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Abstract

Narayanan and Jurafsky (1998) proposed that human language compre-
hension can be modeled by treating human comprehenders as Bayesian
reasoners, and modeling the comprehension process with Bayesian de-
cision trees. In this paper we extend the Narayanan and Jurafsky model
to make further predictions about reading time given the probability of
difference parses or interpretations, and test the model against reading
time data from a psycholinguistic experiment.

1 Introduction

Narayanan and Jurafsky (1998) proposed that human language comprehension can be mod-
eled by treating human comprehenders as Bayesian reasoners, and modeling the compre-
hension process with Bayesian decision trees. In this paper, we show that the model ac-
counts for parse-preference and reading time data from a psycholinguistic experiment on
reading time in ambiguous sentences.

Parsing, (generally called ‘sentence processing’ when we are referring to human parsing),
is the process of building up syntactic interpretations for a sentence from an input sequence
of written or spoken words. Ambiguity is extremely common in parsing problems, and
previous research on human parsing has focused on showing that many factors play a role
in choosing among the possible interpretations of an ambiguous sentence.

We will focus in this paper on a syntactic ambiguity phenomenon which has been repeat-
edly investigated: the main-verb (MV), reduced relative (RR) local ambiguity (Frazier &
Rayner, 1987; MacDonald, Pearlmutter, & Seidenberg, 1994; McRae, Spivey-Knowlton,
& Tanenhaus, 1998, inter alia) In this ambiguity, a prefix beginning with a noun-phrase and
an ambiguous verb-form could either be continued as a main clause (as in 1a), or turn out
to be a relative clause modifier of the first noun phrase (as in 1b).

1. a. The cop arrested the forger.
b. The cop arrested by the detective was guilty of taking bribes.

Many factors are known to influence human parse preferences. One such factor is the dif-
ferent lexical/morphological frequencies of the simple past and participial forms of the am-
biguous verbform (arrested, in this case). Trueswell (1996) found that verbs like searched,
with a frequency-based preference for the simple past form, caused readers to prefer the



main clause interpretation, while verbs like selected, had a preference for a participle read-
ing, and supported the reduced relative interpretation.

The transitivity preference of the verb also plays a role in human syntactic disambiguation.
Some verbs are preferably transitive, where others are preferably intransitive. The reduced
relative interpretation, since it involves a passive structure, requires that the verb be tran-
sitive. MacDonald, Pearlmutter, and Seidenberg (1994), Trueswell, Tanenhaus, and Kello
(1994) and other have shown that verbs which are biased toward an intransitive interpreta-
tion also bias readers toward a main clause interpretation.

Previous work has shown that a competition-integration model developed by Spivey-
Knowlton (1996) could model human parse preference in reading ambiguous sentences
(McRae et al., 1998). While this model does a nice job of accounting for the reading-time
data, it and similar ‘constraint-based’ models rely on a complex set of feature values and
factor weights which must be set by hand. Narayanan and Jurafsky (1998) proposed an
alternative Bayesian approach for this constraint-combination problem. A Bayesian ap-
proach offers a well-understood formalism for defining probabilistic weights, as well as for
combining those weights. Their Bayesian model is based on the probabilistic beam-search
of Jurafsky (1996), in which each interpretation receives a probability, and interpretations
were pruned if they were much worse than the best interpretation. The model predicted
large increases in reading time when unexpected words appeared which were only compat-
ible with a previously-pruned interpretation. The model was thus only able to characterize
very gross timing effects caused by pruning of interpretations.

In this paper we extend this model’s predictions about reading time to other cases where
the best interpretation turns out to be incompatible with incoming words. In particular, we
suggest that any evidence which causes the probability of the best interpretation to drop
below its next competitor will also cause increases in reading time.

2 The Experimental Data

We test our model on the reading time data from McRae et al. (1998), an experiment fo-
cusing on the effect of thematic fit on syntactic ambiguity resolution. The thematic role of
noun phrase “the cop” in the prefix “The cop arrested” is ambiguous. In the continuation
”The cop arrested the crook”, the cop is the agent. In the continuation “The cop arrested by
the FBI agent was convicted for smuggling drugs”, the cop is the theme. The probabilistic
relationship between the noun and the head verb (“arrested”) biases the thematic disam-
biguation decision. For example, “cop” is a more likely agent for “arrest”, while “crook” is
a more likely theme. McRae et al. (1998) showed that this ‘thematic fit’ between the noun
and verb affected phrase-by-phrase reading times in sentences like the following:

2. a. The cop / arrested by / the detective / was guilty / of taking / bribes.
b. The crook / arrested by / the detective / was guilty / of taking / bribes.

In a series of experiment on 40 verbs, they found that sentences with good agents (like cop
in 2a) caused longer reading times for the phrase the detective than sentences with good
themes (like crook in 2b). Figure 1 shows that at the initial noun phrase, reading time is
lower for good-agent sentences than good-patient sentences. But at the NP after the word
“by”, reading time is lower for good-patient sentences than good-agent sentences.1

1In order to control for other influences on timing, McRae et al. (1998) actually report reading
time deltas between a reduced relative and non-reduced relative for. It is these deltas, rather than raw
reading times, that our model attempts to predict.
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Figure 1: Self-paced reading times (from Figure 6 of McRae et al. (1998))

After introducing our model in the next section, we show that it predicts this cross-over in
reading time; longer reading time for the initial NP in good-patient sentences, but shorter
reading time for the post-“by” NP in good-patient sentences.

3 The Model and the Input Probabilities

In the Narayanan and Jurafsky (1998) model of sentence processing, each interpretation of
an ambiguous sentence is maintained in parallel, and associated with a probability which
can be computed via a Bayesian belief net. The model pruned low-probability parses, and
hence predicted increases in reading time when reading a word which did not fit into any
available parse. The current paper extends the Narayanan and Jurafsky (1998) model’s pre-
dictions about reading time. The model now also predicts extended reading time whenever
an input word causes the best interpretation to drop in probability enough to switch in rank
with another interpretation.

The model consists of a set of probabilities expressing constraints on sentence processing,
and a network that represents their independence relations:

Data Source
P(Agent

�
verb, initial NP) McRae et al. (1998)

P(Patient
�
verb, initial NP) McRae et al. (1998)

P(Participle
�
verb) British National Corpus counts

P(SimplePast
�
verb) British National Corpus counts

P(transitive
�
verb) TASA corpus counts

P(intransitive
�
verb) TASA corpus counts

P(RR
�
initial NP, verb-ed, by) McRae et al. (1998) (.8, .2)

P(RR
�
initial NP, verb-ed, by,the) McRae et al. (1998) (.875. .125)

P(Agent
�
initial NP, verb-ed, by, the, NP) McRae et al. (1998) (4.6 average)

P(MC
�
SCFG prefix) SCFG counts from Penn Treebank

P(RR
�
SCFG prefix) SCFG counts from Penn Treebank

The first constraint expresses the probability that the word “cop”, for example, is an agent,
given that the verb is “arrested”. The second constraint expresses the probability that it is
a patient. The third and fourth constraints express the probability that the ”-ed” form of
the verb is a participle versus a simple past form (for example P(Participle

�
“arrest”)=.81).

These were computed from the POS-tagged British National Corpus. Verb transitivity
probabilities were computed by hand-labeling subcategorization of 100 examples of each
verb in the TASA corpus. (for example P(transitive

�
“entertain”)=.86). Main clause prior

probabilities were computed by using an SCFG with rule probabilities trained on the Penn



Treebank version of the Brown corpus. See Narayanan and Jurafsky (1998) and Jurafsky
(1996) for more details on probability computation.

4 Construction Processing via Bayes nets

Using Belief nets to model human sentence processing allows us to a) quantitatively eval-
uate the impact of different independence assumptions in a uniform framework, b) directly
model the impact of highly structured linguistic knowledge sources with local conditional
probability tables, while well known algorithms for updating the Belief net (Jensen (1995))
can compute the global impact of new evidence, and c) develop an on-line interpretation
algorithm, where partial input corresponds to partial evidence on the network, and the up-
date algorithm appropriately marginalizes over unobserved nodes. So as evidence comes
in incrementally, different nodes are instantiated and the posterior probability of different
interpretations changes appropriately.

The crucial insight of our Belief net model is to view specific interpretations as values of
latent variables that render top-down ( � �

) and bottom-up evidence ( ��� ) conditionally
independent (d-separate them (Pearl, 1988)). Thus syntactic, lexical, argument structure,
and other contextual information acts as prior or causal support for an interpretation, while
bottom-up phonological or graphological and other perceptual information acts as likeli-
hood, evidential, or diagnostic support.

To apply our model to on-line disambiguation, we assume that there are a set of interpre-
tations (

�����
	��
������
������
) that are consistent with the input data. At different stages of the

input, we compute the posterior probabilities of the different interpretations given the top
down and bottom-up evidence seen so far. 2

Semantic_fitArg Tense

P(Tense|v)P(Arg|v)

P(A | v, ty(Subj))

P(T | v, ty(Subj))

ANDAND

MV
thm RR

thm

Tense = past
Sem_fit = Agent

Tense = pp
Sem_fit = Theme

V = examine-ed type_of(Subj) = witness

Arg = trans

Figure 2: The Belief net that represents lexical and thematic support for the two interpreta-
tions.

Figure 2 reintroduces the basic structure of our belief net model from Narayanan and Ju-
rafsky (1998). Our model requires conditional probability distributions specifying the pref-
erence of every verb for different argument structures, as well its preference for different
tenses. We also compute the semantic fit between possible fillers in the input and different
conceptual roles of a given predicate. As shown in Figure 2, the ��� and ��� interpre-
tations require the conjunction of specific values corresponding to tense, semantic fit and
argument structure features. Note that only the ��� interpretation requires the transitive
argument structure.

2In this paper, we will focus on the support from thematic, and syntactic features for the Re-
duced Relative (RR) and Main Verb (MV) interpretations at different stages of the input for the
examples we saw earlier. So we will have two interpretations ������� �"!$# where %�&��'�)( *�+,�-*).,/102$3 �4%�&�� �)( * + �-* . /,06575 .
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Figure 4: The Bayes nets for the partial syntactic parse trees

The conditional probability of a construction given top-down syntactic evidence � ��� � � �
is relatively simple to compute in an augmented-stochastic-context-free formalism (partial
parse trees shown in Figure 3 and the corresponding bayes net in Figure 4). Recall that
the ������� prior probability gives the conditional probability of the right hand side of a
rule given the left hand side. The Inside/Outside algorithm applied to a fixed parse tree
structure is obtained exactly by casting parsing as a special instance of belief propagation.
The correspondences are straightforward a) the parse tree is interpreted as a belief network.
b)the non-terminal nodes correspond to random variables, the range of the variables being
the non-terminal alphabet, c) the grammar rules define the conditional probabilities linking
parent and child nodes, d) the � nonterminal at the root, as well as the terminals at the
leaves represent conditioningevidence to the network, and e) Conditioningon this evidence
produces exactly the conditional probabilities for each nonterminal node in the parse tree
and the joint probability distribution of the parse.3

The overall posterior ratio requires propagating the conjunctive impact of syntactic and
lexical/thematic sources on our model. Furthermore, in computing the conjunctive im-
pact of the lexical/thematic and syntactic support to compute ��� and ��� , we use the
NOISY-AND (assumes exception independence) model (Pearl, 1988) for combining con-
junctive sources. In the case of the ��� and ��� interpretations. At various points, we
compute the posterior support for the different interpretations using the following equa-
tion. � ��	 ��
 � ��	 � ����
 	�� ��� 	������ ��
 � ��	 � ����
 ��� � ��	 � � ��� 	������ �

. The first term is

3One complication is that the the conditional distribution in a parse tree %�&! ,�#"�( $ / is not
the product distribution %�&! ( $ /-%�&!"�( $ / (it is the conjunctive distribution). However, it is pos-
sible to generalize the belief propagation equations to admit conjunctive distributions %�&! ,�#"�( $ /
and %�&�$"� 3 ( % / . The diagnostic (inside) support becomes & &�' / 0)(+*-, ./& &�0 /1& &�2 /-%�&�0 �12 ( ' /
and the causal support becomes 3�&�' / 0546(879, :;3�&!< /1& &!=)/-%�&�' �#= ( <�/ (details can be found at
http://www.icsi.berkeley.edu/ snarayan/scfg.ps).



the syntactic support while the second is the lexical and thematic support for a particular
interpretation (

	 � ��� 	 ��� ).

5 Model results
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Figure 5: Completion data

We tested our model on sentences with the different verbs in McRae et al. (1998). For
each verb, we ran our model on sentences with Good Agents (GA) and Good Patients (GP)
for the initial NP. Our model results are consistent with the on-line disambiguation studies
with human subjects (human performance data from McRae et al. (1998)) and show that a
Bayesian implementation of probabilistic evidence combination accounts for garden-path
disambiguation effects.

Figure 5 shows the first result that pertains to the model predictions of how thematic fit
might influence sentence completion times. Our model shows close correspondence to the
human judgements about whether a specific ambiguous verb was used in the Main Clause
(MV) or reduced relative (RR) constructions. The human and model predictions were con-
ducted at the verb (The crook arrested), by (the crook arrested by), the (the crook arrested
by the) and Agent NP (the crook arrested by the detective). As in McRae et al. (1998)
the data shows that thematic fit clearly influenced the gated sentence completion task. The
probabilistic account further captured the fact that at the by phrase, the posterior proba-
bility of producing an RR interpretation increased sharply, thematic fit and other factors

(a)

2.1

0.541

0.1

0.7

0.13
0.040

0.5

1

1.5

2

2.5

The crook/detective
arrested by

  the  detective

P
(M

C
)/

P
(R

R
)

Good Agent initial NP Good Patient Initial NP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The cop arrested by  the detective

P
(X

)

Good Agent Main Clause Good Agent RR (b)

Figure 6: a) MV/RR for the ambiguous region showing a flip for the Good Agent (ga) case.
b) P(MV) and P(RR) for the Good Patient and Good Agent cases.



influenced both the sharpness and the magnitude of the increase.

The second result pertains to on-line reading times. Figure 6 shows how the human reading
time reduction effects (reduced compared to unreduced interpretations) increase for Good
Agents (GA) but decrease for Good Patients in the ambiguous region. This explains the
reading time data in Figure 1. Our model predicts this larger effect from the fact that the
most probable interpretation for the Good Agent case flips from the MV to the RR interpre-
tation in this region. No such flip occurs for the Good Patient (GP) case. In Figure 6(a), we
see that the GP results already have the MV/RR ratio less than one (the RR interpretation
is superior) while a flip occurs for the GA sentences (from the initial state where MV/RR��� to the final state where MV/RR � � ). Figure 6 (b) shows a more detailed view of
the GA sentences showing the crossing point where the flip occurs. This finding is fairly
robust ( ����� of GA examples) and directly predicts reading time difficulties.

6 Conclusion

We have shown that a Bayesian model of human sentence processing is capable of modeling
reading time data from a syntactic disambiguation task. A Bayesian model extends current
constraint-satisfaction models of sentence processing with a principled way to weight and
combine evidence. Bayesian models have not been widely applied in psycholinguistics. To
our knowledge, this is the first study showing a direct correspondence between the time
course of maintaining the best a posteriori interpretation and reading time difficulty.

We are currently exploring how our results on flipping of preferred interpretation could
be combined with Hale (2001)’s proposal that reading time correlates with surprise (a sur-
prising (low probability) word leads to large amounts of probability mass to be pruned) to
arrive at a structured probabilistic account of a wide variety of psycholinguistic data.
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