
To appear in ICASSP-95

USING A STOCHASTIC CONTEXT-FREE GRAMMAR AS A LANGUAGE MODEL FOR
SPEECH RECOGNITION

Daniel Jurafsky, Chuck Wooters
�
, Jonathan Segal, Andreas Stolcke

�
, Eric Fosler,

Gary Tajchman
�
, and Nelson Morgan

International Computer Science Institute
1947 Center Street, Suite 600

Berkeley, CA 94704, USA
& University of California at Berkeley�

jurafsky,wooters,tajchman,jsegal,stolcke,fosler,morgan � @icsi.berkeley.edu

ABSTRACT

This paper describes a number of experiments in adding new
grammatical knowledge to the Berkeley Restaurant Project
(BeRP), our medium-vocabulary (1300 word), speaker-in-
dependent, spontaneous continuous-speech understanding
system (Jurafsky et al. 1994). We describe an algorithm for
using a probabilistic Earley parser and a stochastic context-
free grammar (SCFG) to generate word transition proba-
bilities at each frame for a Viterbi decoder. We show that
using an SCFG as a language model improves word error
rate from 34.6% (bigram) to 29.6% (SCFG), and seman-
tic sentence recognition error from from 39.0% (bigram)
to 34.1% (SCFG). In addition, we get a further reduction to
28.8% word error by mixing the bigram and SCFG LMs. We
also report on our preliminary results from using discourse-
context information in the LM.

1. TIGHT COUPLING

A number of researchers have proposed ways to use natural-
language-backend information in the speech recognition
process. Moore et al. (1989) used a unification-based CFG
to generate word transitions for a Viterbi recognizer. Good-
ine et al. (1991) describe a system which uses the CFG-based
TINA parser to predict next words for the SUMMIT speech
recognizer, Kita & Ward (1991) used a CFG to filter bigram
follow-sets for the Sphinx recognizer. Hauenstein & Weber
(1994) also used a unification-based CFG to filter bigram
follow-sets. In all these cases, the CFG was used to gener-
ate or filter the word-transition list, but not to assign proba-
bilities. Goddeau (1992) extended these results by using a
probabilistic LR parser to actually produce word-transition
probabilities.�

Currently at Dept. of Defense�
Currently at SRI International�
Currently at Voice ProcessingCorp, 1 Main St, Cambridge, MA 02142:

tajchman@vpro.com

Our tight coupling model extends these models to gen-
eral SCFGs by augmenting a probabilistic version of the
Earley algorithm (Stolcke 1993) to compute word transition
probabilities from an SCFG.

The system we have augmented, the BeRP system, is a
speech understanding system which answers questions about
restaurants in the city of Berkeley, California, inspired by
earlier consultants like VOYAGER (Zue et al. 1991). BeRP
consists of a RASTA-PLP feature extractor, a multilayer
perceptron (MLP) phonetic probability estimator, a Viterbi
decoder, an HMM lexicon, a natural language interpreter
which incorporates a stochastic context-free grammar, and
a database of restaurants.

The SCFG used in BeRP consists of 1389 hand-written
context-free rules. The non-terminals in the rules are very
specific to the corpus, and hence encode semantic informa-
tion particular to the restaurant domain. The rule probabil-
ities are learned from the 4786-sentence BeRP corpus with
the EM algorithm. Figure 1 shows a sample of the grammar
rules with probabilities.

�
0.38	 s
 ISENTENCES�
0.62	 ISENTENCES
 IWANTTO VP�
0.71	 VP
 EATVERB EATOBJ�
0.17	 VP
 SPENDVERB MONEY�
0.11	 VP
 TRAVELVERB DISTANCE

Figure 1: Sample Grammar Rules

2. USING THE SCFG

We have experimented with a number of ways to use the
information provided by the SCFG:

1. Use the SCFG to add linguistic constraints to the bi-
gram grammar by taking our original corpus, adding

a pseudo-corpus generated from the SCFG, and build-
ing the bigram from this joint corpus.

2. Use the SCFG to add structure to the bigram grammar
by generating the characteristic bigram for the SCFG
in closed form.

3. Use the SCFG directly to provide word transition
probabilities on each frame.

4. Use a mixture of the SCFG and bigram probabilities
directly to provide word transition probabilities on
each frame.

2.1. Using the SCFG to Smooth the Bigram

In the first two methods, we use the SCFG to smooth the
bigram grammar and add structural constraints, and then
use this improved bigram grammar in the recognizer. The
first method extends an idea of Zue et al. (1991), who used
an advanced language model to generate random sentences
from which to train a word-pair model. We extended this
idea to generation of bigrams by Monte-Carlo sampling, by
using our SCFG-based parser in generation mode to generate
a pseudo-corpus of 200,000 sentences, adding in our regular
BeRP corpus, and then using our standard bigram-building
tools on the combined corpus.

In the second method, we have shown (Stolcke & Se-
gal 1994) that it is possible to generate a bigram from a
stochastic context-free grammar directly, by computing its
characteristic n-gram in closed form. The method computes
the expected bigram counts for strings generated by each of
the nonterminals in the grammar by solving a system of lin-
ear equations derived from the grammar rule probabilities.
Our implementation of this algorithm is slower than Monte
Carlo sampling but generates more accurate probabilities.

2.2. Using the SCFG directly as the LM

In the third method, we use the SCFG directly as the LM
for the recognizer. The optimal algorithm for direct on-line
use of SCFG probabilities in recognition would combine the
dynamic programming computations from the Earley parser
and the Viterbi decoder. For example, a probabilistic Earley
parser could accept phone probabilities as input rather than
words. If the HMM lexicon were converted to SCFG-style
rules with phones as constituents, the standard probabilistic
Earley algorithm would compute the Viterbi phone path.
This algorithm is computationally infeasible, however, since
it is cubic on the length of the input, which would equal the
number of 10ms frames.

For our first implementation, then, we have chosen a
(suboptimal) approximation to this algorithm which is com-
putationally much more efficient, and which only requires
slight modifications to standard parsing and decoding al-
gorithms. The decoder will compute one or more word
strings at each 10 ms frame, which will be passed to the

parser to compute transition probabilities. This algorithm
is suboptimal since the SCFG probabilities violate the dy-
namic programming assumption that if the best path passes
through any particular phone it includes the best path up to
that phone. This is true because SCFG probabilities may
have quite long-distance effects.

To understand the algorithm, we begin by abstracting
away from probabilities. Consider the problem of using a
CFG to produce a follow-set, given a prefix string. For ex-
ample, if the recognizer passes the string I want British to
the parser, it will produce the follow words “food”, “restau-
rants”, “places”, “cuisine”, etc. The parser parses the prefix
string, and then looks at every non-terminal symbol that the
Earley parser is predictingnext. For each such non-terminal,
we look up its left-corner list – the list of terminal symbols
which the non-terminal can generate on the left fringe of
some parse tree. This list can be computed in advance.

i want british

WANT−OBJECTSWANT−VERBS

WANTING−SENTENCES

NATIONALITY FOOD−RESTAURANT

food
restaurants
places
cuisine
...

S

Left corner list for FOOD−RESTAURANT:

Figure 2: Prefixes and Left-Corner lists

The recognizer needs more than just follow sets, how-
ever. In this case, it needs the various probabilities P(‘food’
| ‘I want British’), P(‘restaurants’ | ‘I want British’) etc.; i.e.,
for each word ��� in the follow set, we need to compute

��� ����� � 1 � 2 	
	
	 ����� 1
 (1)

To compute these probabilities, we first augment the left
corner list to produce the probability that a given non-
terminal expands to a terminal. For a given pair of symbols����� ��� , where � is a non-terminal and � is a terminal,
the left-corner probability is the probability that � generates
some string which begins with � . Jelinek & Lafferty (1991)
give an algorithm for computing this left-corner probability
for every pair of non-terminals and terminals in the grammar
with a single matrix-inversion.

If all sentences were unambiguous, this would be suffi-
cient to produce the correct transition probabilities. How-
ever, sentences are ambiguous. Because of this, there will
be multiple parses for each prefix, and hence we will need to
combine the left-corner probabilities for non-terminals from
different parses. We can do this by weighting the follow-
set for each parse, or derivation, by the probability of the

derivation.� � � � � � 1 	
	 	 � ��� 1
 � �
���

derivations

�����
 ��� � � � � 1 	
	
	 � ��� 1
� �

(2)

Thus the parser must be able to compute prefix proba-
bilities for derivations of input strings. For a given parse,
the prefix probability is just the product of the probabilities
of all the rules used in the parse. In order to compute this
probability efficiently, we augment our probabilistic chart
parser by annotating each edge of the chart with quantities:
a prefix probability and an inside probability. Each edge-
creation action computes the inside probability and prefix
probability for the new edge from the old edges and the
grammar rule probabilities. Readers with interest in the de-
tails of this probabilistic Earley computation are referred to
Stolcke (1993), which extends the simpler prefix algorithm
used in BeRP to deal with left-recursive grammars and unit
productions.

We have described how the parser is able to compute
follow-set probabilities for each string that is passed to it by
the recognizer. We turn now to the tight-coupling interface.
For each frame, the decoder must compute word strings to
pass to the parser. A bigram-based recognizer would simply
look up the bigram transition probability for each word that
can end at the current frame. Since an SCFG-based rec-
ognizer will use the entire prefix to compute the transition
probabilities, the recognizer must perform a backtrace to
determine the prefix associated with the word. The com-
plete algorithm would compute a backtrace from each word
and pass each to the parser; we approximate this by only
computing a backtrace from the 10 words most likely to end
at the current frame. For each of these 10 words, the single
backtrace is passed to the parser, which computes a proba-
bility vector over the follow-set words. The recognizer then
uses each of these probabilities as the transition probability
from the word ending at frame � to each of the words which
the follow-set vector gives a non-zero probability of starting
at frame �
	 1. If a word is included in the follow-set of
more than one backtrace, we pick the maximum probability
(Viterbi) backtrace.

If the parser fails at any point in parsing a backtrace, it
backs off to the bigram grammar to compute word-transition
probabilities for the remainder of the sentence. As Figure 3
shows, this backoff is quite rare, only happening for a very
small number of the sentences (mostly the very long sen-
tences). Thus even sentences whose correct transcription
falls outside the CFG are usually forced into the nearest
CFG-grammatical string.

One of the most challenging design aspects of this al-
gorithm was achieving reasonable time-performance, since
the decoder requires word-transition probabilities after ev-
ery 10 ms frame, requiring on average 2400 calls to the
parser per sentence. Despite this large number, our proto-
type tightly-coupled recognizer runs just 36% slower than
our non-tightly-coupled recognizer using bigram probabil-

% backtraces parseable by CFG

Sentence Length

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16 19 22

Backoff to
Bigram

Parseable

Figure 3: Percentage of backtraces covered by the SCFG

ities. To achieve this speed, we optimized the algorithm
extensively by using efficient indexing in the grammar and
the chart, making use of shared substring information for the
prefix computation, and adding a cache between the recog-
nizer and the parser to avoid reparsing repeated backtraces.

2.3. Mixing SCFG and SCFG-bigram

The final way to use SCFG information relies on the intuition
that the SCFG and the SCFG-smoothed-bigram offer com-
plimentary sources of knowledge about grammar. Where
the SCFG is best at modeling long-distance dependencies
and hierarchical structure, the SCFG-bigram is best at local
and lexical dependencies. Our idea is to mix the two mod-
els on a frame-by-frame basis. We have experimented with
two versions of this mixing. In one, we weight the models
equally:

� � � � � prefix
 � 0 	 5 ��� � � � prefix,SCFG
 	
0 	 5 � � � � � prefix,Bigram
 (3)

In the second, we weight each model by how likely it is
given the prefix (which we compute using Bayes’ rule); this
reflects the intuition that we should rely more on the model
which demonstrates a better fit with previous input:

��� ��� � prefix
 � � �
SCFG � prefix
 ��� ��� � prefix,SCFG
 	���
Bigram � prefix
 ��� � � � prefix,Bigram
 (4)

3. RESULTS

Our tight coupling systems were tested on a test set of 364
sentences, drawn from the same corpus as the 4786-sentence
training sentences (see Jurafsky et al. (1994) for details on
the corpus collection). Table 1 presents our word error
results.

Note that the SCFG gave a 5.0% absolute improvement
in word error over the bigram (14% relative), significant at
the .005 level. The SCFG and the SCFG-smoothed bigram
performed equally, and the mixture models were slightly

Word Error
Bigram 34.6
SCFG-Smoothed Bigram 29.6
SCFG 29.6
SCFG/SCFG-Bigram Weighted Mixture 29.5
SCFG/SCFG-Bigram Equal Mixture 28.8

Table 1: BeRP Tight Coupling Performance

but not significantly better than either SCFG model. Ad-
ditionally, the equal-mixture model seemed to do the best,
although the difference with the other mixture and SCFG
models was not significant – we plan to rerun these experi-
ments on a larger test set. We suspect that the relative success
of the equal-mixture over the weighted-mixture model was
due to a useful side effect of equal-mixtures which penalizes
the bigram model by normalizing it to 0.5 just in those back-
traces where the SCFG returns a zero probability. Use of
the SCFG also improved the semantic sentence error from
39.0% (bigram) to 34.1% (all the systems incorporating the
SCFG), although this difference was not statistically signif-
icant with only 364 sentences.

4. USE OF HIGHER-LEVEL KNOWLEDGE

The experiments we have described so far focus on knowl-
edge at the syntactic level. We have begun preliminary work
investigating the use of discourse context in recognition. Be-
cause BeRP is a mixed-initiative system, the system often
asks the user direct questions, and about 70% of the time the
user reponds directly to the question. This knowledge could
be used to build subgrammars which model different parts
of the discourse.

We tested this idea by building bigrams which were
specific to the discourse context. For each question the
system asks, we build a subcorpus of responses from our
training set, and train a bigram (smoothed with responses
to other questions). During recognition, we switch between
these bigrams depending on the system’s latest question. In
very preliminary experiments with this discourse-based tight
coupling, we show a non-significant 2% absolute reduction
in word error, but we are optimistic that these results will
improve.

5. CONCLUSIONS AND FUTURE WORK

Our experiments make it clear that the use of SCFG infor-
mation can significantly improve recognition performance.
It was interesting to note that compiling the SCFG into a
bigram preserved most of the useful information; adding the
SCFG to the SCFG-bigram only produced a non-significant
.8% absolute reduction in word error. We suspect that one
important reason for the small effects of SCFG probabili-
ties over SCFG-bigram is the suboptimality introduced by

passing the Earley parser only the single best word path
from the decoder. This approximation is suboptimal just for
paths in which the SCFG has a particularly non-local effect
on the probability (i.e. more than a single word), exactly
the sort of information that would distinguish SCFG from
SCFG-bigram.

We are currently working on extending our tightly-coupled
parser to use more sophisticated linguistic information, in-
cluding unification features and probabilistic verbal valence
knowledge. We are also working on improving the efficiency
of the tight-coupling interface by adding an ungrammatical-
prefix cache, obviating attempting to parse ungrammatical
strings.

Further details of the BeRP system are presented in
Wooters (1993) and Jurafsky et al. (1994).

Acknowledgments
We’d like to thank Jerry Feldman, Steve Omohundro, and Steve

Renals for their generous help and advice. This work was par-
tially funded by ICSI and an SRI subcontract from ARPA contract
MDA904-90-C-5253. Partial funding also came from ESPRIT
project 6487 (The Wernicke project).

6. REFERENCES

GODDEAU, DAVID. 1992. Using probabilistic shift-reduce parsing in
speech recognition systems. In ICSLP-92, I.321—324, Banff, Canada.

GOODINE, DAVID, STEPHANIE SENEFF, LYNETTE HIRSCHMAN, &
MICHAEL PHILLIPS. 1991. Full integration of speech and language
understanding in the MIT spoken language system. In Proceedings of
Eurospeech 91, 24—26, Genova, Italy.

HAUENSTEIN, ANDREAS, & HANS H. WEBER. 1994. An investigation
of tightly coupled time synchronous speech language interfaces using a
unification grammar. In Proceedings of AAAI-94 Workshop on Integra-
tion of Natural Language and Speech Processing, 42–49.

JELINEK, FREDERICK, & JOHN D. LAFFERTY. 1991. Computation of
the probability of initial substring generation by stochastic context-free
grammars. Computational Linguistics 17.315–323.

JURAFSKY, DANIEL, CHUCK WOOTERS, GARY TAJCHMAN, JONATHAN

SEGAL, ANDREAS STOLCKE, ERIC FOSLER, & NELSON MORGAN. 1994.
The Berkeley restaurant project. In ICSLP-94, Yokohama, Japan.

KITA, KENJI, & WAYNE H. WARD. 1991. Incorporating LR parsing into
SPHINX. In IEEE ICASSP-91, I.269–272.

MOORE, ROBERT, FERNANDO PEREIRA, & HY MURVEIT. 1989. Inte-
grating speechand natural-languageprocessing. In ProceedingsDARPA
Speech and Natural Language Workshop, 243—247.

STOLCKE, ANDREAS. 1993. An efficient probabilistic context-free pars-
ing algorithm that computes prefix probabilities. Technical Report TR-
93-065, International Computer Science Institute, Berkeley, CA. To
appear in Computational Linguistics.

——, & JONATHAN SEGAL. 1994. Precise � -gram probabilities from
stochastic context-free grammars. In Proceedings of the 32nd ACL,
74–79, Las Cruces, NM.

WOOTERS, CHARLES C., 1993. Lexical Modeling in a Speaker Inde-
pendent Speech Understanding System. Berkeley, CA: University of
California dissertation. available as ICSI TR-92-062.

ZUE, VICTOR, JAMES GLASS, DAVID GOODINE, HONG LEUNG, MICHAEL

PHILLIPS, JOSEPH POLIFRONI, & STEPHANIE SENEFF. 1991. Integra-
tion of speech recognition and natural language processing in the MIT
VOYAGER system. In IEEE ICASSP-91, I.713–716.

