

Learning Mean-Field Games

Junzi Zhang

Stanford ICME

email: junziz@stanford.edu

Joint work with Prof. Xin Guo, Anran Hu and Renyuan Xu
UC Berkeley, IEOR

Outline

Mathematical Framework

Motivating Problem

General N -player game and GMFG

RL for $N = 1$

GMFG with RL

Existence and Uniqueness of GMFG solution

Convergence and Complexity of RL

Numerical Performance

Outline

Mathematical Framework

Motivating Problem

General N -player game and GMFG

RL for $N = 1$

GMFG with RL

Existence and Uniqueness of GMFG solution

Convergence and Complexity of RL

Numerical Performance

Outline

Mathematical Framework

Motivating Problem

General N -player game and GMFG

RL for $N = 1$

GMFG with RL

Existence and Uniqueness of GMFG solution

Convergence and Complexity of RL

Numerical Performance

Motivation: a sequential auction game

Ad auction problem for advertisers:

- ▶ Ad auction: a stochastic game on an ad exchange platform among a large number of players (the advertisers)
- ▶ Environment: in each round, a web user requests a page, and then a Vickrey-type *second-best-price* auction is run to incentivize advertisers to bid for a slot to display advertisement
- ▶ Characteristics:
 - ▶ partial information (unknown conversion of clicks, unknown bid price of other competitors)
 - ▶ changing states: budget constraint

Question: how should one bid in this sequential game with a **large** population of competing bidders and **unknown** distributions of the conversion of clicks/rewards and bids/actions of other bidders?

Motivation: sequential auction game

Literature

Solution: the simultaneous learning and decision-making problem in a sequential auction with a large number of homogeneous bidders.

Reinforcement Learning

Mean-Field Games

- ▶ **Full model** approach: solve it as an N -player game
 - ▶ multi-agent reinforcement learning: computationally intractable
- ▶ **Approximation** approaches:
 - ▶ **independent** learners (regarding others as environment) (**IL**)
 - ▶ multi-agent reinforcement learning with **first-order** (expectation) mean-field approximation (**MF-Q**, Yang et al., 2018)
- ▶ **Our approach:** Reinforcement Learning (RL) + **full distribution Mean-Field Game (MFG)** approximation

Outline

Mathematical Framework

Motivating Problem

General N -player game and GMFG

RL for $N = 1$

GMFG with RL

Existence and Uniqueness of GMFG solution

Convergence and Complexity of RL

Numerical Performance

Overview of MFG

Mean-Field Game (MFG) is

- ▶ a game with very large population of small interacting individuals
 - ▶ **large population**: a continuum of players
 - ▶ **small interacting**: strategy based on the aggregated macroscopic information (mean field)
- ▶ originated from physics on weakly interacting particles
- ▶ theoretical works pioneered by Lasry and Lions (2007) and Huang, Malhamé and Caines (2006)

Main Idea of MFG

- ▶ Take an N -player game;
- ▶ When N is large, consider instead the “aggregated” version of the N -player game;
- ▶ By (f)SLLN, the aggregated version, MFG, becomes an “approximation” of the N -player game, in terms of ϵ -Nash equilibrium

Classcial N -player Games

N -player game

$$\begin{aligned} & \text{maximize}_{\pi_i} \quad V^i(\mathbf{s}, \boldsymbol{\pi}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(\mathbf{s}_t, a_t^i) \mid \mathbf{s}^0 = \mathbf{s} \right] \\ & \text{subject to} \quad s_{t+1}^i \sim P^i(\mathbf{s}_t, a_t^i) \end{aligned}$$

- ▶ N players, state space \mathcal{S} , action space \mathcal{A} ;
- ▶ $\mathbf{s}_t = (s_t^1, \dots, s_t^N) \in \mathcal{S}^N$ is the state vector;
- ▶ $\mathbf{a}_t = (a_t^1, \dots, a_t^N) \in \mathcal{A}^N$ is the action vector;
- ▶ admissible (Markovian) policy $\pi_i : \mathcal{S}^N \rightarrow \mathcal{P}(\mathcal{A})$, with $\mathcal{P}(\mathcal{X})$ the space of all probability measures over \mathcal{X} ;
- ▶ r^i is the reward function for player i ;
- ▶ P^i is the transition dynamics for player i ;
- ▶ γ is the discount factor;

N -player Games

Definition (N -player game: Nash equilibrium (NE))

NE is a set of strategies such that no agent can benefit from unilaterally deviating from this set of strategies. Formally, π^ is an NE if for all i and s ,*

$$V^i(s, \pi^*) \geq V^i(s, (\pi_1^*, \dots, \pi_i, \dots, \pi_N^*))$$

holds for any $\pi_i : \mathcal{S}^N \rightarrow \mathcal{P}(\mathcal{A})$.

From N -player Game to MFG

N -player game

$$\begin{aligned} & \text{maximize}_{\pi_i} \quad V^i(\mathbf{s}, \boldsymbol{\pi}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(\mathbf{s}_t, a_t^i) \mid \mathbf{s}_0 = \mathbf{s} \right] \\ & \text{subject to} \quad s_{t+1}^i \sim P^i(\mathbf{s}_t, a_t^i). \end{aligned}$$

Assume **identical, indistinguishable and interchangeable** players.

When the number of players goes to infinity, view the limit of $s_t^{-i} = (s_t^1, \dots, s_t^{i-1}, s_t^{i+1}, \dots, s_t^N)$ as population state distribution μ_t .

MFG

$$\begin{aligned} & \text{maximize}_{\pi} \quad V(s, \pi, \{\mu_t\}_{t=0}^{\infty}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, \mu_t) \mid s_0 = s \right] \\ & \text{subject to} \quad s_{t+1} \sim P(s_t, a_t, \mu_t). \end{aligned}$$

Mean-Field Games (MFG)

MFG

$$\begin{aligned} & \text{maximize}_{\pi} \quad V(s, \pi, \{\mu_t\}_{t=0}^{\infty}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, \mu_t) \middle| s_0 = s \right] \\ & \text{subject to} \quad s_{t+1} \sim P(s_t, a_t, \mu_t). \end{aligned}$$

- ▶ infinite number of homogeneous players, state space \mathcal{S} , action space \mathcal{A} ;
- ▶ $s_t \in \mathcal{S}$ and $a_t \in \mathcal{A}$ are the state and action of a representative agent at time t ;
- ▶ $\mu_t \in \mathcal{P}(\mathcal{S})$ is the population state distribution at time t ;
- ▶ admissible policy $\pi : \mathcal{S} \times \mathcal{P}(\mathcal{S}) \rightarrow \mathcal{P}(\mathcal{A})$;
- ▶ r is the reward function, P is the transition dynamics.

Mean-Field Games (MFG)

Definition (Stationary NE for MFGs)

In MFGs, a pair (π^, μ^*) is called a stationary NE if*

- 1. (Single agent side) For any policy π and any initial state $s \in \mathcal{S}$, we have*

$$V(s, \pi^*, \{\mu^*\}_{t=0}^\infty) \geq V(s, \pi, \{\mu^*\}_{t=0}^\infty).$$

- 2. (Population side) $\mathbb{P}_{s_t} = \mu^*$ for all $t \geq 0$, where $\{s_t\}_{t=0}^\infty$ is the dynamics under control π^* starting from $s_0 \sim \mu^*$, with $a_t \sim \pi^*(s_t, \mu^*)$, $s_{t+1} \sim P(\cdot | s_t, a_t, \mu^*)$.*

General N -player Games

N -player game

$$\begin{aligned} & \text{maximize}_{\pi_i} \quad V^i(\mathbf{s}, \boldsymbol{\pi}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(\mathbf{s}_t, \mathbf{a}_t^i) \mid \mathbf{s}_0 = \mathbf{s} \right] \\ & \text{subject to} \quad s_{t+1}^i \sim P^i(\mathbf{s}_t, \mathbf{a}_t^i). \end{aligned}$$

General N -player game

$$\begin{aligned} & \text{maximize}_{\pi_i} \quad V^i(\mathbf{s}, \boldsymbol{\pi}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(\mathbf{s}_t, \mathbf{a}_t) \mid \mathbf{s}_0 = \mathbf{s} \right] \\ & \text{subject to} \quad s_{t+1}^i \sim P^i(\mathbf{s}_t, \mathbf{a}_t) \end{aligned}$$

- $\mathbf{a}_t = (a_t^1, \dots, a_t^N)$.

General N -player Games

N -player game

$$\begin{aligned} & \text{maximize}_{\pi_i} \quad V^i(\mathbf{s}, \boldsymbol{\pi}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(\mathbf{s}_t, \mathbf{a}_t^i) \mid \mathbf{s}_0 = \mathbf{s} \right] \\ & \text{subject to} \quad s_{t+1}^i \sim P^i(\mathbf{s}_t, \mathbf{a}_t^i). \end{aligned}$$

General N -player game

$$\begin{aligned} & \text{maximize}_{\pi_i} \quad V^i(\mathbf{s}, \boldsymbol{\pi}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r^i(\mathbf{s}_t, \mathbf{a}_t) \mid \mathbf{s}_0 = \mathbf{s} \right] \\ & \text{subject to} \quad s_{t+1}^i \sim P^i(\mathbf{s}_t, \mathbf{a}_t) \end{aligned}$$

- $\mathbf{a}_t = (a_t^1, \dots, a_t^N)$.

Generalized Mean-Field Games (GMFG)

MFG

$$\begin{aligned} & \text{maximize}_{\pi} \quad V(s, \pi, \{\mu_t\}_{t=0}^{\infty}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, \mu_t) \middle| s_0 = s \right] \\ & \text{subject to} \quad s_{t+1} \sim P(s_t, a_t, \mu_t). \end{aligned}$$

GMFG

$$\begin{aligned} & \text{maximize}_{\pi} \quad V(s, \pi, \{L_t\}_{t=0}^{\infty}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, L_t) \middle| s_0 = s \right] \\ & \text{subject to} \quad s_{t+1} \sim P(s_t, a_t, L_t). \end{aligned}$$

- ▶ $L_t \in \Delta^{|\mathcal{S}||\mathcal{A}|}$ is the population state-action pair distribution at time t , with state marginal μ_t and action marginal α_t (population action distribution);
- ▶ α_t as an approximation of $a_t^{-i} = (a_t^1, \dots, a_t^{i-1}, a_t^{i+1}, \dots, a_t^N)$.

Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair (π^*, L^*) is called a stationary NE if

1. (Single agent side) For any policy π and any initial state $s \in \mathcal{S}$, we have

$$V(s, \pi^*, \{L^*\}_{t=0}^{\infty}) \geq V(s, \pi, \{L^*\}_{t=0}^{\infty}).$$

2. (Population side) $\mathbb{P}_{s_t, a_t} = L^*$ for all $t \geq 0$, where $\{s_t, a_t\}_{t=0}^{\infty}$ is the dynamics under control π^* starting from $s_0 \sim \mu^*$, with $a_t \sim \pi^*(s_t, \mu^*)$, $s_{t+1} \sim P(\cdot | s_t, a_t, L^*)$, and μ^* being the population state marginal of L^* .

Outline

Mathematical Framework

Motivating Problem

General N -player game and GMFG

RL for $N = 1$

GMFG with RL

Existence and Uniqueness of GMFG solution

Convergence and Complexity of RL

Numerical Performance

Reinforcement learning: Overview

- ▶ Single agent problem with *unknown* P and r

$$\begin{aligned} & \text{maximize}_{\pi} \quad V(s, \pi) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s \right], \\ & \text{subject to} \quad s_{t+1} \sim P(s_t, a_t), \quad a_t \sim \pi(s_t), \quad t \geq 0. \end{aligned}$$

- ▶ Simultaneous decision making of a_t and learning of r and P , optimal value $V^*(s) := \max_{\pi} V(s, \pi)$
- ▶ Examples: Chess/Go/Poker

Existing Algorithms for RL

- ▶ Discrete state and action spaces:
 - ▶ Q-learning (Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, & Riedmiller, 2013)
 - ▶ PSRL (Osband, Russo & Van Roy, 2013)
 - ▶ UCRL2 (Jaksch, Ortner & Auer, 2010)
- ▶ Continuous state and action spaces:
 - ▶ Policy gradient (Williams, 1992)
 - ▶ Actor-Critic (Konda & Tsitsiklis, 2000)
 - ▶ Linear Quadratic Regulator (LQR): Abbasi-Yadkori & Szepesvári, 2011; Dean, Mania, Matni, Recht, Tu, 2018

Q-learning

- ▶ **Q -function:** $Q^\star(s, a) := \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^\star(s')$
- ▶ **Bellman equation (for Q -function):**

$$Q^\star(s, a) = \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a'} Q^\star(s', a')$$

- ▶ Q-learning: stochastic approximation to the Bellman equation:

$$Q^{k+1}(s, a)$$

$$\leftarrow (1 - \beta_t(s, a))Q^k(s, a) + \beta_t(s, a) \left[r(s, a) + \gamma \max_{a'} Q^k(s', a') \right]$$

Q-learning

- ▶ Q -function: $Q^*(s, a) := \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^*(s')$
- ▶ Bellman equation (for Q -function):

$$Q^*(s, a) = \mathbb{E}r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a'} Q^*(s', a')$$

- ▶ Q-learning: stochastic approximation to the Bellman equation:

$$\begin{aligned} Q^{k+1}(s, a) \\ \leftarrow (1 - \beta_t(s, a))Q^k(s, a) + \beta_t(s, a) \left[r(s, a) + \gamma \max_{a'} Q^k(s', a') \right] \end{aligned}$$

Key gradients in Q-learning

- ▶ With finite state and action spaces, Q^k are matrices
- ▶ Choice of appropriate $\beta_t(s, a)$ and exploration in a :
 - ▶ ϵ - greedy: $a_k \in \arg \max Q^k(s_k, a)$ with probability $1 - \epsilon$, and a_k chosen randomly from \mathcal{A} with probability ϵ
 - ▶ Boltzmann policy: based on a softmax operator parameterized by c
- ▶ $Q^k \rightarrow Q^*$

Outline

Mathematical Framework

Motivating Problem

General N -player game and GMFG

RL for $N = 1$

GMFG with RL

Existence and Uniqueness of GMFG solution

Convergence and Complexity of RL

Numerical Performance

(Recall) Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair (π^*, L^*) is called a stationary NE if

1. (Single agent side) For any policy π and any initial state $s \in \mathcal{S}$, we have

$$V(s, \pi^*, \{L^*\}_{t=0}^\infty) \geq V(s, \pi, \{L^*\}_{t=0}^\infty).$$

2. (Population side) $\mathbb{P}_{s_t, a_t} = L^*$ for all $t \geq 0$, where $\{s_t, a_t\}_{t=0}^\infty$ is the dynamics under control π^* starting from $s_0 \sim \mu^*$, with $a_t \sim \pi^*(s_t, \mu^*)$, $s_{t+1} \sim P(\cdot | s_t, a_t, L^*)$, and μ^* being the population state marginal of L^* .

Fixed point/Three-step approach

- ▶ Step 1: given L , solve the stochastic control problem to get π_L^* :

$$\begin{aligned} & \text{maximize}_{\pi} \quad V(s, \pi, L) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, L) | s_0 = s \right], \\ & \text{subject to} \quad s_{t+1} \sim P(s_t, a_t, L). \end{aligned}$$

- ▶ Step 2: given π_L^* , update from L for one time step to get L' following the dynamics.
- ▶ Step 3: Check whether L' matches L , and repeat.

Mappings Γ_1 and Γ_2

- ▶ Take any fixed population action-state distribution $L \in \mathcal{P}(\mathcal{S} \times \mathcal{A})$,

$$\Gamma_1 : \mathcal{P}(\mathcal{S} \times \mathcal{A}) \rightarrow \Pi := \{\pi \mid \pi : \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})\},$$

such that $\pi_L^* = \Gamma_1(L)$ is an optimal policy given L .

- ▶ For any admissible policy $\pi \in \Pi$ and $L \in \mathcal{P}(\mathcal{S} \times \mathcal{A})$, define $\Gamma_2 : \Pi \times \mathcal{P}(\mathcal{S} \times \mathcal{A}) \rightarrow \mathcal{P}(\mathcal{S} \times \mathcal{A})$ as

$$\Gamma_2(\pi, L) := L' = \mathbb{P}_{s_1, a_1},$$

where $a_1 \sim \pi(s_1)$, $s_1 \sim \mu P(\cdot | \cdot, a_0, L)$, $a_0 \sim \pi(s_0)$, $s_0 \sim \mu$, and μ is the population state marginal of L .

Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu, & Zhang, 2019)

For any GMFG, if $\Gamma_2 \circ \Gamma_1$ is contractive, then there exists a unique stationary NE. In addition, the three-step approach converges.

Remark 1: Here the uniqueness is in the sense of L .

Remark 2: Similar assumption and result can be found in (Huang, Malhamé & Caines, 2006) for MFGs.

Remark 3: We indeed established Theorem 1 in much more general settings without directly assuming contractivity, and we allow for

- ▶ non-stationarity, general compact state and action spaces, and Wasserstein metrics.

See our draft for more details.

- ▶ **Question:** How to solve the GMFG when there is uncertainty in r and P ? Assume in the following that \mathcal{S} and \mathcal{A} are both finite.

Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu, & Zhang, 2019)

For any GMFG, if $\Gamma_2 \circ \Gamma_1$ is contractive, then there exists a unique stationary NE. In addition, the three-step approach converges.

Remark 1: Here the uniqueness is in the sense of L .

Remark 2: Similar assumption and result can be found in (Huang, Malhamé & Caines, 2006) for MFGs.

Remark 3: We indeed established Theorem 1 in much more general settings without directly assuming contractivity, and we allow for

- ▶ non-stationarity, general compact state and action spaces, and Wasserstein metrics.

See our draft for more details.

- ▶ **Question:** How to solve the GMFG when there is uncertainty in r and P ? Assume in the following that \mathcal{S} and \mathcal{A} are both finite.

Bridge MFG with RL: Finding NE

Three-step approach revisited:

- ▶ Step 1: given L , solve the stochastic control problem to get π_L^* :

$$\begin{aligned} & \text{maximize}_{\pi} \quad V(s, \pi, L) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, L) | s_0 = s \right], \\ & \text{subject to} \quad s_{t+1} \sim P(s_t, a_t, L). \end{aligned}$$

- ▶ Step 2: given π_L^* , update from L for one time step to get L' following the dynamics.
- ▶ Step 3: Check whether L' matches L .

Bridge MFG with RL: Finding NE

Three-step approach revisited (when P and R are unknown):

- ▶ **Step 1:** given L , solve a RL problem with transition dynamics $P_L(s'|s, a) := P(s'|s, a, L)$ and reward $r_L(s, a) := r(s, a, L)$ via Q-learning:

$$Q_L^{k+1}(s, a) \leftarrow (1 - \beta_t(s, a))Q_L^k(s, a) + \beta_t(s, a) [r(s, a, L) + \gamma \max_{a'} Q_L^k(s', a')] .$$

- ▶ Step 2: given π_L^* , update from L for one time step to get L' following the dynamics.
- ▶ Step 3: Check whether L' matches L .

Remark: $\pi_L^*(s) \in \operatorname{argmax}_a Q_L^*(s, a)$. When **argmax** is non-unique, replace it with **argmax-e**, which assigns equal probability to the maximizers.

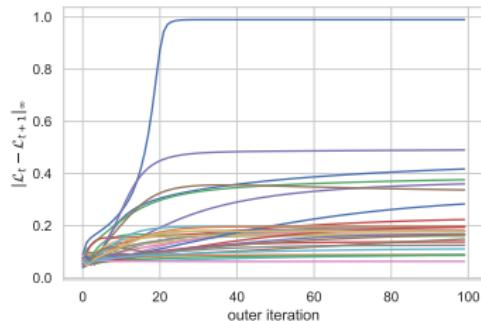
Naive RL Algorithm for GMFG

Algorithm 1 Naive Q-learning for GMFGs

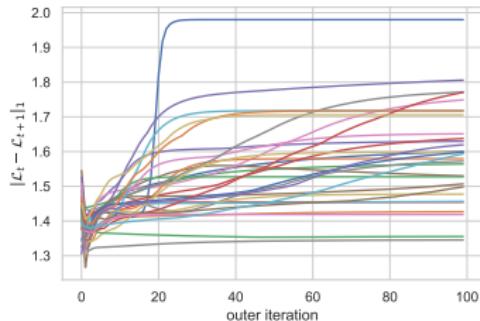
- 1: **Input:** Initial population state-action pair L_0
- 2: **for** $k = 0, 1, \dots$ **do**
- 3: Perform Q-learning to find the Q-function $Q_k^*(s, a) = Q_{L_k}^*(s, a)$ of an MDP with dynamics $P_{L_k}(s'|s, a)$ and reward distributions $R_{L_k}(s, a)$.
- 4: Solve $\pi_k \in \Pi$ with $\pi_k(s) = \text{argmax-e}(Q_k^*(s, \cdot))$.
- 5: Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k , and obtain L_{k+1} from $\mathcal{G}(s, \pi_k, L_k)$.
- 6: **end for**

Failure of the Naive Algorithm

Failure examples:



(a) fluctuation in l_∞ .



(b) fluctuation in l_1 .

Figure: *Fluctuations of Naive Algorithm (30 sample paths).*

Problems in the Naive Algorithm: Approximation Errors

Algorithm 1 Naive Q-learning for GMFGs

- 1: **Input:** Initial population state-action pair L_0
- 2: **for** $k = 0, 1, \dots$ **do**
- 3: Perform Q-learning to find the Q-function $Q_k^*(s, a) = Q_{L_k}^*(s, a)$ of an MDP with dynamics $P_{L_k}(s'|s, a)$ and reward distributions $R_{L_k}(s, a)$.
 impossible
- 4: Solve $\pi_k \in \Pi$ with $\pi_k(s) = \overbrace{\text{argmax-e}}^{\text{unstable}}(Q_k^*(s, \cdot))$.
- 5: Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k , and obtain $\underbrace{L_{k+1}}_{\text{unstable}}$ from $\mathcal{G}(s, \pi_k, L_k)$.
- 6: **end for**

Instability of **argmax-e**:

Magnify the Approximation Errors

- ▶ $x = (1, 1)$, then **argmax-e**(x) = $(1/2, 1/2)$.
- ▶ $y = (1, 1 - \epsilon)$, then for any $\epsilon > 0$, **argmax-e**(y) = $(1, 0)$.
- ▶ $\|\text{argmax-e}(x) - \text{argmax-e}(y)\|_2 / \|x - y\|_2 = 1/\epsilon$ – non-Lipschitz.

Instability of **argmax-e**:

Magnify the Approximation Errors

- ▶ $x = (1, 1)$, then **argmax-e**(x) = $(1/2, 1/2)$.
- ▶ $y = (1, 1 - \epsilon)$, then for any $\epsilon > 0$, **argmax-e**(y) = $(1, 0)$.
- ▶ $\|\text{argmax-e}(x) - \text{argmax-e}(y)\|_2 / \|x - y\|_2 = 1/\epsilon$ – non-Lipschitz.

Instability of **argmax-e**:

Magnify the Approximation Errors

- ▶ $x = (1, 1)$, then **argmax-e**(x) = $(1/2, 1/2)$.
- ▶ $y = (1, 1 - \epsilon)$, then for any $\epsilon > 0$, **argmax-e**(y) = $(1, 0)$.
- ▶ $\|\mathbf{argmax-e}(x) - \mathbf{argmax-e}(y)\|_2 / \|x - y\|_2 = 1/\epsilon$ – non-Lipschitz.

Stable Algorithm for GMFG (MF-AQ)

Algorithm 2 Q-learning for GMFGs (GMF-Q)

- 1: **Input:** Initial L_0 , tolerance $\epsilon > 0$.
- 2: **for** $k = 0, 1, \dots$ **do**
- 3: Perform Q-learning for $\textcolor{red}{T}_k$ iterations to find the approximate Q-function $\hat{Q}_k^*(s, a) = \hat{Q}_{L_k}^*(s, a)$ of an MDP with dynamics $P_{L_k}(s'|s, a)$ and reward distributions $R_{L_k}(s, a)$.
- 4: Compute $\pi_k \in \Pi$ with $\pi_k(s) = \text{softmax}_c(\hat{Q}_k^*(s, \cdot))$.
- 5: Sample $s \sim \mu_k$, where μ_k is the population state marginal of L_k , and obtain \tilde{L}_{k+1} from $\mathcal{G}(s, \pi_k, L_k)$.
- 6: Find $L_{k+1} = \text{Proj}_{S_\epsilon}(\tilde{L}_{k+1})$
- 7: **end for**

Remark. Here S_ϵ is a ϵ -net of L , and $\text{softmax}_c(x)_i = \frac{\exp(cx_i)}{\sum_{j=1}^n \exp(cx_j)}$.

Outline

Mathematical Framework

Motivating Problem

General N -player game and GMFG

RL for $N = 1$

GMFG with RL

Existence and Uniqueness of GMFG solution

Convergence and Complexity of RL

Numerical Performance

Convergence

Theorem 2 (Guo, Hu, Xu, & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for any specified tolerances $\epsilon, \delta > 0$, with appropriate choices of T_k, c and S_ϵ , $\limsup_{k \rightarrow \infty} W_1(L_k, L^) = O(\epsilon)$ with probability at least $1 - 2\delta$.*

Here W_1 is the ℓ_1 Wasserstein distance, a.k.a. earth mover distance.

Complexity of MF-AQ

Theorem 3 (Guo, Hu, Xu. & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for any specified tolerances $\epsilon, \delta > 0$, set T_k, c and S_ϵ appropriately. Then with probability at least $1 - 2\delta$, $W_1(L_{K_\epsilon}, L^*) = O(\epsilon)$, and the total number of iterations $T = \sum_{k=0}^{K_\epsilon-1} T_k$ is bounded by

$$T = O \left(K_\epsilon^{19/3} (\log(K_\epsilon/\delta))^{41/3} \right).$$

Here $K_\epsilon := \lceil 2 \max \{ (\eta\epsilon)^{-1/\eta}, \log_d(\epsilon/\max\{diam(\mathcal{S})diam(\mathcal{A}), 1\}) + 1 \} \rceil$ is the number of outer iterations.

Outline

Mathematical Framework

Motivating Problem

General N -player game and GMFG

RL for $N = 1$

GMFG with RL

Existence and Uniqueness of GMFG solution

Convergence and Complexity of RL

Numerical Performance

Repeated Auction Example Revisited

At each round t :

- ▶ randomly select $M - 1$ players (from N , possibly infinite players) to compete with the representative advertiser
- ▶ a_t^M : second best price among the bids from M players
- ▶ reward $r_t = \mathbf{1}_{w_t^M=1} \left[(v_t - a_t^M) - (1 + \rho) \mathbf{1}_{s_t < a_t^M} (a_t^M - s_t) \right]$
 - ▶ v_t : conversion
 - ▶ w_t : indicator of winning (bid the highest price)
 - ▶ s_t : current budget
 - ▶ ρ : penalty of overbidding
- ▶ dynamic of the budget:

$$s_{t+1} = \begin{cases} s_t, & w_t \neq 1, \\ s_t - a_t^M, & w_t = 1 \text{ and } a_t^M \leq s_t, \\ 0, & w_t = 1 \text{ and } a_t^M > s_t. \end{cases}$$

- ▶ Budget fulfillment: modify the dynamics of s_{t+1} with a non-negative random budget fulfillment $\Delta(s_{t+1})$ after the auction clearing, such that $\hat{s}_{t+1} = s_{t+1} + \Delta(s_{t+1})$.

Performance against full-information

When transition P and reward r are **known**, replace **Q-learning** with **value iteration (VI) – GMF-V**.

$$Q_L^{k+1}(s, a) \leftarrow \mathbb{E}r(s, a, L) + \gamma \mathbb{E}_{s' \sim P(s, a)} \max_{a'} Q_L^k(s', a'),$$

Table: *Q-table with $T_k^{\text{GMF-V}} = 5000$.*

$T_k^{\text{GMF-Q}}$	1000	3000	5000	10000
ΔQ	0.21263	0.1294	0.10258	0.0989

Here $\Delta Q := \frac{\|Q_{\text{GMF-V}} - Q_{\text{GMF-Q}}\|_2}{\|Q_{\text{GMF-V}}\|_2}$ is the relative L_2 distance between the Q-tables.

Performance against full-information

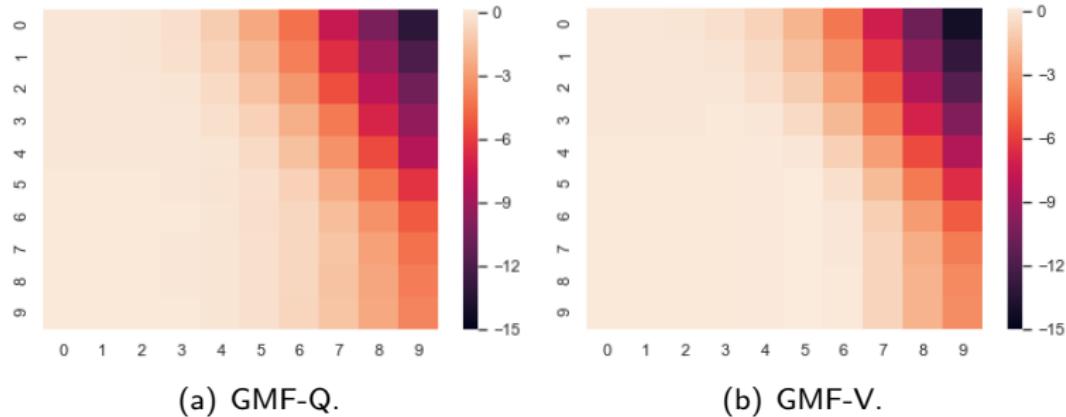


Figure: *Q-tables: GMF-Q vs. GMF-V. 20 outer iterations.*

Conclusion: our algorithm (requiring no specific information on P and R) can learn almost as well as algorithms with full information.

Performance against S.O.T.A.

Performance metric:

$$C(\boldsymbol{\pi}) = \frac{1}{N|\mathcal{S}|^N} \sum_{i=1}^N \sum_{\mathbf{s} \in \mathcal{S}^N} \frac{\max_{\pi^i} V_i(\mathbf{s}, (\boldsymbol{\pi}^{-i}, \pi^i)) - V_i(\mathbf{s}, \boldsymbol{\pi})}{|\max_{\pi^i} V_i(\mathbf{s}, (\boldsymbol{\pi}^{-i}, \pi^i))| + \epsilon_0}.$$

Here $\epsilon_0 > 0$ is a safeguard, and is taken as 0.1 in the experiments. If $\boldsymbol{\pi}^*$ is an NE, by definition, $C(\boldsymbol{\pi}^*) = 0$ and it is easy to check that $C(\boldsymbol{\pi}) \geq 0$.

Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N -player game with first-order mean-field approximation, Yang et al., 2018).

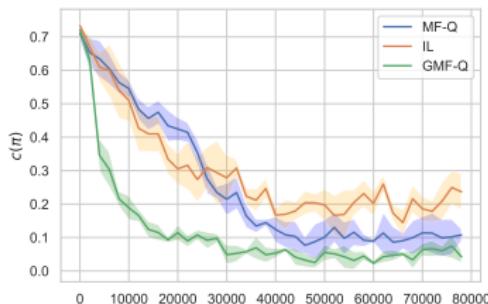


Figure: Learning accuracy based on $C(\pi)$. $|\mathcal{S}| = |\mathcal{A}| = 10, N = 20$. 90% confidence interval, 20 sample paths.

Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N -player game with first-order mean-field approximation, Yang et al., 2018).

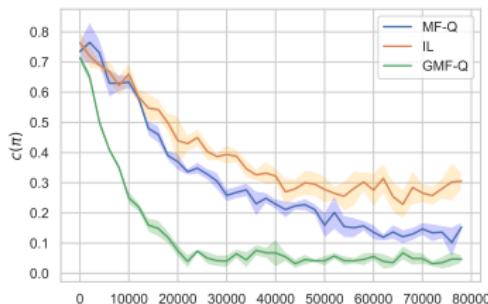


Figure: Learning accuracy based on $C(\pi)$. $|\mathcal{S}| = |\mathcal{A}| = 20, N = 20$. 90% confidence interval, 20 sample paths.

Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N -player game with first-order mean-field approximation, Yang et al., 2018).

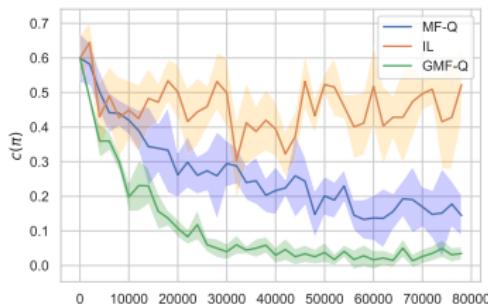


Figure: Learning accuracy based on $C(\pi)$. $|\mathcal{S}| = |\mathcal{A}| = 10, N = 40$. 90% confidence interval, 20 sample paths.

Conclusions

In this work, we

- ▶ build a generalized mean-field games framework with learning in a MFG;
- ▶ establish the unique existence for the GMFG solution for the discrete time version;
- ▶ propose a Q-learning algorithm with convergence and complexity analysis;
- ▶ numerical experiments demonstrate superior performance compared to existing RL algorithms.

Thank you!

Reference:

- ▶ Guo, X., Hu, A., Xu, R. and Zhang, J. (2019).
Learning Mean-Field Games.
arXiv preprint arXiv:1901.09585.
- Shah, D. and Xie, Q. (2018).
Q-learning with Nearest Neighbors.
In Advances in Neural Information Processing Systems, pp. 3111-3121.