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Abstract

We present an empirical study of two very simple approaches to unsupervised
grammar induction. Both are based on Klein and Manning’s Dependency Model
with Valence. The first,Baby Steps, requires no initialization and bootstraps itself
via iterated learning of increasingly longer sentences. This method substantially
exceeds Klein and Manning’s published numbers and achieves39.4% accuracy on
Section 23 of the Wall Street Journal corpus — a result that isalready competitive
with the recent state-of-the-art. The second,Less is More, is based on the obser-
vation that there is sometimes a trade-off between the quantity and complexity
of training data. Using the standard linguistically-informed prior but training at
the “sweet spot” — sentences up to length 15, it attains 44.1%accuracy, beating
state-of-the-art. Both results generalize to the Brown corpus and shed light on
opportunities in the present state of unsupervised dependency parsing.

1 Introduction

Unsupervised learning of hierarchical syntactic structure from free-form natural language text is a
hard problem whose eventual solution promises to benefit applications ranging from question an-
swering to speech recognition and machine translation. In recent years, a restricted version of the
problem (which assumes partial annotation, in the form of sentence boundaries, tokenization and
typically even part-of-speech tagging) has received much attention, eliciting a diverse array of tech-
niques [1, 2, 3, 4, 5, 6, 7]. In 2004, Klein and Manning’s Dependency Model with Valence (DMV)
became the first to outperform a very simple parsing heuristic — the right-branching baseline [1].
Today, in 2009, state-of-the-art systems are still rooted in the DMV [7, 6].

Despite recent advances, unsupervised parsers still lag far behind their supervised counterparts.
Nevertheless, extreme cost and limited coverage of manually-annotated corpora strongly motivate
unsupervised learning in general [8] and unsupervised parsing in particular [9]. Large amounts of
unlabeled data have been shown to improve semi-supervised parsing [10], yet the best unsupervised
systems use even less data than is available for supervised training, relying on complex models in-
stead [7, 6]. Headden III et al.’s Extended Valence Grammar (EVG) combats data sparsity with
smoothing alone, training on the same small subset of the tree-bank as the original DMV [7]. Co-
hen and Smith use more complicated algorithms (variationalEM and MBR decoding) and stronger
linguistic hints (tying related parts of speech and syntactically similar bilingual data) [6].
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In this work, we adopt a contrarian stance and ask what can be achieved through judicious use of data
and simple, scalable techniques. Our first approach iterates over a series of training sets that gradu-
ally increase in size and complexity, forming an initialization-independent scaffolding for learning
a grammar. It works with Klein and Manning’s simple model (the original DMV) and training algo-
rithm (classic EM) but eliminates their crucial dependenceon manually-tuned linguistically-biased
priors [1]. Our second approach builds on the observation that learning is most successful within a
narrow band of the size-complexity spectrum. Both insightsgeneralize beyond the DMV and could
be applied to more intricate models and advanced algorithms.

2 Baby Steps

Global non-convex optimization is hard [11] and initialization is important to the success of any
local search procedure [1]. We offer Baby Steps as a meta-heuristic for finding approximate solu-
tions without the guess-work. Its underlying assumption isthat a good solution to a closely related
problem should be a fine starting point for the actual problemof interest. The main idea of Baby
Steps is to decompose a difficult problem into a sequence of approximations that begins with an
easy case and extends it to the problem we care about. The intuition is that if we found a way to
increase complexity very gradually, taking tiny steps in the problem space, then there may be hope
for preserving continuity in the solution space as well.

When instances of a problem themselves suffer from a combinatorially-explodingsolution space, the
size of that space presents a natural proxy for complexity. In the case of parsing, the number of pos-
sible syntactic trees grows exponentially with the length of the sentence. Consequently, for longer
sentences, the unsupervised optimization problem becomesseverely under-constrained, whereas for
shorter sentences, it is still tightly reined in by data. In the extreme case of a single-word sentence,
there is no choice but to parse it correctly. For two-word sentences, the chance of correctly guessing
the head and its dependent is still high, at 50%. But as sentences grow in length, the accuracy of
even educated guessing rapidly plummets, suggesting that longer sentences are more difficult.

Baby Steps works with a series of nested subsets of increasingly longer sentences that culminates
in the complete data set. The base case — sentences of length one — has a trivial solution that
requires no initialization or search and reveals somethingabout sentence heads. The next step —
sentences of length one and two — refines the initial impression of heads, introduces dependents,
and exposes their identities and positions relative to the heads. Although short sentences are not
representative of the full complexity of the grammar, they capture enough information to paint most
of the picture needed by slightly longer sentences. This sets up an easier, incremental subsequent
learning task. Stepk + 1 augments the training set with sentences of lengthk + 1, now including
lengths1, 2, . . . , k, k + 1 of the full data set, and executes local search starting fromthe grammar
estimated by stepk. This truly is grammar induction.

3 Experimental Setup: Data Sets and Metrics

Klein and Manning [1] both trained and tested the DMV on the same customized subset (WSJ10)
of Penn English Treebank’s Wall Street Journal portion [12]. Its 49,208 annotated parse trees were
pruned1 down to 7,422 sentences of at most 10 terminals, spanning 35 unique part-of-speech (POS)
tags. Following standard practice, automatic “head-percolation” rules [13] were used to convert the
remaining trees into dependencies. Forced to produce a single “best” parse, their algorithm was
judged on accuracy: itsdirected score was the fraction of correct dependencies; a more flattering2

undirected score was also used. We employ the same metrics but emphasize the directed scores.
Generalizing Klein and Manning’s setup, we let WSJx be the subset of pre-processed sentences
with at mostx terminals. Our experiments focus onx ∈ {1, . . . , 45}, but we also test on WSJ100
and Section 23 of WSJ∞ (the entire WSJ). In addition, we test on the held-out Brown100 (similarly
derived from the Brown corpus [14]). See Figure 1 for sentence and token counts of these corpora.

1Stripped of all empty sub-trees, punctuation, and terminals (tagged# and$) not pronounced where they
appear, those sentences still containing more than ten tokens were thrown out.

2Ignoring polarity of parent-child relations partially obscured effects of alternate analyses (systematic
choices between modals and main verbs for heads of sentences, determiners for noun phrases, etc.) and fa-
cilitated comparison with prior work.
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Corpus Sentences POS Tokens Corpus Sentences POS Tokens
WSJ1 159 159 WSJ13 12,270 110,760
WSJ2 499 839 WSJ14 14,095 136,310
WSJ3 876 1,970 WSJ15 15,922 163,715
WSJ4 1,394 4,042 WSJ20 25,523 336,555
WSJ5 2,008 7,112 WSJ25 34,431 540,895
WSJ6 2,745 11,534 WSJ30 41,227 730,099
WSJ7 3,623 17,680 WSJ35 45,191 860,053
WSJ8 4,730 26,536 WSJ40 47,385 942,801
WSJ9 5,938 37,408 WSJ45 48,418 986,830
WSJ10 7,422 52,248 WSJ100 49,206 1,028,054
WSJ11 8,856 68,022 Section 23 2,353 48,201
WSJ12 10,500 87,750 Brown100 24,208 391,796 5 10 15 20 25 30 35 40 45
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Figure 1: Sizes of WSJ{1, . . . , 45, 100}, Section 23 of WSJ∞ and Brown100.

4 Experimental Methods: New Algorithms for the Classic Model

We ground our experimental design in the DMV’s simple generative process [1]. Operating over
lexical word classes{cw} — POS tags, its generative story for a sub-tree rooted at a head (of class
ch) rests on the independence assumptions inherent in the following decisions: (i) initial direction
dir ∈ {L, R} in which to attach children, via probabilityPORDER(ch); (ii) whether to sealdir, stopping
with probabilityPSTOP(ch, dir, adj), conditioned onadj ∈ {T, F} (true iff consideringdir’s first or
adjacent child); and (iii) attachment (of classca), according toPATTACH(ch, dir, ca). This produces
only projective trees, disallowing crossing dependencies(in contrast to methods like spanning tree
algorithms [15] that do not use charts). A special token♦ generates the head of the sentence as its
left (and only) child. See Figure 2 for a simple example that ignores (sums out)PORDER.
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Figure 2: A dependency structure for a short sentence and itsprobability according to the DMV.

The DMV lends itself to unsupervised learning via EM and inside-outside re-estimation [16]. Klein
and Manning estimated all probabilities without smoothing. Lacking a global optimization routine,
they guarded EM’s sensitivity to initial conditions by starting with an “ad-hoc harmonic” comple-
tion: non-root heads took the same number of dependents, attaching them in inverse proportion
to (a constant plus) their distance;♦ took its single dependent uniformly at random. This non-
distributional heuristic nudged EM towards typical linguistic dependency structures.

4.1 New Algorithm #1: Ad-Hoc∗ — A Variation on the Original Ad-Hoc Initialization

With crucial implementation details of the original initialization parameters and termination condi-
tions absent from the literature [1, 17], reimplementing the DMV required a fair bit of improvisation.
Everything in this section is a guess and likely does not match Klein and Manning’s actual choices.

We use the following ad-hoc harmonic scores (for all tokens other than♦):

SORDER ≡
1

2
, SSTOP ≡

1

ds + ks

=
1

ds + 3
and SATTACH ≡

1

da + ka

=
1

da + 2
,

with ds ≥ 0 a head’s distance to the stopping boundary andda ≥ 1 its distance to a child. The
integer constantsks andka come from related code in Stanford’s JavaNLP Project [18]. Note that
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ks is one higher than is strictly necessary to avoid both division by zero and determinism, whereas
ka could have been safely zeroed out entirely, since we never compute1 − PATTACH (see Figure 2).

Using these scoring functions, we initialize training by producing the best-scoring parses of all input
sentences and converting them into proper probability distributionsPSTOP andPATTACH via maximum-
likelihood estimation (a single step of Viterbi training [19]). Since left children are independent of
those on the right, we dropPORDER altogether, making “headedness” deterministic. Our parser is
careful to randomize tie-breaking, so that all parse trees of a particular sentence that have the same
score have an equal shot at being selected (both during initialization and evaluation).

Finally, we terminate EM when successive changes in per-token perplexity drop below2−20 bits.

4.2 New Algorithm #2: Baby Steps — An Initialization-Independent Scaffolding

We eliminate the need for initialization by first training ona trivial subset of the data — WSJ1; this
works, since there is only one (the correct) way to parse a single-token sentence. The resulting model
is then used to initialize training on WSJ2 (sentences of up to two tokens), and so forth, building up
to WSJ45’s 48,418 sentences (these cover 94.4% of all sentences in WSJ; the longest of the missing
790 has length 171). This algorithm is otherwise identical to Ad-Hoc∗, with the exception that it
re-estimates each model using Laplace smoothing, so that earlier solutions could be passed to next
levels (which sometimes contain previously unseen dependent and head POS tags).

4.3 Baselines: Uninformed, Oracle and Previously Published State-of-the-Art Results

To better appreciate the problem space, we consider two extreme initialization strategies. The unin-
formed uniform prior serves as a fair “zero-knowledge” baseline for comparing uninitialized models.
The maximum-likelihood “oracle” prior, computed from reference parses, serves as a “skyline” —
a bound for how an algorithm that stumbled on the true solution would fare at EM’s convergence.

In addition to citing Klein and Manning’s Ad-Hoc’s numbers [1], we compare our results on Section
23 of WSJ∞ to other past baselines (see Table 2). Headden III et al.’s lexicalized results are by far
the strongest on short sentences, but they unfortunately donot report the EVG’s performance for the
more complex and realistic test sets [7]; to the best of our knowledge, Cohen and Smith’s are the
highest reported numbers for longer sentences [6]. In addition to these two state-of-the-art systems,
we include revealing intermediate results [5] that preceded the parameter-tying approach [6]. These
include Bayesian models with Dirichlet [5] and various log-normal [5] priors, coupled with both
Viterbi and minimum Bayes-risk (MBR) decoding [5, 6].

4.4 Hypothesis: “Less is More” — An Anticipated Size-Complexity Trade-Off

Having conjectured that sentence length is a good proxy for complexity, we suspect that the very
long sentences may present too much ambiguity (see Section 2) to the under-constrained learning
problem. But the simpler short sentences are few and may not capture the full richness of the gram-
mar. This suggests the possibility of a “sweet spot” at WSJx, for x not too high (excluding the truly
daunting training examples) and not too low (including enough moderately accessible information).

5 Experimental Result #1: Baby Steps

We traced out a curve of Baby Steps’ performance when trainedand tested on WSJ(x + 1), using
its solution to WSJx as initialization, forx < 45 (see Figure 3). Klein and Manning’s published
results, 43.2% (63.7%) [1], appear as dots at WSJ10, where Baby Steps achieves 53.0% (65.7%);
trained and tested on WSJ45, Baby Steps scores 39.7% (54.3%). Classic EM learns very little about
directed dependencies without the benefit of a linguistically-biased prior for the DMV: it improves
slightly, e.g. from 17.3% (34.2%) to 19.1% (46.5%) on WSJ45,learning a little of the structure (as
evidenced by its undirected scores), but actually gets worse on shorter sentences, where its initial
guessing rate is high. And while we expected EM to walk away from supervised solutions [20, 21],
the extent of its drop there is truly shocking, e.g. from 69.8% (72.2%) to 50.6% (59.5%) on WSJ45.
Not surprisingly, Baby Steps’ scores do not change much fromone step to the next; but where its
changes are big, they are always positive.
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Figure 3: Directed and undirected accuracy scores attainedby the DMV, when trained and tested
on the same gradation of WSJ, for several different initialization strategies. The two green circles
represent Klein and Manning’s published numbers [1]; from top to bottom, red, violet and blue
curves represent the supervised (maximum-likelihood oracle) initialization, Baby Steps, and the
uninformed uniform prior. Dotted curves reflect starting performance, solid curves register perfor-
mance at EM’s convergence, and the arrows connecting them emphasize the impact of learning.

We also explored how Klein and Manning’s initializer may have fared at different gradations of
WSJ, by tracing out a similar curve for Ad-Hoc∗ (see Figure 4). Somewhat surprisingly, our im-
plementation performs significantly better than their published numbers at WSJ10: 54.5% (68.3%),
scoring slightly higher than Baby Steps; nevertheless, given enough data (from WSJ22 onwards),
Baby Steps outperforms Ad-Hoc∗, whose ability to learn takes a serious dive once the data set
becomes sufficiently complex (at WSJ23) and never recovers.Note that the linguistically-biased
prior peaks early (at WSJ6), eventually falling below the guessing rate (by WSJ24), but nevertheless
remains well-positioned to climb beyond the uninformed uniform prior’s performance.
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Figure 4: Directed accuracy for the DMV using Ad-Hoc∗, shown in green, when trained and tested
on the same gradation of WSJ. As in Figure 3, the green circle corresponds to Klein and Manning’s
published score [1]; red, violet and blue curves represent supervised, Baby Steps, and uniform ini-
tialization strategies. Dotted curves reflect starting performance, solid curves register performance
at EM’s convergence, and the arrows connecting them emphasize the impact of learning.
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6 Experimental Result #2: “Less is More”

The graphs in the previous section (Figures 3 and 4) could be misleading, as they do not tell the
whole story of how learning scales with more (complex) data.They are difficult to interpret be-
cause, on the one hand, as the data set increases in size, the training algorithm gets access to more
information; on the other, since in this unsupervised setting the training and test sets are the same,
additional longer sentences make for significantly more challenging evaluation. To better understand
these dynamics, we applied Laplace smoothing to all models (other than Baby Steps, which does its
own smoothing) and re-plotted their performance, holding several test sets fixed (see Figure 5).
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Figure 5: Directed accuracies attained by the DMV, trained at various gradations of WSJ but tested
against four fixed evaluation sets — WSJ{10,20,30,40}, for four different initialization strategies.
As in Figure 4, the green circle corresponds to Klein and Manning’s published score [1]; red, vi-
olet, green and blue curves represent supervised, Baby Steps, Ad-Hoc∗ and uniform initialization
strategies. Dotted curves reflect starting performance, solid curves register performance at EM’s
convergence, and the arrows connecting them emphasize the impact of learning.

The new graphs show that Baby Steps scales best with more (complex) data — its curves are the only
ones that do not trend downwards. However, a good initialization induces a sweet spot at WSJ15,
where the DMV is learned best using Ad-Hoc∗. We call this mode “Less is More.” Curiously, even
oracle training exhibits a bump here: once sentences get long enough (at WSJ36), its performance
degrades below training with virtually no supervision (at the hardly representative WSJ3).
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7 Experimental Result #3: Generalization

Our main findings carry over to the larger WSJ100, Section 23 of WSJ∞, as well as the independent
Brown100 (see Table 1). Built up to WSJ45, Baby Steps performs best, scoring 39.4% (54.1%) on
WSJ100, compared to Ad-Hoc∗’s 31.3% (53.8%). Trained at the sweet spot, Ad-Hoc∗ is the undis-
puted champion, scoring 44.1% (58.8%), compared to Baby Steps’ 39.2% (53.8%) if stopped there.
Although Ad-Hoc∗ trained on WSJ15 generalizes well enough to reign on Brown100 as well, its
score drops slightly, to 43.3% (59.2%). In contrast, Baby Steps trained up to WSJ15 actually scores
higher on Brown100 than on WSJ100, though still lower than Ad-Hoc∗ — 42.3% (55.1%), suggest-
ing that its iterative approach leads to better generalization, consistent with our expectations [22, 23].

Table 1: Directed and undirected accuracies on Section 23 ofWSJ∞, WSJ100 and Brown100 for
Ad-Hoc∗ and Baby Steps, trained at WSJ15 and WSJ45.

@15 @45
Ad-Hoc∗ Baby Steps Ad-Hoc∗ Baby Steps

Section 23 44.1(58.8) 39.2(53.8) 31.5(51.6) 39.4(54.0)
WSJ100 43.8(58.6) 39.2(53.8) 31.3(51.5) 39.4(54.1)
Brown100 43.3(59.2) 42.3(55.1) 32.0(52.4) 42.5(55.5)

Results on Section 23 show, unexpectedly, that Baby Steps would have been state-of-the-art in 2008,
whereas “Less is More” (Ad-Hoc∗ trained at WSJ15) already outperforms state-of-the-art in2009 on
longer sentences (see Table 2). Baby Steps is competitive with the log-normal families technique [5]
of 2008, scoring slightly better on longer sentences against Viterbi decoding, though worse against
MBR. “Less is More” outperforms the current best system by close to 2% on longer sentences.

Table 2: Directed accuracies on Section 23 of WSJ{10, 20,∞} for several baselines and recent
state-of-the-art systems (adapted from [5], [6] and [7]).

Year Decoding WSJ10 WSJ20 WSJ∞

Attach-Right [1] 2004 — 38.4 33.4 31.7
DMV Ad-Hoc [1] 2004 Viterbi 45.8 39.1 34.2

Dirichlet [5] 2008 Viterbi 45.9 39.4 34.9
Ad-Hoc [5] 2008 MBR 46.1 39.9 35.9
Dirichlet [5] 2008 MBR 46.1 40.6 36.9
Log-Normal Families [5] 2008 Viterbi 59.3 45.1 39.0
Baby Steps @15 2009 Viterbi 55.5 44.3 39.2
Baby Steps @45 2009 Viterbi 55.1 44.4 39.4
Log-Normal Families [5] 2008 MBR 59.4 45.9 40.5
Shared Log-Normals, Tying Verbs and Nouns [6] 2009 MBR 61.3 47.4 41.4
Bilingual Shared Log-Normals, Tying Verbs and Nouns [6] 2009 MBR 62.0 48.0 42.2
Less is More (Ad-Hoc∗ @15) 2009 Viterbi 56.2 48.2 44.1

EVG Smoothed (skip-val) [7] 2009 Viterbi 62.1
Smoothed (skip-head) [7] 2009 Viterbi 65.0
Smoothed (skip-head), Lexicalized [7] 2009 Viterbi 68.8

8 A Brief Historical Overview and Discussion of Related Work

Originating in behavioral psychology [24], the idea of “starting small” [25] stirred controversy [26]
within cognitive science. Elman [25] claimed that artificial neural networks could succeed in learn-
ing a pseudo-natural language only under conditions of restricted memory or input, guided by a
scaffolding for either model or data complexity. His networks failed to recognize a complex gram-
mar when trained with the full “adult” language from the outset, but mastered it when the data were
binned into grades of difficulty and presented in order of increasing complexity. We observed a
similar effect with Ad-Hoc∗ and Baby Steps at WSJ45, but Rohde and Plaut’s attempts to replicate
Elman’s exact study showed that limiting input in fact hinders language acquisition [26]. As they
made Elman’s grammar more English-like, by introducing andstrengthening semantic constraints,
the already significant advantage for “starting large” increased. Noting Rohde and Plaut’s concern
that Elman’s simulations did not allow the networks exposedexclusively to complex inputs suffi-
cient training time warranted by their initial random weights, we used a generous, low termination
threshold for EM. Still, Baby Steps should be re-tested witha lexicalized model (such as the EVG),
since its current POS tag-based approach is purely syntactic.
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Elman reported equally good results with the learning mechanism itself undergoing “maturational
changes” during training, holding the input constant (instead of gradually complicating the environ-
ment) — an observation consistent with the “less is more” proposal [27, 28]. Networks that started
with severe memory limitations effectively restricted therange of data to which they were exposed in
the early phases, imitating the increase in working memory and attention span that occurs over time
in children [29]. Elman explained the paradoxical effect — that learning could be improved under
conditions of limited capacity — by suggesting how restricted capabilities could neatly compensate
for specific shortcomings of their learning mechanisms, making a long period of development play a
positive role in the acquisition of a behavior. Baby Steps appeared to patiently improve local search
by tweaking simplified training landscapes, repeatedly taking advantage of EM’s initial progress.
Elman’s effect of early learning also seemed to filter the input, constraining the solution space by
presenting the network with just the right data (simple sentences that permitted it to learn the basic
representational categories) at just the right time (earlyon, when its plasticity was greatest).

Despite Rohde and Plaut’s failure to replicate Elman’s results with simple recurrent networks, many
other machine learning techniques have been shown to benefitfrom scaffolded model complexity
on a variety of language tasks. In word-alignment, Brown et al. [19] used IBM Models 1-4 as
“stepping stones” to the training of Model 5 — a procedure that to this day serves as a corner-stone
of statistical machine translation. Other prominent examples include “coarse-to-fine” approaches to
parsing [30, 31, 32], translation [33, 32] and speech recognition [32], as well as a recent application
to unsupervised POS tagging [34]. The first model is typically either trivial or particularly simple, so
that both learning and inference are cheap. Each refinement on the way to the full model introduces
only limited complexity, enabling incrementality. Brown et al.’s Model 1 had a global optimum that
could be computed exactly, so that, as with Baby Steps, no parameters depended on initialization.

Examples of scaffolded data complexity are rare, although ideas for gradually making the learning
task more difficult have been explored in robotics (typically in the context of navigation), in asso-
ciation with reinforcement learning [35, 36, 37, 38, 39, 40]. The year 2009 saw a renewed interest
in shaping — a method of instruction in which the teacher decomposes a complete task into sub-
components, providing an easier path to learning [22, 23]. When Skinner [24] first coined the term,
he described it as a “method of successive approximations.”Krueger and Dayan [22] showed that
shaping speeds up language learning and leads to better generalization. Bengio et al. [23] confirmed
this using simple multi-stage curriculum strategies, for language and vision tasks, and conjectured
that a well-chosen sequence of training criteria, each associated with a different set of weights on
the examples, could act as a continuation method [41], helping3 to find better local optima of a non-
convex training criterion. They also noted that at any pointduring learning, some examples could
be considered “too easy” (not helping to improve the currentmodel), while others “too difficult”
(not captured by any small change to the model). Perhaps if Baby Steps focused on “interesting”
examples — those near the frontier of its knowledge and abilities (neither too easy nor too hard), as
Bengio et al. suggest, then it would not flat-line quite so early in its development (see Figure 5).

9 Conclusion

We have presented two ideas for unsupervised dependency parsing. “Less is More” is the paradoxi-
cal result that better performance can be attained by training with less data — even when removing
samples from the true distribution. Taking advantage of thesweet spot at WSJ15, small tweaks to
Klein and Manning’s approach of 2004 break through the 2009 state-of-the-art on longer sentences.

The second, Baby Steps, is a simple and elegant meta-heuristic for optimizing a non-convex train-
ing criterion. This idea eliminates the need for (and strongly outperforms) a linguistically-biased
manually-tuned initialization when the location of the sweet spot is not known, scaling gracefully
with more (complex) data. It should easily carry over to morepowerful models and algorithms.

Future work could explore unifying these techniques. We seelots of opportunities for improvement,
considering the poor performance of the oracle models relative to the supervised state-of-the-art,
and in turn the poor performance of the unsupervised state-of-the-art relative to these oracle models.

3The basic idea of continuation methods is to first optimize a smoothed objective, then gradually consider
less smoothing, with the intuition that smoothed versions of the problem reveal the global picture [23].
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