta_t(a))^2}{\mathbb{E}_{a \sim \pi} g_t(a)} \right\},$$

where $\mathcal{D}(\mathcal{A})$ is the space of all distributions over action space \mathcal{A} , $\Delta_t(a)$ is the expected instantaneous regret and $g_t(a)$ is the information gain by taking action a .

IDS Properties

- order-optimal regret bound under full information ($\sqrt{(1/2) \log |\mathcal{A}| T}$) and linear bandit feedback ($\sqrt{(1/2) \log (|\mathcal{A}|) dT}$)
- drastic improvement over TS and UCB in some specific problems
- Δ_t and g_t pose great challenge for computation - analytic formula only exist for a very restricted class of problems

Challenges in Reinforcement Learning More than 1 state, i.e. under MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \rho)$, $|\mathcal{S}| > 1$ and transition probabilities \mathcal{P} and reward distribution \mathcal{R} are unknown.

Methods and Algorithms

We have the following conceptual correspondence between bandit and reinforcement learning problems.

Bandit Learning	Reinforcement Learning
time t	episode h
action a	policy μ
reward $R_{t,a}$	total reward $R_{h,\mu} = \sum_{t=1}^T r_t^{h,\mu}$

We could use the above relation, treat the reinforcement learning problem as a bandit problem with $|\mathcal{A}|^{|\mathcal{S}|}$ arms, and apply the IDS on this derived bandit problem. However, neglecting the structure leads to

- intractable computation: $|\mathcal{S}|$ is usually large, let alone $|\mathcal{A}|^{|\mathcal{S}|}$
- loose bound

$$\mathbb{E}[\text{Regret}(\text{IDSRL}, H)] \leq \sqrt{|\mathcal{A}|^{|\mathcal{S}|} H(\mu_0^*) H/2}$$

Model-Based: IDSRL

- Decompose RL into $|\mathcal{S}|$ bandit problems with mean reward $Q_h^*(s, \cdot)$.
- Estimate information gain from the entire observable chain via cumulative one-step information gains.

To describe the algorithm, we need some notations (h : episode).

- $\Delta_h(s, a)$: expected immediate regret by taking action a at state s .
- $\tilde{I}_{h,t}(s)$: cumulative information gain starting from state s , time t .
- $Z_{h,s,a}$: next state from s by taking action a .
- $p_h(s, a, s')$: mean transition prob. from s to s' by taking action a .

```

1: procedure IDSRL
2:   for all  $s \in \mathcal{S}$  do  $\tilde{I}_{h,T}(s) \leftarrow 0$ 
3:   end for
4:   for  $t \leftarrow T-1$  to 0 do
5:     for all  $s \in \mathcal{S}$  do
6:       for all  $a \in \mathcal{A}$  do
7:          $\tilde{I}_{h,t}(s, a) \leftarrow I(A_{h,s}^*, Z_{h,s,a})$ 
8:          $+ \sum_{s' \in \mathcal{S}} p_h(s, a, s') \tilde{I}_{h,t+1}(s')$ 
9:       end for
10:       $\tilde{I}_{h,t}(s) \leftarrow \max_{a \in \mathcal{A}} \tilde{I}_{h,t}(s, a)$ 
11:    end for
12:   end for
13:   Compute  $\Delta_h(s, a) = \mathbb{E} [Q_h^*(s, A_{h,s}^*) - Q_h^*(s, a) | \mathcal{H}_h]$ 
14:   for all  $s \in \mathcal{S}$  do
15:     Solve  $\pi_{h,s}^{\text{IDSRL}} \in \arg \min_{\omega(s) \in \mathcal{D}(\mathcal{A})} \frac{(\pi^T \Delta_h(s, \cdot))^2}{\pi^T \tilde{I}_{h,0}(s, \cdot)}$ 
16:   end for
17: end procedure

```

Here, with $|\mathcal{S}|$ optimization problems each with variable dimension $|\mathcal{A}|$, we may be able to obtain $\text{poly}(|\mathcal{A}|, |\mathcal{S}|)$ regret bound. And when the state space can be partitioned, we have the following result.

Theorem 1 (Mutual Information Decomposition). *Suppose that the MDP starts with fixed s_0 and has finite horizon of length T . If the state space is factorized as $\mathcal{S} = \{s_0\} \cup \mathcal{S}_1 \cup \dots \cup \mathcal{S}_{T-1}$, then we have the following lower bound on mutual information between optimal policy μ^* and the observations obtained by following policy μ .*

$$I(\mu^*; Y_1, \dots, Y_{T-1}) \geq \sum_{t=0}^{T-2} \sum_{s' \in \mathcal{S}_t} p^{(t)}(s_0, \mu, s') I(\mu_{\mathcal{S}_t}^*; Z_{t+1}(s')),$$

where $p^{(t)}(s_0, \mu, s')$ is the t -step transition probability from s_0 to s' following μ , $\mu_{\mathcal{S}_t}^*$ is optimal policy for states in \mathcal{S}_t , and $Z_t(s) \sim \mathbb{P}(Y_t | s)$.

The theorem implies that $\tilde{I}_{h,0}(s_0)$ computed in the algorithm serves as a lower bound for the real mutual information $I(\mu^*, Y_1, \dots, Y_{T-1})$. Furthermore, in this case, the computation can be simplified in a step-wise manner and is illustrated by the following diagram. We call it *Stepwise IDSRL*.

