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Motivation: a sequential auction game

Ad auction problem for advertisers:

I Ad auction: a stochastic game on an ad exchange platform among a
large number of players (the advertisers)

I Environment: in each round, a web user requests a page, and then a
Vickrey-type second-best-price auction is run to incentivize
advertisers to bid for a slot to display advertisement

I Characteristics:
I partial information (unknown conversion of clicks, unknown bid price

of other competitors)
I changing states: budget constraint

Question: how should one bid in this sequential game with a large
population of competing bidders and unknown distributions of the
conversion of clicks/rewards and bids/actions of other bidders?
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Motivation: sequential auction game
Literature

Solution: the

Reinforcement Learning︷ ︸︸ ︷
simultaneous learning and decision-making problem in a

sequential auction with a large number of homogeneous︸ ︷︷ ︸
Mean-Field Games

bidders.

I Full model approach: solve it as an N -player game
I multi-agent reinforcement learning: computationally intractable

I Approximation approaches:
I independent learners (regarding others as environment) (IL)
I multi-agent reinforcement learning with first-order (expectation)

mean-field approximation (MF-Q, Yang et al., 2018)

I Our approach: Reinforcement Learning (RL) + full distribution
Mean-Field Game (MFG) approximation
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Overview of MFG

Mean-Field Game (MFG) is

I a game with very large population of small interacting individuals
I large population: a continuum of players
I small interacting: strategy based on the aggregated macroscopic

information (mean field)

I originated from physics on weakly interacting particles

I theoretical works pioneered by Lasry and Lions (2007) and Huang,
Malhamé and Caines (2006)
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Main Idea of MFG

I Take an N -player game;

I When N is large, consider instead the “aggregated” version of the
N -player game;

I By (f)SLLN, the aggregated version, MFG, becomes an
“approximation” of the N -player game, in terms of ε-Nash
equilibrium
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Classcial N -player Games

N -player game

maximizeπi V i(sss,πππ) := E
[ ∞∑
t=0

γtri(ssst, a
i
t)|sss0 = sss

]
subject to sit+1 ∼ P i(ssst, ait)

I N players, state space S, action space A;

I ssst = (s1t , . . . , s
N
t ) ∈ SN is the state vector;

I aaat = (a1t , . . . , a
N
t ) ∈ AN is the action vector;

I admissible (Markovian) policy πi : SN → P(A), with P(X ) the
space of all probability measures over X ;

I ri is the reward function for player i;

I P i is the transition dynamics for player i;

I γ is the discount factor;
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N -player Games

Definition (N -player game: Nash equilibrium (NE))

NE is a set of strategies such that no agent can benefit from unilaterally
deviating from this set of strategies. Formally, π? is an NE if for all i and
s,

V i(s,π?) ≥ V i(s, (π?1 , . . . , πi, . . . , π?N ))

holds for any πi : SN → P(A).
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From N -player Game to MFG

N -player game

maximizeπi V i(sss,πππ) := E
[ ∞∑
t=0

γtri(ssst, a
i
t)|sss0 = sss

]
subject to sit+1 ∼ P i(ssst, ait).

Assume identical, indistinguishable and interchangeable players.
When the number of players goes to infinity, view the limit of
s−it = (s1t , . . . , s

i−1
t , si+1

t , . . . , sNt ) as population state distribution µt.

MFG

maximizeπ V (s, π, {µt}∞t=0) := E
[ ∞∑
t=0

γtr(st, at, µt)|s0 = s

]
subject to st+1 ∼ P (st, at, µt).
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Mean-Field Games (MFG)

MFG

maximizeπ V (s, π, {µt}∞t=0) := E
[ ∞∑
t=0

γtr(st, at, µt)|s0 = s

]
subject to st+1 ∼ P (st, at, µt).

I infinite number of homogeneous players, state space S, action space
A;

I st ∈ S and at ∈ A are the state and action of a representative agent
at time t;

I µt ∈ P(S) is the population state distribution at time t;

I admissible policy π : S × P(S)→ P(A);

I r is the reward function, P is the transition dynamics.
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Mean-Field Games (MFG)

Definition (Stationary NE for MFGs)

In MFGs, a pair (π?, µ?) is called a stationary NE if

1. (Single agent side) For any policy π and any initial state s ∈ S, we
have

V (s, π?, {µ?}∞t=0) ≥ V (s, π, {µ?}∞t=0) .

2. (Population side) Pst = µ? for all t ≥ 0, where {st}∞t=0 is the
dynamics under control π? starting from s0 ∼ µ?, with
at ∼ π?(st, µ?), st+1 ∼ P (·|st, at, µ?).
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General N -player Games

N -player game

maximizeπi V i(sss,πππ) := E
[ ∞∑
t=0

γtri(ssst, a
i
t)|sss0 = sss

]
subject to sit+1 ∼ P i(ssst, ait).

General N -player game

maximizeπi V i(sss,πππ) := E
[ ∞∑
t=0

γtri(ssst, aaat)|sss0 = sss

]
subject to sit+1 ∼ P i(ssst, aaat)

I atatat = (a1t , · · · , aNt ).
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Generalized Mean-Field Games (GMFG)

MFG

maximizeπ V (s, π, {µt}∞t=0) := E
[ ∞∑
t=0

γtr(st, at, µt)|s0 = s

]
subject to st+1 ∼ P (st, at, µt).

GMFG

maximizeπ V (s, π, {Lt}∞t=0) := E
[ ∞∑
t=0

γtr(st, at, Lt)|s0 = s

]
subject to st+1 ∼ P (st, at, Lt).

I Lt ∈ ∆|S||A| is the population state-action pair distribution at time
t, with state marginal µt and action marginal αt (population action
distribution);

I αt as an approximation of a−it = (a1t , . . . , a
i−1
t , ai+1

t , . . . , aNt ).
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Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair (π?, L?) is called a stationary NE if

1. (Single agent side) For any policy π and any initial state s ∈ S, we
have

V (s, π?, {L?}∞t=0) ≥ V (s, π, {L?}∞t=0) .

2. (Population side) Pst,at = L? for all t ≥ 0, where {st, at}∞t=0 is the
dynamics under control π? starting from s0 ∼ µ?, with
at ∼ π?(st, µ?), st+1 ∼ P (·|st, at, L?), and µ? being the population
state marginal of L?.
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Reinforcement learning: Overview

I Single agent problem with unknown P and r

maximizeπ V (s, π) := E
[ ∞∑
t=0

γtr(st, at)|s0 = s

]
,

subject to st+1 ∼ P (st, at), at ∼ π(st), t ≥ 0.

I Simultaneous decision making of at and learning of r and P ,
optimal value V ?(s) := maxπ V (s, π)

I Examples: Chess/Go/Poker
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Existing Algorithms for RL

I Discrete state and action spaces:
I Q-learning (Mnih, Kavukcuoglu, Silver, Graves, Antonoglou,

Wierstra, & Riedmiller, 2013)
I PSRL (Osband, Russo & Van Roy, 2013)
I UCRL2 (Jaksch, Ortner & Auer, 2010)

I Continuous state and action spaces:
I Policy gradient (Williams, 1992)
I Actor-Critic (Konda & Tsitsiklis, 2000)
I Linear Quadratic Regulator (LQR): Abbasi-Yadkori & Szepesvári,

2011; Dean, Mania, Matni, Recht, Tu, 2018
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Q-learning

I Q-function: Q?(s, a) := Er(s, a) + γEs′∼P (s,a)V
?(s′)

I Bellman equation (for Q-function):

Q?(s, a) = Er(s, a) + γEs′∼P (s,a) max
a′

Q?(s′, a′)

I Q-learning: stochastic approximation to the Bellman equation:

Qk+1(s, a)

← (1− βt(s, a))Qk(s, a) + βt(s, a)
[
r(s, a) + γmax

a′
Qk(s′, a′)

]
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Key gradients in Q-learning

I With finite state and action spaces, Qk are matrices

I Choice of appropriate βt(s, a) and exploration in a:
I ε - greedy: ak ∈ argmaxQk(sk, a) with probability 1− ε, and ak

chosen randomly from A with probability ε
I Boltzmann policy: based on a softmax operator parameterized by c

I Qk → Q?
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(Recall) Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair (π?, L?) is called a stationary NE if

1. (Single agent side) For any policy π and any initial state s ∈ S, we
have

V (s, π?, {L?}∞t=0) ≥ V (s, π, {L?}∞t=0) .

2. (Population side) Pst,at = L? for all t ≥ 0, where {st, at}∞t=0 is the
dynamics under control π? starting from s0 ∼ µ?, with
at ∼ π?(st, µ?), st+1 ∼ P (·|st, at, L?), and µ? being the population
state marginal of L?.
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Fixed point/Three-step approach

I Step 1: given L, solve the stochastic control problem to get π?L:

maximizeπ V (s, π, L) := E
[ ∞∑
t=0

γtr(st, at, L)|s0 = s

]
,

subject to st+1 ∼ P (st, at, L).

I Step 2: given π?L, update from L for one time step to get L′

following the dynamics.

I Step 3: Check whether L′ matches L, and repeat.
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Mappings Γ1 and Γ2

I Take any fixed population action-state distribution L ∈ P(S ×A),

Γ1 : P(S ×A)→ Π := {π | π : S → P(A)},

such that π?L = Γ1(L) is an optimal policy given L.

I For any admissible policy π ∈ Π and L ∈ P(S ×A), define
Γ2 : Π× P(S ×A)→ P(S ×A) as

Γ2(π, L) := L′ = Ps1,a1 ,

where a1 ∼ π(s1), s1 ∼ µP (·|·, a0, L), a0 ∼ π(s0), s0 ∼ µ, and µ is
the population state marginal of L.
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Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu, & Zhang, 2019)

For any GMFG, if Γ2 ◦ Γ1 is contractive, then there exists a unique
stationary NE. In addition, the three-step approach converges.

Remark 1: Here the uniqueness is in the sense of L.
Remark 2: Similar assumption and result can be found in (Huang,
Malhamé & Caines, 2006) for MFGs.
Remark 3: We indeed established Theorem 1 in much more general
settings without directly assuming contractivity, and we allow for

I non-stationarity, general compact state and action spaces, and
Wasserstein metrics.

See our draft for more details.

I Question: How to solve the GMFG when there is uncertainty in r
and P? Assume in the following that S and A are both finite.
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Bridge MFG with RL: Finding NE

Three-step approach revisited:

I Step 1: given L, solve the stochastic control problem to get π?L:

maximizeπ V (s, π, L) := E
[ ∞∑
t=0

γtr(st, at, L)|s0 = s

]
,

subject to st+1 ∼ P (st, at, L).

I Step 2: given π?L, update from L for one time step to get L′

following the dynamics.

I Step 3: Check whether L′ matches L.
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Bridge MFG with RL: Finding NE

Three-step approach revisited (when P and R are unknown):

I Step 1: given L, solve a RL problem with transition dynamics
PL(s′|s, a) := P (s′|s, a, L) and reward rL(s, a) := r(s, a, L) via
Q-learning:

Qk+1
L (s, a)

← (1− βt(s, a))QkL(s, a) + βt(s, a)
[
r(s, a, L) + γmaxa′ Q

k
L(s′, a′)

]
.

I Step 2: given π?L, update from L for one time step to get L′

following the dynamics.

I Step 3: Check whether L′ matches L.

Remark: π?L(s) ∈ argmaxa Q
?
L(s, a). When argmax is non-unique,

replace it with argmax-e, which assigns equal probability to the
maximizers.
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Naive RL Algorithm for GMFG

Algorithm 1 Naive Q-learning for GMFGs

1: Input: Initial population state-action pair L0

2: for k = 0, 1, · · · do
3: Perform Q-learning to find the Q-function Q?k(s, a) = Q?Lk(s, a)

of an MDP with dynamics PLk(s′|s, a) and reward distributions
RLk(s, a).

4: Solve πk ∈ Π with πk(s) = argmax-e (Q?k(s, ·)).
5: Sample s ∼ µk, where µk is the population state marginal of Lk,

and obtain Lk+1 from G(s, πk, Lk).
6: end for
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Failure of the Naive Algorithm

Failure examples:
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Figure: Fluctuations of Naive Algorithm (30 sample paths).
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Problems in the Naive Algorithm: Approximation Errors

Algorithm 1 Naive Q-learning for GMFGs

1: Input: Initial population state-action pair L0

2: for k = 0, 1, · · · do

3: Perform Q-learning to find the Q-function

impossible︷ ︸︸ ︷
Q?k(s, a) = Q?Lk(s, a)

of an MDP with dynamics PLk(s′|s, a) and reward distributions
RLk(s, a).

4: Solve πk ∈ Π with πk(s) =

unstable︷ ︸︸ ︷
argmax-e (Q?k(s, ·)).

5: Sample s ∼ µk, where µk is the population state marginal of Lk,
and obtain Lk+1︸ ︷︷ ︸

unstable

from G(s, πk, Lk).

6: end for
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Instability of argmax-e:
Magnify the Approximation Errors

I x = (1, 1), then argmax-e(x) = (1/2, 1/2).

I y = (1, 1− ε), then for any ε > 0, argmax-e(y) = (1, 0).

I ‖argmax-e(x)− argmax-e(y)‖2/‖x− y‖2 = 1/ε – non-Lipschitz.
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Stable Algorithm for GMFG (MF-AQ)

Algorithm 2 Q-learning for GMFGs (GMF-Q)

1: Input: Initial L0, tolerance ε > 0.
2: for k = 0, 1, · · · do
3: Perform Q-learning for Tk iterations to find the approximate

Q-function Q̂?k(s, a) = Q̂?Lk(s, a) of an MDP with dynamics
PLk(s′|s, a) and reward distributions RLk(s, a).

4: Compute πk ∈ Π with πk(s) = softmaxc(Q̂?k(s, ·)).
5: Sample s ∼ µk, where µk is the population state marginal of Lk,

and obtain L̃k+1 from G(s, πk, Lk).
6: Find Lk+1 = ProjSε(L̃k+1)
7: end for

Remark. Here Sε is a ε-net of L, and softmaxc(x)i = exp(cxi)∑n
j=1 exp(cxj)

.
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Convergence

Theorem 2 (Guo, Hu, Xu, & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for
any specified tolerances ε, δ > 0, with appropriate choices of Tk, c and
Sε, lim supk→∞W1(Lk, L

?) = O(ε) with probability at least 1− 2δ.

Here W1 is the `1 Wasserstein distance, a.k.a. earth mover distance.
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Complexity of MF-AQ

Theorem 3 (Guo, Hu, Xu. & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for
any specified tolerances ε, δ > 0, set Tk, c and Sε appropriately. Then
with probability at least 1− 2δ, W1(LKε , L

?) = O(ε), and the total

number of iterations T =
∑Kε−1
k=0 Tk is bounded by

T = O
(
K19/3
ε (log(Kε/δ))

41/3
)
.

Here Kε :=
⌈
2 max

{
(ηε)−1/η, logd(ε/max{diam(S)diam(A), 1}) + 1)

}⌉
is the number of outer iterations.
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Repeated Auction Example Revisited

At each round t:

I randomly select M − 1 players (from N , possibly infinite players) to
compete with the representative advertiser

I aMt : second best price among the bids from M players

I reward rt = IwMt =1

[
(vt − aMt )− (1 + ρ)Ist<aMt (aMt − st)

]
I vt: conversion
I wt: indicator of winning (bid the highest price)
I st: current budget
I ρ: penalty of overbidding

I dynamic of the budget:

st+1 =

 st, wt 6= 1,
st − aMt , wt = 1 and aMt ≤ st,
0, wt = 1 and aMt > st.

I Budget fulfillment: modify the dynamics of st+1 with a non-negative
random budget fulfillment ∆(st+1) after the auction clearing, such
that ŝt+1 = st+1 + ∆(st+1).
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Performance against full-information

When transition P and reward r are known, replace Q-learning with
value iteration (VI) – GMF-V.

Qk+1
L (s, a)← Er(s, a, L) + γEs′∼P (s,a) maxa′ Q

k
L(s′, a′),

Table: Q-table with T GMF-V
k = 5000.

TGMF-Q
k 1000 3000 5000 10000
∆Q 0.21263 0.1294 0.10258 0.0989

Here ∆Q := ‖QGMF-V−QGMF-Q‖2
‖QGMF-V‖2 is the relative L2 distance between the

Q-tables.
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Performance against full-information

(a) GMF-Q. (b) GMF-V.

Figure: Q-tables: GMF-Q vs. GMF-V. 20 outer iterations.

Conclusion: our algorithm (requiring no specific information on P and
R) can learn almost as well as algorithms with full information.
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Performance against S.O.T.A.

Performance metric:

C(πππ) =
1

N |S|N
∑N

i=1

∑
sss∈SN

maxπi Vi(sss, (πππ
−i, πi))− Vi(sss,πππ)

|maxπi Vi(sss, (πππ−i, πi))|+ ε0
.

Here ε0 > 0 is a safeguard, and is taken as 0.1 in the experiments.
If πππ∗ is an NE, by definition, C(πππ∗) = 0 and it is easy to check that
C(πππ) ≥ 0.
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Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N -player
game with first-order mean-field approximation, Yang et al., 2018).

0 10000 20000 30000 40000 50000 60000 70000 80000

0.0
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0.5

0.6

0.7

c(
)

MF-Q
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GMF-Q

Figure: Learning accuracy based on C(πππ). |S| = |A| = 10, N = 20. 90%
confidence interval, 20 sample paths.
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Figure: Learning accuracy based on C(πππ). |S| = |A| = 20, N = 20. 90%
confidence interval, 20 sample paths.
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Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N -player
game with first-order mean-field approximation, Yang et al., 2018).
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Figure: Learning accuracy based on C(πππ). |S| = |A| = 10, N = 40. 90%
confidence interval, 20 sample paths.
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Conclusions

In this work, we

I build a generalized mean-field games framework with learning in a
MFG;

I establish the unique existence for the GMFG solution for the discrete
time version;

I propose a Q-learning algorithm with convergence and complexity
analysis;

I numerical experiments demonstrate superior performance compared
to existing RL algorithms.
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Reference:

I Guo, X., Hu, A., Xu, R. and Zhang, J. (2019).
Learning Mean-Field Games.
arXiv preprint arXiv:1901.09585.

Shah, D. and Xie, Q. (2018).
Q-learning with Nearest Neighbors.
In Advances in Neural Information Processing Systems, pp.
3111-3121.

38 / 38


	Mathematical Framework
	Motivating Problem
	General N-player game and GMFG
	RL for N=1

	GMFG with RL
	Existence and Uniqueness of GMFG solution
	Convergence and Complexity of RL
	Numerical Performance


