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Abstract
We introduce a language-independent strategy for
inducing part of speech tags from corpora.  Unlike
other techniques that use language-specific lexicons,
rulesets, and so forth to tag, our algorithm bootstraps
only from cluster properties and language universals.
We describe the theory and illustrate an introductory
experiment which verifies the feasibility of this near-
knowledge-free tag induction strategy.  We  induce
tags for perfect syntactic clusters generated from the
Brown corpus getting 77% of our hypotheses correct.

1 Introduction
Knowledge of part of speech (POS) categories for words in
text corpora is an important ingredient for various tasks in
computational linguistics. In the past, there have been five
principal methods for labeling syntactic categories: 

(1) tag words by hand
(2) apply hand-built or learned rules/statistics
(3) stochastically tag using a lexicon
(4) infer tags using parallel corpora and tags 

  from  another language
(5) automatically induce syntactic clusters.

Each approach has strengths and weaknesses. When
approaching a new domain, the first, using human-provided
labels, is sometimes needed due to lack of linguistic resources.
Yet the expense and tedium of hand-tagging a corpus for each
new language makes this option undesirable.

The second strategy is more powerful than the first: once
rules are determined, the tagger can readily provide POSs for
multiple corpora in the same domain without any additional
effort.  However, using hand-built rules [Harris, 1962; Klein
and Simmons, 1963] can be brittle.  It is possible to use a
pretagged corpus or lexicon to learn robust rules or statistical
properties for tagging [Brill, 1995; Voutilainen, 1995;
Samuelsson and Voutilainen, 1997], but the need for an initial
expert when moving across languages cannot be escaped.

Electronic dictionaries containing POS tags are becoming
more prevalent, so the third approach [Bahl and Mercer, 1976;
Jelinek, 1985; Church, 1989; Merialdo, 1991; Kupiec, 1992;

etc.]  is widely applicable.  Similarly, since several hand-
tagged corpora exist (such as the Brown Corpus [Francis and
Ku

�
era, 1982] in English) and since parallel corpora are

increasing in availabilit y, the fourth approach [Yarowsky, et
al., 2001] is also very powerful. Yet, there remain languages
where lexicons and parallel corpora do not exist. In such
cases, neither approach is applicable.

The last approach is appealing in that one might expect that
the induction of syntactic clusters [Brown, et al., 1992; Chater
and Finch, 1992; Schütze, 1993; Pereira, et al., 1993, Niesler,
et al., 1998; Clark, 2000] is data and language-independent
and is certainly inexpensive in term of human expert labor.
Yet having syntactic clusters without  corresponding POS tags
has limited applicabilit y.  Many algorithms which make use of
POS need knowledge of actual syntactic classes of words
instead of the arbitrary clusters to which they belong.

A highly desirable solution would be a knowledge-free
algorithm that automatically induces appropriate POS clusters
and tags in many languages and requires littl e or no human
input.   To our knowledge, such an algorithm has never been
proposed. We describe an approach for tackling a subset of
this problem.  We ill ustrate an algorithm which, given
syntactic clusters, automatically determines the corresponding
POS tags for those clusters.  Moreover, our algorithm requires
no language-dependent human input or resource. The only
human-provided information available to our algorithm is a
li st of existing language universal rules [Greenberg, 1966;
Comrie, 1989; Croft, 1991; Plank and Fili minova, 1996] and
a rudimentary knowledge of word spacing and punctuation for
tokenizing.  Using existing universals has the advantage that
no additional human effort is needed to port the tagging
algorithm across languages. 

Our algorithm makes decisions by taking  advantage  of
join-tree-based Bayesian Networks [Jensen, 1996], induced
morphology [Schone  and Jurafsky, 2000], and automatically-
extracted features. Furthermore, it reaches its conclusions
without explicit knowledge of the POS tags available in the
language of application. Though we expect this approach to
be applicable to multiple languages, we ill ustrate preliminary
results of its performance on the Brown corpus in English. 



2 Data Precursors
Before describing the induction process, it is first useful to
il lustrate the data needed to automatically induce POS tags.
Essentially we need three pieces of data. We first assume we
have a reasonably-sized text corpus.  Secondly, we need a set
of syntactic clusters generated from that corpus. It has been A POS class is called open if the number of unique words
shown that using text corpora, the distributional properties of contained within it will continue to grow as the corpus size
words make it possible to cluster words according to their increases toward infinity.  All other finite classes are closed.
syntactic functions. These clusters provide statistical clues Nouns and verbs exist in most every language, and since they
which signal the likelihood of their being one POS more than are the principal conveyors of information, one would expect
another.  The final ingredient needed is a collection of that for most languages, these classes will be open.  Although
syntactic language universals, i.e., syntactic properties that adjectives typically  exist across languages, there are
hold true  across  languages.  Such universals exist and languages which only allow for a limited number of adjectival
identify the expected types of classes in general languages, types (such as shape and color).  Adverbs do not have to exist
potential orderings between classes, and “symbiotic” classes at all .  Nonetheless, if any classes are open, one would expect
which tend to bind to one another.  In this section, we wil l these four to be open, as well as numbers and, perhaps,
discuss each of these pieces of information with particular interjections and foreign words.  All other classes are closed.
emphasis on the features derivable from the clusters and from Identification of openness versus closedness turns out to be
the language universals since these are key ingredients of the a rather simple problem.  If we recognize that closed classes
inductive process. are finite, we would expect that if we start at the beginning of

2.1 Data and syntactic clusters
As mentioned before, there have been numerous efforts to
induce syntactic clusters.  We could choose any of these
techniques or  develop a separate one.  However, to avoid
confounding issues between clustering errors and tagging
errors, we assume here that we are given the output of some
“perfect” clustering algorithm.  We can obtain perfect clusters
by collecting together all the nouns, verbs, etc. from a truth-
marked corpus and then throwing away the initial POS tags.
Having truth markings also allows us to accurately assess
performance upon completion of the induction stage. 

We choose the Brown Corpus [Francis and Ku
�
era, 1982]

for our induction corpus.  This corpus contains about one
milli on words.  It also serves as an excellent dataset for
assembling “perfect clusters” since every word has been
labeled by hand with a POS [Marcus, et al., 1993].  The
corpus has 48 POS tags, but we consolidate these by grouping
punctuation into single clusters and grouping subsets of larger
classes (such as collapsing VBG, the gerund form of verbs,
into the more general class for verbs, VB).  This consolidation
leaves 20 general classes: determiners, proper nouns, common
nouns, verbs, prepositions, genitives, adjectives, punctuations,
adverbs, question terms, conjunctions, infinitive markers,
pronouns, numbers, modal verbs, pronominal determiners,
existentials, list indices, interjections, and foreign words. A
given word W can be a member of several classes, so we
provide our algorithm a list, { c , p , c , p , ...} where c is the1 1 2 2 i
ith cluster and p is the probabilit y that W occurs in cluster i.i

2.2 Cluster Properties
We extract numerous features from the clusters, but we wil l
here only make mention of those that we have currently

employed in the induction process.  In particular, we identify
openness, aff ixation, optionality, numeracy, cluster  order, and
bound classes.  The following sections describe each feature
as well as how we obtain and employ them in the induction.

Openness

a corpus looking for all words in that class, we will quickly
reach a point where we have seen practically all of its class
elements.  If we consider the average frequency count of
words in that set and divide by the cardinality (size) of the set
as it grows over time, we expect that after some point, that
ratio wil l simply increase monotonically.  On the other hand,
with open classes, the cardinality will continue to grow as the
frequency counts grow, so one might almost expect a fairly
constant ratio through time.

From every experiment we have conducted, these notions
seem to be true.  We process our corpus in blocks of 5000
words at a time.  For the nth block (out of N), we compute the
cumulative frequency count for the cluster divided by n times
the cardinality of the set (i.e., for exaggeration effects, we
actually use the largest cardinality the cluster will ever have in
the whole dataset).  When all blocks have been processed, we
can compute the mean and standard deviations of the size
ratios as they progressed through time.  We use as our final
openness score, N times the largest cardinality divided by the
standard deviation.  This measure strongly separates open
classes from closed classes. 
  

Affixation
Schone and Jurafsky [2000] ill ustrated a knowledge-free
approach for inducing morphology in inflectional languages.
A goal of this approach was to identify, for any word X, the
set of words that conflate with X.  For example, if X were
“ talk,”  one might expect the conflation set to include the
words “ talk,” “ talks,” “ talking,” and “ talked.”  These
conflation sets give information about inflections within a
language which can be useful for inducing appropriate POS
tags. For example, if we consider the conflation set of talk as
well as those of “climb” and “ jump”, namely, { climb, climbs,
climbing, climbed} and { jump, jumps, jumping, jumped} , we



P(Y|X)	P(Y)
1	P(Y)

.

would note a pattern { X, X+s, X+ing, X+ed} forming. before their head noun.  If X were the noun, we might have
Suppose now that “climb,” “ jump,” and “ talk” all fall i nto reason to believe that adjectives appear after their head noun.
cluster C , and “climbs,” “ jumps,” and “ talks” fall  into cluster  We actually count the number of deletable, Y-type words1
C .  Then we could view the suff ixing operation “+s” as a that show up in connection with each of the open classes.  For2
mapping from  a word in C  to a word in C .  If the number of ill ustration, Table 1 indicates the percentage of words with1 2
possible X’s in C  that map to another word in C   exceeds frequencies of at least 10 from several clusters that could be1 2
some threshold, we could say that clusters C  and C  have deleted directly before (B) or after (A) each of the major open1 2
strong evidence of aff ixation.  classes.  As expected, adjectives strongly show optionality

We could record the types of aff ixes present in each cluster and occur typically before nouns in English.  Adverbs also
so as to identify multiple clusters having the same POS.   Yet show up as optional for both verbs and adjectives in English,
we compute a measure of how “aff ixy” a cluster is: the but as expected, their order is less restricted (though they tend
percentage of words in any given cluster that have above- to follow their heads more often than preceding them).
threshold aff ixing maps to words in other classes.  By directly
applying the Schone/Jurafsky morphology-induction to our
corpus, we find that 21.8% of words from the verb cluster
have above-threshold maps to either the same or to other
classes. Of nouns and adjectives, there are 10.7% and 1.0%,
respectively.  All others have less than 1% (and typically 0%).

Language universals reveal that across languages, if a noun
has inflections, so do verbs and pronouns.  If adjectives or
numbers have inflections, the nouns will t ypically carry them
as well .  Therefore, we can use aff ixation as a means of
constraining the number of possibiliti es in induction. 

Numeracy
The Schone/Jurafsky technique can also be used to find
numbers.  Consider the numbers 17, 19, 37, and 39.  In a way,
these can be thought of as root forms of 1 and 3 with possible
“suff ixes”  7 and 9; or they could be viewed as roots 7 and 9
with “prefixes” 1 and 3.  Numbers also tend to be used in
similar contexts. For these reasons, they frequently appear in
each other’s conflation sets.  Moreover the characters that
numbers are composed of have a nearly mutually exclusive
usage from other, non-numeric words. These facts set numbers
apart from other words.  A class containing a majority of
words whose sole character content comes from these induced
numerals is highly likely to be numbers.
 

Optionality
In many languages, adjectives and adverbs act as modifiers
rather than heads, and hence are syntactically optional.  Even
in languages like Chinese in which predicative adjectives are
not syntactically optional, attributive adjectives are optional.
In other words, in such languages, a sentence which is formed
by deleting an adjective is still grammatical.  To ill ustrate in
English, “ the big dog” or “ the dog” are both grammatical noun
phrases.  This suggests we could identify all situations in the
text where there is a word X followed by words Y and Z such
that removing Y and leaving only X Z still provides another
valid word pair from somewhere else in the text.  If Z, for
example, were a noun, and if Y could be removed from, say,
10 word triples in the corpus and if the number of valid
removals constituted 15% or more of Y’s frequency, then we
might be inclined to believe that Y is an adjective.  Moreover,
we may believe that this language has adjectives that occur

Side Noun Verb Prop Adj Adverb
Noun

Adj B 0 0.2% 0 021.7%
Adj A 0 0 0 0 0

Adv B 0.7% 0 1.6% 06.2%
Adv A 1.8% 0 0 08.2%
Det B 0 0 0 0 0

Det A 0 0 0 0 0
Table 1 Percentage of words from several clusters (row indices) with
frequencies at least 10 and which are deletable when preceding or
following one of the open class clusters shown as column indices.

Cluster Order
We next compute statistics on cluster order.   For every pair of
clusters, X and Y, we compute the number of times X
precedes Y either by one or two words, and vice versa.  These
frequencies are used in connection with expected order
conveyed by language universals (as will be discussed later).

Bindings
Class X is bound to class Y if X cannot exist without Y.
Consider determiners.  One would rarely expect determiners
in text without finding corresponding nouns nearby.  In a
certain sense, determiners owe their existence to nouns. 

Let P(Y) represent the maximum likelihood estimate of
class Y’s probabilit y, and let P(Y|X) indicate the maximum
conditional probabilit y of f inding class Y either before or after
class X. Using these assignments, we can obtain a probabilit y
of X’s (e.g., determiners) being bound to class Y (e.g., nouns):

The numerator indicates the degree of surprise, if any, of
finding classes X and Y juxtaposed as frequently as they are,
and the denominator normalizes the formula to a maximum of
1.0.  If the numerator is less than zero, it is set to zero.

2.3 Use of language universals 

In the 1960s, Joseph Greenberg ran a well-known project with
the goal of tabulating many language universals.  He analyzed



Figure 1: Elementary Bayesian network

30 diverse languages and  proposed 45 rules similar to the symbol “ { W X} &{ S T} ” to form an entry in the network, as
following [Greenberg,1966, p.110]: well as “ {Y Z} .”  These become nodes in our DAG which we

[Rule] 3.   Languages with dominant  wil l say are binary (either true or false). If { W X} &{ S T} is
VSO order are always prepositional . true, it implies not only that { Y Z} is 70% likely to be true,

One could interpret such a rule to mean “ if the language is but also that two other new  nodes, “ {W X} ” and “ {S T} ,” are
verb-subject-object, then adpositions tend to always precede definitely true.  These, in turn, imply that the individual
their noun phrase.  For rules that are not as strongly  universal, components, W, X, S, and T are themselves nodes that are
Greenberg attached such phrases as “with far better than true.  Suppose that in addition to rule A, another rule, B, says
chance” or “almost always.” One could interpret these phrases “ { W T} =>{ Y Z}    (p=65%)”                 (B)
as rough estimates of the rule’s a priori probabilit y of This means that all components could be tied together to
existence across languages. create the DAG depicted in Figure 1.

These notions suggest it ought to be feasible to take
Greenberg-like universals and convert them into probabili stic
firing rules.  For example, if the rule is 

       “ if  W precedes X and S precedes T, 
       then Y precedes Z [most of the time],” 

one can assign some arbitrary likelihood to the phrase “most
of the time” (say, 70%) to produce the following rule: 

“ { W  X} & { S T} =>{ Y Z}    (p=70%).”          (A)
where braces represent precedence order.  If a suff icient
number of universals existed, it would be feasible to create a
part-of-speech labeler which bootstraps only from language
universals...i.e., using no language-dependent resources.

Fortunately, significant progress has been made in
identifying syntactic universals since Greenberg’s seminal
paper.  The Universität Konstanz has established project
Sprachbaupläne [Plank and Fili minova, 1996], devoted to
assembling a compendium of such universals.  Their list
consists of over 1600 language universals of which several
hundred are applicable to syntax.  Our first step is to select
and tabularize these syntactic rules. With the exception of
rudimentary word boundary information, this is the only direct
human-provided data our algorithm received.

2.4 Manipulating Rules for Ordering: Bayes Nets
A typical approach to dealing with probabili stic rules is to use
Bayesian networks.  Briefly speaking, Bayesian networks are
probabili stic networks designed to compute the probabiliti es
of all the desired parameters of a given model, making only
independence assumptions when such are specified by the
model.  The underlying model of a Bayesian network is a
directed acyclic graph, so the networks will only function
properly when the parameters have non-cyclical behavior (i.e.,
if parameter a implies something about b, b cannot imply
something else about some other parameter which affects a).

Pearl’s [1988] approach to building Bayesian networks has
a fast method for updating probabiliti es using a simple
message-passing scheme.  Yet since nodes in our graph can
have multiple parents, Pearl’s method will not work. Hence,
we use Jensen’s [1996] join tree approach.  The interested
reader should consult the original reference for significant
detail , but we will provide a short description at this time.

Suppose we wanted to represent previously-mentioned rule
(A) in terms of a Bayesian network.  We might want the

In the figure, the weights on each edge represent the
probabilit y that the child node will be true if the parent node
is true. These probabiliti es are derivable from the language
universals using the methodology mentioned before. Yet we
also need to somehow assign unconditioned probabiliti es for
nodes,  probabiliti es of child nodes when their parents are
false, and probabiliti es for child nodes when they have
multiple parents.  For instance, what is the probabilit y of the
node {Y Z} if both its parents are true?  The actual probabilit y
can be shown to fall withing a range of possibiliti es, but no
further conclusions can be drawn. This gives us some freedom
to make assignments.  

Therefore, we create an ad hoc formulation based on the
“noisy -or” computation.  The noisy-or strategy for computing
p(x|y ) given p(x|y ) for each i, (where y  indicates the1,n ki 1,

sequence y ,y ,...y ) would be obtained recursively by:1 2 k
p(x|y )=p(x|y ) + p(x|y )- p(x|y )p(x|y )1 1, 1 1, 1  ,i i- i i- i 

The difficulty with using this formulation is that it assumes
that whenever a conditional probabilit y is non-zero, it is
actually stating something positive about the conditioned
variable.  Yet if we have binary variables, then without any
information, we may generally expect p(x|y ) is 0.5, regardlessi

of x and y .  However, if we have randomly claimed thati

p(x|y )=0.5 and p(x|y )=0.5, we likely expect p(x|y ,y )=0.5 as1 2 1 2

opposed to the 0.75 which the noisy-or condition would
suggest.  Therefore, we define p(x|y ) to be 

�
 + 

�
 - 0.5,1,n p n

where 
�

 and 
�

are initialized as 0.5, and are computedp n 



{ }m
i � 1

argmax
T1,T2,...,TN

Pr({-i , Ti}
N
i � 1 | U ) (1)

argmax
~Ti

N

N
i
1

Pr(-i ,Ti |{-r ,Tr}
i � 1
r � 1 ) 


argmax
~Ti

N

N
i
1

Pr(Ti |{-r,Tr}
i � 1
r � 1 )Pr(-i|Ti,{-r ,Tr}

i � 1
r � 1)

argmax
~Ti

N

N
i
1

Pr(Ti |{Tr}
i � 1
r � 1 )Pr(-i |Ti,H(i	1)). (4)

H(i)
{-r,Tr }i
r � 1

argmax
~Ti

N

N
i
1

Pr(Ti|{Tr}
i � 1
r � 1)

M

N
m
1

Pr(fm(-i)|Ti,H(i	1)).

Figure 2 Subsection of net involving numbers (M) preceding nouns
(N).  Adjectives (J) and pre/postpositions (I/PP) also play a role.

recursively according to 0.168.  By marginalizing (summing across the top two and
  

�
=2(

�
 +(1-

�
)p(x|y ))-1   � p(x|y ) �  0.5, and bottom two rows), we can see that the probabilit y of { M N}p p p i i

  � =2�  p(x|y )                     � p(x|y ) < 0.5. is 0.511 and the probabilit y of ¬{ M N} is 0.489.  If ourn n i i
These equations are similar to the noisy-or condition. Yet they algorithm proposed the ordering { M N} as a potential
separately handle favorable (p>0.5) and unfavorable (p<0.5) ordering, this suggests we would tend to favor that ordering.
conditional probabiliti es.  One might expect that if most
conditional probabiliti es are unfavorable, the multi -
conditioned probabiliti es should tend toward zero.  Likewise,
if most conditional probabiliti es are favorable, the overall
probabilit y should tend toward 1.0.  It can be readily
determined that these equations do have this kind of behavior.
Furthermore, the probabilit y will i ndeed be 0.5 if, in the long
run, all conditional probabiliti es had been 0.5. There are
additional steps to the implementation, but the interested
reader should consult Jensen [1996] for details.

A subsection of our final network (which only handles SVO
languages for now) is shown in Figure 2.  The full network
has 102 nodes.  The time to build the network depends on the
size of the largest clique, which, simply put, is the maximum
number of dependent nodes required for the message-passing
scheme.  One can reduce this number by splitti ng nodes (for
example, N  is a split node of nouns, N).  For our SVO3
network, the maximum clique has 16 nodes, so that clique’s
probabilit y table has 2  probabilit y entries.  This size limits

16

the frequency with which the network can be updated.  
For the reader’s sake, we provide the following probabilit y

table (Table 2), which ill ustrates the probabiliti es of { M N}
given different conditions of its parent nodes. From this table,
we can find that the most likely condition for  { M N} and its
parent nodes is for { J N} to be true and {M N} to also be true
with the rest of the nodes being false. This has a probabilit y of

 --- 1-- -2- 12- --3 1-3 -23 123
	 MN, 	 NM .163 .013 .029 .001 .013 .013 .003 ~0

	 MN, NM .120 .056 .016 .034 .011 .011 .002 .004

MN, 	 NM .054 .168 .025 .122 .007 .007 .003 .015

MN, NM ~0 .044 .014 .034 .006 .006 .002 .004
Table 2: Probabilities of {M N} given conditions of its parents. The
1, 2, 3 represents respectively indicate that  {J N}, I&{J N}, and
PP&{M N} are true.  Dashes mean that nodes are false.

3 The Induction Process
In the previous section, we described the architecture and
components needed for the induction process.  However, we
have not described how the induction process itself takes
place.  In this section, we describe the induction mathematics.

3.1. General induction strategy
Before describing strategy, we must define several symbols:

K              ith clusteri

   feature vector for Ki i

T       POS tag assigned to Ki i
    

      f (



)    the mth feature of 



m i i
                 a sequence of m items
Given these symbols, we can say that the task of finding the
best POS tags for our set of clusters can be expressed as:

    

where U  are the available language universals.  We can
expand on this equation to give us more focus on the
quantities we need to compute.  For simplicity, we assume that
the probabilities are always conditioned on U.  As typical, our
first expansion of (1) is two applications of the chain rule:

Since our clusters are unordered, we can process them in
whatever order we prefer.  We choose to process them in
dependency order.  By this we mean that we can first look for
nouns and verbs, and then we can look for items that are
dependent only upon them, and so forth.  This means that we
can effectively remove dependence of T  on feature vectors fori
already-defined clusters.     If we define a temporary history
function                                    ,  we can simplify to

The second component of (4) can be broken down by the
chain rule based on the features of  



.  If we assume the

features are mutually independent, the chain rule gives us
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If we consider the first component of the product in (4), we zero-probabilit y settings, so we will t ry to order them
could note that it depends on two pieces of information: (1) according to this need.  However, even with such ordering, the
the a priori probabilit y of the class in the language A  and (2) number of computations can still become large.  Therefore, wei

the probabilit y that the tag exists given the constraints placed retain only the top 1000 answers from one level of hypothesis
on it by the universal rules and the distributional properties of to the next. 
the clusters.  This yields: We first identify the classes of punctuation, since we were

The A function is unknown.  It could potentially be estimated. and non-punctuation).  Since there are a limited number of
However, since we have assumed that only one cluster can open classes and since many classes bind to or modify nouns,
have a given tag, the fact that we are seeking argmax nouns are the ideal next hypothesis. We then hypothesize
effectively eliminates the need to know A. The second numbers, verbs, and adjectives, each of which are open
component can be obtained directly from the ordering classes and which relate to or modify nouns.  Furthermore,
universals stored in the junction tree, JT.  This means we have these classes exist in most languages so one would expect that

The last product is suff iciently simpli fied if we recognize degree to which the statistics at this point are strong enough to
again what our key features were: openness, optionality, clearly identify them.  From the junction tree, we can compute
aff ixation, numeracy, and binding. Openness, numeracy, and the language universal probabilit y of each of the classes.
optionality are not dependent on H  but merely on universal or
heuristic properties about T. For aff ixation, we essentially
only need to remember for isolated situations whether we have
previously constituted nouns as aff ixed.   For binding, if we
claim POS A is bounded to POS B and if we propose that
cluster K  represents class A, then if we have assigned clusterA
K  to be a B,  K  must show binding properties to K . B BA

3.2 Processing order
The last component of the description of the induction process
is to declare how we can actually do this computation.  Given

�  possible parts of speech and N clusters, it is clear that since
we do not allow duplicate POS tags, there are � !/( � -N)!
necessary hypotheses to examine if we are to compute the
whole space of possibiliti es.  We mentioned that, for this
study, � =20 (and N=20), so this would mean there would be
roughly 2.43x10  settings to have to compute.  Clearly this is18

impossible with current resources.
However, by carefully arranging the order that we

hypothesize POSs, we can reduce this computation
significantly.  Effectively, the goal is to remove garden paths
early in processing.  We will explain how this is done (though
it should be mentioned that the start-to-finish process stil l
takes about 30-40 minutes on a 550 MHZ Pentium III) .

As was mentioned before, the computation must be ordered
so that if class X relies on class Y, then class Y has to be
hypothesized before X.  A convenient way for doing this is to
assume each cluster is Y, compute the probabilit y of each
assignment, and retain a probabilit y-sorted list of all the
assignments which had positive probabiliti es.  Then, for each
such configuration, one can compute the probabilit y that each
of the remaining categories is X.  This strategy only saves
computation if classes that are induced early have numerous

given these, as well as classes containing letters (which we
derive from the Schone/Jurafsky output as being non-numerals

there is a cluster representing each.
The remaining set of POSs are induced according to three

principles: (1) their expected likelihood, (2) the degree to
which other classes are dependent upon them, and (3) the

Since some POSs do not exist in all l anguages, we want to
hypothesize less likely classes later in the induction process.
However, as suggested by (2), if other classes are dependent
upon their existence, they should be hypothesized before their
dependents.  The last point, (3), addresses the fact that in
language, POSs do not all operate at the same linguistic level.
For example, in English, adjectives directly precede their
corresponding nouns.  Although determiners precede their
head noun, there may be an adjective between the determiner
and the noun.  Prepositions precede their nouns, but  they may
be separated by adjectives or determiners.  Question words
actually precede whole sentences.  

For (3), then, it seems beneficial to hypothesize in stages.
In the first stage, one may want to find nouns, verbs, and the
noun-bound and verb-bound classes. Then, before the second
stage begins, one can “purge” all the bounded items from the
data and recompute statistics.  In other words, if we sought
prepositions as a second stage of processing, and if we had
already found nouns, determiners, and adjectives, we could
throw away all the determiners and adjectives and thus bring
the preposition in direct connection with its corresponding
noun.  In subsequent levels of processing, we can delete other
classes, making it easier to find classes which operate on
chunks rather than on words.

Note, though, that since not every class exists in every
language, we may end up trying to hypothesize a class that
does not exist in the language we are testing in.  To remedy
this, we create a dummy cluster (-1) which represents the
empty set.  The probabilit y that a class may need to be
assigned to the dummy class is one minus the a priori
probabilit y of that class’s existence across languages.

A last comment is in order.  Since updating the junction tree
is expensive, an appropriate time for doing this is between



levels.  If we determined that class X precedes Y, we can feed
this information to the junction tree between stages.

4 Performance
The results using this system are preliminary and a number of
desirable features are currently being implemented (such as
making full use of the junction tree).  Despite their preliminary
nature, our early results are quite promising, as will be seen.

As mentioned, our dataset from the Brown corpus was
reduced to 20 arbitrary clusters ordered as follows:

1: DT 2: NP 3: V 4: N
determiners proper nouns verbs nouns

5: I 6: G 7: J 8: PU
prepositions genitive adjectives punctuation

9: R 10: RQ 11: C 12: TO
adverbs questioners conjunctions infinitive mrk

13: P 14: M 15: VM 16: PDT
pronoun numbers modal verbs pronom. DT

17: EX 18: LS 19: UH 20: FO
existentials lists interjection foreign words

Table 3: Identifiers and ordering of the “perfect” clusters.

Since our algorithm uses information from language
universals, it is unaware of  PDT, EX, LS, and FO categories.
On the other hand, the universals introduce additional
categories such as X (negative), PP (postposition), AUX
(auxili ary), QUAL (quali fier), and BE (copula).

We ill ustrate in Table 3 the 1-best output of our system after
each stages of the initial hypotheses are made.  After each
stage of hypothesizing (phases 12 and 17), the algorithm
retains as valid only those tags whose cumulative scores
across all of the final 1000 hypotheses that exceed 75% of the
cumulative scores for all 1000 hypotheses.   For this reason
phase 13 and 18 have fewer entries than 12 and 17.

Symbols in bold represent the first time the correct
prediction was made.  Slanted symbols indicate partially
correct assignments.  Brackets represent errors.  Let us
consider the errors.  It chose in phase 6 to assign as proper
nouns the class that actually belongs to interjections, which
makes some sense since both classes are open.  In phase 9, the
algorithm chose X in lieu of EX.  This is completely
understandable since both are tightly bound to verbs and since
language universals indicate that most languages have an X
category and make no mention of EX. The algorithm failed to
find the infinitive marker in phase 11 since the probabilit y of
its assignment was less than the a priori probabilit y of it
not existing.  Phases 13 and 14 are interesting: if one united I
and PP into “adpositions,” the algorithm would have made the
right choice.  Since “N PREP ... N” occurs frequently, as in
“Secretary of state,” it reasoned that the first “N PREP” was
the right way to view the data rather than “PREP...N.”  If we
assume half credit for this case and full credit for remaining
boldfaced symbols, we see that it properly assigned 14 out of

Phase Output Prob

1 1.0PU: 8

2 1.0PU:8,   N: 4, 2, or 7

3 0.008PU:8, N: 4, M:14 

4 0.005Phase 3 + V: 3

5 0.0087Phase 4 + J: 7

6 [ Phase 5 + NP: 19 ] 4.0e-3

7 1.8e-5Phase 6 +  G: 6

8 8.3e-7Phase 7 +  R:9

9 [ Phase 8 + X: 17 ] 2.2e-7

10 4.9e-8Phase 9 + DT:1

11 2.5e-9Phase 10 + AUX: -1

12 [ Phase 11 + TO:-1 ] 1.2e-9

13 [ Phase 10 + I: -1 0.22

14 0.03Phase 13 + PP: 5 ]

15 0.11Phase 14 + QUAL: -1

16 0.006Phase 15 + BE: -1

17 0.003Phase 16 + C: 11

18 Phase 13+ C:11+ I:-1 0.22

19 Phase 18: QUAL: -1 0.082

20 0.009Phase 19: P: 13
Table 4: 1-best output and score at each of the first 20 stages.

18 of the non-redundant assignments: 77.7%.  Given that the
algorithm used only language universals and otherwise no
human information, this is a tremendous accomplishment. 

As mentioned, we still are working to make optimal use of
the junction tree.  One may wonder: how well would the
algorithm have done if the junction tree had not existed at all?
For the first 20 phases, the algorithm with the Bayes net made
assignments with 55% accuracy.  This suggests that our
selected features carry a significant degree of strength for the
algorithm and that the universal ordering rules that exist in the
Bayesian network help to nudge the algorithm in the right
direction when it is indecisive. 

Conclusions
We presented a theoretical approach to automatically tagging
syntactic clusters with corresponding POS tags.  Unlike other
approaches to tagging, this algorithm uses no hand-tagged
corpus, no lexicon, and no language-specific information for
making decisions.  Rather, we proposed six features that it
extracted from the syntactic clusters (openness, aff ixation,
numeracy, optionality, binding,  and word order), which, when
combined with readily-accessible information on language
universals, can help automatically tag the clusters for POS.
To our knowledge, such a task has never been attempted.  We



also ill ustrated a preliminary evaluation of this process on the Structure, Moulton, The Hague, 1962.
Brown corpus and showed that the system can accurately tag [Jelinek, 1985] Fred Jelinek.  Markov source modeling of text
most of the major categories of POS as well as classes which generation. In J.K. Skwirzinski, Ed. Nijhoff , Dordrecht, The
are noun-bound or verb-bound.  We firmly believe that Impact of Processing Techniques on Communications,
performance will i mprove as we continue testing, 1985.
incorporating more of the information from the language [Jensen 1996] Finn V. Jensen. An Introduction to Bayesian
universals, and taking advantage of other extractable features Networks. UCL Press, London, 1996.
which we are currently omitting.  Our future directions are to [Klein and Simmons, 1963] S. Klein and R.F. Simmons. A
expand the algorithm to handle actual, automatically-induced computational approach to grammatical coding of English
clusters in English and, more importantly, in other languages. words.  Journal of the Association for Computing
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