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Abstract

We present an empirical study of two very simple approacheasnsupervised
grammar induction. Both are based on Klein and Manning’sddepncy Model
with Valence. The firstBaby Steps, requires no initialization and bootstraps itself
via iterated learning of increasingly longer sentencesis Tirethod substantially
exceeds Klein and Manning’s published numbers and ach8:d&b6 accuracy on
Section 23 of the Wall Street Journal corpus — a result thalréesady competitive
with the recent state-of-the-art. The secobess is More, is based on the obser-
vation that there is sometimes a trade-off between the gyaarid complexity
of training data. Using the standard linguistically-infogd prior but training at
the “sweet spot” — sentences up to length 15, it attains 44a&éaracy, beating
state-of-the-art. Both results generalize to the Browrpusrand shed light on
opportunities in the present state of unsupervised depeygersing.

1 Introduction

Unsupervised learning of hierarchical syntactic struetilom free-form natural language text is a
hard problem whose eventual solution promises to benefiicgions ranging from question an-
swering to speech recognition and machine translationed¢emt years, a restricted version of the
problem (which assumes partial annotation, in the form otesece boundaries, tokenization and
typically even part-of-speech tagging) has received mttetmaion, eliciting a diverse array of tech-
niques [1, 2, 3, 4, 5, 6, 7]. In 2004, Klein and Manning’s Degmcy Model with Valence (DMV)
became the first to outperform a very simple parsing hearistithe right-branching baseline [1].
Today, in 2009, state-of-the-art systems are still rootettié DMV [7, 6].

Despite recent advances, unsupervised parsers still tagefaind their supervised counterparts.
Nevertheless, extreme cost and limited coverage of manaathotated corpora strongly motivate
unsupervised learning in general [8] and unsupervisedmmais particular [9]. Large amounts of
unlabeled data have been shown to improve semi-supervéssohg [10], yet the best unsupervised
systems use even less data than is available for supervéseihg, relying on complex models in-
stead [7, 6]. Headden lll et al.'s Extended Valence Gramr&®Q) combats data sparsity with
smoothing alone, training on the same small subset of tleeltamk as the original DMV [7]. Co-
hen and Smith use more complicated algorithms (variatiBhdland MBR decoding) and stronger
linguistic hints (tying related parts of speech and symtady similar bilingual data) [6].



In this work, we adopt a contrarian stance and ask what caotie\aed through judicious use of data
and simple, scalable techniques. Our first approach iterater a series of training sets that gradu-
ally increase in size and complexity, forming an initiatisa-independent scaffolding for learning
a grammar. It works with Klein and Manning’s simple modek(tiriginal DMV) and training algo-
rithm (classic EM) but eliminates their crucial dependeogaenanually-tuned linguistically-biased
priors [1]. Our second approach builds on the observatiahlgarning is most successful within a
narrow band of the size-complexity spectrum. Both insigjgseralize beyond the DMV and could
be applied to more intricate models and advanced algorithms

2 Baby Steps

Global non-convex optimization is hard [11] and initializen is important to the success of any
local search procedure [1]. We offer Baby Steps as a metastielfor finding approximate solu-
tions without the guess-work. Its underlying assumptiotiné a good solution to a closely related
problem should be a fine starting point for the actual probtérimterest. The main idea of Baby
Steps is to decompose a difficult problem into a sequence @ioapnations that begins with an
easy case and extends it to the problem we care about. Theantis that if we found a way to
increase complexity very gradually, taking tiny steps ie fioblem space, then there may be hope
for preserving continuity in the solution space as well.

When instances of a problem themselves suffer from a cortdaially-exploding solution space, the
size of that space presents a natural proxy for complexitthé case of parsing, the number of pos-
sible syntactic trees grows exponentially with the lendtthe sentence. Consequently, for longer
sentences, the unsupervised optimization problem becsavesely under-constrained, whereas for
shorter sentences, it is still tightly reined in by data.Ha &xtreme case of a single-word sentence,
there is no choice but to parse it correctly. For two-wordeeoes, the chance of correctly guessing
the head and its dependent is still high, at 50%. But as seasegrow in length, the accuracy of
even educated guessing rapidly plummets, suggestingthgél sentences are more difficult.

Baby Steps works with a series of nested subsets of inciglgdonger sentences that culminates
in the complete data set. The base case — sentences of lamgth-dhas a trivial solution that
requires no initialization or search and reveals somethingut sentence heads. The next step —
sentences of length one and two — refines the initial impoessf heads, introduces dependents,
and exposes their identities and positions relative to #edh. Although short sentences are not
representative of the full complexity of the grammar, thapttire enough information to paint most
of the picture needed by slightly longer sentences. This getan easier, incremental subsequent
learning task. Step + 1 augments the training set with sentences of lergth 1, now including
lengthsl,2,...,k, k + 1 of the full data set, and executes local search starting tt@grammar
estimated by step. This truly is grammar induction.

3 Experimental Setup: Data Sets and Metrics

Klein and Manning [1] both trained and tested the DMV on theeaustomized subset (WSJ10)
of Penn English Treebank’s Wall Street Journal portion [18] 49,208 annotated parse trees were
pruned down to 7,422 sentences of at most 10 terminals, spanningigbie part-of-speech (POS)
tags. Following standard practice, automatic “head-gatimm” rules [13] were used to convert the
remaining trees into dependencies. Forced to produce #eslhgst” parse, their algorithm was
judged on accuracy: itdirected score was the fraction of correct dependencies; a more flattéring
undirected score was also used. We employ the same metrics but emphasizerduotedi scores.
Generalizing Klein and Manning’s setup, we let WSdJe the subset of pre-processed sentences
with at mostz terminals. Our experiments focus enc {1,...,45}, but we also test on WSJ100
and Section 23 of WSJ (the entire WSJ). In addition, we test on the held-out Brobh({similarly
derived from the Brown corpus [14]). See Figure 1 for sen¢egnd token counts of these corpora.

Istripped of all empty sub-trees, punctuation, and terrsifi@gged# and$) not pronounced where they
appear, those sentences still containing more than tensokere thrown out.

2Ignoring polarity of parent-child relations partially ahsed effects of alternate analyses (systematic
choices between modals and main verbs for heads of sentedetesminers for noun phrases, etc.) and fa-
cilitated comparison with prior work.
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Figure 1: Sizes of WS, .. .,45, 100}, Section 23 of WS¥ and Brown100.

4 Experimental Methods: New Algorithms for the Classic Modé

We ground our experimental design in the DMV'’s simple getiezgprocess [1]. Operating over
lexical word classe$c,,} — POS tags, its generative story for a sub-tree rooted at d (eéxlass

cp) rests on the independence assumptions inherent in thenvialy decisions: (i) initial direction
dir € {L,R} in which to attach children, via probabiliBzpez (1 ); (i) whether to seadlir, stopping
with probability Psrop (cr, dir, adj), conditioned orudj € {T,F} (true iff consideringdir’s first or
adjacent child); and (iii) attachment (of class,), according tdPyrracu(c, dir, ¢,). This produces
only projective trees, disallowing crossing dependengiresontrast to methods like spanning tree
algorithms [15] that do not use charts). A special toKegenerates the head of the sentence as its
left (and only) child. See Figure 2 for a simple example tigabires (sums outfgrpez.
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Figure 2: A dependency structure for a short sentence amadtsability according to the DMV.

The DMV lends itself to unsupervised learning via EM anddesbutside re-estimation [16]. Klein
and Manning estimated all probabilities without smoothibgcking a global optimization routine,
they guarded EM’s sensitivity to initial conditions by gtag with an “ad-hoc harmonic” comple-
tion: non-root heads took the same number of dependengshatt them in inverse proportion
to (a constant plus) their distanc€; took its single dependent uniformly at random. This non-
distributional heuristic nudged EM towards typical lingtic dependency structures.

4.1 New Algorithm #1: Ad-Hoc* — A Variation on the Original Ad-Hoc Initialization

With crucial implementation details of the original initization parameters and termination condi-
tions absent from the literature [1, 17], reimplementingEMV required a fair bit of improvisation.
Everything in this section is a guess and likely does not mKiein and Manning’s actual choices.
We use the following ad-hoc harmonic scores (for all tokehgiothand):

Soroer = 17 Ssrop = ! = ! and Syrrace = ! !

2 ds+ks ds+3 do + ko da+2

with d; > 0 a head’s distance to the stopping boundary dnd> 1 its distance to a child. The
integer constants, andk, come from related code in Stanford’s JavaNLP Project [18jteNhat




ks is one higher than is strictly necessary to avoid both diwidiy zero and determinism, whereas
k, could have been safely zeroed out entirely, since we nevepatel — Pyrracu (S€€ Figure 2).

Using these scoring functions, we initialize training bpgucing the best-scoring parses of all input
sentences and converting them into proper probabilityitigionsPsrgp andPyrracy Via maximum-
likelihood estimation (a single step of Viterhi trainingd]). Since left children are independent of
those on the right, we droPgrper altogether, making “headedness” deterministic. Our passe
careful to randomize tie-breaking, so that all parse tréesparticular sentence that have the same
score have an equal shot at being selected (both duringlirition and evaluation).

Finally, we terminate EM when successive changes in pertglerplexity drop below—2° bits.

4.2 New Algorithm #2: Baby Steps — An Initialization-Independent Scaffolding

We eliminate the need for initialization by first training anrivial subset of the data — WSJ1; this
works, since there is only one (the correct) way to parse@esitoken sentence. The resulting model
is then used to initialize training on WSJ2 (sentences obupb tokens), and so forth, building up
to WSJ45’s 48,418 sentences (these cover 94.4% of all sergémWSJ; the longest of the missing
790 has length 171). This algorithm is otherwise identicaht-Hoc", with the exception that it
re-estimates each model using Laplace smoothing, so tHaresplutions could be passed to next
levels (which sometimes contain previously unseen deperathel head POS tags).

4.3 Baselines: Uninformed, Oracle and Previously PublistieState-of-the-Art Results

To better appreciate the problem space, we consider tweragtinitialization strategies. The unin-
formed uniform prior serves as a fair “zero-knowledge” Bemefor comparing uninitialized models.
The maximum-likelihood “oracle” prior, computed from reéace parses, serves as a “skyline” —
a bound for how an algorithm that stumbled on the true satutiould fare at EM’s convergence.

In addition to citing Klein and Manning’s Ad-Hoc’s numbefd,[we compare our results on Section
23 of WSJ® to other past baselines (see Table 2). Headden lll et alisdkzed results are by far
the strongest on short sentences, but they unfortunatelpti@port the EVG’s performance for the
more complex and realistic test sets [7]; to the best of owmitedge, Cohen and Smith’s are the
highest reported numbers for longer sentences [6]. In mcidib these two state-of-the-art systems,
we include revealing intermediate results [5] that precdtie parameter-tying approach [6]. These
include Bayesian models with Dirichlet [5] and various logrmal [5] priors, coupled with both
Viterbi and minimum Bayes-risk (MBR) decoding [5, 6].

4.4 Hypothesis: “Less is More” — An Anticipated Size-Compleity Trade-Off

Having conjectured that sentence length is a good proxydarmexity, we suspect that the very
long sentences may present too much ambiguity (see Sedtimnte under-constrained learning
problem. But the simpler short sentences are few and mayapdtie the full richness of the gram-
mar. This suggests the possibility of a “sweet spot” at W$dr = not too high (excluding the truly

daunting training examples) and not too low (including egitomoderately accessible information).

5 Experimental Result #1: Baby Steps

We traced out a curve of Baby Steps’ performance when traamedtested on W$ad + 1), using
its solution to WS4 as initialization, forz < 45 (see Figure 3). Klein and Manning’s published
results, 43.2% (63.7%) [1], appear as dots at WSJ10, whedg Beeps achieves 53.0% (65.7%);
trained and tested on WSJ45, Baby Steps scores 39.7% (54C38s¥ic EM learns very little about
directed dependencies without the benefit of a linguidiidaibsed prior for the DMV: it improves
slightly, e.g. from 17.3% (34.2%) to 19.1% (46.5%) on WSJd&rning a little of the structure (as
evidenced by its undirected scores), but actually gets evorsshorter sentences, where its initial
guessing rate is high. And while we expected EM to walk awaynfsupervised solutions [20, 21],
the extent of its drop there is truly shocking, e.g. from 88.§2.2%) to 50.6% (59.5%) on WSJ45.
Not surprisingly, Baby Steps’ scores do not change much foom step to the next; but where its
changes are big, they are always positive.
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Figure 3: Directed and undirected accuracy scores attdigetie DMV, when trained and tested
on the same gradation of WSJ, for several different inizition strategies. The two green circles
represent Klein and Manning’s published numbers [1]; frap to bottom, red, violet and blue
curves represent the supervised (maximume-likelihoodlejaaitialization, Baby Steps, and the
uninformed uniform prior. Dotted curves reflect startingfpemance, solid curves register perfor-
mance at EM’s convergence, and the arrows connecting thgrhasize the impact of learning.

We also explored how Klein and Manning’s initializer may adared at different gradations of
WSJ, by tracing out a similar curve for Ad-Ho¢see Figure 4). Somewhat surprisingly, our im-
plementation performs significantly better than their jgh#d numbers at WSJ10: 54.5% (68.3%),
scoring slightly higher than Baby Steps; neverthelesgrmgegnough data (from WSJ22 onwards),
Baby Steps outperforms Ad-Hbcwhose ability to learn takes a serious dive once the data set
becomes sufficiently complex (at WSJ23) and never recoMdme that the linguistically-biased
prior peaks early (at WSJ6), eventually falling below thegging rate (by WSJ24), but nevertheless
remains well-positioned to climb beyond the uninformedamn prior's performance.
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Figure 4: Directed accuracy for the DMV using Ad-Hoshown in green, when trained and tested
on the same gradation of WSJ. As in Figure 3, the green ciariesponds to Klein and Manning’s
published score [1]; red, violet and blue curves represep¢rvised, Baby Steps, and uniform ini-
tialization strategies. Dotted curves reflect startingqrenance, solid curves register performance
at EM’s convergence, and the arrows connecting them enmgahtds impact of learning.



6 Experimental Result #2: “Less is More”

The graphs in the previous section (Figures 3 and 4) could iskeading, as they do not tell the
whole story of how learning scales with more (complex) dafaey are difficult to interpret be-
cause, on the one hand, as the data set increases in sizgitivggtalgorithm gets access to more
information; on the other, since in this unsupervised sgtthe training and test sets are the same,
additional longer sentences make for significantly mordlehging evaluation. To better understand
these dynamics, we applied Laplace smoothing to all mod#te( than Baby Steps, which does its
own smoothing) and re-plotted their performance, holdiggsal test sets fixed (see Figure 5).
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Figure 5: Directed accuracies attained by the DMV, traintechgious gradations of WSJ but tested
against four fixed evaluation sets — W30,20,30,40, for four different initialization strategies.
As in Figure 4, the green circle corresponds to Klein and Magia published score [1]; red, vi-
olet, green and blue curves represent supervised, Babg,SAebHoc¢ and uniform initialization
strategies. Dotted curves reflect starting performandé sarves register performance at EM’s
convergence, and the arrows connecting them emphasizenieet of learning.

The new graphs show that Baby Steps scales best with morg(eryaata — its curves are the only
ones that do not trend downwards. However, a good initiatinanduces a sweet spot at WSJ15,
where the DMV is learned best using Ad-HodVe call this mode “Less is More.” Curiously, even
oracle training exhibits a bump here: once sentences ggtdanugh (at WSJ36), its performance
degrades below training with virtually no supervision (z tardly representative WSJ3).



7 Experimental Result #3: Generalization

Our main findings carry over to the larger WSJ100, Sectionf288J°, as well as the independent
Brown100 (see Table 1). Built up to WSJ45, Baby Steps perddyast, scoring 39.4% (54.1%) on
WSJ100, compared to Ad-Ht's 31.3% (53.8%). Trained at the sweet spot, Ad-Hiscthe undis-
puted champion, scoring 44.1% (58.8%), compared to BaljysS89.2% (53.8%) if stopped there.
Although Ad-Hoc trained on WSJ15 generalizes well enough to reign on Browrdwell, its
score drops slightly, to 43.3% (59.2%). In contrast, BalgpStrained up to WSJ15 actually scores
higher on Brown100 than on WSJ100, though still lower thapHat" — 42.3% (55.1%), suggest-
ing that its iterative approach leads to better generatinatonsistent with our expectations [22, 23].

Table 1: Directed and undirected accuracies on Section 28%9°, WSJ100 and Brown100 for
Ad-Hoc* and Baby Steps, trained at WSJ15 and WSJ45.

@15 @45
Ad-Hoc* Baby Seps Ad-Hoc* Baby Seps
Section 23| 44.1(58.9 | 39.2(53.9 | 31.5(51.6 | 39.4(54.0
WSJ100 43.8(58.6) | 39.2(53.9 | 31.3(51.5 | 39.4(54.))
Brown100 | 43.3(59.2 | 42.3(55.1) | 32.0(52.4 | 42.5(55.9

Results on Section 23 show, unexpectedly, that Baby Stepkikave been state-of-the-art in 2008,
whereas “Less is More” (Ad-Hddrained at WSJ15) already outperforms state-of-the-&010 on
longer sentences (see Table 2). Baby Steps is competititigive log-normal families technique [5]
of 2008, scoring slightly better on longer sentences agiafitarbi decoding, though worse against
MBR. “Less is More” outperforms the current best system mgelto 2% on longer sentences.

Table 2: Directed accuracies on Section 23 of \M$J20, o0} for several baselines and recent
state-of-the-art systems (adapted from [5], [6] and [7]).

Year | Decoding | WSJ10 | WSJ20| WS3
Attach-Right [1] [ 2004 — 38.4 334 31.7
DMV  Ad-Hoc [1] | 2004 Viterbi 45.8 39.1 34.2
Dirichlet [5] | 2008 Viterbi 45.9 39.4 34.9
Ad-Hoc [5] | 2008 MBR 46.1 39.9 35.9
Dirichlet [5] | 2008 MBR 46.1 40.6 36.9
Log-Normal Families [5]| 2008 Viterbi 59.3 45.1 39.0
Baby Steps @15 2009 Viterbi 55.5 44.3 39.2
Baby Steps @45 2009 Viterbi 55.1 44.4 39.4
Log-Normal Families [5]| 2008 MBR 59.4 45.9 40.5
Shared Log-Normals, Tying Verbs and Nouns [6] 2009 MBR 613 7.44 41.4
Bilingual Shared Log-Normals, Tying Verbs and Nouns ~ [f] 20p MBR 62.0 48.0 42.2
Lessis More (Ad-Hoc* @15) 2009 Viterbi 56.2 48.2 44.1
EVG  Smoothed (skip-val) [7]] 2009 Viterbi 62.1
Smoothed (skip-head) [7 2009 Viterbi 65.0
Smoothed (skip-head), Lexicalized [ 2009 Viterbj 68.8

8 A Brief Historical Overview and Discussion of Related Work

Originating in behavioral psychology [24], the idea of ‘I$itag small” [25] stirred controversy [26]
within cognitive science. Elman [25] claimed that artiflai@ural networks could succeed in learn-
ing a pseudo-natural language only under conditions oficéstl memory or input, guided by a
scaffolding for either model or data complexity. His neti®failed to recognize a complex gram-
mar when trained with the full “adult” language from the at{dut mastered it when the data were
binned into grades of difficulty and presented in order oféasing complexity. We observed a
similar effect with Ad-Ho¢ and Baby Steps at WSJ45, but Rohde and Plaut’s attemptslicetep
Elman’s exact study showed that limiting input in fact hirleanguage acquisition [26]. As they
made Elman’s grammar more English-like, by introducing atrdngthening semantic constraints,
the already significant advantage for “starting large” @ased. Noting Rohde and Plaut’s concern
that Elman’s simulations did not allow the networks exposrdusively to complex inputs suffi-
cient training time warranted by their initial random weighwe used a generous, low termination
threshold for EM. Still, Baby Steps should be re-tested aitbxicalized model (such as the EVG),
since its current POS tag-based approach is purely syatacti



Elman reported equally good results with the learning meidm itself undergoing “maturational
changes” during training, holding the input constant @ast of gradually complicating the environ-
ment) — an observation consistent with the “less is moreppsal [27, 28]. Networks that started
with severe memory limitations effectively restricted thage of data to which they were exposed in
the early phases, imitating the increase in working memadyattention span that occurs over time
in children [29]. EIman explained the paradoxical effect kattlearning could be improved under
conditions of limited capacity — by suggesting how resgittapabilities could neatly compensate
for specific shortcomings of their learning mechanisms, imgk long period of development play a
positive role in the acquisition of a behavior. Baby Stepsesgped to patiently improve local search
by tweaking simplified training landscapes, repeatedlynladvantage of EM’s initial progress.
Elman’s effect of early learning also seemed to filter theuinponstraining the solution space by
presenting the network with just the right data (simple seoés that permitted it to learn the basic
representational categories) at just the right time (eamlywhen its plasticity was greatest).

Despite Rohde and Plaut’s failure to replicate ElIman’sitesuth simple recurrent networks, many
other machine learning techniques have been shown to bémefitscaffolded model complexity
on a variety of language tasks. In word-alignment, Brownlef1®] used IBM Models 1-4 as
“stepping stones” to the training of Model 5 — a proceduré thahis day serves as a corner-stone
of statistical machine translation. Other prominent ex®piclude “coarse-to-fine” approaches to
parsing [30, 31, 32], translation [33, 32] and speech reitmyn32], as well as a recent application
to unsupervised POS tagging [34]. The first model is typyoeither trivial or particularly simple, so
that both learning and inference are cheap. Each refinenmehieovay to the full model introduces
only limited complexity, enabling incrementality. Browhad.'s Model 1 had a global optimum that
could be computed exactly, so that, as with Baby Steps, rempeters depended on initialization.

Examples of scaffolded data complexity are rare, althodghs for gradually making the learning
task more difficult have been explored in robotics (typigc@ll the context of navigation), in asso-
ciation with reinforcement learning [35, 36, 37, 38, 39,.40he year 2009 saw a renewed interest
in shaping — a method of instruction in which the teacher dgooses a complete task into sub-
components, providing an easier path to learning [22, 23jeMVSkinner [24] first coined the term,
he described it as a “method of successive approximatidfisieger and Dayan [22] showed that
shaping speeds up language learning and leads to betteatieaton. Bengio et al. [23] confirmed
this using simple multi-stage curriculum strategies, forguage and vision tasks, and conjectured
that a well-chosen sequence of training criteria, eachciestsal with a different set of weights on
the examples, could act as a continuation method [41], heglpd find better local optima of a non-
convex training criterion. They also noted that at any pdinting learning, some examples could
be considered “too easy” (not helping to improve the currantlel), while others “too difficult”
(not captured by any small change to the model). Perhapshy Baeps focused on “interesting”
examples — those near the frontier of its knowledge andtasi{neither too easy nor too hard), as
Bengio et al. suggest, then it would not flat-line quite sdygarits development (see Figure 5).

9 Conclusion

We have presented two ideas for unsupervised dependergipgafl_ess is More” is the paradoxi-

cal result that better performance can be attained by trgiwnith less data — even when removing
samples from the true distribution. Taking advantage ofstlveet spot at WSJ15, small tweaks to
Klein and Manning's approach of 2004 break through the 2@@@ f-the-art on longer sentences.

The second, Baby Steps, is a simple and elegant meta-hefoisbptimizing a non-convex train-

ing criterion. This idea eliminates the need for (and sttproytperforms) a linguistically-biased
manually-tuned initialization when the location of the stvepot is not known, scaling gracefully
with more (complex) data. It should easily carry over to mpogverful models and algorithms.

Future work could explore unifying these techniques. Welaseof opportunities for improvement,
considering the poor performance of the oracle modelsivelab the supervised state-of-the-art,
and in turn the poor performance of the unsupervised stathesart relative to these oracle models.

3The basic idea of continuation methods is to first optimizenaathed objective, then gradually consider
less smoothing, with the intuition that smoothed versidithe problem reveal the global picture [23].
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