Easy Does It: More Usable CAPTCHASs

Elie Bursztein
Google
elieb@google.com

Angelika Moscicki
Google
moscicki@google.com

Celine Fabry
contact@celine.im

Steven Bethard John C. Mitchell Dan Jurafsky
University of Alabama at Stanford University Stanford University
Birmingham jem@cs.stanford.edu jurafsky @stanford.edu
bethard @uab.edu
ABSTRACT Captchas [18] ! allow websites to make this distinction au-

Websites present users with puzzles called CAPTCHAS to curb
abuse caused by computer algorithms masquerading as people.
While CAPTCHA s are generally effective at stopping abuse,
they might impair website usability if they are not properly
designed.

In this paper we describe how we designed two new
CAPTCHA schemes for Google that focus on maximizing
usability. We began by running an evaluation on Amazon
Mechanical Turk with over 27,000 respondents to test the us-
ability of different feature combinations. Then we studied user
preferences using Google’s consumer survey infrastructure.
Finally, drawing on the insights gleaned during those studies,
we tested our new captcha schemes first on Mechanical Turk
and then on a fraction of production traffic. The resulting
scheme is now an integral part of our production system and
is served to millions of users. Our scheme achieved a 95.3%
human accuracy, a 6.7% improvement.

Author Keywords
Security; CAPTCHA; World Wide Web; Empirical Methods;
Quantitative Usability Testing and Evaluation; User Studies;

ACM Classification Keywords
K.6.5. Management of computing and information systems:
Security and Protection

Introduction

Distinguishing computers from humans is a central issue for
website security. For example, GMail must prevent abuse
by automated spammers, eBay must stop bots from flooding
its site with scams, and Facebook must block the prolifera-
tion of fake profiles used to send spam and cheat at games.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CHI 2014, April 26-May 1, 2014, Toronto, Ontario, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2473-1/14/04..$15.00.
http://dx.doi.org/10.1145/2556288.2557322.

tomatically. Captchas usually take the form of distorted or
rotated sequences of characters that are easy for humans to
recognize, but are hopefully difficult for computers to process.
Over the last years at Google, in collaboration with Stanford
University, we have been working on designing usable and
yet effective captchas schemes using a systematic design ap-
proach.

This work focuses on designing a high usability captcha for
use in cases with low risk, where the captcha is used primarily
as a means to elicit an interactive engagement with the end
user. As with any security mechanism, captcha design involves
a tradeoff between security and usability. An easier captcha
can be used when the impact of abuse is low, or when it has
been verified by other means that the user is unlikely to be an
attacker (e.g., from a trusted IP address). However, even in the
low risk case, designing a usable captcha is still a challenge.

We ran an extensive study of visual features that are used in
captchas (e.g., adding a line) and how they interact in order to
understand how they affect the difficulty of the captcha, and
alter user perception. Our user preference study shows that
these two are not in fact the same.

Based on the insights gleaned during this study, we were able
to devise a new captcha scheme that increased our users’ pass
rate by 6.7% over our previous scheme. We were able to do
this without compromising the security of our system, but our
system does not rely on captchas in isolation.

We began by identifying a set of distinctive security features
that are common across the thirteen most widely used captcha
schemes [5, 6] or mentioned in previous work on captcha
usability [8]. We supplemented them with visual features de-
scribed in human legibility and readability litterature [3,14,17].
Our feature set includes basic text features such as character
set, font size and color, anti-segmentation techniques such as
overlapping characters, and anti-recognition techniques such
as character rotation. We implemented an open source gen-
erator (http://goo.gl/zPejcY), that allows us to create new
captchas based on combinations of features.

"We write this acronym in lower case for readability.

We conducted our study by presenting our generated captchas
to users and measuring how the different features influenced
solving time and accuracy. We examined the effects of each
feature in isolation and analyzed the interaction between fea-
tures by varying multiple features at the same time.

To conduct this study on a scale large enough to obtain mean-
ingful results, we built an application for Amazon’s Mechani-
cal Turk? (AMT) and used it to record human performance on
nearly a million captchas. To our knowledge, this study is the
first large scale systematic study of captcha features.

Our work confirms some of the findings of previous work [8]
on a large scale and in real-world conditions, while also ex-
panding the set of features tested. We also explored how
computer hardware (namely screen resolution) impacts human
accuracy and solving time. We find that screen resolution does
not have a significant impact on captcha accuracy or solving
time.

Besides studying features in isolation, our study is also the first
to systematically analyze how feature combinations (in par-
ticular pairwise interactions) affect user accuracy and solving
time. We uncovered an important limit to systematic design:
predicting the effect of interactions between features is cur-
rently intractable. Our analysis reveals that this limitation
stems from the fact that the effect on accuracy of many feature
interactions, 20.7% of the pairwise interactions, requires a
nonlinear function to be described and there is no clear pattern
to which interactions are nonlinear. This means that we can’t
reliably predict the outcome of a specific feature combination
using statistical analysis or machine learning.

This led us to use an iterative approach with human testing
to reach our final design. We offer multiple examples of how
unexpected interactions impact accuracy, demonstrating how
important iterative HCI methods are to the field.

Finally, our study of user preferences about captcha schemes
reveals that perceived captcha difficulty is not necessarily
aligned with their real difficulty. For instance, when words
are used, the meaning and frequency of the words greatly
affects user perception of difficulty. Negative words and low
frequency words are perceived as harder to complete, whereas
positive or high frequency words are perceived to be easier.

The accuracy we observed on AMT (97%) turned out to be
very close to the accuracy we observed in production (95.3%),
confirming that AMT is an effective way to approximate real
world results. On the other hand, deploying our scheme on
real world traffic allowed us to discover very subtle usability
issues due to feature interactions that are only observable on
extremely large sample size. This led us to conclude that
AMT is a great tool for rapid iteration but it needs to be
supplemented with large scale A/B testing on real traffic to
polish captcha design.

The remainder of the paper is organized as follows: first we
present our AMT experimental setup, then we report accuracy
and solving time for each feature in isolation. Next we ana-
lyze feature combinations, and show why predicting feature

2http: //www .mturk.com

interaction outcomes is currently intractable. Then we report
the result of our user preferences study, and discuss how user
perception of difficulty differs from the measured accuracy
and solving time. Finally we discuss how we used what we
learned to design Google’s new captcha schemes, and con-
clude by discussing the lessons learned throughout this study
and how they generalize beyond captchas.

BACKGROUND AND RELATED WORK

The most similar previous work [8] mainly focused on testing
a specific set of security features in a laboratory setting on a
small population (76 participants). The authors studied the
impact of a subset of the features studied in this paper, but they
did not examine character collapsing, which is the most com-
mon security feature used today [6], or any aesthetic features.
They also did not consider the interactions between features.
In [2], the authors studied the usability of a specific captcha
scheme called ScatterType, where parts of the characters are
erased and the fragments are separated. They examined in a
lab setting how different fonts affect solving accuracy. They
also studied easily confusable characters such as ’c’ and ’e’
impact usability. In [4] the authors look at the usability issues
in presenting audio captchas to humans and in [22] the authors
study the effect of page aesthetics and feedback when running
captcha tasks.

In [25], the authors discuss the usability of image-based
captchas but didn’t perform a user study. In [13] the authors
study how to balance security and usability for video-based
captchas. More recently, [23] revisited this topic and extended
it to all sort of moving captchas. In [7], human performance
on captchas was considered for both humans and computers
but only for single-character recognition.

CAPTCHA FEATURES STUDY

The main goal of this study was to understand how each fea-
ture used in captchas affects user accuracy and solving time,
both in isolation and in combination. First we established a
baseline by measuring how well users solve captchas where
the fonts, colors, etc. were all set to common web browser de-
faults. Then we measured how users responded to changes in
individual features in isolation. Finally, we measured user re-
sponse to variation in pairs of features. This set of experiments
was run on AMT.

Users. We recruited participants for our study from Amazon’s
Mechanical Turk (AMT) [12], an online marketplace provid-
ing workers who solve Human Intelligence Tasks (HITs). We
chose AMT primarily because it gave us access to a large num-
ber of participants, suitable for the scale of our study. AMT
has also been used successfully for user studies in related
fields [12,19]. In all of our experimental settings, we pre-
sented AMT workers (colloquially,“Turkers”) with a survey
of basic demographic information like age, language, and edu-
cation. Turkers were paid $.30 to solve a series of 20 captchas,
one at a time, before answering the survey.

Turkers typed in their guesses for each captcha and we
recorded their responses and solving time. 27,422 Turkers
participated in the study according to Amazon’s count.

1004
95
90
85
80

754

Accuracy

704

65

601 <=1024
>1024
551 all captchas
50 T T
5 10 15 20 25 30

captcha length (number of characters)

Figure 1. The non-impact of screen resolution on captcha solving accu-
racy.

As in previous studies using AMT [5, 19], most of our partici-
pants were between ages 18 and 35 (51%), though participants
as old as 78 were reported. Many of our participants (35%)
were also between the ages of 26-35, and the remaining partic-
ipants were older than 36. Tamil was the most common native
language of our participants (49%), with English a distant sec-
ond (18%). There was a wide variety of other native languages
reported. In order from most prevalent to least prevalent we
observed: Malayalam, Hindi/Urdu, Telugu, Kannada, Marathi,
Gujarati, and Bengali. About 7% of our participants reported
native languages other than these. Finally, for most of our par-
ticipants (58%) the maximum education level was a bachelors
degree, though there were a moderate number of participants
with only a high school education (20%), and a moderate num-
ber of participants with a masters degree (19%). Overall, these
demographics are comparable to those observed in [5]. We do
note that our Turker group is slightly younger and more Indian
centric than in [19].

The non-impact of hardware. We were concerned by the
impact of screen resolution, as captcha solving is a visual task.
To understand whether screen resolution introduced a bias, we
ran an experiment with Turkers solving our baseline captchas
with length from 1 to 30 characters (1,000 samples for each
length; 30,000 captchas total). We captured screen resolution
programmatically using JavaScript.

We found that screen resolution did not impact the accuracy
or the solving time of our participants. Figure 1 shows that the
accuracy is similar for resolutions both greater than and less
than 1024 by 768 pixels.

Captcha features

We identified a set of features based on the thirteen most
widely used captcha schemes mentioned in [5] and from pre-
vious work [11] done in a small lab experiment. We divided
our features into three categories:

1. visual features unrelated to security but relevant to usability
such as text size and font color.

3tr2bb tx3soh oaGree

Blurring Text color Font Background color

021990

02h © aw%wy< ath1g

Collapsing Tilting Waving Distortion
Bizjw6 u8megx i W

line line angle line shape nb line
Shdtek prdpre oot

line coverage line position line size

Figure 2. Main set of captcha security features produced by our captcha
generator.

2. anti-segmentation features used to prevent programs from

automatically separating the captcha into individual letters
such as adding a line, collapsing characters.

3. anti-recognition features used to impede recognition of in-

dividual letters such as character rotation.

Visual features. The visual features are familiar parameters
that can be relevant to usability but that are generally unimpor-
tant for automated captcha solvers.

e Character sets: lowercase letters (a-z), uppercase letters
(A-2), digits (0-9), lowercase letters and digits (a-z0-9),
uppercase letters and digits (A-Z0-9), letters (a-zA-Z), letters
and digits (a-z0-9), non-confusable letters and digits (a-z0-
9, except for 0, o, 1, 1, i, 9 and g), non-confusable letters
(a-z, except for o, I, i, g), words (a-z, but must be a valid
English word) and pseudo-words (a-z, but derived from a
character bigram model trained on English words). Note
that unlike the other character sets, for words and pseudo-
words characters are not generated uniformly - there is a
bias towards English-like character distributions.

o Character counts: between 4 and /5. This matches the
range of lengths observed for captchas in the wild.

e Font sizes: between 6px and 36px, in 2px increments.

e [ont families: Arial, Verdana, Times, Aescrawl, After-
Shock, Atlandsketchesbbreg, BleedingCowboys, CardiffReg-
ular, CrashcourseBBreg, DoktorTerror, Erthqake, Future-
Sallow, Grandesignneueserif, GreaseBalls, Imitation, In-
cubus, Jag, JaggaPoint, Jellykaestryahandwriting, Justu-
soldstyle, Phandv2, Slammertag, Slicedlron, Under, White-
LineFever3D100.

e [oreground colors: black, white, gray, pink, red, orange,
yellow, green, cyan, blue, purple. The foreground color was
used both for the font and for the defenses (e.g. lines, ran-
dom noise) — using different colors would make the captcha
insecure as the non-text color could be easily stripped away.

e Background colors: the same as foreground colors.

Anti-segmentation features. Some captcha features are
specifically designed to make it more difficult for machines
to automatically determine where characters begin and end.
Preventing segmentation is central for captcha security. It
has been shown in [24] that most of the captcha security
comes from the inability of machines to segment captchas
into individual characters. We refer to such features as anti-
segmentation features, and consider the following variants:

e Character overlaps: gaps of -15px to +5px between succes-
sive characters.

e Random dot sizes: between 2px and 10px.

e Random dot counts: between 500 and 12,000 dots per
captcha, in 500 dot increments.

e Line types: straight or wavy. Wavy lines are generated by
randomly picking adjacent points.

e Line counts: between I and 10 lines.
e Line widths: between Ipx and 10px.

e Line positions: lines start to the left of the first character,
allowing the vertical position of the start to range from 10%
below the first character to /0% above, at 10% intervals.
Similarly, lines end to the right of the last character, again
allowing the vertical position of the endpoint to range from
10% below to 10% above.

e Similar foreground/background colors: the background
color is selected by moving from the foreground color in
small steps in each possible direction in RGB space.

Anti-recognition features. Some features are designed to
make it more difficult for attackers to recognize individual
characters after segmentation. We refer to such features as
anti-recognition features and consider the following variants:

e Rotated character counts: between I and 6 characters are
rotated

e Rotated character degrees: between 10 and 350 degrees, at
10 degree increments. All characters are rotated the same
amount.

o Vertical shifting sizes: between 5px and 60px at 5pXx incre-
ments. How much the character is shifted within the defined
range is selected at random.

e Character size variations: differences from the previous
character size between 2px and 20px, in 2px increments.

e Character distortions: based on attractor points, the basic
idea is to pick two random points on the image to create a
distortion field. Random perturbations to the field are added
to make sure the deformation is not predictable and then the
field is used to stretch and translate pixels based on their
position in the field.

Experimental setup

We ran several rounds of experiments, summarized in Table 1.
We began by establishing a baseline, intended to characterize
the least obtrusive captcha that looks as much like regular
browser text as possible. The baseline captcha consisted of
6 lowercase letters and digits in 20 pixel (15 point) black Ar-
ial font on a white background, with no anti-segmentation or
anti-recognition techniques. We had 1,000 different captchas
annotated so that we could measure accuracy with 0.1% preci-
sion.

Next we considered the effects of individual features in isola-
tion. We enumerated 496 possible variations of our feature set.
For example, a variation might be a captcha containing one
line. Another variation might be a captcha containing 3 lines,
or 7 lines, etc., all with the same character set, length, font,
and colors as the baseline. We had 200 captchas annotated
for each variation in order to achieve 0.5% precision in our
results. The order in which the captchas were presented was
randomized in order to avoid a prediction bias.

Then we tested variations of two to four features simultane-
ously. This is intended to capture the observation in [5] that
captchas in the wild rarely exhibit more than one or two anti-
segmentation features and one or two anti-recognition features.
There were too many possible feature combinations to test the
space exhaustively, so we took a random sample of 110,950
combinations out of 115,315,858 possible combinations.

Finally, we used our insights to settle on a single captcha
design, and ran a last round of tests to validate the quality of
our design before testing on production traffic. A subsequent
section is dedicated to this experiment and our production
deployment results.

Individual feature analysis

We evaluated participant performance on captchas in two ways:
solving accuracy and solving time. For solving accuracy, we
compared the answers given by participants to the text from
which we generated the captcha, ignoring differences in case
or spacing. Solving time was measured using JavaScript by
recording the time between when participants were presented
with a captcha and when they submitted their response.

We filtered out our experiment results by removing responses
that were done too slowly or too quickly using 3 standard
deviations, and ones that took less than 4 seconds (19.8%
of all responses). Measuring times on AMT can result in
high variance because many Turkers do other things on their
computer at the same time even if we explicitly ask them to
work as fast as possible. Still, by averaging over large numbers
of participants, we can get an idea of which captchas take more
or less time.

We claim that Turkers’ behavior closely reflects real user atten-
tion patterns while surfing, for example, from home in front of
the TV, which makes Turkers a more accurate subject pool than
students or manually recruited subject for Internet behavior
related studies. This claim is supported by the fact, as reported
later in the paper, that the accuracy results obtained with AMT
match very closely the results we got on real world traffic

Round | Task N possible | N sampled | N tests per sample | Total tests
1 Preliminary Experiment 30 30 1000 30000
2 Baseline (“Control”) 1 1 1000 1000
3 Features in isolation 496 496 200 99200
4 Feature interactions 115315858 110950 5-10 804750
5 new scheme design testing 8 8 2000 16000
| | Total | [[| 950.550 |
Table 1. Overview of the experimentation rounds.
when we deployed our new capcha schemes and analyzed the 14 By —— 10
results of tens of millions of captchas solved. 134 o9
12 0.8
" 0.7
Character sets. Table 2 shows how participants performed % 10 06 o
on different character sets. Pseudo-words, words, and sim- £ py o5 &
ple character sets like all digits, all lowercase letters and all g 6 - - / \ / 04 8
uppercase letters were the easiest, with accuracies of 97% or e — '
higher. Mixing letters, digits or uppercase and lowercase let- ! oe
ters dropped accuracy down into the 80s, except in the case & 02
where we explicitly removed the easily confused letters. 5 01
4

Timing for the most part mirrored these trends, with words
being the fastest, solved on average in only 4.3 seconds. While
these results suggest that words and pseudo-words are the best
choice, as we will discuss in the user preference study, word
meaning and frequency greatly affect user perception and
therefore should be used with caution. We note that a-z0-9
can be used with minimal loss of speed or accuracy, as long as
the confusable letters like [, I, o and O are removed. However,
as discussed in [6], using a larger key space does not increase
captcha security, hence there is not a good reason to use a
complex character set.

Number of characters We found that there is a slight decline
in accuracy as more characters are presented. There is about
a 1.5% absolute drop for each additional character, and a
moderate increase in time, about /.0s for each additional
character. Thus, captcha designers can for the most part freely
adjust the length of the captchas to achieve the desired level of
security without harming the accuracy of their users, though
there will be an additional time requirement.

Character Overlap Figure 3 shows that non-negative gap
widths, including gaps of Opx, where characters touch all
other characters, resulted in similar accuracies to the baseline
90-95% range. Any amount of negative gap width however,
caused dramatic drops in accuracy.

Charset Time (s) StdDev (s) Accuracy
pseudo-word 5.0 2.2 99%
a-z 6.6 2.8 97%
0-9 6.1 2.5 98%
a-z0-9 (non-confusable) 6.6 2.6 97%
word 4.3 1.9 98%
a-z0-9 7.6 3.1 93%
a-zA-Z 8.2 3.6 88%
a-zA-Z0-9 8.3 34 82%

Table 2. Accuracy and solving time for various character sets

4 2 0 2 4 % 8
character gap width in pixel

10 -12 -14

Figure 3. Accuracy and solving time vs. character overlap.

These results suggest that there is a hard limit to how much
overlap between characters can be used to prevent captcha
segmentation by automated solvers and still retain a tolerable
user accuracy.

Font Size Participants performed similarly across different
font sizes, with an accuracy standard deviation of only 1.7%,
and a time standard deviation of only /.2s. Thus, captcha
designers can freely select whatever font size best fits their
security design, without worrying about human performance
issues.

Font Family Performance varied widely across fonts, with
participants being most accurate on Arial and Verdana fonts,
97% and 94% respectively. There area some extreme differ-
ences between the other fonts — from an accuracy of §9% on
Grandesign Neue Serif to /% on Jellyka Estrya’s Handwriting.
This makes the choice of font family difficult without user
testing.

Foreground and Background Color Like font size, varying
the foreground and background colors generally had only a
minimal effect, with an accuracy mean of 9/.5% and standard
deviation of 3.5%. Timing had a mean of 8.2s and a standard
deviation of /.0s. The two noticeably worse combinations
were yellow-on-white (84% accuracy and 8.5s) and white-on-
yellow (79% accuracy and 9.8s). So colors may be tuned for
the most part as desired, except for a few bad combinations.

Random Dots Participant performance was no worse than
baseline with up to 2,000 random 1 pixel dots. However, for
every additional 1,000 dots after that, accuracy declined about
6% and solving time increased by 0.7s. Thus, the random dot
noise can be tuned a bit, but after more than 2,000 dots, human
performance will suffer.

14 1.0

—— solving time accurac
13 9 i 0.9
12 0.8
1 07
s I —
QE) 10 . 0.6 §
= 9 0.5 5
g ’ 3
Z 8 0.4
12
7 0.3
6 0.2
5 0.1
4 T 0
2 3 4 5 6 7 8 9 10
line size in pixel
Figure 4. Accuracy and solving time vs. line size
14 1.0
13 + 0.9
12 0.8
1 0.7
&
2 10 /\ 0.6 2
(]
> 9 J NJ\\A AR 05 3§
< ’/\~/\" N ks
Z 8 04
12}
7 0.3
6 0.2
5 0.1
—— solving time accuracy
4 0
50 100 150 200 250 300 350

rotation angle (°)

Figure 5. Accuracy and solving time vs. rotation angle

Lines We found that with up to three straight 1 pixel lines,
participant performance was similar to that of no lines. Every
additional straight line cost about 6.0% in accuracy and 0.5s
in time. We also found that 1 or 2 pixel wide lines did not
impair human performance, but thicker lines quickly hurt in
both accuracy and time. See Figure 4. Wavy lines always
impaired performance (figure not shown). These results sug-
gest that a small number (1-3) of thin (1-2px) straight lines in
any orientation can be added to captchas without noticeably
impairing human performance.

Rotated Characters Angles of rotation within approximately
30 degrees of vertical had minimal effect on accuracy and
solving time, as shown in Figure 5. The worst accuracies
and slowest responses occurred with fully inverted characters
(180 degrees). These results suggest that humans can tolerate
small character rotations with minimal impact on performance.
However, a larger rotation can have a much more dramatic
impact on human accuracy.

Vertically Shifted Characters Shifting characters up and
down in the captcha generally had only a small effect, and
then only after shifts of 50 pixels or more. It is unclear how
effective such shifting is as a security measure, but at least
doing so has only a minimal effect on the readability of the
captcha.

Character Size Variation Similar to vertically shifting char-
acters, varying the size of characters generally did not impair

F'y F'y ry
A A A A A
5 A
A A F W W WY A A A A A
A A A A
r'y
A A A
0 A A r'y
A A
A
A
A r'y A
5 A
A A A A Ah Ab A A A A
A A A A A A A A
A A A A A F'y A A
F'y A A A A
o- A r'y A A A A A A A A
A A A
A A
A A A A A A A A
F'y A A A A A A
A A A r'y
A A
A A

Figure 6. Scatter plot representing the type of interaction of pair-wise
features (2d) accuracy. X and Y axis are features.

our participants unless there was more than a 12 pixel dif-
ference in character size.Thus, character size variation is a
reasonably safe feature to tune.

Feature Interactions

It turns out that many features are not wholly independent,
thus it is also important to understand how features interact.
One of our hopes was that we might be able to build a model
to predict the accuracy and solving time of a captcha scheme
given its features. However, in our experiments with various
machine learning algorithms (e.g. SVM with various type of
kernels) we were never able to beat the baseline.

Puzzled by how ineffective machine learning algorithms were
on our dataset we shifted our goal to characterize the complex-
ity of interactions between features. We used a function-fitting
approach [16] that to find the simplest known function that
explains a data distribution. For each pairwise interaction, we
used the least squares method [20] and tested multiple func-
tions: additive, convolutive, exponential, logarithmic, square
root, and polynomial (orders 2 to n). We kept the simplest
one that had an overall error .001 or less. This is consistent
with the Occam’s razor principle that the best explanation is
the simplest one.

We plotted the results of this procedure to show the types of
functions needed to explain the resulting accuracy (Figure 6)
for the various pairwise interactions. On this scatter plot the
blue circles represent interactions that need a linear function
to be explained. The red triangles represent the interactions
that require a higher-order function to be explained. Typically
this was the exponential function or a high order polynomial
function. White space represents feature interactions that are
meaningless as they create impossible to solve captchas, for
example, black text on black background. Similar results were
obtained for solving time. Figure 6 highlights two essential
properties of our dataset that explain why it is so difficult to
apply machine learning algorithms on it. First, higher order
functions are needed to explain at least 20% of the feature

m 24.5% +

21.9% —
™ 25.1% =
o ote% =
324484 Gl =
e 19.7% —
o 18a% ——
pretty =

19.7% —1
Lo 21.5% +
w 19.7% +
gu % %

b 19.1% —’—
— 9a%
ect
apjé]
& 113% —

w— 9.0% —
5%
igdivd o Easiest
5.7%
2% 4%

Prefered
I E'i Fastest

0%

6% 8% 10% 12% 14% 16% 18% 20% 20% 24% 26% 28% 30%

Figure 7. Word preferences

interactions (112/582 interactions for accuracy, 122/582 for
solving time). Secondly, there is no discernible pattern that
can be used to partition the set into features that require higher

order functions and those that only need a linear function.

As aresult, building a predictive model that can explain this
dataset accurately requires an extremely high order kernel

function, which makes this problem intractable in practice.

Remember here that we only analyzed pairwise interactions
and that higher order interactions will require even larger
higher order functions to be explained.

While there is still the possibility that deep belief networks or
higher order machine learning algorithms might one day be
able to predict the result of feature interaction, for now we are
bound to rely on user testing and iterative design to validate
captcha schemes.

USER PREFERENCES

We ran two Google consumer surveys [10] to understand
how user perceived difficulty is related to solving time and
accuracy. In each survey, we asked 5,000 respondents in
the United States to answer three preference questions. We
note that the Google consumer survey infrastructure ensures
that the respondent population is representative of the US
population [15]. The survey results are publicly available at
http://goo.gl/rkp4dbZ, http://goo.gl/u¥YLalj.

Each question consisted of a handpicked set of captchas.
In the first survey we show side by side 3 captchas where
each captcha exhibits a distinct anti-segmentation feature:
moderate noise, a single wavy line, and moderate character
collapsing. The second survey consisted of 6 captchas with
different character sets. Respondents were asked which
captcha out of the group they thought was the fastest,
which one was easiest, and which one they preferred
to solve. The order in which the captchas were presented
was randomized in order to avoid positional sampling artifacts.

| ﬁ Easiest
0% ! | Prefered
Fastest

40%-

30%-

54.2%
53.1% [oo 7o g | | ‘

20%-| 1 |

o | 258% | o4
10%4 24.8% 24% 22.1% | 284% | 21.9%

0% T T T
Collapse Line Noise

b iga¥d

Figure 8. Security feature preferences

We found that word connotations play an important role in
user perception. We chose the word pretty as an example of a
high frequency positive word, and cutest as a low frequency
positive word. Google search returned approximately 1.1
billion results for pretty and about 36 million results for cutest.
We chose guilty as a high frequency negative word, and abject
as a low frequency negative word. These words had 150
million and 4 million Google search results, respectively.
Figure 7 shows a clear preference for positive words over
negative words. It also suggests that low frequency words
negatively impact user perception. The unconscious bias
introduced by words led us to reject using words in our
captcha schemes, since this bias makes it impossible to
generate hundreds of millions of captchas with consistent user
sentiment.

The lowercase meaningless string of letters is significantly
ranked last in all three metrics considered, whereas strings of
digits is users’ second most preferred captcha, and second in
terms of easiness, even though the result are not statistically
significant when compared to positive words. We therefore
chose to use digits as our character set.

The second survey reveals that users’ preferences among-anti
segmentation techniques, summarized in figure 8, align with
their relative security strengths. According to [6], character
collapsing is more secure than lines, which is in turn more
secure than noise. That is, users happen to prefer more secure
techniques. A possible explanation for this alignment is that
users are more exposed to stronger security techniques used
by prominent captcha schemes and are therefore more familiar
with them.

These surveys show that accuracy and solving time are not
good predictors of user preference. For example, our AMT
results report in table 2 indicate that English words are solved
the quickest and most accurately, whereas users perceive
digits to be both faster and easier than words with negative
connotations. Similarly, random lowercase strings have the
same performance characteristics as random strings of digits,
but users perceive digits to be faster, easier, and more likable.

PUTTING IT ALL TOGETHER: HOW WE DESIGNED OUR

NEW CAPTCHA SCHEME

In this section we relate how we designed and deployed new,
highly usable captcha schemes for Google using the knowl-
edge gathered during our experiments and the guidelines for
creating secure captchas devised in [6]. Overall our newly
deployed captcha improved user accuracy by 6.7% (95.4%
up to 88.5%). We also recount how the complexity of fea-
ture interaction caught us off guard several times and how we
eventually overcame it.

Recall that our designs are for captchas for use in low risk sit-
uations, e.g., where they are combined with a comprehensive
anti-abuse system. Therefore, we make design tradeoffs that
aim to improve the user experience, and include only as many
security features as are possible while still maintaining a very
high accuracy rate.

Design choices

We decided to design two different schemes rather than just
one; a main one, and a backup one in case the main one is
broken.

For the main scheme we chose to retain as many visual features
as possible from our current captcha in order to give users a
sense of continuity. We kept the captcha size, the text color
(black) and the background color (white).

We used a different font though, for reasons recounted in
the next subsection. We also simplified the character set by
moving from lowercase letters to digits. This decision was
motivated by the data in [6] which shows that a complicated
character set does not increase security, since machine learning
algorithms are equally good on all common character sets. On
the other hand, as discussed above, humans are more accurate
on simpler character sets. While humans are also very good
with words, we chose to avoid them due to the sensitivity
of user perception to word meaning as discussed in the user
preference section.

Anti-segmentation techniques. Line and character overlap
are the two recommended, but imperfect, techniques to make
captchas resistant to automated attacks [6]. Following the
insights provided by the user preference study, we decided
to use character overlap for the main scheme and combine it
with a line for the backup scheme. This strategy also fits well
with our wish to maintain continuity with our previous captcha
scheme which also used character collapsing.

Extra security features. To thwart state-of-the-art attacks
against overlap and line-based defenses [1, 6], we added the
following extra security features to our captcha schemes:

e Length randomization: We randomize the length of the
captcha between 6 and 8 to prevent the attacker from know-
ing how many segments are present [6]. As discussed earlier,
longer captchas have little impact on actual difficulty.

o Text-size randomization: Similarly we randomize the
character size to prevent the attacker from guessing how
many characters there are in the captcha by looking at its
width [6].

Ty N
3

g AD Beesy!
a5 47382

conIusmg
Original ~ Mturk vl Mturk v2 1% test New
88.6% 89.2% 97% 94.3% 95.4%
82.6% 92.2% 93.2%

Figure 9. Comparison between our previous captcha, the AMT experi-
ments we conducted (vl and v2) and our new scheme (1% test and cur-
rent one). The accuracy is reported at the bottom of the figure. As shown
in the v1 column, when the collapsing and waving features are combined
with the digit-charset the 1 and 7 are easily confused.

e Tilting: We also randomly tilt each character up to 20
degrees to provide a third layer of defense against length
guessing attacks.

o Waving: Finally we use sinusoidal based waving to prevent
the attack where the segmentation is inferred by looking at
various shape invariants (such as the S pattern) as explained
in [1].

While none of these features guarantee that our captcha
scheme is secure against highly sophisticated attacks [9], they
ensure that our captcha is not trivially breakable and that it
fulfills its role of keeping unsophisticated attackers at bay.

Early Experiments

As digit character set measured accuracy is 98% (table 2), we
were expecting close to that number for our main scheme.
Based on our experiments, we were also anticipating the
backup captcha to be around 5% less accurate than the main
one because of the line addition.

Similar to the previous experiment, we used AMT to quickly
test our new designs before running a field trial on a small
fraction of our production traffic. We asked Turkers to solve
2,000 captchas of our two new schemes. As reported in Figure
9, accuracy results did not live up to our expectations.

After reviewing Turkers’ answers, it became clear that the poor
performance was due to the unexpected interaction between
digits, overlap and waving: in many cases it was impossible
to tell apart 7 and the 1 as shown in Figure 9. To address this
issue, we decided to use a font that had an extra bar on the
7. We ended up testing using the sans-serif open fonts fenor-
sans that included a bar on the 7. We achieved an accuracy
pretty close to what we expected from our earlier experiments:
97% accuracy for the main scheme and 92.7% for the backup
one. This anecdotally supports the conclusion of our feature
interaction analysis: feature interactions are nonlinear and
therefore can lead to unpredictable effects. We confirmed that
our performance issue was due to the confusion between 1
and 7 by re-testing with another font that didn’t have a bar on
the 7 and ended up with results that were even worse than our
baseline font (Arial): 86.2% accuracy.

Real world results

We decided to deploy the main scheme on a small fraction
of production traffic in a series of field trials on a particular
Google web page. We note that Google’s captcha is used
in many other places than the page we consider in this pa-
per. Each trial consisted of approximately 100,000 captchas.
We chose to use a version of the Oxygen-Mono font that we
modified by adding bars on the 7 and 0 glyphs to avoid the con-
fusion identified in the earlier AMT experiment. We excluded
empty responses from the results reported in this section, and
responses that contained the word ’captcha’ (we noticed an
interesting phenomenon where users type in what the image
semantically is).

As reported in figure 9, we were able to achieve a 94.3%
accuracy rate with our main scheme. This is slightly lower
than the AMT experiment, but within a reasonable margin of
error. To our knowledge, this is the first large scale empirical
verification where results obtained via AMT are reproducible
in real world conditions. Analysis of the errors that users made
revealed another unintended interaction of combining features
that was not detected in our AMT screening: users infrequently
confused 0 with 8 due to the distortion combination. To further
improve accuracy, we removed 1, 7, and O from our character
set and repeated the experiment. We improved the accuracy
to 95.3%. We believe that the confusion between 0 and 8 did
not appear in the AMT screening due to its low prevalence
- less than 1% of captchas - and therefore requires a very
large sample to clearly stand out. Overall however, we found
that AMT (or any other crowd computing service) is a very
valuable tool to iterate quickly on captcha design and get
it mostly right before experimenting on production traffic.
Finally, we also field tested the backup variant that includes
a varying width curve drawn across the digits. We found that
adding this line cost 2.2% accuracy.

Following these experiments, we fully deployed our main
scheme on production traffic in early September 2013. Since
then we have not observed a significant change in abusive
activity. However, our anti-abuse defenses do not solely rely
on captchas, so our results in this regard may not general-
ize to other companies. Overall we observed a consistent
95.3% accuracy rate over a sample of approximately 20 mil-
lion captchas. This is a 6.7% improvement over an equivalent
traffic sample taken immediately prior to the new scheme.

Our captcha infrastructure also has a feature for users to skip
difficult captchas and get new ones. Since deployment, we
observe that users request new captchas 55% less often. This,
combined with the accuracy improvement, resulted in approx-
imately 20% fewer incorrect captcha solutions submitted to
the page.

LESSONS LEARNED

Balancing security and usability. Captchas were originally
intended to solve a security problem: automatic verification
of humanity. As automatic text recognition software (OCR)
improves, solving this problem with distorted text in isolation
is becoming increasingly difficult, as well as burdensome for
users. While captchas are still an effective security tool [21],

we find that it is much more effective to use the captcha as
a medium for engagement with the end user, and examine
the interaction holistically. We believe that this is a positive
development for usability, as shifting the security burden away
from the captcha image itself makes it possible to use less
aggressive distortions. Deploying the new captcha scheme did
not result in decreased security at Google, but as mentioned
earlier, captchas are just one component of Google’s anti-
abuse system. It may be interesting future work to extend the
analysis of captcha features by acquiring captcha breaking
software and measuring the break rate for each feature along
side the usability.

MTurk results generalize to real world. Some of the results
in this work are applicable beyond designing new captcha
schemes. In particular one of our key results is the first large
scale empirical verification that results obtained via AMT
are reproducible in real world conditions with the caveat that
fine-tuning at very large scale is still necessary. Overall the
accuracy of our new scheme is very close (1.4%) to what our
MTurk experiments predicted. On the other hand, our MTurk
evaluation failed to reveal infrequent confusion between 0
and 8, due to the relatively low prevalence of captchas where
the confusion might occur (< 1%). Exposing such infrequent
biases may be prohibitively expensive using paid services like
AMT.

User perception of the task difficulty is affected by unre-
lated variables. Another lesson learned is that user perception
of a task difficulty is significantly influenced by cues (e.g con-
tent) that is unrelated to the actual task difficulty. The difficulty
of solving the captchas in figure 7 is technically identical - they
are all the same length, same character set (except digits), dis-
torted the same way. Yet, users preferred the top example over
two and a half times more than the bottom one (21.9% vs.
8.2%).

CONCLUSION

In this work we recount how we designed new captcha
schemes for Google using a systematic design approach. We
deployed it in production without adversely affecting security,
and achieved a 95.3% accuracy, which is a 6.7% improvement
over the previous captcha scheme.

To design these new schemes we first selected a comprehen-
sive list of features used in captchas from prominent real
world captcha schemes and previous work. We then produced
captchas with different combinations of those features, and ran
a usability study on Amazon’s Mechanical Turk on nearly a
million captchas. This allowed us to identify the limits of how
much distortion users can process and maintain a tolerable
accuracy. A key finding was that results obtained on AMT
generalize well to the real world; the user accuracy measured
on AMT is very close to our production result. Another key
finding is the nonlinearity of interactions between features,
which prevents using machine learning or statistical models to
predict the accuracy of a given capcha scheme design. This
finding emphasizes the importance of using an iterative ap-
proach to remove unexpected feature interactions that may
hurt accuracy.

We also ran a user perception study to understand which fac-
tors influence perception of captcha difficulty. The study re-
vealed that user sentiment towards captcha schemes is not
aligned with real difficulty. In particular user perception is
highly sensitive to the connotation and frequency of the con-
tent of the captcha.

REFERENCES

1.

10.

11.

12.

A.S. E. Ahmad, J. Yan, and M. Tayara. The robustness of
google captchas. Technical report, New Castle, 2011.

. H. S. Baird and T. P. Riopka. Scattertype: a reading

captcha resistant to segmentation attack. In Electronic
Imaging 2005, pages 197-207. International Society for
Optics and Photonics, 2005.

. M. Bernard, C. H. Liao, and M. Mills. The effects of font

type and size on the legibility and reading time of online
text by older adults. In CHI ’01: CHI '01 extended
abstracts on Human factors in computing systems, pages

175-176, New York, NY, USA, 2001. ACM.

. J. P. Bigham and A. C. Cavender. Evaluating existing

audio captchas and an interface optimized for non-visual
use. In ACM Conference on Human Factors in
Computing Systems, 2009.

. E. Bursztein, S. Bethard, J. C. Mitchell, D. Jurafsky, and

C. Fabry. How good are humans at solving captchas? a
large scale evaluation. In Security and Privacy, 2010.

. E. Bursztein, M. Martin, and J. Mitchell. Text-based

captcha strengths and weaknesses. In Proceedings of the
18th ACM conference on Computer and communications
security, pages 125-138. ACM, 2011.

. K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski.

Computers beat humans at single character recognition in
reading based human interaction proofs (hips). In CEAS,
2005.

. K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski.

Designing human friendly human interaction proofs
(hips). In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 711-720.
ACM, 2005.

. C. Cruz-Perez, O. Starostenko, F. Uceda-Ponga,

V. Alarcon-Aquino, and L. Reyes-Cabrera. Breaking
recaptchas with unpredictable collapse: heuristic
character segmentation and recognition. In Pattern
Recognition, pages 155—-165. Springer, 2012.

Google. Google consumer surveys. http:
//www.google.com/insights/consumersurveys/home.

P. S. K Chellapilla, K Larson and M. Czerwinski.
Designing human friendly human interaction proofs. In
ACM, editor, CHIO05, 2005.

A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user
studies with mechanical turk. In CHI ’08: Proceeding of
the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, pages 453-456, New York,
NY, USA, 2008. ACM.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

K. A. Kluever and R. Zanibbi. Balancing usability and
security in a video captcha. In SOUPS ’09: Proceedings
of the 5th Symposium on Usable Privacy and Security,
pages 1-11, New York, NY, USA, 2009. ACM.

K. Larson, M. van Dantzich, M. Czerwinski, and

G. Robertson. Text in 3d: some legibility results. In CHI
"00: CHI ’00 extended abstracts on Human factors in
computing systems, pages 145-146, New York, NY, USA,
2000. ACM.

P. McDonald, M. Mohebbi, and B. Slatkin. Comparing
google consumer surveys to existing probability and
non-probability based internet surveys. Technical report,
Google, 2012.

H. Motulsky and L. Ransnas. Fitting curves to data using
nonlinear regression: a practical and nonmathematical
review. The FASEB journal, 1(5):365-374, 1987.

T. Mustonen, M. Olkkonen, and J. Hakkinen. Examining
mobile phone text legibility while walking. In CHI ’04:
CHI ’04 extended abstracts on Human factors in
computing systems, pages 1243—-1246, New York, NY,
USA, 2004. ACM.

M. Naor. Verification of a human in the loop or
identification via the turing test. Available electronically:
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/
human.ps, 1997.

J. Ross, L. Irani, M. Silberman, A. Zaldivar, and

B. Tomlinson. Who are the crowdworkers?: shifting
demographics in mechanical turk. In CHI’10: 28th
international conference on Human factors in computing

systems, pages 2863-2872. ACM, 2010.

T. Strutz. Data Fitting and Uncertainty: A Practical
Introduction to Weighted Least Squares and Beyond.
Vieweg and Teubner, 2010.

K. Thomas, D. McCoy, C. Grier, A. Kolcz, and V. Paxson.
Trafficking Fraudulent Accounts: The Role of the
Underground Market in Twitter Spam and Abuse. In
Proceedings of the USENIX Security Symposium, August
2013.

M. Toomim, T. Kriplean, C. P

"ortner, and J. Landay. Utility of human-computer
interactions: toward a science of preference measurement.
In Proceedings of the 2011 annual conference on Human
factors in computing systems, pages 2275-2284. ACM,
2011.

Y. Xu, G. Reynaga, S. Chiasson, J.-M. Frahm,

F. Monrose, and P. van Oorschot. Security and usability
challenges of moving-object captchas: Decoding
codewords in motion. In Usenix Security, 2012.

J. Yan and A. S. E. Ahmad. A low-cost attack on a
microsoft captcha. http://bit.ly/nfpEis, 2008.

J. Yan and A. S. El Ahmad. Usability of captchas or
usability issues in captcha design. In SOUPS "08:
Proceedings of the 4th symposium on Usable privacy and
security, pages 44-52, New York, NY, USA, 2008. ACM.

