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What is online super level set estimation?

@ Super level set: Determining the
subregion where a function f exceeds a
given threshold t, i.e., where f(x) > t.
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What is online super level set estimation?

@ Super level set: Determining the
subregion where a function f exceeds a
given threshold t, i.e., where f(x) > t.

“ “ ') e Estimation: assume that function
evaluations are costly, and we only
have access to the noisy observations:
‘ ‘ ‘ y(x) = f(x) + ¢ e~ N(0,02).
@ Online: No batch data (i.e., no prior
dataset); instead actively collect data

and adjust sampling plan based on
observations.

Junzi Zhang (Stanford University) November 6, 2018 4 /26



Why online super level set estimation? (Applications)

@ Often not interested at finding the
maximum of f(-), i.e., f(x) > tis
sufficient.
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Why online super level set estimation? (Applications)

@ Often not interested at finding the
maximum of f(-), i.e., f(x) > tis /
sufficient. -

@ Surpassing a particular value t indicates | -

that the system meets the
requirements, not interested in the

a
actual value of f(x) / fon
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@ Example: what is the minimum l/./‘\/at

performance (e.g., accuracy, i
reproducibility, ...) of the sensors that
will ensure reliable collision avoidance?
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Mathematical formulation

@ Given a function f : Q — R and a threshold t € R, we consider the
problem of finding the region £ such that:

P{f(x) >t} >1-4. (1)
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Mathematical formulation

@ Given a function f : Q — R and a threshold t € R, we consider the
problem of finding the region £ such that:

P{f(x) >t} >1-4. (1)

@ No gradient information (f(-) is accessed through a black box).

@ Model: can obtain noise-corrupted measurements

y(x) = f(x) +e

where ¢ ~ N(0, 02).
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Gaussian Processes

o Data efficiency: we adopt a Bayesian
framework.
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e We model f(x) as a sample from a
Gaussian process (GP) with prior
mean po(x) and kernel ko(x,x’). What
if the prior is wrong? more on this later.
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Gaussian Processes

o Data efficiency: we adopt a Bayesian
framework.

e We model f(x) as a sample from a
Gaussian process (GP) with prior
mean po(x) and kernel ko(x,x’). What
if the prior is wrong? more on this later.

o If we query at point x € €, then we
obtain a noisy measurement
y = f(x) + ¢, where e ~ N(0,0?) are
2 independent noises.
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Gaussian Process Update

[llustrative example of GP update: the essence is just linear algebra
(Schur complement computation).
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Existing Algorithms

Variance based algorithms:

e Straddle (NIPS 2005, no theory): heuristically samples close to
threshold t + Exploration (acquisition func: Straddle score)
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Identifies the level sets with high probability with some € error
(acquisition func: ambiguity, generalization of Straddle score)
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Existing Algorithms

Variance based algorithms:
e Straddle (NIPS 2005, no theory): heuristically samples close to
threshold t + Exploration (acquisition func: Straddle score)

e LSE (ICML 2013, Bayesian PAC):
Identifies the level sets with high probability with some € error
(acquisition func: ambiguity, generalization of Straddle score)

e TruVaR (NIPS 2016, Bayesian PAC):
Aims at global variance reduction, similar performance to LSE
(acquisition func: truncated variance reduction)
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Existing Algorithms (continued)

Volume based algorithms:

o AAS (AISTATS 2014, no theory):
Aims at identifying the a large volume of (super)-level set (similar to
our approach), but no convergence theory is established
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Existing Algorithms (continued)

Volume based algorithms:

o AAS (AISTATS 2014, no theory):
Aims at identifying the a large volume of (super)-level set (similar to
our approach), but no convergence theory is established

o APPS (AISTATS 2015, no theory): extension of AAS.
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Our Contributions

@ Propose a statistically and computationally efficient algorithm to
identify the super-level set which is robust with respect to model
misspecification.
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Our Contributions

@ Propose a statistically and computationally efficient algorithm to
identify the super-level set which is robust with respect to model

misspecification.
@ Usually better numerical performance than state-of-the-art algorithms
with provable exploration guarantees.
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RMILE Algorithm
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RMILE Algorithm

@ Measure the current volume above the threshold:

18 =" 1{Pep (f(x) > t) > 1 - 8}

xeN
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RMILE Algorithm

@ Measure the current volume above the threshold:

163 = D" 1{Pep (F(x) > £) > 1~ 5}

xeN

@ Choose the next query point x* that yields the maximum (expected)
improvement:

I(t)

(1)
GP+ /

GP+

|

arg max E,+ = argmax E,+
X X

Junzi Zhang (Stanford University) November 6, 2018 14 / 26



RMILE Algorithm

@ Measure the current volume above the threshold:

18 =" 1{Pep (f(x) > t) > 1 - 8}
xeQN

@ Choose the next query point x* that yields the maximum (expected)
improvement:

I(t)

(1)
GP+ /

arg max £
g s y+t GP+

|

= argmax E,+
X

Here the expectation is taken with respect to the random outcome
yT resulting from sampling at x* and is conditioned on the filtration
up to the current time step.
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RMILE Algorithm

@ Measure the current volume above the threshold:

= 1{Pcp(f(x)>t)>1-4}

xeN

@ Choose the next query point x* that yields the maximum (expected)
improvement:

(1)

18 GP+

GP+

O _
— ‘IGP =arg n:(ixEer

arg nlix E,+
Here the expectation is taken with respect to the random outcome
yT resulting from sampling at x* and is conditioned on the filtration
up to the current time step.

e Robustification: Incorporate an exploration term yogp(x1) in the
acquisition function:

»yoep(x)}

Junzi Zhang (Stanford University) November 6, 2018 14 / 26

Ecp(xT) := max{Ey+

_‘It 60)

GP+



Robustification

@ Acquisition Function

I(t)

argmax Egp(xh) :=arg max max{E,+ [lcp: |— |Igp™|, vo6p(xT)} (%)

where v > 0, €g > 0 are two small user-defined constants.

Algorithm 1 Robust Max Improvement Level-set Estimation (RMILE)

Input: prior mean pg, kernel kg, objective function
fori=1,2,... do
Choose x™ according to (*)
Query the objective function at x™ to obtain y™
Update GP* < GP using (x*,y™)
Estimate super-level set Igp as Igp := {x € Q| Pgp(f(x) > t) > d}.
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@ Asymptotic Convergence on Finite Grids
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Provable exploration guarantees

Lemma (informal)

If RMILE is run on a finite grid, and if a point x is sampled K times, then
its RMILE score Egp(x) = Q(1/K). In particular, if RMILE is run without
termination, then no point is sampled only finitely often.
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Provable exploration guarantees

Lemma (informal)

If RMILE is run on a finite grid, and if a point x is sampled K times, then
its RMILE score Egp(x) = Q(1/K). In particular, if RMILE is run without
termination, then no point is sampled only finitely often.

@ Maximizing the known volume above the threshold drives more
pro-active discovery of the super-level set (exploitation)

@ Asymptotically all points are sampled infinitely often with the help of
the robustification variance term (unknown function is gradually
revealed at the grid points) (exploration)

@ In some sense, asymptotic convergence occurs even if the initial
model is misspecified (as is typically the case)

e Purely algebraic proof based on taking limits in Schur complement
update formula of Gaussian processes
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Intuition for why it works

Acquisition Function: arg max,+ max{E,+ |lgp+| — |lgp|,vocp(xT)}
o initially Ey+ |Igp+| — |lgp| > yoep(xT) because v > 0 is small
o E,« |lgp+| — |lgp| drives exploitation
e coupled with a good prior makes the method efficient
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Intuition for why it works

Acquisition Function: arg max,+ max{E,+ |lgp+| — |lgp|,vocp(xT)}
o initially Ey+ |Igp+| — |lgp| > yoep(xT) because v > 0 is small
o E,« |lgp+| — |lgp| drives exploitation
e coupled with a good prior makes the method efficient
@ at some point it may happen that E + [/gp+| — |lgp| < 0, i.e., the
algorithm is pessimistic about getting new samples. This would make
the algorithm stall (i.e., not try new sampling locations)

o Ey+ |lgp+| — |lgp| < voep(xT), so yoep(x™) pushes for exploration.
@ this robustification modification can work with any acquisition
function that satisfies mild conditions, i.e., this approach can be
extended beyond the objective of this paper
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© Numerical Results
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Necessity for Robustification

o MILE: v = —o0, ¢g = 0;

@ RMILE: v = €p = 1e-8 (similar results for other positive v and ¢p).

F1 scores

F1-score

0.2 —=MILE
——RMILE

0 20 40 60 80 100
number of samples

F1 scores

0 20 40 60 80 100
number of samples

Figure: Himmelblau's function. Left: small noise. Right: large misspecified noise.
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Necessity for Robustification (Continued)

A snapshot of intermediate steps:

Figure: Left: Himmelbleu's function. Middle: MILE. Right: RMILE.
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2D Synthetic Problems

Plotting F; score of RMILE vs Straddle! and LSE 2.

& sin(10x) +cos(4y) — cos(3xy) S

Ay "Z‘;""'l" i
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Figure: Sinusoidal function (left), and Himmelblau's function (right).

1Bryan et al. Active learning for identifying function threshold boundaries. NIPS 2005
2A. Gotovos at al. Active learning for level set estimation. IJCAI 2013
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How does the algorithm sample?

Figure: Far left: true contours for the sinusoidal function. Location of the first 15
samples along with the contours given by the GP for pgp(x) — 1.9606p(x) for
RMILE (middle left), Straddle (middle right) and LSE (far right).

Junzi Zhang (Stanford University) November 6, 2018 23 /26



Simulation Problem

Consider estimating actuator performance re-

quirements in an automotive setting. We seek

to determine the necessary precision for lon- ) s
gitudinal and lateral acceleration maneuvers T
of simulated vehicles such that the likelihood

of hard braking events is below a threshold.

04 ..r,/;z; “[‘g\’::. .

Figure: Contours for pgp(x) — 1.9606p(x). 20 points budget. RMILE is on left,
LSE in the center, and Straddle om the right. The yellow region is the area
identified as above the threshold by the Gaussian process.

Junzi Zhang (Stanford University) November 6, 2018 24 / 26



e Objective: identify regions that meet requirements f(x) > t with
high probability.
@ To enable high statistical efficiency we use Gaussian processes.

@ Provable exploration: we provide some simple exploration
guarantees that address the model misspecification both in theory and
in practice.

@ Robustification also improves practical performance in terms of
accuracy.

o Future directions: extend this robustification to other acquisition
functions as well as to safe exploration.
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Thanks for listening!
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