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Motivation: a sequential auction game

Ad auction problem for advertisers:

» Ad auction: a stochastic game on an ad exchange platform among a
large number of players (the advertisers)

» Environment: in each round, a web user requests a page, and then a
Vickrey-type second-best-price auction is run to incentivize
advertisers to bid for a slot to display advertisement

» Characteristics:

> partial information (unknown conversion of clicks, unknown bid price
of other competitors)
» changing states: budget constraint

Question: how should one bid in this sequential game with a large

population of competing bidders and unknown distributions of the
conversion of clicks/rewards and bids/actions of other bidders?



Motivation: sequential auction game

Literature

Reinforcement Learning

Solution: the simultaneous learning and decision-making problem in a
sequential auction with a large number of homogeneous bidders.

Mean-Field Games
» Full model approach: solve it as an N-player game
> multi-agent reinforcement learning: computationally intractable
» Approximation approaches:

> independent learners (regarding others as environment) (IL)
> multi-agent reinforcement learning with first-order (expectation)
mean-field approximation (MF-Q, Yang et al., 2018)

» Our approach: Reinforcement Learning (RL) + full distribution
Mean-Field Game (MFG) approximation
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Overview of MFG

Mean-Field Game (MFG) is
> a game with very large population of small interacting individuals

> large population: a continuum of players
» small interacting: strategy based on the aggregated macroscopic
information (mean field)

» originated from physics on weakly interacting particles

> theoretical works pioneered by Lasry and Lions (2007) and Huang,
Malhamé and Caines (2006)



Main ldea of MFG

» Take an N-player game;

» When N is large, consider instead the “aggregated” version of the
N-player game;

» By (f)SLLN, the aggregated version, MFG, becomes an
“approximation” of the N-player game, in terms of e-Nash
equilibrium



Classcial N-player Games
N-player game

. oS} . .
maximize,, Vi(s,m):=E | yri(ss,al)|s® =s
=0

subject to  si,; ~ P(sy,al)

N players, state space S, action space A;
s = (st,...,s)) € SN is the state vector;
a; = (ai,...,al”) € AV is the action vector;

admissible (Markovian) policy 7; : S¥ — P(A), with P(X) the
space of all probability measures over &X’;

vV v . vv

v

r' is the reward function for player ;
» P’ is the transition dynamics for player ;

v

~ is the discount factor;
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N-player Games

Definition (N-player game: Nash equilibrium (NE))

NE is a set of strategies such that no agent can benefit from unilaterally
deviating from this set of strategies. Formally, 7w* is an NE if for all i and
S,

Vi(s,w*) > Vs, (7], s Ty vy TN))

holds for any m; : SN — P(A).



From N-player Game to MFG
N-player game

maximize,, Vi(s,m) :=FE | vri(ss,al)|so =s
=0

subject to  si, | ~ P(s4,a}).

Assume identical, indistinguishable and interchangeable players.

When the number of players goes to infinity, view the limit of

—i_ .1 i—1 i+l N
sy = (8¢5

MFG

o0
maximize, V (s, 7, {p}:20) :=E | > vir(se, ar, pe)|so = s
=0

subject to  spr1 ~ P(s¢t, at, pir)-

.oy 8¢ .8 T, ...,s; ) as population state distribution ;.



Mean-Field Games (MFG)

MFG

o0
maximize, V (s, 7, {}:2) :=E [Z ver(se, ag, pt)|so = s
=0

subject to  spr1 ~ P(s¢, at, pir)-

» infinite number of homogeneous players, state space S, action space
A,

» sy €S and a; € A are the state and action of a representative agent
at time ¢;

> i € P(S) is the population state distribution at time ¢;

» admissible policy m: & x P(S) — P(A);

r is the reward function, P is the transition dynamics.

v
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Mean-Field Games (MFG)

Definition (Stationary NE for MFGs)

In MFGs, a pair (*, u*) is called a stationary NE if
1. (Single agent side) For any policy = and any initial state s € S, we
have
V (87 7T*’ {/‘*}fio) 2 V (57 T {M*}?io) .
2. (Population side) Ps, = p* for all t > 0, where {s;}32, is the
dynamics under control 7 starting from sy ~ u*, with
ap ~ (8¢, 1*), Ser1 ~ P(:[st, ar, p*).



General N-player Games

subject to

maximize,, Vi(s,7):=E [Z Yiri(se, al)|so = s]
=0

St1 ~ Pl(st, af).

1PN G4
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General N-player Games

maximize,, Vi(s,m):=FE | > v (s, al)|so = s]
. . t=0
subject to 57, ~ P'(s4,a}).

. 5. .

maximize,, V'(s,m):=FE |> v'r'(ss,a:)|s0 = s]
_ . =0

subject to s}, ~ P'(s4,a)

> ap = (ap, - ,ap).

1PN G4
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Generalized Mean-Field Games (GMFG)

MFG

maximize, V(s,m {u}i2y) :i=E [Z Yir(se, at, pe)|so = s}
=0

subject to  sir1 ~ P(s¢, ag, pir)-

GMFG

8

maximize, V(s,m, {L:}32,) :=E [Z Yir(se, at, Li)|so = s}
=0
subject to  s¢11 ~ P(s¢, at, Lt).

» L, € AISIIAlis the population state-action pair distribution at time
t, with state marginal y; and action marginal a; (population action
distribution);

o » i
> «; as an approximation of a; * = (a},...,a, ' ai™", ... alv).



Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair (m*, L*) is called a stationary NE if

1. (Single agent side) For any policy = and any initial state s € S, we

have
4 (sa 7T*a {L*}z?io) > 4 (Sv s {L*}z?io) .
2. (Population side) Ps, o, = L* for all t > 0, where {sy, a;}32, is the
dynamics under control T starting from sg ~ p*, with
ay ~ (8¢, 1), s¢+1 ~ P(:|s,a¢, L*), and p* being the population
state marginal of L*.
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Reinforcement learning: Overview

» Single agent problem with unknown P and r

o0

maximize, V(s,m) :=E [Z Yir(se, at)|so = s] ,
=0

subject to  sy11 ~ P(st,ar), ar ~m(sy), t>0.

» Simultaneous decision making of a; and learning of r and P,
optimal value V*(s) := max, V (s, )
» Examples: Chess/Go/Poker



Existing Algorithms for RL

» Discrete state and action spaces:
> Q-learning (Mnih, Kavukcuoglu, Silver, Graves, Antonoglou,
Wierstra, & Riedmiller, 2013)
» PSRL (Osband, Russo & Van Roy, 2013)
» UCRL2 (Jaksch, Ortner & Auer, 2010)
» Continuous state and action spaces:
> Policy gradient (Williams, 1992)
» Actor-Critic (Konda & Tsitsiklis, 2000)
> Linear Quadratic Regulator (LQR): Abbasi-Yadkori & Szepesvari,
2011; Dean, Mania, Matni, Recht, Tu, 2018

15/38



Q-learning

> Q-function: Q*(s,a) :=Er(s,a) + YEyp(s,a)V*(s')
» Bellman equation (for Q-function):

Q*(S, a) = ET(S, a) + ’YES’NP(s,a) max Q* (8/» a/)
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Q-learning

> Q-function: Q*(s,a) :=Er(s,a) + YEyp(s,a)V*(s')
» Bellman equation (for Q-function):

Q*(S, a) = ET(S, a) + ’Y]ES/NP(S,(L) max Q* (8/» a/)

» Q-learning: stochastic approximation to the Bellman equation:

Q" (s,a)
(1= Bi(s,0)Q"(s,0) + Bils, a) | (s, a) + ymax Q" (s, a’)}

16 /38



Key gradients in Q-learning

» With finite state and action spaces, Q* are matrices
» Choice of appropriate S;(s,a) and exploration in a:
> € - greedy: ax € arg max Qk(sk,a) with probability 1 — ¢, and ay,
chosen randomly from A with probability €
» Boltzmann policy: based on a softmax operator parameterized by ¢

’Qk%Q*

17 /38
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(Recall) Nash Equilibrium in GMFGs

Definition (Stationary NE for GMFGs)

In GMFGs, an agent-population pair (m*, L*) is called a stationary NE if

1. (Single agent side) For any policy = and any initial state s € S, we

have
14 (S, 7T*a {L*}gio) 2 14 (57 , {L*}gio) .
2. (Population side) Ps, o, = L* for all t > 0, where {sy, a;}32, is the
dynamics under control T starting from sg ~ p*, with
ay ~ (8¢, 1), s¢+1 ~ P(:|s,a¢, L*), and p* being the population
state marginal of L*.



Fixed point/Three-step approach

» Step 1: given L, solve the stochastic control problem to get 77 :

maximize, V(s,m,L) :=E |> v'r(s¢,as, L)|so = 8|,
=0

subject to  sy11 ~ P(st,aq, L).

» Step 2: given 7}, update from L for one time step to get L’
following the dynamics.

» Step 3: Check whether L’ matches L, and repeat.

19/38



Mappings I'y and I'y

» Take any fixed population action-state distribution L € P(S x A),
I :PExA) —-:={n|n:S—>PA},

such that 77 = I'1(L) is an optimal policy given L.

» For any admissible policy 7 € Il and L € P(S x A), define
Iy : I xP(S xA) = P(S xA) as

Lo(m, L) :== L' =Py, 4,,

where a; ~ 7(s1), s1 ~ puP(:|-,a0,L), ap ~ 7(so), so ~ p, and pu is
the population state marginal of L.



Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu, & Zhang, 2019)

For any GMFG, ifT'y o 'y is contractive, then there exists a unique
stationary NE. In addition, the three-step approach converges.

Remark 1: Here the uniqueness is in the sense of L.
Remark 2: Similar assumption and result can be found in (Huang,
Malhamé & Caines, 2006) for MFGs.
Remark 3: We indeed established Theorem 1 in much more general
settings without directly assuming contractivity, and we allow for
» non-stationarity, general compact state and action spaces, and
Wasserstein metrics.

See our draft for more details.



Existence and Uniqueness

Theorem 1 (Guo, Hu, Xu, & Zhang, 2019)

For any GMFG, ifT'y o 'y is contractive, then there exists a unique
stationary NE. In addition, the three-step approach converges.

Remark 1: Here the uniqueness is in the sense of L.
Remark 2: Similar assumption and result can be found in (Huang,
Malhamé & Caines, 2006) for MFGs.
Remark 3: We indeed established Theorem 1 in much more general
settings without directly assuming contractivity, and we allow for
» non-stationarity, general compact state and action spaces, and
Wasserstein metrics.

See our draft for more details.

» Question: How to solve the GMFG when there is uncertainty in r
and P? Assume in the following that S and A are both finite.



Bridge MFG with RL: Finding NE

Three-step approach revisited:

» Step 1: given L, solve the stochastic control problem to get 77 :

maximize, V(s,m,L):=E |> v'r(s,as, L)|so = |,
=0

subject to  s¢11 ~ P(s¢, a4, L).

> Step 2: given 7}, update from L for one time step to get L’
following the dynamics.

» Step 3: Check whether I’ matches L.



Bridge MFG with RL: Finding NE

Three-step approach revisited (when P and R are unknown):

» Step 1: given L, solve a RL problem with transition dynamics
Pr(s'|s,a) := P(s'|s,a, L) and reward rr(s,a) :=r(s,a, L) via
Q-learning:

Ml(s,a)

— (1= Bi(s,0))Q% (s,a) + Bi(s,a) [7'(5,@, L) + ymax, Q]‘i(s',a')} .

> Step 2: given 7}, update from L for one time step to get L’
following the dynamics.

» Step 3: Check whether I’ matches L.
Remark: 77} (s) € argmax, Q7 (s,a). When argmax is non-unique,
replace it with argmax-e, which assigns equal probability to the
maximizers.



Naive RL Algorithm for GMFG

Al

gorithm 1 Naive Q-learning for GMFGs

W N =

. Input: Initial population state-action pair Ly

: for k=0,1,--- do
Perform Q-learning to find the Q-function Qj(s,a) = QF, (s,a)
of an MDP with dynamics Pr, (s|s,a) and reward distributions
Ry, (s,a).
Solve mj, € IT with 7 (s) = argmax-e (Q} (s, -))-
Sample s ~ g, where py is the population state marginal of Ly,
and obtain Ly from G(s, 7, Li).

end for




Failure of the Naive Algorithm

Failure examples:

0 20 40 60 80 100 0 20 40 60 80
outer iteration

outer iteration

(a) fluctuation in leo. (b) fluctuation in .

Figure: Fluctuations of Naive Algorithm (30 sample paths).

100

Qe
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Problems in the Naive Algorithm: Approximation Errors

Algorithm 1 Naive Q-learning for GMFGs

1: Input: Initial population state-action pair Lo
2. for k=0,1,--- do

impossible

3:  Perform Q-learning to find the Q-function Q}(s,a) = Q7 (s,a)
of an MDP with dynamics Pr, (s’|s,a) and reward distributions
Ry, (s,a).

unstable

:  Solve m, € II with m,(s) = argmax-e (Q}(s,-)).

5:  Sample s ~ uy, where uy is the population state marginal of Ly,
and obtain Ly from G(s, 7y, Li).

——

unstable

6: end for
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Instability of argmax-e:

Magnify the Approximation Errors

» = (1,1), then argmax-e(x) = (1/2,1/2).

27 /38



Instability of argmax-e:

Magnify the Approximation Errors

» = (1,1), then argmax-e(x) = (1/2,1/2).
» y = (1,1 —¢), then for any ¢ > 0, argmax-e(y) = (1,0).



Instability of argmax-e:

Magnify the Approximation Errors

» = (1,1), then argmax-e(z) = (1/2,1/2).
» y = (1,1 —¢), then for any ¢ > 0, argmax-e(y) = (1,0).

> ||argmax-e(z) — argmax-e(y)||2/||x — y||]2 = 1/€ — non-Lipschitz.



Stable Algorithm for GMFG (MF-AQ)

Algorithm 2 Q-learning for GMFGs (GMF-Q)

1: Input: Initial Lg, tolerance € > 0.
2: for k=0,1,--- do
3:  Perform Q-learning for T} iterations to find the approximate

Q-function Q%(s,a) = sz (s,a) of an MDP with dynamics
Pr, (s's,a) and reward distributions Ry, (s,a).
Compute 7 € IT with 7., (s) = softmax.(Q% (s, -)).

5:  Sample s ~ ug, where puy is the population state marginal of Ly,
and obtain I~/k+1 from G(s,m, Lg).

6: Find Ly11 = Projg (Li41)

7: end for '

Remark. Here S, is a e-net of L, and softmax.(z); = > exp(ezs)

;'L=1 exp(cx;) "



Outline

Mathematical Framework

GMFG with RL

Convergence and Complexity of RL



Convergence

Theorem 2 (Guo, Hu, Xu, & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for
any specified tolerances e, 6 > 0, with appropriate choices of Ty, ¢ and
Se, limsupy,_, .o W1 (Ly, L*) = O(e€) with probability at least 1 — 20.

Here W is the ¢; Wasserstein distance, a.k.a. earth mover distance.



Complexity of MF-AQ

Theorem 3 (Guo, Hu, Xu. & Zhang, 2019)

Given the same assumptions in the existence and uniqueness theorem, for
any specified tolerances €, § > 0, set Ty, ¢ and S, appropriately. Then
with probability at least 1 — 26, W1 (L., L*) = O(e€), and the total
number of iterations T = " ro " Ty, is bounded by

T—0 (K39/3 (log(K. /5))41/3) :

Here K. := [2max {(ne)~/",log(¢/max{diam(S)diam(A),1}) + 1) }]
is the number of outer iterations.
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Repeated Auction Example Revisited

At each round ¢:

>

randomly select M — 1 players (from N, possibly infinite players) to
compete with the representative advertiser

aM: second best price among the bids from M players

reward 1y = Ly (00 = @) = (14 p)l,, capr (0! = s1)]

> ;. conversion

> wy: indicator of winning (bid the highest price)

> ;. current budget

> p: penalty of overbidding

dynamic of the budget:
St Wy 7& 1)
Str1 = S¢ — a,{VI, wy = 1 and a,{” < s,

0, wy = 1 and af” > 5.

Budget fulfillment: modify the dynamics of s;;1 with a non-negative
random budget fulfillment A(s;11) after the auction clearing, such
that <§t+1 = St+1 + A(St+1).
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Performance against full-information

When transition P and reward r are known, replace Q-learning with
value iteration (VI) - GMF-V.

"1(s,a) « Er(s,a, L) + YEg P (s,a) MaXqr QY (s, d),

Table: Q-table with TEYFV = 5000.

TeMQ | 1000 | 3000 | 5000 | 10000
AQ ] 0.21263 | 0.1294 | 0.10258 | 0.0989

Here AQ := W is the relative Ly distance between the
Q-tables.



Performance against full-information

—0 -0
-3 -3
- -
-9 -9
-12 -12
-15 -15
1 2 3 4 5 6 7 8 9

(a) GMF-Q. (b) GMF-V.

9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

0

Figure: Q-tables: GMF-Q vs. GMF-V. 20 outer iterations.

Conclusion: our algorithm (requiring no specific information on P and
R) can learn almost as well as algorithms with full information.



Performance against S.O.T.A.

Performance metric:

maXgi 4(37 (ﬂ-iiaﬂ-i)) — ‘/i(saﬂ-)
cm N|3|N ZZ 12 e | maxz: Vi(s, (=, 7)) + €0

Here ¢y > 0 is a safeguard, and is taken as 0.1 in the experiments.
If 7 is an NE, by definition, C(m*) = 0 and it is easy to check that
C(m) > 0.
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Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N-player
game with first-order mean-field approximation, Yang et al., 2018).

0 10000 20000 30000 40000 50000 60000 70000 80000

Figure: Learning accuracy based on C(w). |S| = |A| =10, N = 20. 90%
confidence interval, 20 sample paths.
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Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N-player
game with first-order mean-field approximation, Yang et al., 2018).

0.8

07’\\

0.6
05
E
T 04
0.3
0.2
0.1
0.0
0 10000 20000 30000 40000 50000 60000 70000 80000

Figure: Learning accuracy based on C(w). |S| = |A| =20, N = 20. 90%
confidence interval, 20 sample paths.
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Performance against S.O.T.A.

Compare our GMF-Q with IL (independent learners) and MF-Q (N-player
game with first-order mean-field approximation, Yang et al., 2018).

0 10000 20000 30000 40000 50000 60000 70000 80000

Figure: Learning accuracy based on C(w). |S| = |A| =10, N = 40. 90%
confidence interval, 20 sample paths.
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Conclusions

In this work, we

> build a generalized mean-field games framework with learning in a
MFG;

> establish the unique existence for the GMFG solution for the discrete
time version;

> propose a Q-learning algorithm with convergence and complexity
analysis;

» numerical experiments demonstrate superior performance compared
to existing RL algorithms.



Thank you!
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