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What is online super level set estimation?

Super level set: Determining the

subregion where a function f exceeds a

given threshold t, i.e., where f (x) > t.

Estimation: assume that function

evaluations are costly, and we only

have access to the noisy observations:

y(x) = f (x) + ε, ε ∼ N (0, σ2
ε ).

Online: No batch data (i.e., no prior

dataset); instead actively collect data

and adjust sampling plan based on

observations.
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Why online super level set estimation? (Applications)

Often not interested at finding the

maximum of f (·), i.e., f (x) ≥ t is

sufficient.

Surpassing a particular value t indicates

that the system meets the

requirements, not interested in the

actual value of f (x)

Example: what is the minimum

performance (e.g., accuracy,

reproducibility, . . . ) of the sensors that

will ensure reliable collision avoidance?

alat

alon
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Mathematical formulation

Given a function f : Ω→ R and a threshold t ∈ R, we consider the

problem of finding the region Ω such that:

P{f (x) > t} ≥ 1− δ. (1)

No gradient information (f (·) is accessed through a black box).

Model: can obtain noise-corrupted measurements

y(x) = f (x) + ε

where ε ∼ N(0, σ2
ε ).
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Gaussian Processes

Data efficiency: we adopt a Bayesian

framework.

We model f (x) as a sample from a

Gaussian process (GP) with prior

mean µ0(x) and kernel k0(x, x′). What

if the prior is wrong? more on this later.

If we query at point x ∈ Ω, then we

obtain a noisy measurement

y = f (x) + ε, where ε ∼ N(0, σ2
ε ) are

independent noises.
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Gaussian Process Update

Illustrative example of GP update: the essence is just linear algebra

(Schur complement computation).
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Existing Algorithms

Variance based algorithms:

Straddle (NIPS 2005, no theory): heuristically samples close to

threshold t + Exploration (acquisition func: Straddle score)

LSE (ICML 2013, Bayesian PAC):

Identifies the level sets with high probability with some ε error

(acquisition func: ambiguity, generalization of Straddle score)

TruVaR (NIPS 2016, Bayesian PAC):

Aims at global variance reduction, similar performance to LSE

(acquisition func: truncated variance reduction)
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Existing Algorithms (continued)

Volume based algorithms:

AAS (AISTATS 2014, no theory):

Aims at identifying the a large volume of (super)-level set (similar to

our approach), but no convergence theory is established

APPS (AISTATS 2015, no theory): extension of AAS.
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Our Contributions

Propose a statistically and computationally efficient algorithm to

identify the super-level set which is robust with respect to model

misspecification.

Usually better numerical performance than state-of-the-art algorithms

with provable exploration guarantees.
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RMILE Algorithm

Measure the current volume above the threshold:

|I (t)
GP | =

∑
x∈Ω

1 {PGP (f (x) > t) > 1− δ}

Choose the next query point x+ that yields the maximum (expected)

improvement:

arg max
x+

Ey+

∣∣∣I (t)
GP+

∣∣∣− ∣∣∣I (t)
GP

∣∣∣ = arg max
x+

Ey+

∣∣∣I (t)
GP+

∣∣∣
Here the expectation is taken with respect to the random outcome

y+ resulting from sampling at x+ and is conditioned on the filtration

up to the current time step.

Robustification: Incorporate an exploration term γσGP(x+) in the

acquisition function:

EGP(x+) := max{Ey+

∣∣∣I (t)
GP+

∣∣∣− ∣∣∣I (t−ε0)
GP

∣∣∣ , γσGP(x+)}
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Robustification

Acquisition Function

arg max
x+

EGP(x+) := arg max
x+

max{Ey+

∣∣∣I (t)
GP+

∣∣∣−∣∣I t−ε0
GP

∣∣ , γσGP(x+)} (∗)

where γ > 0, ε0 > 0 are two small user-defined constants.

Algorithm 1 Robust Max Improvement Level-set Estimation (RMILE)

Input: prior mean µ0, kernel k0, objective function

for i = 1, 2, . . . do

Choose x+ according to (∗)
Query the objective function at x+ to obtain y+

Update GP+ ← GP using (x+, y+)

Estimate super-level set IGP as IGP := {x ∈ Ω | PGP(f (x) > t) > δ}.
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Provable exploration guarantees

Lemma (informal)

If RMILE is run on a finite grid, and if a point x is sampled K times, then

its RMILE score EGP(x) = Ω(1/K ). In particular, if RMILE is run without

termination, then no point is sampled only finitely often.

Maximizing the known volume above the threshold drives more

pro-active discovery of the super-level set (exploitation)

Asymptotically all points are sampled infinitely often with the help of

the robustification variance term (unknown function is gradually

revealed at the grid points) (exploration)

In some sense, asymptotic convergence occurs even if the initial
model is misspecified (as is typically the case)

Purely algebraic proof based on taking limits in Schur complement
update formula of Gaussian processes

Junzi Zhang (Stanford University) November 6, 2018 17 / 26
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Intuition for why it works

Acquisition Function: arg maxx+ max{Ey+ |IGP+ | − |IGP | , γσGP(x+)}
initially Ey+ |IGP+ | − |IGP | � γσGP(x+) because γ > 0 is small

Ey+ |IGP+ | − |IGP | drives exploitation
coupled with a good prior makes the method efficient

at some point it may happen that Ey+ |IGP+ | − |IGP | / 0, i.e., the
algorithm is pessimistic about getting new samples. This would make
the algorithm stall (i.e., not try new sampling locations)

Ey+ |IGP+ | − |IGP | < γσGP(x+), so γσGP(x+) pushes for exploration.

this robustification modification can work with any acquisition

function that satisfies mild conditions, i.e., this approach can be

extended beyond the objective of this paper
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Necessity for Robustification

MILE: γ = −∞, ε0 = 0;

RMILE: γ = ε0 = 1e-8 (similar results for other positive γ and ε0).
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Figure: Himmelblau’s function. Left: small noise. Right: large misspecified noise.
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Necessity for Robustification (Continued)

A snapshot of intermediate steps:
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Figure: Left: Himmelbleu’s function. Middle: MILE. Right: RMILE.
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2D Synthetic Problems

Plotting F1 score of RMILE vs Straddle1 and LSE 2.
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Figure: Sinusoidal function (left), and Himmelblau’s function (right).

1
Bryan et al. Active learning for identifying function threshold boundaries. NIPS 2005

2
A. Gotovos at al. Active learning for level set estimation. IJCAI 2013
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How does the algorithm sample?
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Figure: Far left: true contours for the sinusoidal function. Location of the first 15
samples along with the contours given by the GP for µGP(x)− 1.96σGP(x) for
RMILE (middle left), Straddle (middle right) and LSE (far right).
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Simulation Problem

Consider estimating actuator performance re-

quirements in an automotive setting. We seek

to determine the necessary precision for lon-

gitudinal and lateral acceleration maneuvers

of simulated vehicles such that the likelihood

of hard braking events is below a threshold.

Figure: Contours for µGP(x)− 1.96σGP(x). 20 points budget. RMILE is on left,
LSE in the center, and Straddle om the right. The yellow region is the area
identified as above the threshold by the Gaussian process.
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Summary

Objective: identify regions that meet requirements f (x) > t with

high probability.

To enable high statistical efficiency we use Gaussian processes.

Provable exploration: we provide some simple exploration

guarantees that address the model misspecification both in theory and

in practice.

Robustification also improves practical performance in terms of

accuracy.

Future directions: extend this robustification to other acquisition

functions as well as to safe exploration.
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Thanks for listening!
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