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Abstract
We introduce a language-independent strategy for
inducing part of speech tags from corpora. Unlike
other techniques that use language-specific lexicons,
rulesets, and so forth to tag, our algorithm bootstraps
only from cluster properties and language universals.
We describe the theory and illustrate an introductory
experiment which verifies the feasibility of this near-
knowledge-free tag induction strategy. We induce
tags for perfect syntactic clusters generated from the
Brown corpus getting 77% of our hypotheses correct.

1 Introduction

Knowledge of part of speech (POS) categories for words in
text corpora is an important ingredient for various tasks in
computationa linguistics. In the past, there have been five
principa methods for labeling syntactic categories:

(2) tag words by hand

(2) apply hand-built or learned ruleg/statistics

(3) stochastically tag using alexicon

(4) infer tags using parallel corpora and tags

from another language

(5) automatically induce syntactic clusters.

Each approach has strengths and weaknesses. When
approaching a new domain, the first, using human-provided
labels, is sometimes needed due to lack of linguistic resources.
Y et the expense and tedium of hand-tagging a corpus for each
new language makes this option undesirable.

The second strategy is more powerful than the first: once
rules are determined, the tagger can readily provide POSs for
multiple corpora in the same domain without any additional
effort. However, using hand-built rules [Harris, 1962; Klein
and Simmons, 1963] can be brittle. It is possible to use a
pretagged corpus or lexicon to learn robust rules or statistical
properties for tagging [Brill, 1995; Voutilainen, 1995;
Samuelsson and Voutilainen, 1997], but the need for an initial
expert when moving across languages cannot be escaped.

Electronic dictionaries containing POS tags are becoming
more prevalent, so the third approach [Bahl and Mercer, 1976;
Jelinek, 1985; Church, 1989; Merialdo, 1991; Kupiec, 1992;

etc.] is widely applicable. Similarly, since severa hand-
tagged corporaexist (such as the Brown Corpus [Francis and
Kucera, 1983 in English) and since parallel corpora ae
increasing in avail abilit y, the fourth approad [ Y arowsky, et
al., 2007 isaso very powerful. Y et, there remain languages
where lexicons and peralel corpora do nd exist. In such
cases, neither approach is applicable.

The last approacd is appeding in that one might exped that
theindwction of syntadic dusters [Brown, et al., 1992 Chater
and Finch, 1992 Schiitze, 1993 Pereira, et al., 1993,Niedler,
et al., 1998 Clark, 200q is data and language-independent
and is certainly inexpensive in term of human expert labor.
Y et having syntadic dusterswithout correspondng POS tags
has limited appli cability. Many agorithms which make use of
POS need knowledge of adua syntadic dasses of words
instead of the abitrary clustersto which they belong.

A highly desirable solution would be aknowledge-free
algorithm that automaticdly induces appropriate POS clusters
and tags in many languages and requires littl e or no human
inpu. To ou knowledge, such an agorithm has never been
proposed. We describe an approach for tadling a subset of
this problem. We illustrate an algorithm which, given
syntadic dusters, automaticdly determines the crrespondng
POStagsfor those dusters. Moreover, our agorithm requires
no language-dependent human input or resource The only
human-provided information avail able to our algorithm is a
list of existing language universal rules [Greenberg, 1966
Convrie, 198; Croft, 1991 Plank and Fili minova, 1994 and
arudimentary knowledge of word spadng and purctuationfor
tokenizing. Using existing universals has the advantage that
no additional human effort is needed to pat the tagging
algorithm aaosslanguages.

Our algorithm mekes dedsions by taking advantage of
join-treebased Bayesian Networks [Jensen, 1996, induced
morphdogy [Schore and Jurafsky, 200Q, and automaticdly-
extraded feaures. Furthermore, it reades its conclusions
without explicit knowledge of the POS tags available in the
language of applicaion. Though we exped this approad to
be gpli cable to multi ple languages, weiill ustrate preli minary
results of its performance on the Brown corpusin English.



2 Data Precursors

Before describing the induction process it is first useful to
illustrate the data needed to automaticdly induce POS tags.
Esentially we need threepieces of data. We first assume we
have areasonably-sized text corpus. Secondy, we need a set
of syntadic dusters generated from that corpus. It has been
shown that using text corpora, the distributional properties of
words make it possble to cluster words acwrding to their
syntadic functions. These dusters provide statisticd clues
which signal the likelihood d their being one POS more than
another. The fina ingredient neaded is a wlledion d
syntadic language universals, i.e., syntadic properties that
hold true aaoss languages. Such universals exist and
identify the expeded types of classes in genera languages,
potential orderings between classes, and “symbiotic” classes
which tend to bind to ore ancther. In this sdion, we will
discussead o these pieces of information with particular
emphasis onthe feaures derivable from the dusters and from
the language universals sncethese ae key ingredients of the
indwctive process

2.1 Data and syntactic clusters

As mentioned before, there have been numerous eff orts to
induce syntadic dusters. We muld choose awy of these
techniques or develop a separate one. However, to avoid
confoundng issues between clustering errors and tagging
errors, we aume here that we ae given the output of some
“perfed” clustering agorithm. We can oltain perfed clusters
by colleding together al the nours, verbs, etc. from a truth-
marked corpus and then throwing away the initial POS tags.
Having truth markings also alows us to acarately assess
performance uponcompletion d the induction stage.

We choase the Brown Corpus [Francis and Kuéera, 1987
for our induction corpus. This corpus contains abou one
milli on words. It also serves as an excdlent dataset for
asembling “perfed clusters’ since every word hes been
labeled by hand with a POS [Marcus, et al., 1993. The
corpus has 48 POS tags, bu we mnsoli date these by groupng
punctuationinto single dusters and groupng subsets of larger
classes (such as collapsing VBG, the gerund form of verbs,
into the more general classfor verbs, VB). This consolidation
leaves 20 generd classes: determiners, proper nours, common
nours, verbs, prepasitions, genitives, adjedives, purctuations,
adverbs, question terms, conjunctions, infinitive markers,
pronours, numbers, modal verbs, pronamina determiners,
existentials, list indices, interjedions, and foreign words. A
given word W can be amember of severa classes, so we
provide our algorithmalist, { ¢4, py, ©, By, ...} Where ¢ isthe
ith cluster and @ is the probability that W occurs in cluster i.

2.2 Cluster Properties

We extrad numerous fedures from the dusters, bu we wil |
here ony make mention d those that we have airrently

employed in theinduction process In particular, we identify
openness affixation, optionality, numeracy, cluster order, and
boundclasses. The foll owing sedions describe eab feaure
aswell as how we obtain and employ them in the induction.

Openness

A POS classis cdled open if the number of unique words
contained within it will continue to grow as the crpus sze
increases toward infinity. All other finite dasses are closed.
Nours and verbs exist in most every language, and sincethey
arethe principal conveyors of information, ore would exped
that for most languages, these dases will be open. Althowgh
adjedives typicdly exist aaoss languages, there ae
languages which oy alow for alimited number of adjedival
types (such as iape and color). Adverbs do rot have to exist
at al. Noretheless if any classes are open, ore would exped
these four to be open, as well as numbers and, perhaps,
interjedions andforeign words. All other classes are dosed.

Identification d opennessversus closednessturns out to be
arather simple problem. If we recognizethat closed classes
arefinite, we would exped that if we start at the beginning of
a corpus looking for al words in that class we will quickly
read a point where we have seen pradicdly all of its class
elements. If we mnsider the average frequency court of
words in that set and dvide by the cadinality (size) of the set
as it grows over time, we exped that after some point, that
ratio will simply increase monaonicdly. On the other hand,
with open classes, the cadinality will continue to grow asthe
frequency courts grow, so ore might amost exped afairly
constant ratio through time.

From every experiment we have mndLcted, these nations
seam to be true. We processour corpus in bocks of 5000
words a atime. For the nth bock (out of N), we compute the
cumulative frequency court for the duster divided by n times
the cardinality of the set (i.e., for exaggeration effeds, we
actually use the largest cardinality the duster will ever havein
thewhadle dataset). When all blocks have been processed, we
can compute the mean and standard deviations of the size
ratios as they progressed through time. We use & our final
openness sore, N times the largest cardinality divided by the
standard deviation. This measure strongly separates open
classes from closed classes.

Affixation

Schore and Jurafsky [200Q ill ustrated a knowledge-free
approach for inducing morphdogy in infledional languages.
A goal of this approach was to identify, for any word X, the
set of words that conflate with X. For example, if X were
“talk,” one might exped the wnflation set to include the
words “talk,” “talks” “talking,” and “talked.” These
conflation sets give information abou infledions within a
language which can be useful for inducing appropriate POS
tags. For example, if we mnsider the conflation set of talk as
wdll asthaose of “climb” and“jump”, namely, { climb, climbs,
climbing, climbed} and{jump, jumps, jumping, jumped}, we



would nae a pattern {X, X+s, X+ing, X+ed} forming.
Suppase now that “climb,” “jump,” and “talk” all fall into
cluster C;, and“climbs,” *jumps,” and “talks” fall into cluster
C,. Then we ould view the suffixing operation “+s” as a
mapping from aword in C, toawordin C,. If the number of
possble X’sin C; that map to ancther word in C, exceels
some threshold, we @uld say that clusters C; and C, have
strong evidence of affixation.

We @uld record the types of affixes present in ead cluster
so asto identify multiple dusters having the same POS. Yet
we compute a measure of how “affixy” a duster is: the
percentage of words in any given cluster that have dove-
threshdd affixing mapsto wordsin ather classes. By diredly
applying the Schone/Jurafsky morphdogy-induction to ou
corpus, we find that 21.8% of words from the verb cluster
have above-threshold maps to either the same or to ather
classes. Of nours and adjedives, there ae 10.7%6 and 1.0,
respedively. All others have lessthan 1% (andtypically 0%).

Language universals reved that aadosslanguages, if anoun
has infledions, so doverbs and pronours. If adjedives or
numbers have infledions, the nours will typicdly carry them
as well. Therefore, we can use dfixation as a means of
constraining the number of posshiliti esin induction.

Numer acy

The Schore/Jurafsky technique can aso be used to find
numbers. Consider the numbers 17, 19, 37and 39. In away,
these can be thowght of asroat forms of 1 and 3with passble
“suffixes” 7 and 9 or they could be viewed asroots 7 and 9
with “prefixes” 1 and 3. Numbers also tend to be used in
similar contexts. For these reasons, they frequently appea in
eadt other's conflation sets. Moreover the charaders that
numbers are composed o have anealy mutualy exclusive
usage from other, nonrnumeric words. Thesefads st numbers
apart from other words. A class containing a mgjority of
words whose sole charader content comes from these induced
numerasis highly likely to be numbers.

Optionality

In many languages, adjedives and adverbs ad as modifiers
rather than heals, and hence ae syntadicdly optional. Even
in languages like Chinese in which predicative aljedives are
not syntadicdly optional, attributive aljedives are optiond.
In ather words, in such languages, a sentencewhich is formed
by deleting an adjediveis gill grammaticd. To illustrate in
English, “thebig dog” or “thedog” are bath grammeticd nown
phrases. This suggests we @muld identify all situationsin the
text where thereisaword X followed by words 'Y and Z such
that removing Y and leaving only X Z still provides ancther
valid word pair from somewhere dse in the text. If Z, for
example, were anoun,andif Y could be removed from, say,
10 word triples in the corpus and if the number of valid
removals constituted 1% or more of Y’s frequency, then we
might beinclined to believethat Y isan adjedive. Moreover,
we may believe that this language has adjedives that occur

before their head noun. If X were the noun,we might have
reasonto believe that adjedives appea after their head noun.

We adually court the number of deletable, Y -type words
that show upin conredionwith ead o the open classes. For
ill ustration, Table 1 indicates the percentage of words with
frequencies of at least 10 from several clusters that could be
deleted dredly before (B) or after (A) eat of the mgjor open
clases. As expeded, adjedives drongly show optionality
and occur typicdly before nours in English. Adverbs also
show up as optiona for both verbs and adjedivesin English,
but as expeded, their order islessrestricted (though they tend
to follow their heads more often than preceding them).

Sidg Noun | Verb Prop Adj |Adverb
Noun
Adj] B | 21.7% 0 0.2% 0 0
Adi] A 0 0 0 0 0
Adv] B| 0.7 | 6.2% 0 1.6% 0
Adv] A | 1.8% | 82% 0 0 0
Det] B 0 0 0 0 0
Det] A 0 0 0 0 0

Table 1 Percentage of words from several clusters (row indices) with
frequencies at least 10 and which are deletable when preceding or
foll owing one of the open classclusters siown as column indices.

Cluster Order

We next compute statistics on cluster order.  For every pair of
clusters, X and Y, we compute the number of times X
precadesY either by one or two words, andviceversa. These
frequencies are used in conredion with expeded order
conveyed by language universals (as will be discussed later).

Bindings

Class X is bound to classY if X canna exist withou Y.
Consider determiners. One would rarely exped determiners
in text withou finding correspondng nours neaby. In a
certain sense, determiners owe their existenceto nours.

Let P(Y) represent the maximum likelihood estimate of
classY’s probability, and let P(Y |X) indicae the maximum
condtiond probability of finding classY either before or after
classX. Using these asggnments, we can oltain a probability
of X's(e.g., determiners) being boundto classY (e.g., nours):

P(YIX) - P(Y)
1-P(Y)

The numerator indicaes the degree of surprise, if any, of
finding clasees X and Y juxtaposed as frequently as they are,
and the denominator normali zes the formula to a maximum of
1.0. If the numerator islessthan zero, it is %t to zero.

2.3 Use of language universals

In the 196G, Joseph Greenberg ran awell-known projed with
the god of tabuating many language universals. He analyzed



30 diverse languages and proposed 45rules smilar to the
following [Greenberg,1966, p.11D

[Rule] 3. Languages with daminant

VSO order are dways prepositional .
One could interpret such arule to mean “if the language is
verb-subea-objed, then adpasitions tend to always precede
their noun phase. For rulesthat are nat as grongly universa,
Greenberg attached such plrases as “with far better than
chance” or “amost dways.” One auld interpret these phrases
as rough estimates of the rule’s a priori probability of
existence acosslanguages.

These notions suggest it ought to be feasible to take
Greenberg-like universals and convert them into probabili stic
firing rules. For example, if theruleis

“if W precedes X and SprecedesT,

then Y precedes Z [most of the time],”
one can assgn some abitrary likelihoodto the phrase “ most
of thetime” (say, 70%) to producethe following rule:

“YW X} & {ST} =>{Y Z} (p=70%)." (A)
where braces represent precadence order. If a sufficient
number of universals existed, it would befeasibleto crede a
part-of-speed labeler which bodstraps only from language
universals...i.e., using no language-dependent resources.

Fortunately, significant progress has been made in
identifying syntadic universals snce Greenberg's sminal
paper. The Universitét Konstanz has established projed
Sprachbauplane [Plank and Filiminova, 1996, devoted to
asembling a mmpendium of such unversals. Their list
consists of over 1600 language universals of which severa
hunded are gplicable to syntax. Our first step is to seled
and tabularize these syntadic rules. With the exception o
rudmentary word boundgry information, thisis the only dired
human-provided data our algorithm receved.

2.4 Manipulating Rulesfor Ordering: Bayes Nets

A typicd approach to deding with probabili stic rulesisto use
Bayesian networks. Briefly spe&ing, Bayesian networks are
probabili stic networks designed to compute the probabiliti es
of al the desired parameters of a given model, making only
independence assumptions when such are spedfied by the
model. The underlying model of a Bayesian network is a
direaed agyclic graph, so the networks will only function
properly when the parameters have non-cyclicd behavior (i.e.,
if parameter a implies something abou b, b canna imply
something else @ou some other parameter which aff eds a).
Peal’s[1989 approach to bulding Bayesian networks has
a fast method for updating probabilities using a simple
message-passng scheme. Yet sincenodes in ou graph can
have multi ple parents, Peal’s methodwill not work. Hence,
we use Jensen’'s [1999 join tree approach. The interested
reader shoud consult the original reference for significant
detail, but we will provide ashort description at thistime.
Suppase we wanted to represent previously-mentioned rule
(A) in terms of a Bayesian network. We might want the

symbad “{W X}&{ST}” to form an entry in the network, as
wedl as“{Y Z}.” Thesebewmme nodssin ou DAG which we
will say are binary (either true or false). If {W X}&{S T} is
true, it implies not only that {Y Z} is 70% likely to be true,
but also that two other new nodes, “{W X}" and“{ST},” are
definitely true. These, in turn, imply that the individual
comporents, W, X, S, and T are themselves nodes that are
true. Suppasethat in addtionto rule A, ancther rule, B, says

H{WT=>{Y Z} (p=65%)" (B)
This means that al comporents could be tied together to
crede the DAG depicted in Figure 1.

{{w T} } Ew X}&{S T}

Figure 1: Elementary Bayesian network

In the figure, the weights on ead edge represent the
probability that the child node will betrueif the parent node
is true. These probabiliti es are derivable from the language
universals using the methodd ogy mentioned before. Y et we
also neal to somehow assgn urcondtioned probabiliti es for
nodes, probabiliti es of child nodes when their parents are
false, and probabilities for child nodes when they have
multi ple parents. For instance, what is the probahility of the
noce{Y Z} if bath its parentsaretrue? The adua probability
can be shown to fall withing a range of posshiliti es, but no
further conclusions can be drawn. This gives us ©me freedom
to make asdgnments.

Therefore, we aede an ad hoc formulation based onthe
“naisy -or” computation. The noisy-or strategy for computing
P(Xly.) given p(xly;) for ead i, (wherey,  indicaes the
sequencey;,ys,...yy) would be obtained reaursively by:

P(Xly1 ;i )=P(Xly1,i-0) + P(XIy;)- P(XIY1;-D)P(XI; )
The difficulty with using this formulationis that it assumes
that whenever a @ndtional probability is nonzero, it is
adually stating something positive éou the condtioned
variable. Yet if we have binary variables, then withou any
information, we may generaly exped p(xly;) is 0.5, regardless
of x andy,. However, if we have randamly claimed that
p(xly))=0.5and p(xly,)=0.5,welikely exped p(xly,,y,)=0.5as
oppased to the 0.75 which the naisy-or condtion would
suggest. Therefore, we define p(xly, ) to be kp + A, - 05,
where }, and %, are initialized as 0.5, and are computed



recursively according to

25=20hp +(1Ag)p(xly))-1 VP(xly;) > 0.5,and

Ay=2p, POXLY;) vp(xly;) <0.5.
These equations are smilar to the naisy-or condtion. Y et they
separately handle favorable (p>0.5) and unfavorable (p<0.5)
condtional probabilities. One might exped that if most
conditional probabilities are unfavorable, the multi-
conditioned probabiliti es houd tend toward zero. Likewise,
if most condtional probabiliti es are favorable, the overall
probability shoud tend toward 1.0. It can be redily
determined that these equations do havethiskind of behavior.
Furthermore, the probability will i ndeed be 0.5if, in the long
run, al condtiona probabilities had been 0.5. There ae
additional steps to the implementation, bu the interested
reader shoud consult Jensen [1994 for detail s.

Figure 2 Subsection of net involving numbers (M) preceding nouns
(N). Adjectives (J) and pre/postpositions (1/PP) aso play arole.

A subsedion d our final network (which orly handes SVO
languages for now) is shown in Figure 2. The full network
has 102 noas. Thetimeto build the network depends onthe
size of the largest clique, which, simply put, is the maximum
number of dependent nodes required for the message-passng
scheme. One can reduce this number by splitti ng nodes (for
example, N3 is a split noce of nours, N). For our SVO
network, the maxi munlézli que has 16 noaes, so that clique's
probability table has 2™~ probability entries. This $zelimits
the frequency with which the network can be updated.

For the reader’ s sske, we provide the foll owing probabilit y
table (Table 2), which ill ustrates the probabiliti es of {M N}
given dff erent condtions of its parent nodes. From thistable,
we can find that the most likely condtionfor {M N} andits
parent nodesisfor {JN} to betrue axd{M N} to also betrue
with the rest of the nodes being false. This has a probabilit y of

— 1T T2 [-53s-3] 23]
~MN,~-NMJ .163(.013].029|.001].013].
~MN, NM ] .120(.056|.016|.034].011].
MN,~-NM ] .0541.1681.025].1221.007|. .003].015

MN, NM | ~0 [.044].014].034].006|.006 |.002 |.004
Table 2: Probabilities of {M N} given conditions of its parents. The
1, 2, 3 represents respectively indicate that {J N}, 1&{J N}, and
PP&{M N} aretrue. Dashes mean that nodes are false.

123
.003| ~0
.002].004

0.168. By marginaizing (summing across the top two and
bottom two rows), we can seethat the probability of {M N}
is 0.511and the probability of -{M N} is 0.489. If our
algorithm proposed the ordering {M N} as a potential
ordering, this suggests we would tend to favor that ordering.

3 Thelnduction Process

In the previous section, we described the architecture and
components needed for the induction process. However, we
have not described how the induction process itself takes
place. Inthis section, we describe the induction mathematics.

3.1. General induction strategy
Before describing strategy, we must define several symbols:

K; ith cluster

D, feature vector for K;

T, POS tag assigned to K;
fm((l)h)] the mth feature of ®;

{ }i asequence of mitems
Given these symbols, we can say that the task of finding the
best POS tags for our set of clusters can be expressed as.

argmax  Pr({®,, T} U)o @
T Ty

where U are the available language universals. We can
expand on this eguation to give us more focus on the
guantities we need to compute. For simplicity, we assume that
the probahilities are always conditioned on U. Astypical, our
first expansion of (1) is I\tlwo applications of the chainrule:

i-1
argmax H PI’((I)i 1Ti |{(I)r 1Tr}r:1) =
i1 i1

argmax[ [ Pr(T,{ @, T}, 1) Pr(®|T.{®, T} 1)

VT, i=1
Since our clusters are unordered, we can process them in
whatever order we prefer. We choose to process them in
dependency order. By thiswe mean that we can first look for
nouns and verbs, and then we can look for items that are
dependent only upon them, and so forth. This means that we
can effectively remove dependence of T; on feature vectors for
aready-defined clusters. i If we define atemporary history
function H(i)={®_,T, },_; . wecansimplify to

N
i1 .
argmax [ [ Pr(T,{ T}, 1) Pr(@| T, H(i-1)). (4)
vT, i=1

The second component of (4) can be broken down by the
chain rule based on the features of ®. If we assume the
features arNe mutually independeMnt, the chain rule gives us

argmaxH Pr(TH T} ir;ll) H Pr(f (®)[T, H(i-1)).
VT, =1 m=1



If we consider the first comporent of the product in (4), we
could note that it depends on two pieces of information: (1)
thea priori probability of the classin the language A; and (2)
the probahility that the tag exists given the anstraints placed
on it by the universal rules and the distributional properties of
the dusters. Thisyields:

Pr(T,K T}, 1) =A+Pr(TH T}, 3)

The Afunctionisunknown. It could pdentially be estimated.
However, since we have asumed that only one duster can
have a given tag, the fad that we ae seeking argmax
effedively eiminates the need to know A. The second
component can be obtained dredly from the ordering
universals dored inthejunctiontree JT. This meanswe have

N M
argmax [ Pr(T,0T,) [T Pr(f (@) |T,,H(i-1)).
VT, =1 m=1

The last product is sufficiently simplified if we reagnize
again what our key fedures were: openness optionality,
affixation, numeracy, and binding. Openness numeracy, and
optiondlity are nat dependent onH but merely on uriversal or
heuristic properties abou T. For affixation, we esentially
only need to remember for isolated situations whether we have
previously constituted nours as affixed. For binding, if we
clam POS A is boundd to POS B and if we propose that
cluster K 5 represents classA, then if we have assgned cluster
Kg to be aB, K, must show binding propertiesto Kg.

3.2 Processing order

Thelast comporent of the description d the induction process
isto dedare how we can adually do this computation. Given
p possble parts of speed and N clusters, it is clea that since
we do na alow dudicae POS tags, there ae p!/(p-N)!
necessary hypotheses to examine if we ae to compute the
whole spaceof posshilities. We mentioned that, for this
study, p=20 (and N=20), so this would mean there would be
roughly 2.43x10® settings to have to compute. Clealy thisis
impaosgble with current resources.

However, by caefully arranging the order that we
hypothesize POSs, we can reduce this computation
significantly. Effedively, the goal isto remove garden paths
early in processng. We will explain how thisis done (though
it should be mentioned that the start-to-finish process sill
takes abou 30-40 minutes ona550MHZ Pentium II1) .

Aswas mentioned before, the computation must be ordered
so that if classX relies on classY, then classY has to be
hypathesized before X. A convenient way for doing thisisto
asume ead cluster is Y, compute the probability of ead
assignment, and retain a probability-sorted list of al the
assgnments which had pasitive probabiliti es. Then, for eat
such configuration, ore can compute the probability that eat
of the remaining caegories is X. This grategy only saves
computation if classes that are induced ealy have numerous

zero-probability settings, so we will try to order them
acording to thisneed. However, even with such ardering, the
number of computations can still becomelarge. Therefore, we
retain orly the top 1000answers from one level of hypathesis
to the next.

Wefirst identify the dasses of punctuation, sincewe were
given these, as well as classes containing letters (which we
derivefrom the Schone/Jurafsky output as being non-numerals
and non-purctuation). Since there ae alimited number of
open classes and sincemany clases bindto or modify nours,
nowns are the ided next hypothesis. We then hypaothesize
numbers, verbs, and adjedives, eathr of which are open
classes and which relate to o modify nours. Furthermore,
these dasses exist in most languages  orewould exped that
thereis a duster representing ead.

The remaining set of POSs are induced acarding to three
principles: (1) their expeded likelihood, (2) the degree to
which other classes are dependent uponthem, and (3) the
degreeto which the statistics at this paint are strong enough to
clealy identify them. Fromthe junctiontree we can compute
the language universal probability of ead of the dasss.
Since some POSs do nd exist in al |anguages, we want to
hypothesizelesslikely classes later in the induction process
However, as suggested by (2), if other classes are dependent
upontheir existence they shoud be hypathesized before their
dependents. The last paint, (3), addresss the fad that in
language, POSs do nd dl operate & the same linguistic level.
For example, in English, adjedives diredly precele their
correspondng nours. Although determiners preceale their
head nounthere may be a adjedive between the determiner
andthe noun. Prepaositions precale their nours, bu they may
be separated by adjedives or determiners. Question words
acdually precale whae sentences.

For (3), then, it seams beneficia to hypothesizein stages.
In the first stage, one may want to find nours, verbs, and the
nounboundand verb-boundclasss. Then, before the second
stage begins, ore can “purge” al the bouncdkd items from the
data and recompute statistics. In ather words, if we sought
prepositions as a seoond stage of processng, and if we had
already found nous, determiners, and adjedives, we coud
throw away all the determiners and adjedives and thus bring
the preposition in dred conredion with its correspondng
noun. In subsequent levels of processng, we can delete other
classes, making it easier to find classes which operate on
churks rather than onwords.

Note, though, that since nat every class exists in every
language, we may end uptrying to hypothesize a tassthat
does nat exist in the language we ae testing in. To remedy
this, we aeae adummy cluster (-1) which represents the
empty set. The probability that a dass may neel to be
assgned to the dummy class is one minus the a priori
probability of that class s existence acosslanguages.

A last comment isin order. Sinceupcditing the junctiontree
is expensive, an appropriate time for daoing this is between



levels. If we determined that classX precedes Y, we can feed
thisinformation to the junction treebetween stages.

4 Performance

Theresults using this s/stem are preliminary and a number of
desirable feaures are arrently being implemented (such as
making full use of thejunctiontred. Despitetheir preliminary
nature, our ealy results are quite promising, as will be seen.

As mentioned, ou dataset from the Brown corpus was
reduced to 20arbitrary clusters ordered as foll ows:

1: DT 2: NP 3V 4:N
determiners | proper nours verbs nours
51 6: G 7:J 8: PU
prepositions genitive adjedives punctuation
9 R 10: RQ 11 C 12 TO
adverbs questioners | conjunctions | infinitive mrk
13 P 14:M 15 VM 16: PDT
pronoun numbers modal verbs | pronam. DT
17: EX 18 LS 19: UH 20: FO
existentials lists interjedion | foreign words

Table 3: Identifiers and adering of the “perfed” clusters.

Since ou algorithm uses information from language
universals, it isunaware of PDT, EX, LS, and FO caegories.
On the other hand, the universals introduce alditional
caegories such as X (negative), PP (postposition), AUX
(auxiliary), QUAL (qudlifier), and BE (copua).

Weill ustrate in Table 3 the 1-best output of our system after
ead stages of the initial hypatheses are made. After eath
stage of hypothesizing (phases 12 and 17, the dgorithm
retains as valid ony those tags whose amulative scores
acrossall of thefina 1000 lypotheses that exceed 7% of the
cumulative scores for al 1000 typatheses. For this reason
phase 13 and 18 fave fewer entriesthan 12and 17.

Symbadls in bdd represent the first time the orred
prediction was made. Slanted symbadls indicae partialy
corred assgnments. Bradets represent errors. Let us
consider the arors. It chose in phase 6 to asdgn as proper
nouwns the dassthat acually belongs to interjedions, which
makes me sense sincebath clases are open. In phese 9, the
algorithm chaose X in lieu of EX. This is completely
understandable since bath are tightly boundto verbs and since
language universals indicate that most languages have an X
category and make nomention d EX. The dgorithm failed to
find the infinitive marker in phese 11 sincethe probability of
its asdgnment was less than the a priori probability of it
not existing. Phases 13 and 14are interesting: if one united |
and PPinto “adpasitions,” the dgorithm would have made the
right choice Since“N PREP ... N” occurs frequently, asin
“Seaetary of state,” it reasoned that the first “N PREP” was
the right way to view the data rather than “PREP...N.” If we
asume half credit for this case and full credit for remaining
boldfaced symbds, we seethat it properly assgned 14 ou of

Phase Qutput Prob
1 PU: 8 1.0
2 PU8, N:4,2,a7 1.0
3 PU:8,N: 4,M:14 0.008
4 Phase3+V: 3 0.005
5 Phase4 +J: 7 0.0087
6 [ Phase 5+ NP: 19] 4.0e-3
7 Phase6+ G: 6 1.8e5
8 Phase 7 + R:9 8.37
9 [ Phase 8 + X: 17] 2.2e7
10 Phase9 + DT:1 4.9-8
11 Phase 10+ AUX: -1 2.59
12 [ Phase 11+ TO:-1] 1.2e-9
13 [ Phase 10+1: -1 0.22
14 Phase 13+ PP: 5] 0.03
15 Phase 14+ QUAL: -1 0.11
16 Phase 15+ BE: -1 0.006
17 Phase 16+ C: 11 0.003
18 Phase 13+ C:11+ I:-1 0.22
19 Phase 18 QUAL: -1 0.082
20 Phase 19: P: 13 0.009

Table4: 1-best output and score & ead of the first 20 stages.

18 o the non-reduncant assgnments: 77.@6. Given that the
algorithm used orly language universals and aherwise no
human information, this is a tremendous acempli shment.

Asmentioned, we still are working to make optimal use of
the junction tree  One may wonder: how well would the
algorithm have doreif the junctiontreehad nd existed at all ?
For thefirst 20 phases, the dgorithm with the Bayes net made
assgnments with 53% acaracgy. This suggests that our
seleded fedures cary asignificant degreeof strength for the
algorithm and that the universal ordering rulesthat exist in the
Bayesian network help to nudye the dgorithm in the right
diredionwhen it isindedsive.

Conclusions

We presented atheoretica approach to automaticaly tagging
syntadic dusters with correspondng POS tags. Unlike other
approades to tagging, this algorithm uses no hand-tagged
corpus, nolexicon, and nolanguage-spedfic information for
making dedsions. Rather, we propcsed six feaures that it
extraded from the syntadic dusters (openness affixation,
numeracgy, optiondlity, binding, andword order), which, when
combined with reaily-accessble information onlanguage
universals, can help automaticdly tag the dusters for POS.
To ou knowledge, such atask has never been attempted. We



asoill ustrated a preliminary evaluation d this processonthe
Brown corpus and showed that the system can acarrately tag
most of the major caegories of POS aswell as classes which
are nounbound @ verb-bound. We firmly believe that
performance will improve & we @rtinue testing,
incorporating more of the information from the language
universals, and taking advantage of other extradable feaures
which we ae aurrently omitting. Our future diredions are to
expand the dgorithm to handle adual, automaticdly-induced
clustersin English and, more importantly, in ather languages.
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