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Abstract

We show how punctuation can be used to im-
prove unsupervised dependency parsing. Our
linguistic analysis confirms the strong connec-
tion between English punctuation and phrase
boundaries in the Penn Treebank. However,
approaches that naively include punctuation
marks in the grammar (as if they were words)
do not perform well with Klein and Manning’s
Dependency Model with Valence (DMV). In-
stead, we split a sentence at punctuation and
impose parsing restrictions over its fragments.
Our grammar inducer is trained on the Wall
Street Journal (WSJ) and achieves 59.5% ac-
curacy out-of-domain (Brown sentences with
100 or fewer words), more than 6% higher
than the previous best results. Further evalu-
ation, using the 2006/7 CoNLL sets, reveals
that punctuation aids grammar induction in
17 of 18 languages, for an overall average
net gain of 1.3%. Some of this improvement
is from training, but more than half is from
parsing with induced constraints, in inference.
Punctuation-aware decoding works with exist-
ing (even already-trained) parsing models and
always increased accuracy in our experiments.

1 Introduction

Unsupervised dependency parsing is a type of gram-
mar induction — a central problem in computational
linguistics. It aims to uncover hidden relations be-
tween head words and their dependents in free-form
text. Despite decades of significant research efforts,
the task still poses a challenge, as sentence structure
is underdetermined by only raw, unannotated words.

Structure can be clearer informattedtext, which
typically includes proper capitalization and punctua-
tion (Gravano et al., 2009). Raw word streams, such

as utterances transcribed by speech recognizers, are
often difficult even for humans (Kim and Woodland,
2002). Therefore, one would expect grammar induc-
ers to exploit any available linguistic meta-data. And
yet in unsupervised dependency parsing, sentence-
internal punctuation has long been ignored (Carroll
and Charniak, 1992; Paskin, 2001; Klein and Man-
ning, 2004; Blunsom and Cohn, 2010,inter alia).

HTML is another kind of meta-data that is ordi-
narily stripped out in pre-processing. However, re-
cently Spitkovsky et al. (2010b) demonstrated that
web markup can successfully guide hierarchical
syntactic structure discovery, observing, for exam-
ple, that anchors often match linguistic constituents:

..., whereas McCain is secure on the topic, Obama
<a>[VP worries about winning the pro-Israel vote]</a>.

We propose exploring punctuation’s potential to
aid grammar induction. Consider a motivating ex-
ample (all of our examples are from WSJ), in which
all (six) marks align with constituent boundaries:

[SBAR Although it probably has reduced the level of
expenditures for some purchasers], [NP utilization man-
agement] — [PP like most other cost containment strate-
gies] — [VP doesn’t appear to have altered the long-term
rate of increase in health-care costs], [NP the Institute of
Medicine], [NP an affiliate of the National Academy of
Sciences], [VP concluded after a two-year study].

This link between punctuation and constituent
boundaries suggests that we could approximate
parsing by treating inter-punctuation fragments in-
dependently. In training, our algorithm first parses
each fragment separately, then parses the sequence
of the resulting head words. In inference, we use a
better approximation that allows heads of fragments
to be attached by arbitrary external words, e.g.:

The Soviets complicated the issue by offering to
[VP include light tanks], [SBAR which are as light as ...].



Count POS Sequence Frac Cum
1 3,492 NNP 2.8%
2 2,716 CD CD 2.2 5.0
3 2,519 NNP NNP 2.0 7.1
4 2,512 RB 2.0 9.1
5 1,495 CD 1.2 10.3
6 1,025 NN 0.8 11.1
7 1,023 NNP NNP NNP 0.8 11.9
8 916 IN NN 0.7 12.7
9 795 VBZ NNP NNP 0.6 13.3

10 748 CC 0.6 13.9
11 730 CD DT NN 0.6 14.5
12 705 PRP VBD 0.6 15.1
13 652 JJ NN 0.5 15.6
14 648 DT NN 0.5 16.1
15 627 IN DT NN 0.5 16.6
WSJ +103,148 more with Count≤ 621 83.4%

Table 1: Top 15 fragments of POS tag sequences in WSJ.

Count Non-Terminal Frac Cum
1 40,223 S 32.5%
2 33,607 NP 27.2 59.7
3 16,413 VP 13.3 72.9
4 12,441 PP 10.1 83.0
5 8,350 SBAR 6.7 89.7
6 4,085 ADVP 3.3 93.0
7 3,080 QP 2.5 95.5
8 2,480 SINV 2.0 97.5
9 1,257 ADJP 1.0 98.5

10 369 PRN 0.3 98.8
WSJ +1,446 more with Count≤ 356 1.2%

Table 2: Top 99% of the lowest dominating non-terminals
deriving complete inter-punctuation fragments in WSJ.

2 Definitions, Analyses and Constraints

Punctuation and syntax are related (Nunberg, 1990;
Briscoe, 1994; Jones, 1994; Doran, 1998,inter alia).
But are there simple enough connections between
the two to aid in grammar induction? This section
explores the regularities. Our study of punctuation
in WSJ (Marcus et al., 1993) parallels Spitkovsky
et al.’s (2010b,§5) analysis of markup from a web-
log, since their proposed constraints turn out to be
useful. Throughout, we define an inter-punctuation
fragment as a maximal (non-empty) consecutive se-
quence of words that does not cross punctuation
boundaries and is shorter than its source sentence.

2.1 A Linguistic Analysis

Out of 51,558 sentences, most — 37,076 (71.9%) —
contain sentence-internal punctuation. These punc-
tuated sentences contain 123,751 fragments, nearly
all — 111,774 (90.3%) — of them multi-token.

Common part-of-speech (POS) sequences compris-
ing fragments are diverse (note also their flat distri-
bution — see Table 1). The plurality of fragments
are dominated by a clause, but most are dominated
by one of several kinds of phrases (see Table 2).
As expected, punctuation does not occur at all con-
stituent boundaries: Of the top 15 productions that
yield fragments, five donot match the exact brack-
eting of their lowest dominating non-terminal (see
ranks 6, 11, 12, 14 and 15 in Table 3, left). Four of
them miss a left-adjacent clause, e.g.,S→ S NP VP:

[S [S It’s an overwhelming job], [NP she] [VP says.]]

This production is flagged because the fragment
NPVP is nota constituent — it is two; still,49.4%
of all fragments do align with whole constituents.

Inter-punctuation fragments correspond more
strongly to dependencies (see Table 3, right). Only
one production (rank 14) shows a daughter outside
her mother’s fragment. Some number of such pro-
ductions is inevitable and expected, since fragments
must coalesce (i.e., the root of at least one fragment
— in every sentence with sentence-internal punc-
tuation — must be attached by some word from a
different, external fragment). We find it noteworthy
that in 14 of the 15 most common cases, a word in
an inter-punctuation fragment derives precisely the
rest of that fragment, attaching none of the other,
external words. This is true for39.2% of all frag-
ments, and if we include fragments whose heads at-
tach other fragments’ heads, agreement increases to
74.0% (seestrict andlooseconstraints in§2.2, next).

2.2 Five Parsing Constraints

Spitkovsky et al. (2010b,§5.3) showed how to ex-
press similar correspondences with markup as pars-
ing constraints. They proposed four constraints but
employed only the strictest three, omitting imple-
mentation details. We revisit their constraints, speci-
fying precise logical formulations that we use in our
code, and introduce a fifth (most relaxed) constraint.

Let [x, y] be a fragment (or markup) spanning po-
sitionsx throughy (inclusive, with1 ≤ x < y ≤ l), in
a sentence of lengthl. And let [i, j]h be a sealed span
headed byh (1 ≤ i ≤ h ≤ j ≤ l), i.e., the word at po-
sition h dominates preciselyi . . . j (but none other):

i h j



Count Constituent Production Frac Cum
1 7,115 PP→ IN NP 5.7%
2 5,950 S→ NP VP 4.8 10.6
3 3,450 NP→ NP PP 2.8 13.3
4 2,799 SBAR→ WHNP S 2.3 15.6
5 2,695 NP→ NNP 2.2 17.8
6 2,615 S→ S NP VP 2.1 19.9
7 2,480 SBAR→ IN S 2.0 21.9
8 2,392 NP→ NNP NNP 1.9 23.8
9 2,354 ADVP→ RB 1.9 25.7

10 2,334 QP→ CD CD 1.9 27.6
11 2,213 S→ PP NP VP 1.8 29.4
12 1,441 S→ S CC S 1.2 30.6
13 1,317 NP→ NP NP 1.1 31.6
14 1,314 S→ SBAR NP VP 1.1 32.7
15 1,172 SINV→ S VP NP NP 0.9 33.6
WSJ +82,110 more with Count≤ 976 66.4%

Count Head-Outward Spawn Frac Cum
1 11,928 IN 9.6%
2 8,852 NN 7.2 16.8
3 7,802 NNP 6.3 23.1
4 4,750 CD 3.8 26.9
5 3,914 VBD 3.2 30.1
6 3,672 VBZ 3.0 33.1
7 3,436 RB 2.8 35.8
8 2,691 VBG 2.2 38.0
9 2,304 VBP 1.9 39.9

10 2,251 NNS 1.8 41.7
11 1,955 WDT 1.6 43.3
12 1,409 MD 1.1 44.4
13 1,377 VBN 1.1 45.5
14 1,204 IN VBD 1.0 46.5
15 927 JJ 0.7 47.3
WSJ +65,279 more with Count≤ 846 52.8%

Table 3: Top 15 productions yielding punctuation-induced fragments in WSJ, viewed as constituents (left) and as de-
pendencies (right). For constituents, we recursively expanded any internal nodes that did not align with the associated
fragmentation (underlined). For dependencies we dropped all daughters that fell entirely in the same region as their
mother (i.e., both inside a fragment, both to its left or bothto its right), keeping only crossing attachments (just one).

Define inside(h, x, y) as true iffx ≤ h ≤ y; and let
cross(i, j, x, y) be true iff (i < x ∧ j ≥ x ∧ j < y) ∨

(i > x ∧ i ≤ y ∧ j > y). The three tightest constraints
impose conditions which, when satisfied, disallow
sealing[i, j]h in the presence of an annotation[x, y]:

strict — requires[x, y] itself to be sealed in the
parse tree, voiding all seals that straddle exactly one
of {x, y} or protrude beyond[x, y] if their head is in-
side. This constraint holds for39.2% of fragments.
By contrast, only 35.6% of HTML annotations, such
as anchor texts and italics, agree with it (Spitkovsky
et al., 2010b). This necessarily fails in every sen-
tence with internal punctuation (since there,some
fragment must take charge and attach another), when
cross(i, j, x, y) ∨ (inside(h, x, y) ∧ (i < x ∨ j > y)).

... the British daily newspaper, The FinancialTimes .
x = i h = j = y

loose — if h ∈ [x, y], requires that everything in
x . . . y fall underh, with only h allowed external at-
tachments. This holds for74.0% of fragments —
87.5% of markup, failing whencross(i, j, x, y).

... arrests followed a“ Snake Day ” at Utrecht ...
i x h = j = y

sprawl — still requires thath derive x . . . y but
lifts restrictions on external attachments. Holding
for 92.9% of fragments (95.1% of markup), it fails

whencross(i, j, x, y) ∧ ¬inside(h, x, y).

Maryland Club also distributes tea, which ...
x = i h y j

These three strictest constraints lend themselves to a
straight-forward implementation as anO(l5) chart-
based decoder. Ordinarily, the probability of[i, j]h
is computed by multiplying the probability of the as-
sociatedunsealed span by two stopping probabilities
— that of the word ath on the left (adjacent ifi = h;
non-adjacent ifi < h) and on the right (adjacent if
h = j; non-adjacent ifh < j). To impose a con-
straint, we ran through all of the annotations[x, y]
associated with a sentence and zeroed out this prob-
ability if any of them satisfied disallowed conditions.

There are faster — e.g.,O(l4), and evenO(l3) —
recognizers for split head automaton grammars (Eis-
ner and Satta, 1999). Perhaps a more practical, but
still clear, approach would be to generaten-best lists
using a more efficient unconstrained algorithm, then
apply the constraints as a post-filtering step.

Relaxed constraints disallow joining adjacent
subtrees, e.g., preventing the seal[i, j]h from merg-
ing below theunsealed span[j + 1, J ]H , on the left:

i h j j + 1 H J



tear — preventsx . . . y from being torn apart by
external heads fromoppositesides. It holds for
94.7% of fragments (97.9% of markup), and is vi-
olated when(x ≤ j ∧ y > j ∧ h < x), in this case.

... they “were not consulted about the [Ridley decision]

in advance and were surprised at the action taken.

thread — requires only that no path from the root
to a leaf enter[x, y] twice. This holds for95.0% of
all fragments (98.5% of markup); it is violated when
(x ≤ j ∧ y > j ∧ h < x) ∧ (H ≤ y), again, in this
case. Example that satisfiesthreadbut violatestear:

The ... changes“all make a lot of sense to me,” he added.

The case when[i, j]h is to the right is entirely sym-
metric, and these constraints could be incorporated
in a more sophisticated decoder (sincei and J do
not appear in the formulae, above). We implemented
them by zeroing out the probability of the word atH
attaching that ath (to its left), in case of a violation.

Note that all five constraints are nested. In partic-
ular, this means that it does not make sense to com-
bine them, for a given annotation[x, y], since the re-
sult would just match the strictest one. Our markup
number fortear is lower (97.9 versus 98.9%) than
Spitkovsky et al.’s (2010b), because theirs allowed
cases where markup wasneither torn nor threaded.

Common structures that violatethread(and, con-
sequently, all five of the constraints) include, e.g.,
“seamless” quotations and even ordinary lists:

Her recent report classifies the stock as a“hold.”

The company said its directors, management and
subsidiaries will remain long-term investors and ...

2.3 Comparison with Markup

Most punctuation-induced constraints are less ac-
curate than the corresponding markup-induced con-
straints (e.g.,sprawl: 92.9 vs. 95.1%;loose: 74.0
vs. 87.5%; but notstrict: 39.2 vs. 35.6%). However,
markup is rare: Spitkovsky et al. (2010b,§5.1) ob-
served that only 10% of the sentences in their blog
were annotated; in contrast, over 70% of the sen-
tences in WSJ are fragmented by punctuation.

Fragments are more than 40% likely to be dom-
inated by a clause; for markup, this number is be-
low 10% — nearly 75% of it covered by noun

phrases. Further, inter-punctuation fragments are
spread more evenly under noun, verb, prepositional,
adverbial and adjectival phrases (approximately
27:13:10:3:1 versus75:13:2:1:1) than markup.1

3 The Model, Methods and Metrics

We model grammar via Klein and Manning’s (2004)
Dependency Model with Valence (DMV), which
ordinarily strips out punctuation. Since this step
already requires identification of marks, our tech-
niques are just as “unsupervised.” We would have
preferred to test punctuation in their original set-up,
but this approach wasn’t optimal, for several rea-
sons. First, Klein and Manning (2004) trained with
short sentences (up to only ten words, on WSJ10),
whereas most punctuation appears in longer sen-
tences. And second, although we could augment
the training data (say, to WSJ45), Spitkovsky et
al. (2010a) showed that classic EM struggles with
longer sentences. For this reason, we use Viterbi
EM and the scaffolding suggested by Spitkovsky et
al. (2010a) — also the setting in which Spitkovsky et
al. (2010b) tested their markup-induced constraints.

3.1 A Basic System

Our system is based on Laplace-smoothed Viterbi
EM, following Spitkovsky et al.’s (2010a) two-stage
scaffolding: the first stage trains with just the sen-
tences up to length 15; the second stage then retrains
on nearly all sentences — those with up to 45 words.

Initialization
Klein and Manning’s (2004) “ad-hoc harmonic” ini-
tializer does not work very well for longer sentences,
particularly with Viterbi training (Spitkovsky et al.,
2010a, Figure 3). Instead, we use an improved ini-
tializer that approximates the attachment probability
between two words as an average, over all sentences,
of their normalized aggregateweighteddistances.
Our weighting function isw(d) = 1+1/ lg(1+d).2

Termination
Spitkovsky et al. (2010a) iterated until successive
changes in overall (best parse) per-token cross-
entropy dropped below2−20 bits. Since smoothing
can (and does, at times) increase the objective, we
found it more efficient to terminate early, after ten

1Markup and fragments are as likely to be in verb phrases.
2Integerd ≥ 1 is a distance between two tokens;lg is log

2
.



steps of suboptimal models. We used the lowest-
perplexity (not necessarily the last) model found, as
measured by the cross-entropy of the training data.

Constrained Training
Training with punctuation replaces ordinary Viterbi
parse trees, at every iteration of EM, with the out-
put of a constrained decoder. In all experiments
other than #2 (§5) we train with thelooseconstraint.
Spitkovsky et al. (2010b) found this setting to be
best for markup-induced constraints. We apply it to
constraints induced by inter-punctuation fragments.

Constrained Inference
Spitkovsky et al. (2010b) recommended using the
sprawlconstraint in inference. Once again, we fol-
low their advice in all experiments except #2 (§5).

3.2 Data Sets and Scoring

We trained on the Penn English Treebank’s Wall
Street Journal portion (Marcus et al., 1993). To eval-
uate, we automatically converted its labeled con-
stituents into unlabeled dependencies, using deter-
ministic “head-percolation” rules (Collins, 1999),
discarding punctuation, any empty nodes, etc., as is
standard practice (Paskin, 2001; Klein and Manning,
2004). We also evaluated against the parsed portion
of the Brown corpus (Francis and Kučera, 1979),
used as a blind, out-of-domain evaluation set,3 sim-
ilarly derived from labeled constituent parse trees.

We report directed accuracies — fractions of cor-
rectly guessed arcs, including the root, in unlabeled
reference dependency parse trees, as is also standard
practice (Paskin, 2001; Klein and Manning, 2004).
One of our baseline systems (§3.3) produces depen-
dency trees containing punctuation. In this case we
do not score the heads assigned to punctuation and
use forgiving scoring for regular words: crediting
correct heads separated from their children by punc-
tuation alone (from the point of view of the child,
looking up to the nearest non-punctuation ancestor).

3.3 Baseline Systems

Our primary baseline is the basic system without
constraints (standard training). It ignores punctu-
ation, as is standard, scoring 52.0% against WSJ45.

A secondary (punctuation as words) baseline in-

3Note that WSJ{15, 45} overlap with Section 23 — training
on the test set is standard practice in unsupervised learning.

corporates punctuation into the grammar as if it were
words, as insuperviseddependency parsing (Nivre
et al., 2007b; Lin, 1998; Sleator and Temperley,
1993,inter alia). It is worse, scoring only 41.0%.4,5

4 Experiment #1: Default Constraints

Our first experiment compares “punctuation as con-
straints” to the baseline systems. We use default set-
tings, as recommended by Spitkovsky et al. (2010b):
loosein training; andsprawl in inference. Evalua-
tion is on Section 23 of WSJ (all sentence lengths).
To facilitate comparison with prior work, we also re-
port accuracies against shorter sentences, with up to
ten non-punctuation tokens (WSJ10 — see Table 4).

We find that both constrained regimes improve
performance. Constrained decoding alone increases
the accuracy of a standardly-trained system from
52.0% to 54.0%. And constrained training yields
55.6% — 57.4% in combination with inference.

4We were careful to use exactly the same data sets in both
cases, not counting punctuation towards sentence lengths.And
we used forgiving scoring (§3.2) when evaluating these trees.

5To get this particular number we forced punctuation to be
tacked on, as a layer below the tree of words, to fairly compare
systems (using the same initializer). Since improved initializa-
tion strategies — both ours and Klein and Manning’s (2004)
“ad-hoc harmonic” initializer — rely on distances between to-
kens, they could be unfairly biased towards one approach or the
other, if punctuation counted towards length. We also trained
similar baselines without restrictions, allowing punctuation to
appear anywhere in the tree (still with forgiving scoring — see
§3.2), using the uninformed uniform initializer (Spitkovsky et
al., 2010a). Disallowing punctuation as a parent of a real word
made things worse, suggesting that not all marks belong near
the leaves (sentence stops, semicolons, colons, etc. make more
sense as roots and heads). We tried the weighted initializeralso
without restrictions and repeated all experiments withoutscaf-
folding, on WSJ15 and WSJ45 alone, but treating punctuation
as words never came within even 5% of (comparable) standard
training. Punctuation, as words, reliably disrupted learning.

WSJ∞ WSJ10
Supervised DMV 69.8 83.6

w/Constrained Inference 73.0 84.3

Punctuation as Words 41.7 54.8
Standard Training 52.0 63.2

w/Constrained Inference 54.0 63.6
Constrained Training 55.6 67.0

w/Constrained Inference 57.4 67.5

Table 4: Directed accuracies on Section 23 of WSJ∞ and
WSJ10 for the supervised DMV, our baseline systems and
the punctuation runs (all using the weighted initializer).



These are multi-point increases, but they could dis-
appear in a more accurate state-of-the-art system.

To test this hypothesis, we applied constrained de-
coding to asupervisedsystem. We found that this
(ideal) instantiation of the DMV benefits as much or
more than the unsupervised systems: accuracy in-
creases from 69.8% to 73.0%. Punctuation seems
to capture the kinds of, perhaps long-distance, regu-
larities that are not accessible to the model, possibly
because of its unrealistic independence assumptions.

5 Experiment #2: Optimal Settings

Spitkovsky et al. (2010b) recommended training
with looseand decoding withsprawlbased on their
experiments with markup. But are these the right
settings for punctuation? Inter-punctuation frag-
ments are quite different from markup — they are
more prevalent but less accurate. Furthermore, we
introduced a new constraint,thread, that Spitkovsky
et al. (2010b) had not considered (along withtear).

We next re-examined the choices of constraints.
Our full factorial analysis was similar, but signifi-
cantly smaller, than Spitkovsky et al.’s (2010b): we
excluded their larger-scale news and web data sets
that are not publicly available. Nevertheless, we
still tried every meaningful combination of settings,
testing boththreadandtear (instead ofstrict, since
it can’t work with sentences containing sentence-
internal punctuation), in both training and inference.
We did not find better settings thanloosefor train-
ing, andsprawl for decoding, among our options.

A full analysis is omitted due to space constraints.
Our first observation is that constrained inference,
using punctuation, is helpful and robust. It boosted
accuracy (on WSJ45) by approximately 1.5%, on
average, with all settings. Indeed,sprawl was con-
sistently (but only slightly, at 1.6%, on average) bet-
ter than the rest. Second, constrained training hurt
more often than it helped. It degraded accuracy in all
but one case,loose, where it gained approximately
0.4%, on average. Both improvements are statisti-
cally significant:p ≈ 0.036 for training with loose;
andp ≈ 5.6 × 10−12 for decoding withsprawl.

6 More Advanced Methods

So far, punctuation has improved grammar induction
in a toy setting. But would it help a modern system?

Our next two experiments employ a slightly more
complicated set-up, compared with the one used up
until now (§3.1). The key difference is that this sys-
tem is lexicalized, as is standard among the more ac-
curate grammar inducers (Blunsom and Cohn, 2010;
Gillenwater et al., 2010; Headden et al., 2009).

Lexicalization
We lexicalize only in the second (full data) stage, us-
ing the method of Headden et al. (2009). For words
seen at least 100 times in the training corpus, we
augment their gold POS tag with the lexical item.
The first (data poor) stage remains entirely unlexi-
calized, with gold POS tags for word classes, as in
the earlier systems (Klein and Manning, 2004).

Smoothing
We do not use smoothing in the second stage except
at the end, for the final lexicalized model. Stage one
still applies “add-one” smoothing at every iteration.

7 Experiment #3: State-of-the-Art

The purpose of these experiments is to compare the
punctuation-enhanced DMV with other, recent state-
of-the-art systems. We find that, lexicalized (§6), our
approach performs better, by a wide margin; without
lexicalization (§3.1), it was already better for longer,
but not for shorter, sentences (see Tables 5 and 4).

We trained a variant of our systemwithout gold
part-of-speech tags, using the unsupervised word
clusters (Clark, 2000) computed by Finkel and Man-
ning (2009).6 Accuracy decreased slightly, to 58.2%
on Section 23 of WSJ (down only 0.2%). This result
improves over substantial performance degradations
previously observed for unsupervised dependency
parsing with induced word categories (Klein and
Manning, 2004; Headden et al., 2008,inter alia).

6Available fromhttp://nlp.stanford.edu/software/
stanford-postagger-2008-09-28.tar.gz:
models/egw.bnc.200

Brown WSJ∞ WSJ10
(Headden et al., 2009) — — 68.8

(Spitkovsky et al., 2010b) 53.3 50.4 69.3
(Gillenwater et al., 2010) — 53.3 64.3

(Blunsom and Cohn, 2010) — 55.7 67.7
Constrained Training 58.4 58.0 69.3

w/Constrained Inference 59.5 58.4 69.5

Table 5: Accuracies on the out-of-domain Brown100 set
and Section 23 of WSJ∞ and WSJ10, for the lexicalized
punctuation run and other recent state-of-the-art systems.



Unlexicalized, Unpunctuated Lexicalized ...and Punctuated
CoNLL Year Initialization @15 Training @15 Retraining @45 Retraining @45 Net
& Language 1. w/Inference 2. w/Inference 3. w/Inference 3′. w/Inference Gain

Arabic 2006 23.3 23.6 (+0.3) 32.8 33.1 (+0.4) 31.5 31.6 (+0.1) 32.1 32.6 (+0.5) +1.1
’7 25.6 26.4 (+0.8) 33.7 34.2 (+0.5) 32.7 33.6 (+0.9) 34.9 35.3 (+0.4) +2.6

Basque ’7 19.3 20.8 (+1.5) 29.9 30.9 (+1.0) 29.3 30.1 (+0.8) 29.3 29.9 (+0.6) +0.6
Bulgarian ’6 23.7 24.7 (+1.0) 39.3 40.7 (+1.4) 38.8 39.9 (+1.1) 39.9 40.5 (+0.6) +1.6
Catalan ’7 33.2 34.1 (+0.8) 54.8 55.5 (+0.7) 54.3 55.1 (+0.8) 54.3 55.2 (+0.9) +0.9
Czech ’6 18.6 19.6 (+1.0) 34.6 35.8 (+1.2) 34.8 35.7 (+0.9) 37.0 37.8 (+0.8) +3.0

’7 17.6 18.4 (+0.8) 33.5 35.4 (+1.9) 33.4 34.4 (+1.0) 35.2 36.2 (+1.0) +2.7
Danish ’6 22.9 24.0 (+1.1) 35.6 36.7 (+1.2) 36.9 37.8 (+0.9) 36.5 37.1 (+0.6) +0.2
Dutch ’6 15.8 16.5 (+0.7) 11.2 12.5 (+1.3) 11.0 11.9 (+1.0) 13.7 14.0 (+0.3) +3.0
English ’7 25.0 25.4 (+0.5) 47.2 49.5 (+2.3) 47.5 48.8 (+1.3) 49.3 50.3 (+0.9) +2.8
German ’6 19.2 19.6 (+0.4) 27.4 28.0 (+0.7) 27.0 27.8 (+0.8) 28.2 28.6 (+0.4) +1.6
Greek ’7 18.5 18.8 (+0.3) 20.7 21.4 (+0.7) 20.5 21.0 (+0.5) 20.9 21.2 (+0.3) +0.7
Hungarian ’7 17.4 17.7 (+0.3) 6.7 7.2 (+0.5) 6.6 7.0 (+0.4) 7.8 8.0 (+0.2) +1.4
Italian ’7 25.0 26.3 (+1.2) 29.6 29.9 (+0.3) 29.7 29.7 (+0.1) 28.3 28.8 (+0.5) -0.8
Japanese ’6 30.0 30.0 (+0.0) 27.3 27.3 (+0.0) 27.4 27.4 (+0.0) 27.5 27.5 (+0.0) +0.1
Portuguese ’6 27.3 27.5 (+0.2) 32.8 33.7 (+0.9) 32.7 33.4 (+0.7) 33.3 33.5 (+0.3) +0.8
Slovenian ’6 21.8 21.9 (+0.2) 28.3 30.4 (+2.1) 28.4 30.4 (+2.0) 29.8 31.2 (+1.4) +2.8
Spanish ’6 25.3 26.2 (+0.9) 31.7 32.4 (+0.7) 31.6 32.3 (+0.8) 31.9 32.3 (+0.5) +0.8
Swedish ’6 31.0 31.5 (+0.6) 44.1 45.2 (+1.1) 45.6 46.1 (+0.5) 46.1 46.4 (+0.3) +0.8
Turkish ’6 22.3 22.9 (+0.6) 39.1 39.5 (+0.4) 39.9 39.9 (+0.1) 40.6 40.9 (+0.3) +1.0

’7 22.7 23.3 (+0.6) 41.7 42.3 (+0.6) 41.9 42.1 (+0.2) 41.6 42.0 (+0.4) +0.1
Average: 23.4 24.0 (+0.7) 31.9 32.9 (+1.0) 31.9 32.6 (+0.7) 32.6 33.2 (+0.5) +1.3

Table 6: Multi-lingual evaluation for CoNLL sets, measuredat all three stages of training, with and without constraints.

8 Experiment #4: Multi-Lingual Testing

This final batch of experiments probes the general-
ization of our approach (§6) across languages. The
data are from 2006/7 CoNLL shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007a), where
punctuation was identified by the organizers, who
also furnished disjoint train/test splits. We tested
against all sentences in their evaluation sets.7,8

The gains arenot English-specific (see Table 6).
Every language improves with constrained decod-
ing (more so without constrained training); and all
but Italian benefit in combination. Averaged across
all eighteen languages, the net change in accuracy is
1.3%. After standard training, constrained decoding
alone delivers a 0.7% gain, on average, never caus-
ing harm in any of our experiments. These gains are
statistically significant:p ≈ 1.59 × 10−5 for con-
strained training; andp ≈ 4.27×10−7 for inference.

7With the exception of Arabic ’07, from which we discarded
one sentence with 145 tokens. We down-weighed languages
appearing in both years by 50% in our analyses, and excluded
Chinese entirely, since it had already been cut up at punctuation.

8Note that punctuation was treated differently in the two
years: in ’06, it was always at the leaves of the dependency
trees; in ’07, it matched original annotations of the sourcetree-
banks. For both, we used punctuation-insensitive scoring (§3.2).

We did not detect synergy between the two im-
provements. However, note that without constrained
training, “full” data sets do not help, on average, de-
spite having more data and lexicalization. Further-
more,after constrained training, we detected no ev-
idence of benefits to additional retraining: not with
the relaxedsprawlconstraint, nor unconstrained.

9 Related Work

Punctuation has been used to improve parsing since
rule-based systems (Jones, 1994). Statistical parsers
reap dramatic gains from punctuation (Engel et al.,
2002; Roark, 2001; Charniak, 2000; Johnson, 1998;
Collins, 1997,inter alia). And it is even known to
help in unsupervisedconstituent parsing (Seginer,
2007). But fordependencygrammar induction, until
now, punctuation remained unexploited.

Parsing Techniques Most-Similar to Constraints
A “divide-and-rule” strategy that relies on punctua-
tion has been used in supervised constituent parsing
of long Chinese sentences (Li et al., 2005). For En-
glish, there has been interest inbalancedpunctua-
tion (Briscoe, 1994), more recently using rule-based
filters (White and Rajkumar, 2008) in a combinatory
categorial grammar (CCG). Our focus is specifically



on unsupervisedlearning ofdependencygrammars
and is similar, in spirit, to Eisner and Smith’s (2005)
“vine grammar” formalism. An important difference
is that instead of imposing static limits on allowed
dependency lengths, our restrictions are dynamic —
they disallow some long (and some short) arcs that
would have otherwise crossed nearby punctuation.

Incorporating partial bracketings into grammar
induction is an idea tracing back to Pereira and Sch-
abes (1992). It inspired Spitkovsky et al. (2010b) to
mine parsing constraints from the web. In that same
vein, we prospected a more abundant and natural
language-resource — punctuation, using constraint-
based techniques they developed for web markup.

Modern Unsupervised Dependency Parsing

State-of-the-art in unsupervised dependency pars-
ing (Blunsom and Cohn, 2010) uses tree substitu-
tion grammars. These are powerful models, capa-
ble of learning large dependency fragments. To help
prevent overfitting, a non-parametric Bayesian prior,
defined by a hierarchical Pitman-Yor process (Pit-
man and Yor, 1997), is trusted to nudge training to-
wards fewer and smaller grammatical productions.

We pursued a complementary strategy: using
Klein and Manning’s (2004) much simpler Depen-
dency Model with Valence (DMV), but persistently
steering training away from certain constructions, as
guided by punctuation, to help preventunderfitting.

Various Other Uses of Punctuation in NLP

Punctuation is hard to predict,9 partly because it
can signal long-range dependences (Lu and Ng,
2010). It often provides valuable cues to NLP tasks
such as part-of-speech tagging and named-entity
recognition (Hillard et al., 2006), information ex-
traction (Favre et al., 2008) and machine transla-
tion (Lee et al., 2006; Matusov et al., 2006). Other
applications have included Japanese sentence anal-
ysis (Ohyama et al., 1986), genre detection (Sta-
matatos et al., 2000), bilingual sentence align-
ment (Yeh, 2003), semantic role labeling (Pradhan et
al., 2005), Chinese creation-title recognition (Chen
and Chen, 2005) and word segmentation (Li and
Sun, 2009), plus, recently, automatic vandalism de-

9Punctuation has high semantic entropy (Melamed, 1997);
for an analysis of the many roles played in the WSJ by the
comma — the most frequent and unpredictable punctuation
mark in that data set — see Beeferman et al. (1998, Table 2).

tection in Wikipedia (Wang and McKeown, 2010).

10 Conclusions and Future Work

Punctuation improves dependency grammar induc-
tion. Many unsupervised (and supervised) parsers
could be easily modified to usesprawl-constrained
decoding in inference. It applies to pre-trained mod-
els and, so far, helped every data set and language.

Tightly interwoven into the fabric of writing sys-
tems, punctuation frames most unannotated plain-
text. We showed that rules for converting markup
into accurate parsing constraints are still optimal for
inter-punctuation fragments. Punctuation marks are
more ubiquitous and natural than web markup: what
little punctuation-induced constraints lack in preci-
sion, they more than make up in recall — perhaps
both types of constraints would work better yet in
tandem. For language acquisition, a natural ques-
tion is whether prosody could similarly aid grammar
induction from speech (Kahn et al., 2005).

Our results underscore the power of simple mod-
els and algorithms, combined with common-sense
constraints. They reinforce insights fromjoint mod-
eling in supervisedlearning, where simplified, in-
dependent models, Viterbi decoding and expressive
constraints excel at sequence labeling tasks (Roth
and Yih, 2005). Such evidence is particularly wel-
come inunsupervisedsettings (Punyakanok et al.,
2005), where it is crucial that systems scale grace-
fully to volumes of data, on top of the usual desider-
ata — ease of implementation, extension, under-
standing and debugging. Future work could explore
softening constraints (Hayes and Mouradian, 1980;
Chang et al., 2007), perhaps using features (Eisner
and Smith, 2005; Berg-Kirkpatrick et al., 2010) or
by learning to associate different settings with var-
ious marks: Simply adding a hidden tag for “ordi-
nary” versus “divide” types of punctuation (Li et al.,
2005) may already usefully extend our model.
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