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Selectional Restrictions

Consider	
  the	
  two	
  interpretations	
  of:
I	
  want	
  to	
  eat	
  someplace	
  nearby.	
  

a) sensible:
Eat	
  is	
  intransitive	
  and	
  “someplace	
  nearby”	
  is	
  a	
  location	
  adjunct

b) Speaker	
  is	
  Godzilla
Eat	
  is	
  transitive	
  and	
  “someplace	
  nearby”	
  is	
  a	
  direct	
  object

How	
  do	
  we	
  know	
  speaker	
  didn’t	
  mean	
  b)	
  	
  ?
Because	
  the	
  THEME of	
  eating	
  tends	
  to	
  be	
  something	
  edible
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Selectional restrictions	
  are	
  associated	
  with	
  
senses

• The	
  restaurant	
  serves	
  green-­‐lipped	
  mussels.	
  
• THEME is	
  some	
  kind	
  of	
  food

• Which	
  airlines	
  serve	
  Denver?	
  
• THEME is	
  an	
  appropriate	
  location
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Selectional restrictions	
  vary	
  in	
  specificity

I	
  often	
  ask	
  the	
  musicians	
  to	
  imagine	
  a	
  tennis	
  game.
To	
  diagonalize a	
  matrix	
  is	
  to	
  find	
  its	
  eigenvalues.	
  
Radon	
  is	
  an	
  odorless	
  gas	
  that	
  can’t	
  be	
  detected	
  by	
  human	
  senses.	
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Representing	
  selectional restrictions

12 CHAPTER 22 • SEMANTIC ROLE LABELING

There are two possible parses and semantic interpretations for this sentence. In
the sensible interpretation, eat is intransitive and the phrase someplace nearby is
an adjunct that gives the location of the eating event. In the nonsensical speaker-as-
Godzilla interpretation, eat is transitive and the phrase someplace nearby is the direct
object and the THEME of the eating, like the NP Malaysian food in the following
sentences:
(22.30) I want to eat Malaysian food.

How do we know that someplace nearby isn’t the direct object in this sentence?
One useful cue is the semantic fact that the THEME of EATING events tends to be
something that is edible. This restriction placed by the verb eat on the filler of its
THEME argument is a selectional restriction.

Selectional restrictions are associated with senses, not entire lexemes. We can
see this in the following examples of the lexeme serve:
(22.31) The restaurant serves green-lipped mussels.
(22.32) Which airlines serve Denver?
Example (22.31) illustrates the offering-food sense of serve, which ordinarily re-
stricts its THEME to be some kind of food Example (22.32) illustrates the provides a
commercial service to sense of serve, which constrains its THEME to be some type
of appropriate location.

Selectional restrictions vary widely in their specificity. The verb imagine, for
example, imposes strict requirements on its AGENT role (restricting it to humans
and other animate entities) but places very few semantic requirements on its THEME
role. A verb like diagonalize, on the other hand, places a very specific constraint
on the filler of its THEME role: it has to be a matrix, while the arguments of the
adjectives odorless are restricted to concepts that could possess an odor:
(22.33) In rehearsal, I often ask the musicians to imagine a tennis game.
(22.34) Radon is an odorless gas that can’t be detected by human senses.
(22.35) To diagonalize a matrix is to find its eigenvalues.

These examples illustrate that the set of concepts we need to represent selectional
restrictions (being a matrix, being able to possess an odor, etc) is quite open ended.
This distinguishes selectional restrictions from other features for representing lexical
knowledge, like parts-of-speech, which are quite limited in number.

22.7.1 Representing Selectional Restrictions
One way to capture the semantics of selectional restrictions is to use and extend the
event representation of Chapter 14. Recall that the neo-Davidsonian representation
of an event consists of a single variable that stands for the event, a predicate denoting
the kind of event, and variables and relations for the event roles. Ignoring the issue of
the l -structures and using thematic roles rather than deep event roles, the semantic
contribution of a verb like eat might look like the following:

9e,x,y Eating(e)^Agent(e,x)^T heme(e,y)

With this representation, all we know about y, the filler of the THEME role, is that
it is associated with an Eating event through the Theme relation. To stipulate the
selectional restriction that y must be something edible, we simply add a new term to
that effect:

9e,x,y Eating(e)^Agent(e,x)^T heme(e,y)^EdibleT hing(y)6
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Sense 1
hamburger, beefburger --
(a fried cake of minced beef served on a bun)
=> sandwich
=> snack food
=> dish
=> nutriment, nourishment, nutrition...
=> food, nutrient
=> substance
=> matter
=> physical entity
=> entity

Figure 22.6 Evidence from WordNet that hamburgers are edible.

When a phrase like ate a hamburger is encountered, a semantic analyzer can
form the following kind of representation:

9e,x,y Eating(e)^Eater(e,x)^T heme(e,y)^EdibleT hing(y)^Hamburger(y)

This representation is perfectly reasonable since the membership of y in the category
Hamburger is consistent with its membership in the category EdibleThing, assuming
a reasonable set of facts in the knowledge base. Correspondingly, the representation
for a phrase such as ate a takeoff would be ill-formed because membership in an
event-like category such as Takeoff would be inconsistent with membership in the
category EdibleThing.

While this approach adequately captures the semantics of selectional restrictions,
there are two problems with its direct use. First, using FOL to perform the simple
task of enforcing selectional restrictions is overkill. Other, far simpler, formalisms
can do the job with far less computational cost. The second problem is that this
approach presupposes a large, logical knowledge base of facts about the concepts
that make up selectional restrictions. Unfortunately, although such common-sense
knowledge bases are being developed, none currently have the kind of coverage
necessary to the task.

A more practical approach is to state selectional restrictions in terms of WordNet
synsets rather than as logical concepts. Each predicate simply specifies a WordNet
synset as the selectional restriction on each of its arguments. A meaning representa-
tion is well-formed if the role filler word is a hyponym (subordinate) of this synset.

For our ate a hamburger example, for instance, we could set the selectional
restriction on the THEME role of the verb eat to the synset {food, nutrient}, glossed
as any substance that can be metabolized by an animal to give energy and build
tissue. Luckily, the chain of hypernyms for hamburger shown in Fig. 22.6 reveals
that hamburgers are indeed food. Again, the filler of a role need not match the
restriction synset exactly; it just needs to have the synset as one of its superordinates.

We can apply this approach to the THEME roles of the verbs imagine, lift, and di-
agonalize, discussed earlier. Let us restrict imagine’s THEME to the synset {entity},
lift’s THEME to {physical entity}, and diagonalize to {matrix}. This arrangement
correctly permits imagine a hamburger and lift a hamburger, while also correctly
ruling out diagonalize a hamburger.

Instead	
  of	
  representing	
  “eat”	
  as:

Just	
  add:

And	
  “eat	
  a	
  hamburger”	
  becomes

But	
  this	
  assumes	
  we	
  have	
  a	
  large	
  knowledge	
  base	
  of	
  facts	
  
about	
  edible	
  things	
  and	
  hamburgers	
  and	
  whatnot.
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Let’s	
  use	
  WordNet synsets to	
  specify	
  
selectional restrictions

• The	
  THEME of	
  eat	
  must	
  be WordNet synset {food,	
  nutrient}	
  
“any	
  substance	
  that	
  can	
  be	
  metabolized	
  by	
  an	
  animal	
  to	
  give	
  energy	
  and	
  build	
  tissue”

• Similarly
THEME of	
  imagine:	
  synset {entity}
THEME of	
  lift:	
  synset {physical	
  entity}
THEME of	
  diagonalize:	
  synset {matrix}	
  

• This	
  allows
imagine	
  a	
  hamburger	
   	
  and	
  	
  lift	
  a	
  hamburger,	
  

• Correctly	
  rules	
  out	
  
diagonalize a	
  hamburger.	
  7
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Selectional Preferences

• In	
  early	
  implementations,	
  selectional restrictions	
  were	
  strict	
  
constraints	
  (Katz	
  and	
  Fodor	
  1963)
• Eat	
  [+FOOD]

• But	
  it	
  was	
  quickly	
  realized	
  selectional constraints	
  are	
  really	
  
preferences (Wilks 1975)
• But	
  it	
  fell	
  apart	
  in	
  1931,	
  perhaps	
  because	
  people	
  realized	
  you	
  can’t	
  eat	
  gold	
  
for	
  lunch	
  if	
  you’re	
  hungry.	
  

• In	
  his	
  two	
  championship	
  trials,	
  Mr.	
  Kulkarni	
  ate	
  glass	
  on	
  an	
  empty	
  stomach,	
  
accompanied	
  only	
  by	
  water	
  and	
  tea.	
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Selectional Association	
  (Resnik 1993)

• Selectional preference	
  strength:	
  amount	
  of	
  information	
  that	
  a	
  
predicate	
  tells	
  us	
  about	
  the	
  semantic	
  class	
  of	
  its	
  arguments.	
  
• eat	
  tells	
  us	
  a	
  lot	
  about	
  the	
  semantic	
  class	
  of	
  its	
  direct	
  objects
• be	
  doesn’t	
  tell	
  us	
  much

• The	
  selectional preference	
  strength	
  
• difference	
  in	
  information	
  between	
  two	
  distributions:	
  

P(c)	
  the	
  distribution	
  of	
  expected	
  semantic	
  classes	
  for	
  any	
  direct	
  object
P(c|v)	
  the	
  distribution	
  of	
  expected	
  semantic	
  classes	
  for	
  this	
  verb

• The	
  greater	
  the	
  difference,	
  the	
  more	
  the	
  verb	
  is	
  constraining	
  its	
  object
10
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Selectional preference	
  strength

• Relative	
  entropy,	
  or	
  the	
  Kullback-­‐Leibler divergence	
  is	
  the	
  difference	
  
between	
  two	
  distributions

• Selectional preference:	
  How	
  much	
  information	
  (in	
  bits)	
  the	
  verb	
  expresses	
  
about	
  the	
  semantic	
  class	
  of	
  its	
  argument

• Selectional Association	
  of	
  a	
  verb	
  with	
  a	
  class:	
  The	
  relative	
  contribution	
  of	
  the	
  
class	
  to	
  the	
  general	
  preference	
  of	
  the	
  verb

11
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as the relative contribution of that class to the general selectional preference of the
verb:

AR(v,c) =
1

SR(v)
P(c|v) log

P(c|v)
P(c)

(22.40)

The selectional association is thus a probabilistic measure of the strength of as-
sociation between a predicate and a class dominating the argument to the predicate.
Resnik estimates the probabilities for these associations by parsing a corpus, count-
ing all the times each predicate occurs with each argument word, and assuming
that each word is a partial observation of all the WordNet concepts containing the
word. The following table from Resnik (1996) shows some sample high and low
selectional associations for verbs and some WordNet semantic classes of their direct
objects.

Direct Object Direct Object
Verb Semantic Class Assoc Semantic Class Assoc
read WRITING 6.80 ACTIVITY -.20
write WRITING 7.26 COMMERCE 0
see ENTITY 5.79 METHOD -0.01

Selectional Preference via Conditional Probability

An alternative to using selectional association between a verb and the WordNet class
of its arguments, is to simply use the conditional probability of an argument word
given a predicate verb. This simple model of selectional preferences can be used to
directly modeling the strength of association of one verb (predicate) with one noun
(argument).

The conditional probability model can be computed by parsing a very large cor-
pus (billions of words), and computing co-occurrence counts: how often a given
verb occurs with a given noun in a given relation. The conditional probability of an
argument noun given a verb for a particular relation P(n|v,r) can then be used as a
selectional preference metric for that pair of words (Brockmann and Lapata, 2003):

P(n|v,r) =
(

C(n,v,r)
C(v,r) if C(n,v,r)> 0

0 otherwise

The inverse probability P(v|n,r) was found to have better performance in some
cases (Brockmann and Lapata, 2003):

P(v|n,r) =
(

C(n,v,r)
C(n,r) if C(n,v,r)> 0

0 otherwise

In cases where it’s not possible to get large amounts of parsed data, another
option, at least for direct objects, is to get the counts from simple part-of-speech
based approximations. For example pairs can be extracted using the pattern ”V Det
N”, where V is any form of the verb, Det is the—a—e and N is the singular or plural
form of the noun (Keller and Lapata, 2003).

An even simpler approach is to use the simple log co-occurrence frequency of
the predicate with the argument logcount(v,n,r) instead of conditional probability;
this seems to do better for extracting preferences for syntactic subjects rather than
objects (Brockmann and Lapata, 2003).

14 CHAPTER 22 • SEMANTIC ROLE LABELING

22.7.2 Selectional Preferences
In the earliest implementations, selectional restrictions were considered strict con-
straints on the kind of arguments a predicate could take (Katz and Fodor 1963,
Hirst 1987). For example, the verb eat might require that its THEME argument
be [+FOOD]. Early word sense disambiguation systems used this idea to rule out
senses that violated the selectional restrictions of their governing predicates.

Very quickly, however, it became clear that these selectional restrictions were
better represented as preferences rather than strict constraints (Wilks 1975b, Wilks 1975a).
For example, selectional restriction violations (like inedible arguments of eat) often
occur in well-formed sentences, for example because they are negated (22.36), or
because selectional restrictions are overstated (22.37):

(22.36) But it fell apart in 1931, perhaps because people realized you can’t eat
gold for lunch if you’re hungry.

(22.37) In his two championship trials, Mr. Kulkarni ate glass on an empty
stomach, accompanied only by water and tea.

Modern systems for selectional preferences therefore specify the relation be-
tween a predicate and its possible arguments with soft constraints of some kind.

Selectional Association

One of the most influential has been the selectional association model of Resnik
(1993). Resnik defines the idea of selectional preference strength as the general

selectional
preference

strength amount of information that a predicate tells us about the semantic class of its argu-
ments. For example, the verb eat tells us a lot about the semantic class of its direct
objects, since they tend to be edible. The verb be, by contrast, tells us less about
its direct objects. The selectional preference strength can be defined by the differ-
ence in information between two distributions: the distribution of expected semantic
classes P(c) (how likely is it that a direct object will fall into class c) and the dis-
tribution of expected semantic classes for the particular verb P(c|v) (how likely is
it that the direct object of the specific verb v will fall into semantic class c). The
greater the difference between these distributions, the more information the verb is
giving us about possible objects. The difference between these two distributions can
be quantified by relative entropy, or the Kullback-Leibler divergence (Kullback andrelative entropy

Leibler, 1951). The Kullback-Leibler or KL divergence D(P||Q) expresses the dif-KL divergence

ference between two probability distributions P and Q (we’ll return to this when we
discuss distributional models of meaning in Chapter 17).

D(P||Q) =
X

x
P(x) log

P(x)
Q(x)

(22.38)

The selectional preference SR(v) uses the KL divergence to express how much
information, in bits, the verb v expresses about the possible semantic class of its
argument.

SR(v) = D(P(c|v)||P(c))

=
X

c
P(c|v) log

P(c|v)
P(c)

(22.39)

Resnik then defines the selectional association of a particular class and verbselectional
association
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Computing	
  Selectional Association

• A	
  probabilistic	
  measure	
  of	
  the	
  strength	
  of	
  association	
  between	
  a	
  
predicate	
  and	
  a	
  semantic	
  class	
  of	
  its	
  argument
• Parse	
  a	
  corpus
• Count	
  all	
  the	
  times	
  each	
  predicate	
  appears	
  with	
  each	
  argument	
  word
• Assume	
  each	
  word	
  is	
  a	
  partial	
  observation	
  of	
  all	
  the	
  WordNet concepts	
  
associated	
  with	
  that	
  word

• Some	
  high	
  and	
  low	
  associations:

12
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as the relative contribution of that class to the general selectional preference of the
verb:

AR(v,c) =
1

SR(v)
P(c|v) log

P(c|v)
P(c)

(22.40)

The selectional association is thus a probabilistic measure of the strength of as-
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that each word is a partial observation of all the WordNet concepts containing the
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given a predicate verb. This simple model of selectional preferences can be used to
directly modeling the strength of association of one verb (predicate) with one noun
(argument).

The conditional probability model can be computed by parsing a very large cor-
pus (billions of words), and computing co-occurrence counts: how often a given
verb occurs with a given noun in a given relation. The conditional probability of an
argument noun given a verb for a particular relation P(n|v,r) can then be used as a
selectional preference metric for that pair of words (Brockmann and Lapata, 2003):

P(n|v,r) =
(

C(n,v,r)
C(v,r) if C(n,v,r)> 0

0 otherwise

The inverse probability P(v|n,r) was found to have better performance in some
cases (Brockmann and Lapata, 2003):

P(v|n,r) =
(

C(n,v,r)
C(n,r) if C(n,v,r)> 0

0 otherwise

In cases where it’s not possible to get large amounts of parsed data, another
option, at least for direct objects, is to get the counts from simple part-of-speech
based approximations. For example pairs can be extracted using the pattern ”V Det
N”, where V is any form of the verb, Det is the—a—e and N is the singular or plural
form of the noun (Keller and Lapata, 2003).

An even simpler approach is to use the simple log co-occurrence frequency of
the predicate with the argument logcount(v,n,r) instead of conditional probability;
this seems to do better for extracting preferences for syntactic subjects rather than
objects (Brockmann and Lapata, 2003).
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Results	
  from	
  similar	
  models

eat food#n#1, aliment#n#1, entity#n#1, solid#n#1, food#n#2
drink fluid#n#1, liquid#n#1, entity#n#1, alcohol#n#1, beverage#n#1
appoint individual#n#1, entity#n#1, chief#n#1, being#n#2, expert#n#1
publish abstract entity#n#1, piece of writing#n#1, communication#n#2, publication#n#1

Table 2: Most probable cuts learned by WN-CUT for the object argument of selected verbs

Verb-object Noun-noun Adjective-noun
Seen Unseen Seen Unseen Seen Unseen

r � r � r � r � r � r �
WN-CUT .593 .582 .514 .571 .550 .584 .564 .590 .561 .618 .453 .439
WN-CUT-100 .500 .529 .575 .630 .619 .639 .662 .706 .537 .510 .464 .431
WN-CUT-200 .538 .546 .557 .608 .595 .632 .639 .669 .585 .587 .435 .431
LDAWN-100 .497 .538 .558 .594 .605 .619 .635 .633 .549 .545 .459 .462
LDAWN-200 .546 .562 .508 .548 .610 .654 .526 .568 .578 .583 .453 .450
Resnik .384 .473 .469 .470 .242 .187 .152 .037 .309 .388 .311 .280
Clark/Weir .489 .546 .312 .365 .441 .521 .543 .576 .440 .476 .271 .242
BNC (MLE) .620 .614 .196 .222 .544 .604 .114 .125 .543 .622 .135 .102
LDA .504 .541 .558 .603 .615 .641 .636 .666 .594 .558 .468 .459

Table 3: Results (Pearson r and Spearman � correlations) on Keller and Lapata’s (2003) plausibility data; underlining
denotes the best-performing WordNet-based model, boldface denotes the overall best performance

4.2 Results

Table 2 demonstrates the top cuts learned by the
WN-CUT model from the verb-object training data
for a selection of verbs. Table 3 gives quanti-
tative results for the WordNet-based models un-
der consideration, as well as results reported by Ó
Séaghdha (2010) for a purely distributional LDA
model with 100 topics and a Maximum Likelihood
Estimate model learned from the BNC. In general,
the Bayesian WordNet-based models outperform the
models of Resnik and Clark and Weir, and are com-
petitive with the state-of-the-art LDA results. To
test the statistical significance of performance differ-
ences we use the test proposed by Meng et al. (1992)
for comparing correlated correlations, i.e., correla-
tion scores with a shared gold standard. The dif-
ferences between Bayesian WordNet models are not
significant (p > 0.05, two-tailed) for any dataset or
evaluation measure. However, all Bayesian mod-
els improve significantly over Resnik’s and Clark
and Weir’s models for multiple conditions. Perhaps
surprisingly, the relatively simple WN-CUT model
scores the greatest number of significant improve-
ments over both Resnik (7 out of 12 conditions)
and Clark and Weir (8 out of 12), though the other

Bayesian models do follow close behind. This may
suggest that the incorporation of WordNet structure
into the model in itself provides much of the cluster-
ing benefit provided by an additional layer of “topic”
latent variables.4

In order to test the ability of the WordNet-based
models to make predictions about arguments that
are absent from the training vocabulary, we created
an artificial out-of-vocabulary dataset by removing
each of the Keller and Lapata argument words from
the input corpus and retraining. An LDA selectional
preference model will completely fail here, but we
hope that the WordNet models can still make rela-
tively accurate predictions by leveraging the addi-
tional lexical knowledge provided by the hierarchy.
For example, if one knows that a tomatillo is classed
as a vegetable in WordNet, one can predict a rel-
atively high probability that it can be eaten, even
though the word tomatillo does not appear in the
BNC.

As a baseline we use a BNC-trained model that

4An alternative hypothesis is that samplers for the more
complex models take longer to “mix”. We have run some exper-
iments with 5,000 iterations but did not observe an improvement
in performance.
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Ó Séaghdha and	
  Korhonen (2012)
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Instead	
  of	
  using	
  classes,
a	
  simpler	
  model	
  of	
  selectional association

• Model	
  just	
  the	
  association	
  of	
  predicate	
  vwith	
  a	
  noun	
  n
(one	
  noun,	
  as	
  opposed	
  to	
  the	
  whole	
  semantic	
  class	
  in	
  WordNet)
• Parse	
  a	
  huge	
  corpus
• Count	
  how	
  often	
  a	
  noun	
  n	
  occurs	
  in	
  relation	
  r	
  with	
  verb	
  v:

log count(n,v,r)
• Or	
  the	
  probability:

14
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as the relative contribution of that class to the general selectional preference of the
verb:

AR(v,c) =
1

SR(v)
P(c|v) log

P(c|v)
P(c)

(22.40)

The selectional association is thus a probabilistic measure of the strength of as-
sociation between a predicate and a class dominating the argument to the predicate.
Resnik estimates the probabilities for these associations by parsing a corpus, count-
ing all the times each predicate occurs with each argument word, and assuming
that each word is a partial observation of all the WordNet concepts containing the
word. The following table from Resnik (1996) shows some sample high and low
selectional associations for verbs and some WordNet semantic classes of their direct
objects.

Direct Object Direct Object
Verb Semantic Class Assoc Semantic Class Assoc
read WRITING 6.80 ACTIVITY -.20
write WRITING 7.26 COMMERCE 0
see ENTITY 5.79 METHOD -0.01

Selectional Preference via Conditional Probability

An alternative to using selectional association between a verb and the WordNet class
of its arguments, is to simply use the conditional probability of an argument word
given a predicate verb. This simple model of selectional preferences can be used to
directly modeling the strength of association of one verb (predicate) with one noun
(argument).

The conditional probability model can be computed by parsing a very large cor-
pus (billions of words), and computing co-occurrence counts: how often a given
verb occurs with a given noun in a given relation. The conditional probability of an
argument noun given a verb for a particular relation P(n|v,r) can then be used as a
selectional preference metric for that pair of words (Brockmann and Lapata, 2003):

P(n|v,r) =
(

C(n,v,r)
C(v,r) if C(n,v,r)> 0

0 otherwise

The inverse probability P(v|n,r) was found to have better performance in some
cases (Brockmann and Lapata, 2003):

P(v|n,r) =
(

C(n,v,r)
C(n,r) if C(n,v,r)> 0

0 otherwise

In cases where it’s not possible to get large amounts of parsed data, another
option, at least for direct objects, is to get the counts from simple part-of-speech
based approximations. For example pairs can be extracted using the pattern ”V Det
N”, where V is any form of the verb, Det is the—a—e and N is the singular or plural
form of the noun (Keller and Lapata, 2003).

An even simpler approach is to use the simple log co-occurrence frequency of
the predicate with the argument logcount(v,n,r) instead of conditional probability;
this seems to do better for extracting preferences for syntactic subjects rather than
objects (Brockmann and Lapata, 2003).
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Evaluation	
  from	
  Bergsma,	
  Lin,	
  Goebel
Verb Plaus./Implaus. Resnik Dagan et al. Erk MI DSP
see friend/method 5.79/-0.01 0.20/1.40* 0.46/-0.07 1.11/-0.57 0.98/0.02
read article/fashion 6.80/-0.20 3.00/0.11 3.80/1.90 4.00/— 2.12/-0.65
find label/fever 1.10/0.22 1.50/2.20* 0.59/0.01 0.42/0.07 1.61/0.81
hear story/issue 1.89/1.89* 0.66/1.50* 2.00/2.60* 2.99/-1.03 1.66/0.67
write letter/market 7.26/0.00 2.50/-0.43 3.60/-0.24 5.06/-4.12 3.08/-1.31
urge daughter/contrast 1.14/1.86* 0.14/1.60* 1.10/3.60* -0.95/— -0.34/-0.62
warn driver/engine 4.73/3.61 1.20/0.05 2.30/0.62 2.87/— 2.00/-0.99
judge contest/climate 1.30/0.28 1.50/1.90* 1.70/1.70* 3.90/— 1.00/0.51
teach language/distance 1.87/1.86 2.50/1.30 3.60/2.70 3.53/— 1.86/0.19
show sample/travel 1.44/0.41 1.60/0.14 0.40/-0.82 0.53/-0.49 1.00/-0.83
expect visit/mouth 0.59/5.93* 1.40/1.50* 1.40/0.37 1.05/-0.65 1.44/-0.15
answer request/tragedy 4.49/3.88 2.70/1.50 3.10/-0.64 2.93/— 1.00/0.01
recognize author/pocket 0.50/0.50* 0.03/0.37* 0.77/1.30* 0.48/— 1.00/0.00
repeat comment/journal 1.23/1.23* 2.30/1.40 2.90/— 2.59/— 1.00/-0.48
understand concept/session 1.52/1.51 2.70/0.25 2.00/-0.28 3.96/— 2.23/-0.46
remember reply/smoke 1.31/0.20 2.10/1.20 0.54/2.60* 1.13/-0.06 1.00/-0.42

Table 2: Selectional ratings for plausible/implausible direct objects (Holmes et al., 1989). Mistakes are marked with
an asterisk (*), undefined scores are marked with a dash (—). Only DSP is completely defined and completely correct.
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Figure 2: Pronoun resolution precision-recall on MUC.

ther evidence, if we build a model of MI on the SJM
corpus and use it in our pseudodisambiguation ex-
periment (Section 4.3), MI>0 gets a MacroAvg pre-
cision of 86% but aMacroAvg recall of only 12%.9

4.6 Pronoun Resolution
Finally, we evaluate DSP on a common application
of selectional preferences: choosing the correct an-
tecedent for pronouns in text (Dagan and Itai, 1990;
Kehler et al., 2004). We study the cases where a

9Recall that even the Keller and Lapata (2003) system, built
on the world’s largest corpus, achieves only 34% recall (Table 1)
(with only 48% of positives and 27% of all pairs previously
observed, but see Footnote 5).

pronoun is the direct object of a verb predicate, v. A
pronoun’s antecedent must obey v’s selectional pref-
erences. If we have a better model of SP, we should
be able to better select pronoun antecedents.

We parsed the MUC-7 (1997) coreference corpus
and extracted all pronouns in a direct object rela-
tion. For each pronoun, p, modified by a verb, v, we
extracted all preceding nouns within the current or
previous sentence. Thirty-nine anaphoric pronouns
had an antecedent in this window and are used in
the evaluation. For each p, let N(p)+ by the set of
preceding nouns coreferent with p, and let N(p)�

be the remaining non-coreferent nouns. We take
all (v, n+) where n+ � N(p)+ as positive, and all
other pairs (v, n�), n� � N(p)� as negative.

We compare MI and DSP on this set, classifying
every (v, n) with MI>T (or DSP>T ) as positive.
By varying T , we get a precision-recall curve (Fig-
ure 2). Precision is low because, of course, there
are many nouns that satisfy the predicate’s SPs that
are not coreferent. DSP>0 has both a higher recall
and higher precision than accepting every pair pre-
viously seen in text (the right-most point on MI>T ).
The DSP>T system achieves higher precision than
MI>T for points where recall is greater than 60%
(where MI<0). Interestingly, the recall of MI>0 is

66
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Summary:	
  Selectional Restrictions
• Two	
  classes	
  of	
  models	
  of	
  the	
  semantic	
  type	
  constraint	
  that	
  a	
  

predicate	
  places	
  on	
  its	
  argument:
• Represent	
  the	
  constraint	
  between	
  predicate	
  and	
  WordNet class
• Represent	
  the	
  constraint	
  between	
  predicate	
  and	
  a	
  word

• One	
  fun	
  recent	
  use	
  case:	
  detecting	
  metonomy (type	
  coercion)
• Coherent	
  with	
  selectional restrictions:

The	
  spokesman	
  denied	
  the	
  statement	
  (PROPOSITION).	
  
The	
  child	
  threw	
  the	
  stone	
  (PHYSICAL	
  OBJECT)	
  

• Coercion:
The	
  president	
  denied	
  the	
  attack	
  (EVENT	
  →	
  PROPOSITION).	
  
The	
  White	
  House	
  (LOCATION	
  →	
  HUMAN)	
  denied	
  the	
  statement.	
  17

Pustejovsky et	
  al	
  (2010)


