
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2023. All

rights reserved. Draft of February 3, 2024.

CHAPTER

2 Regular Expressions, Text
Normalization, Edit Distance

User: I am unhappy.

ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY

User: I need some help, that much seems certain.

ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

User: Perhaps I could learn to get along with my mother.

ELIZA: TELL ME MORE ABOUT YOUR FAMILY

User: My mother takes care of me.

ELIZA: WHO ELSE IN YOU FAMILY TAKES CARE OF YOU

User: My father.

ELIZA: YOUR FATHER

User: You are like my father in some ways.
Weizenbaum (1966)

The dialogue above is from ELIZA, an early natural language processing systemELIZA

that could carry on a limited conversation with a user by imitating the responses of
a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple
program that uses pattern matching to recognize phrases like “I need X” and translate
them into suitable outputs like “What would it mean to you if you got X?”. This
simple technique succeeds in this domain because ELIZA doesn’t actually need to
know anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is
one of the few dialogue genres where listeners can act as if they know nothing of the
world. ELIZA’s mimicry of human conversation was remarkably successful: many
people who interacted with ELIZA came to believe that it really understood them
and their problems, many continued to believe in ELIZA’s abilities even after the
program’s operation was explained to them (Weizenbaum, 1976), and even today
such chatbots are a fun diversion.chatbots

Of course modern conversational agents are much more than a diversion; they
can answer questions, book flights, or find restaurants, functions for which they rely
on a much more sophisticated understanding of the user’s intent, as we will see in
Chapter 15. Nonetheless, the simple pattern-based methods that powered ELIZA
and other chatbots play a crucial role in natural language processing.

We’ll begin with the most important tool for describing text patterns: the regular
expression. Regular expressions can be used to specify strings we might want to
extract from a document, from transforming “I need X” in ELIZA above, to defining
strings like $199 or $24.99 for extracting tables of prices from a document.

We’ll then turn to a set of tasks collectively called text normalization, in whichtext
normalization

regular expressions play an important part. Normalizing text means converting it
to a more convenient, standard form. For example, most of what we are going to
do with language relies on first separating out or tokenizing words from running
text, the task of tokenization. English words are often separated from each othertokenization

by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll
are sometimes treated as large words despite the fact that they contain spaces, while
sometimes we’ll need to separate I’m into the two words I and am. For processing
tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc.

2 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Some languages, like Japanese, don’t have spaces between words, so word tokeniza-
tion becomes more difficult.

Another part of text normalization is lemmatization, the task of determininglemmatization

that two words have the same root, despite their surface differences. For example,
the words sang, sung, and sings are forms of the verb sing. The word sing is the
common lemma of these words, and a lemmatizer maps from all of these to sing.
Lemmatization is essential for processing morphologically complex languages like
Arabic. Stemming refers to a simpler version of lemmatization in which we mainlystemming

just strip suffixes from the end of the word. Text normalization also includes sen-
tence segmentation: breaking up a text into individual sentences, using cues likesentence

segmentation
periods or exclamation points.

Finally, we’ll need to compare words and other strings. We’ll introduce a metric
called edit distance that measures how similar two strings are based on the number
of edits (insertions, deletions, substitutions) it takes to change one string into the
other. Edit distance is an algorithm with applications throughout language process-
ing, from spelling correction to speech recognition to coreference resolution.

2.1 Regular Expressions

One of the unsung successes in standardization in computer science has been the
regular expression (often shortened to regex), a language for specifying text searchregular

expression
strings. This practical language is used in every computer language, word processor,
and text processing tools like the Unix tools grep or Emacs. Formally, a regular ex-
pression is an algebraic notation for characterizing a set of strings. Regular expres-
sions are particularly useful for searching in texts, when we have a pattern to search
for and a corpus of texts to search through. A regular expression search functioncorpus

will search through the corpus, returning all texts that match the pattern. The corpus
can be a single document or a collection. For example, the Unix command-line tool
grep takes a regular expression and returns every line of the input document that
matches the expression.

A search can be designed to return every match on a line, if there are more than
one, or just the first match. In the following examples we generally underline the
exact part of the pattern that matches the regular expression and show only the first
match. We’ll show regular expressions delimited by slashes but note that slashes are
not part of the regular expressions.

Regular expressions come in many variants. We’ll be describing extended regu-
lar expressions; different regular expression parsers may only recognize subsets of
these, or treat some expressions slightly differently. Using an online regular expres-
sion tester is a handy way to test out your expressions and explore these variations.

2.1.1 Basic Regular Expression Patterns
The simplest kind of regular expression is a sequence of simple characters; putting
characters in sequence is called concatenation. To search for woodchuck, we typeconcatenation

/woodchuck/. The expression /Buttercup/ matches any string containing the
substring Buttercup; grep with that expression would return the line I’m called lit-
tle Buttercup. The search string can consist of a single character (like /!/) or a
sequence of characters (like /urgl/) (see Fig. 2.1).

Regular expressions are case sensitive; lower case /s/ is distinct from upper

2.1 • REGULAR EXPRESSIONS 3

Regex Example Patterns Matched
/woodchucks/ “interesting links to woodchucks and lemurs”
/a/ “Mary Ann stopped by Mona’s”
/!/ “You’ve left the burglar behind again!” said Nori

Figure 2.1 Some simple regex searches.

case /S/ (/s/ matches a lower case s but not an upper case S). This means that
the pattern /woodchucks/ will not match the string Woodchucks. We can solve this
problem with the use of the square braces [and]. The string of characters inside the
braces specifies a disjunction of characters to match. For example, Fig. 2.2 shows
that the pattern /[wW]/ matches patterns containing either w or W.

Regex Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.2 The use of the brackets [] to specify a disjunction of characters.

The regular expression /[1234567890]/ specifies any single digit. While such
classes of characters as digits or letters are important building blocks in expressions,
they can get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In cases where there is a well-defined sequence asso-
ciated with a set of characters, the brackets can be used with the dash (-) to specify
any one character in a range. The pattern /[2-5]/ specifies any one of the charac-range

ters 2, 3, 4, or 5. The pattern /[b-g]/ specifies one of the characters b, c, d, e, f, or
g. Some other examples are shown in Fig. 2.3.

Regex Match Example Patterns Matched
/[A-Z]/ an upper case letter “we should call it ‘Drenched Blossoms’ ”
/[a-z]/ a lower case letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.3 The use of the brackets [] plus the dash - to specify a range.

The square braces can also be used to specify what a single character cannot be,
by use of the caret ˆ. If the caret ˆ is the first symbol after the open square brace [,
the resulting pattern is negated. For example, the pattern /[ˆa]/ matches any single
character (including special characters) except a. This is only true when the caret
is the first symbol after the open square brace. If it occurs anywhere else, it usually
stands for a caret; Fig. 2.4 shows some examples.

Regex Match (single characters) Example Patterns Matched
/[ˆA-Z]/ not an upper case letter “Oyfn pripetchik”
/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
/[ˆ.]/ not a period “our resident Djinn”
/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now”
/aˆb/ the pattern ‘aˆb’ “look up aˆ b now”

Figure 2.4 The caret ˆ for negation or just to mean ˆ. See below re: the backslash for escaping the period.

How can we talk about optional elements, like an optional s in woodchuck and
woodchucks? We can’t use the square brackets, because while they allow us to say

4 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

“s or S”, they don’t allow us to say “s or nothing”. For this we use the question mark
/?/, which means “the preceding character or nothing”, as shown in Fig. 2.5.

Regex Match Example Patterns Matched
/woodchucks?/ woodchuck or woodchucks “woodchuck”
/colou?r/ color or colour “color”

Figure 2.5 The question mark ? marks optionality of the previous expression.

We can think of the question mark as meaning “zero or one instances of the
previous character”. That is, it’s a way of specifying how many of something that
we want, something that is very important in regular expressions. For example,
consider the language of certain sheep, which consists of strings that look like the
following:

baa!
baaa!
baaaa!
baaaaa!
. . .

This language consists of strings with a b, followed by at least two a’s, followed
by an exclamation point. The set of operators that allows us to say things like “some
number of as” are based on the asterisk or *, commonly called the Kleene * (gen-Kleene *

erally pronounced “cleany star”). The Kleene star means “zero or more occurrences
of the immediately previous character or regular expression”. So /a*/ means “any
string of zero or more as”. This will match a or aaaaaa, but it will also match the
empty string at the start of Off Minor since the string Off Minor starts with zero a’s.
So the regular expression for matching one or more a is /aa*/, meaning one a fol-
lowed by zero or more as. More complex patterns can also be repeated. So /[ab]*/
means “zero or more a’s or b’s” (not “zero or more right square braces”). This will
match strings like aaaa or ababab or bbbb.

For specifying multiple digits (useful for finding prices) we can extend /[0-9]/,
the regular expression for a single digit. An integer (a string of digits) is thus
/[0-9][0-9]*/. (Why isn’t it just /[0-9]*/?)

Sometimes it’s annoying to have to write the regular expression for digits twice,
so there is a shorter way to specify “at least one” of some character. This is the
Kleene +, which means “one or more occurrences of the immediately precedingKleene +

character or regular expression”. Thus, the expression /[0-9]+/ is the normal way
to specify “a sequence of digits”. There are thus two ways to specify the sheep
language: /baaa*!/ or /baa+!/.

One very important special character is the period (/./), a wildcard expression
that matches any single character (except a carriage return), as shown in Fig. 2.6.

Regex Match Example Matches
/beg.n/ any character between beg and n begin, beg’n, begun

Figure 2.6 The use of the period . to specify any character.

The wildcard is often used together with the Kleene star to mean “any string of
characters”. For example, suppose we want to find any line in which a particular
word, for example, aardvark, appears twice. We can specify this with the regular
expression /aardvark.*aardvark/.

Anchors are special characters that anchor regular expressions to particular placesanchors

2.1 • REGULAR EXPRESSIONS 5

in a string. The most common anchors are the caret ˆ and the dollar sign $. The caret
ˆ matches the start of a line. The pattern /ˆThe/ matches the word The only at the
start of a line. Thus, the caret ˆ has three uses: to match the start of a line, to in-
dicate a negation inside of square brackets, and just to mean a caret. (What are the
contexts that allow grep or Python to know which function a given caret is supposed
to have?) The dollar sign $ matches the end of a line. So the pattern $ is a useful
pattern for matching a space at the end of a line, and /ˆThe dog\.$/ matches a
line that contains only the phrase The dog. (We have to use the backslash here since
we want the . to mean “period” and not the wildcard.)

Regex Match
ˆ start of line
$ end of line
\b word boundary
\B non-word boundary

Figure 2.7 Anchors in regular expressions.

There are also two other anchors: \b matches a word boundary, and \B matches
a non-boundary. Thus, /\bthe\b/ matches the word the but not the word other.
More technically, a “word” for the purposes of a regular expression is defined as any
sequence of digits, underscores, or letters; this is based on the definition of “words”
in programming languages. For example, /\b99\b/ will match the string 99 in
There are 99 bottles of beer on the wall (because 99 follows a space) but not 99 in
There are 299 bottles of beer on the wall (since 99 follows a number). But it will
match 99 in $99 (since 99 follows a dollar sign ($), which is not a digit, underscore,
or letter).

2.1.2 Disjunction, Grouping, and Precedence
Suppose we need to search for texts about pets; perhaps we are particularly interested
in cats and dogs. In such a case, we might want to search for either the string cat or
the string dog. Since we can’t use the square brackets to search for “cat or dog” (why
can’t we say /[catdog]/?), we need a new operator, the disjunction operator, alsodisjunction

called the pipe symbol |. The pattern /cat|dog/ matches either the string cat or
the string dog.

Sometimes we need to use this disjunction operator in the midst of a larger se-
quence. For example, suppose I want to search for information about pet fish for
my cousin David. How can I specify both guppy and guppies? We cannot simply
say /guppy|ies/, because that would match only the strings guppy and ies. This
is because sequences like guppy take precedence over the disjunction operator |.precedence

To make the disjunction operator apply only to a specific pattern, we need to use the
parenthesis operators (and). Enclosing a pattern in parentheses makes it act like
a single character for the purposes of neighboring operators like the pipe | and the
Kleene*. So the pattern /gupp(y|ies)/ would specify that we meant the disjunc-
tion only to apply to the suffixes y and ies.

The parenthesis operator (is also useful when we are using counters like the
Kleene*. Unlike the | operator, the Kleene* operator applies by default only to
a single character, not to a whole sequence. Suppose we want to match repeated
instances of a string. Perhaps we have a line that has column labels of the form
Column 1 Column 2 Column 3. The expression /Column [0-9]+ */ will not
match any number of columns; instead, it will match a single column followed by

6 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

any number of spaces! The star here applies only to the space that precedes it,
not to the whole sequence. With the parentheses, we could write the expression
/(Column [0-9]+ *)*/ to match the word Column, followed by a number and
optional spaces, the whole pattern repeated zero or more times.

This idea that one operator may take precedence over another, requiring us to
sometimes use parentheses to specify what we mean, is formalized by the operator
precedence hierarchy for regular expressions. The following table gives the orderoperator

precedence
of RE operator precedence, from highest precedence to lowest precedence.

Parenthesis ()

Counters * + ? {}

Sequences and anchors the ˆmy end$

Disjunction |

Thus, because counters have a higher precedence than sequences,
/the*/ matches theeeee but not thethe. Because sequences have a higher prece-
dence than disjunction, /the|any/ matches the or any but not thany or theny.

Patterns can be ambiguous in another way. Consider the expression /[a-z]*/

when matching against the text once upon a time. Since /[a-z]*/ matches zero or
more letters, this expression could match nothing, or just the first letter o, on, onc,
or once. In these cases regular expressions always match the largest string they can;
we say that patterns are greedy, expanding to cover as much of a string as they can.greedy

There are, however, ways to enforce non-greedy matching, using another mean-non-greedy

ing of the ? qualifier. The operator *? is a Kleene star that matches as little text as*?

possible. The operator +? is a Kleene plus that matches as little text as possible.+?

2.1.3 A Simple Example
Suppose we wanted to write a RE to find cases of the English article the. A simple
(but incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins a sentence and
hence is capitalized (i.e., The). This might lead us to the following pattern:

/[tT]he/

But we will still incorrectly return texts with the embedded in other words (e.g.,
other or theology). So we need to specify that we want instances with a word bound-
ary on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of /\b/. We might want this since
/\b/ won’t treat underscores and numbers as word boundaries; but we might want
to find the in some context where it might also have underlines or numbers nearby
(the or the25). We need to specify that we want instances in which there are no
alphabetic letters on either side of the the:

/[ˆa-zA-Z][tT]he[ˆa-zA-Z]/

But there is still one more problem with this pattern: it won’t find the word the
when it begins a line. This is because the regular expression [ˆa-zA-Z], which

2.1 • REGULAR EXPRESSIONS 7

we used to avoid embedded instances of the, implies that there must be some single
(although non-alphabetic) character before the the. We can avoid this by specify-
ing that before the the we require either the beginning-of-line or a non-alphabetic
character, and the same at the end of the line:

/(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/

The process we just went through was based on fixing two kinds of errors: false
positives, strings that we incorrectly matched like other or there, and false nega-false positives

tives, strings that we incorrectly missed, like The. Addressing these two kinds offalse negatives

errors comes up again and again in implementing speech and language processing
systems. Reducing the overall error rate for an application thus involves two antag-
onistic efforts:

• Increasing precision (minimizing false positives)
• Increasing recall (minimizing false negatives)

We’ll come back to precision and recall with more precise definitions in Chapter 4.

2.1.4 More Operators
Figure 2.8 shows some aliases for common ranges, which can be used mainly to
save typing. Besides the Kleene * and Kleene + we can also use explicit numbers as
counters, by enclosing them in curly brackets. The regular expression /{3}/ means
“exactly 3 occurrences of the previous character or expression”. So /a\.{24}z/

will match a followed by 24 dots followed by z (but not a followed by 23 or 25 dots
followed by a z).

Regex Expansion Match First Matches
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit Blue moon
\w [a-zA-Z0-9_] any alphanumeric/underscore Daiyu
\W [ˆ\w] a non-alphanumeric !!!!
\s [\r\t\n\f] whitespace (space, tab) in Concord
\S [ˆ\s] Non-whitespace in Concord

Figure 2.8 Aliases for common sets of characters.

A range of numbers can also be specified. So /{n,m}/ specifies from n to m
occurrences of the previous char or expression, and /{n,}/ means at least n occur-
rences of the previous expression. REs for counting are summarized in Fig. 2.9.

Regex Match
* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? zero or one occurrence of the previous char or expression
{n} exactly n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n,} at least n occurrences of the previous char or expression
{,m} up to m occurrences of the previous char or expression

Figure 2.9 Regular expression operators for counting.

Finally, certain special characters are referred to by special notation based on the
backslash (\) (see Fig. 2.10). The most common of these are the newline characternewline

8 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

\n and the tab character \t. To refer to characters that are special themselves (like
., *, [, and \), precede them with a backslash, (i.e., /\./, /*/, /\[/, and /\\/).

Regex Match First Patterns Matched
* an asterisk “*” “K*A*P*L*A*N”
\. a period “.” “Dr. Livingston, I presume”
\? a question mark “Why don’t they come and lend a hand?”
\n a newline
\t a tab

Figure 2.10 Some characters that need to be backslashed.

2.1.5 A More Complex Example
Let’s try out a more significant example of the power of REs. Suppose we want to
build an application to help a user buy a computer on the Web. The user might want
“any machine with at least 6 GHz and 500 GB of disk space for less than $1000”.
To do this kind of retrieval, we first need to be able to look for expressions like 6
GHz or 500 GB or Mac or $999.99. In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular expres-
sion for a dollar sign followed by a string of digits:

/$[0-9]+/

Note that the $ character has a different function here than the end-of-line function
we discussed earlier. Most regular expression parsers are smart enough to realize
that $ here doesn’t mean end-of-line. (As a thought experiment, think about how
regex parsers might figure out the function of $ from the context.)

Now we just need to deal with fractions of dollars. We’ll add a decimal point
and two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows $199.99 but not $199. We need to make the cents
optional and to make sure we’re at a word boundary:

/(ˆ|\W)$[0-9]+(\.[0-9][0-9])?\b/

One last catch! This pattern allows prices like $199999.99 which would be far
too expensive! We need to limit the dollars:

/(ˆ|\W)$[0-9]{0,3}(\.[0-9][0-9])?\b/

Further fixes (like avoiding matching a dollar sign with no price after it) are left
as an exercise for the reader.

How about disk space? We’ll need to allow for optional fractions again (5.5 GB);
note the use of ? for making the final s optional, and the use of / */ to mean “zero
or more spaces” since there might always be extra spaces lying around:

/\b[0-9]+(\.[0-9]+)? *(GB|[Gg]igabytes?)\b/

Modifying this regular expression so that it only matches more than 500 GB is
left as an exercise for the reader.

2.1 • REGULAR EXPRESSIONS 9

2.1.6 Substitution, Capture Groups, and ELIZA

An important use of regular expressions is in substitutions. For example, the substi-substitution

tution operator s/regexp1/pattern/ used in Python and in Unix commands like
vim or sed allows a string characterized by a regular expression to be replaced by
another string:

s/colour/color/

It is often useful to be able to refer to a particular subpart of the string matching
the first pattern. For example, suppose we wanted to put angle brackets around all
integers in a text, for example, changing the 35 boxes to the <35> boxes. We’d
like a way to refer to the integer we’ve found so that we can easily add the brackets.
To do this, we put parentheses (and) around the first pattern and use the number
operator \1 in the second pattern to refer back. Here’s how it looks:

s/([0-9]+)/<\1>/

The parenthesis and number operators can also specify that a certain string or
expression must occur twice in the text. For example, suppose we are looking for
the pattern “the Xer they were, the Xer they will be”, where we want to constrain
the two X’s to be the same string. We do this by surrounding the first X with the
parenthesis operator, and replacing the second X with the number operator \1, as
follows:

/the (.*)er they were, the \1er they will be/

Here the \1 will be replaced by whatever string matched the first item in paren-
theses. So this will match the bigger they were, the bigger they will be but not the
bigger they were, the faster they will be.

This use of parentheses to store a pattern in memory is called a capture group.capture group

Every time a capture group is used (i.e., parentheses surround a pattern), the re-
sulting match is stored in a numbered register. If you match two different sets ofregister

parentheses, \2 means whatever matched the second capture group. Thus

/the (.*)er they (.*), the \1er we \2/

will match the faster they ran, the faster we ran but not the faster they ran, the faster
we ate. Similarly, the third capture group is stored in \3, the fourth is \4, and so on.

Parentheses thus have a double function in regular expressions; they are used
to group terms for specifying the order in which operators should apply, and they
are used to capture something in a register. Occasionally we might want to use
parentheses for grouping, but don’t want to capture the resulting pattern in a register.
In that case we use a non-capturing group, which is specified by putting the specialnon-capturing

group
commands ?: after the open parenthesis, in the form (?: pattern).

/(?:some|a few) (people|cats) like some \1/

will match some cats like some cats but not some cats like some some.
Substitutions and capture groups are very useful in implementing simple chat-

bots like ELIZA (Weizenbaum, 1966). Recall that ELIZA simulates a Rogerian
psychologist by carrying on conversations like the following:

10 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED

ELIZA works by having a series or cascade of regular expression substitutions
each of which matches and changes some part of the input lines. After the input
is uppercased, substitutions change all instances of MY to YOUR, and I’M to YOU
ARE, and so on. That way when ELIZA repeats back part of the user utterance, it
will seem to be referring correctly to the user. The next set of substitutions matches
and replaces other patterns in the input. Here are some examples:

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

s/.* YOU ARE (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions can apply to a given input, substitutions are assigned
a rank and applied in order. Creating patterns is the topic of Exercise 2.3, and we
return to the details of the ELIZA architecture in Chapter 15.

2.1.7 Lookahead Assertions
Finally, there will be times when we need to predict the future: look ahead in the
text to see if some pattern matches, but not yet advance the pointer we always keep
to where we are in the text, so that we can then deal with the pattern if it occurs, but
if it doesn’t we can check for something else instead.

These lookahead assertions make use of the (? syntax that we saw in the previ-lookahead

ous section for non-capture groups. The operator (?= pattern) is true if pattern
occurs, but is zero-width, i.e. the match pointer doesn’t advance. The operatorzero-width

(?! pattern) only returns true if a pattern does not match, but again is zero-width
and doesn’t advance the pointer. Negative lookahead is commonly used when we
are parsing some complex pattern but want to rule out a special case. For example
suppose we want to match, at the beginning of a line, any single word that doesn’t
start with “Volcano”. We can use negative lookahead to do this:

/ˆ(?!Volcano)[A-Za-z]+/

2.2 Words

Before we talk about processing words, we need to decide what counts as a word.
Let’s start by looking at one particular corpus (plural corpora), a computer-readablecorpus

corpora collection of text or speech. For example the Brown corpus is a million-word col-
lection of samples from 500 written English texts from different genres (newspa-
per, fiction, non-fiction, academic, etc.), assembled at Brown University in 1963–64
(Kučera and Francis, 1967). How many words are in the following Brown sentence?

2.2 • WORDS 11

He stepped out into the hall, was delighted to encounter a water brother.

This sentence has 13 words if we don’t count punctuation marks as words, 15
if we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as
words depends on the task. Punctuation is critical for finding boundaries of things
(commas, periods, colons) and for identifying some aspects of meaning (question
marks, exclamation marks, quotation marks). For some tasks, like part-of-speech
tagging or parsing or speech synthesis, we sometimes treat punctuation marks as if
they were separate words.

The Switchboard corpus of American English telephone conversations between
strangers was collected in the early 1990s; it contains 2430 conversations averaging
6 minutes each, totaling 240 hours of speech and about 3 million words (Godfrey
et al., 1992). Such corpora of spoken language introduce other complications with
regard to defining words. Let’s look at one utterance from Switchboard; an utter-
ance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment

filled pause we consider these to be words? Again, it depends on the application. If we are
building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Perhaps most important, in thinking about what is a word, we need to distinguish
two ways of talking about words that will be useful throughout the book. Word typesword type

are the number of distinct words in a corpus; if the set of words in the vocabulary
is V , the number of types is the vocabulary size |V |. Word instances are the totalword instance

number N of running words.1

If we ignore punctuation, the following Brown sentence has 16 instances and 14
types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

We still have decisions to make! For example, should we consider a capitalized
string (like They) and one that is uncapitalized (like they) to be the same word type?
The answer is that it depends on the task! They and they might be lumped together
as the same type in some tasks, like speech recognition, where we might just care
about getting the words in order and don’t care about the formatting, while for other
tasks, such as deciding whether a particular word is a noun or verb (part-of-speech
tagging) or whether a word is a name of a person or location (named-entity tag-
ging), capitalization is a useful feature and is retained. Sometimes we keep around
two versions of a particular NLP model, one with capitalization and one without
capitalization.

How many words are there in English? When we speak about the number of
words in the language, we are generally referring to word types. Fig. 2.11 shows
the rough numbers of types and instances computed from some English corpora.

1 In earlier tradition, and occasionally still, you might see word instances referred to as word tokens, but
we now try to reserve the word token instead to mean the output of word tokenization algorithms.

12 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Corpus Instances = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google n-grams 1 trillion 13 million

Figure 2.11 Rough numbers of wordform types and instances for some English language
corpora. The largest, the Google n-grams corpus, contains 13 million types, but this count
only includes types appearing 40 or more times, so the true number would be much larger.

The larger the corpora we look at, the more word types we find, and in fact this
relationship between the number of types |V | and number of instances N is called
Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978) after its discoverersHerdan’s Law

Heaps’ Law (in linguistics and information retrieval respectively). It is shown in Eq. 2.1, where
k and β are positive constants, and 0< β < 1.

|V | = kNβ (2.1)

The value of β depends on the corpus size and the genre, but at least for the large
corpora in Fig. 2.11, β ranges from .67 to .75. Roughly then we can say that the
vocabulary size for a text goes up significantly faster than the square root of its
length in words.

It’s sometimes useful to make a further distinction. Consider inflected forms
like cats versus cat. We say these two words are different wordforms but have the
same lemma. A lemma is a set of lexical forms having the same stem, the samelemma

major part-of-speech, and the same word sense. The wordform is the full inflectedwordform

or derived form of the word. The two wordforms cat and cats thus have the same
lemma, which we can represent as cat.

For morphologically complex languages like Arabic, we often need to deal with
lemmatization. For most tasks in English, however, wordforms are sufficient, and
when we talk about words in this book we almost always mean wordsforms (al-
though we will discuss basic algorithms for lemmatization and the related task of
stemming below in Section 2.6). One of the situations even in English where we
talk about lemmas is when we measure the number of words in a dictionary. Dictio-
nary entries or boldface forms are a very rough approximation to (an upper bound
on) the number of lemmas (since some lemmas have multiple boldface forms). The
1989 edition of the Oxford English Dictionary had 615,000 entries.

Finally, we should note that in practice, for many NLP applications (for example
for neural language modeling) we don’t actually use words as our internal unit of
representation at all! We instead tokenize the input strings into tokens, which can
be words but can also be only parts of words. We’ll return to this tokenization
question when we introduce the BPE algorithm in Section 2.5.2.

2.3 Corpora

Words don’t appear out of nowhere. Any particular piece of text that we study
is produced by one or more specific speakers or writers, in a specific dialect of a
specific language, at a specific time, in a specific place, for a specific function.

Perhaps the most important dimension of variation is the language. NLP algo-
rithms are most useful when they apply across many languages. The world has 7097

2.3 • CORPORA 13

languages at the time of this writing, according to the online Ethnologue catalog
(Simons and Fennig, 2018). It is important to test algorithms on more than one lan-
guage, and particularly on languages with different properties; by contrast there is
an unfortunate current tendency for NLP algorithms to be developed or tested just
on English (Bender, 2019). Even when algorithms are developed beyond English,
they tend to be developed for the official languages of large industrialized nations
(Chinese, Spanish, Japanese, German etc.), but we don’t want to limit tools to just
these few languages. Furthermore, most languages also have multiple varieties, of-
ten spoken in different regions or by different social groups. Thus, for example,
if we’re processing text that uses features of African American English (AAE) orAAE

African American Vernacular English (AAVE)—the variations of English used by
millions of people in African American communities (King 2020)—we must use
NLP tools that function with features of those varieties. Twitter posts might use fea-
tures often used by speakers of African American English, such as constructions like
iont (I don’t in Mainstream American English (MAE)), or talmbout correspondingMAE

to MAE talking about, both examples that influence word segmentation (Blodgett
et al. 2016, Jones 2015).

It’s also quite common for speakers or writers to use multiple languages in a
single communicative act, a phenomenon called code switching. Code switchingcode switching

is enormously common across the world; here are examples showing Spanish and
(transliterated) Hindi code switching with English (Solorio et al. 2014, Jurgens et al.
2017):

(2.2) Por primera vez veo a @username actually being hateful! it was beautiful:)
[For the first time I get to see @username actually being hateful! it was
beautiful:)]

(2.3) dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”]

Another dimension of variation is the genre. The text that our algorithms must
process might come from newswire, fiction or non-fiction books, scientific articles,
Wikipedia, or religious texts. It might come from spoken genres like telephone
conversations, business meetings, police body-worn cameras, medical interviews,
or transcripts of television shows or movies. It might come from work situations
like doctors’ notes, legal text, or parliamentary or congressional proceedings.

Text also reflects the demographic characteristics of the writer (or speaker): their
age, gender, race, socioeconomic class can all influence the linguistic properties of
the text we are processing.

And finally, time matters too. Language changes over time, and for some lan-
guages we have good corpora of texts from different historical periods.

Because language is so situated, when developing computational models for lan-
guage processing from a corpus, it’s important to consider who produced the lan-
guage, in what context, for what purpose. How can a user of a dataset know all these
details? The best way is for the corpus creator to build a datasheet (Gebru et al.,datasheet

2020) or data statement (Bender et al., 2021) for each corpus. A datasheet specifies
properties of a dataset like:

Motivation: Why was the corpus collected, by whom, and who funded it?
Situation: When and in what situation was the text written/spoken? For example,

was there a task? Was the language originally spoken conversation, edited
text, social media communication, monologue vs. dialogue?

Language variety: What language (including dialect/region) was the corpus in?

14 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Speaker demographics: What was, e.g., the age or gender of the text’s authors?
Collection process: How big is the data? If it is a subsample how was it sampled?

Was the data collected with consent? How was the data pre-processed, and
what metadata is available?

Annotation process: What are the annotations, what are the demographics of the
annotators, how were they trained, how was the data annotated?

Distribution: Are there copyright or other intellectual property restrictions?

2.4 Simple Unix Tools for Word Tokenization

Before almost any natural language processing of a text, the text has to be normal-
ized, a task called text normalization. At least three tasks are commonly applied astext

normalization
part of any normalization process:

1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

In the next sections we walk through each of these tasks, but we’ll first start with
an easy, if somewhat naive version of word tokenization and normalization (and fre-
quency computation) that can be accomplished for English solely in a single UNIX
command-line, inspired by Church (1994). We’ll make use of some Unix com-
mands: tr, used to systematically change particular characters in the input; sort,
which sorts input lines in alphabetical order; and uniq, which collapses and counts
adjacent identical lines.

For example let’s begin with the ‘complete words’ of Shakespeare in one file,
sh.txt. We can use tr to tokenize the words by changing every sequence of non-
alphabetic characters to a newline (’A-Za-z’ means alphabetic and the -c option
complements to non-alphabet, so together they mean to change every non-alphabetic
character into a newline. The -s (‘squeeze’) option is used to replace the result
of multiple consecutive changes into a single output, so a series of non-alphabetic
characters in a row would all be ‘squeezed’ into a single newline):

tr -sc 'A-Za-z' '\n' < sh.txt

The output of this command will be:

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

Now that there is one word per line, we can sort the lines, and pass them to uniq

-c which will collapse and count them:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | sort | uniq -c

2.4 • SIMPLE UNIX TOOLS FOR WORD TOKENIZATION 15

with the following output:

1945 A

72 AARON

19 ABBESS

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

3 Abbot

...

Alternatively, we can collapse all the upper case to lower case:

tr -sc 'A-Za-z' '\n' < sh.txt | tr A-Z a-z | sort | uniq -c

whose output is

14725 a

97 aaron

1 abaissiez

10 abandon

2 abandoned

2 abase

1 abash

14 abate

3 abated

3 abatement

...

Now we can sort again to find the frequent words. The -n option to sort means
to sort numerically rather than alphabetically, and the -r option means to sort in
reverse order (highest-to-lowest):

tr -sc 'A-Za-z' '\n' < sh.txt | tr A-Z a-z | sort | uniq -c | sort -n -r

The results show that the most frequent words in Shakespeare, as in any other
corpus, are the short function words like articles, pronouns, prepositions:

27378 the

26084 and

22538 i

19771 to

17481 of

14725 a

13826 you

12489 my

11318 that

11112 in

...

Unix tools of this sort can be very handy in building quick word count statistics
for any corpus in English. While in some versions of Unix these command-line tools
also correctly handle Unicode characters and so can be used for many languages,
in general for handling most languages outside English we use more sophisticated
tokenization algorithms.

16 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

2.5 Word Tokenization

The simple UNIX tools above were fine for getting rough word statistics but more
sophisticated algorithms are generally necessary for tokenization, the task of seg-tokenization

menting running text into words. There are roughly two classes of tokenization
algorithms. In top-down tokenization, we define a standard and implement rules
to implement that kind of tokenization. In bottom-up tokenization, we use simple
statistics of letter sequences to break up words into subword tokens.

2.5.1 Top-down (rule-based) tokenization
While the Unix command sequence just removed all the numbers and punctuation,
for most NLP applications we’ll need to keep these in our tokenization. We often
want to break off punctuation as a separate token; commas are a useful piece of infor-
mation for parsers, periods help indicate sentence boundaries. But we’ll often want
to keep the punctuation that occurs word internally, in examples like m.p.h., Ph.D.,
AT&T, and cap’n. Special characters and numbers will need to be kept in prices
($45.55) and dates (01/02/06); we don’t want to segment that price into separate
tokens of “45” and “55”. And there are URLs (https://www.stanford.edu),
Twitter hashtags (#nlproc), or email addresses (someone@cs.colorado.edu).

Number expressions introduce other complications as well; while commas nor-
mally appear at word boundaries, commas are used inside numbers in English, every
three digits: 555,500.50. Languages, and hence tokenization requirements, differ
on this; many continental European languages like Spanish, French, and German, by
contrast, use a comma to mark the decimal point, and spaces (or sometimes periods)
where English puts commas, for example, 555 500,50.

A tokenizer can also be used to expand clitic contractions that are marked byclitic

apostrophes, for example, converting what’re to the two tokens what are, and
we’re to we are. A clitic is a part of a word that can’t stand on its own, and can only
occur when it is attached to another word. Some such contractions occur in other
alphabetic languages, including articles and pronouns in French (j’ai, l’homme).

Depending on the application, tokenization algorithms may also tokenize mul-
tiword expressions like New York or rock ’n’ roll as a single token, which re-
quires a multiword expression dictionary of some sort. Tokenization is thus inti-
mately tied up with named entity recognition, the task of detecting names, dates,
and organizations (Chapter 8).

One commonly used tokenization standard is known as the Penn Treebank to-
kenization standard, used for the parsed corpora (treebanks) released by the Lin-Penn Treebank

tokenization
guistic Data Consortium (LDC), the source of many useful datasets. This standard
separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words to-
gether, and separates out all punctuation (to save space we’re showing visible spaces
‘ ’ between tokens, although newlines is a more common output):

Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,

" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language process-
ing, it needs to be very fast. The standard method for tokenization is therefore to use
deterministic algorithms based on regular expressions compiled into very efficient

2.5 • WORD TOKENIZATION 17

finite state automata. For example, Fig. 2.12 shows an example of a basic regular
expression that can be used to tokenize English with the nltk.regexp tokenize

function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
https://www.nltk.org).

>>> text = 'That U.S.A. poster-print costs $12.40...'

>>> pattern = r'''(?x) # set flag to allow verbose regexps

... (?:[A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(?:-\w+)* # words with optional internal hyphens

... | \$?\d+(?:\.\d+)?%? # currency, percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"'?():_`-] # these are separate tokens; includes], [

... '''

>>> nltk.regexp_tokenize(text, pattern)

['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']

Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)

verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries. In Chinese,
for example, words are composed of characters (called hanzi in Chinese). Eachhanzi

character generally represents a single unit of meaning (called a morpheme) and is
pronounceable as a single syllable. Words are about 2.4 characters long on average.
But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:

(2.4) 姚明进入总决赛 yáo mı́ng jı̀n rù zǒng jué sài
“Yao Ming reaches the finals”

As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):

(2.5) 姚明
YaoMing

进入
reaches

总决赛
finals

or as 5 words (‘Peking University’ segmentation):

(2.6) 姚
Yao
明
Ming

进入
reaches

总
overall

决赛
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

(2.7) 姚
Yao
明
Ming

进
enter

入
enter

总
overall

决
decision

赛
game

In fact, for most Chinese NLP tasks it turns out to work better to take characters
rather than words as input, since characters are at a reasonable semantic level for
most applications, and since most word standards, by contrast, result in a huge vo-
cabulary with large numbers of very rare words (Li et al., 2019).

https://www.nltk.org

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

However, for Japanese and Thai the character is too small a unit, and so algo-
rithms for word segmentation are required. These can also be useful for Chineseword

segmentation
in the rare situations where word rather than character boundaries are required. The
standard segmentation algorithms for these languages use neural sequence mod-
els trained via supervised machine learning on hand-segmented training sets; we’ll
introduce sequence models in Chapter 8 and Chapter 9.

2.5.2 Byte-Pair Encoding: A Bottom-up Tokenization Algorithm
There is a third option to tokenizing text, one that is most commonly used by large
language models. Instead of defining tokens as words (whether delimited by spaces
or more complex algorithms), or as characters (as in Chinese), we can use our data to
automatically tell us what the tokens should be. This is especially useful in dealing
with unknown words, an important problem in language processing. As we will
see in the next chapter, NLP algorithms often learn some facts about language from
one corpus (a training corpus) and then use these facts to make decisions about a
separate test corpus and its language. Thus if our training corpus contains, say the
words low, new, newer, but not lower, then if the word lower appears in our test
corpus, our system will not know what to do with it.

To deal with this unknown word problem, modern tokenizers automatically in-
duce sets of tokens that include tokens smaller than words, called subwords. Sub-subwords

words can be arbitrary substrings, or they can be meaning-bearing units like the
morphemes -est or -er. (A morpheme is the smallest meaning-bearing unit of a lan-
guage; for example the word unlikeliest has the morphemes un-, likely, and -est.)
In modern tokenization schemes, most tokens are words, but some tokens are fre-
quently occurring morphemes or other subwords like -er. Every unseen word like
lower can thus be represented by some sequence of known subword units, such as
low and er, or even as a sequence of individual letters if necessary.

Most tokenization schemes have two parts: a token learner, and a token seg-
menter. The token learner takes a raw training corpus (sometimes roughly pre-
separated into words, for example by whitespace) and induces a vocabulary, a set
of tokens. The token segmenter takes a raw test sentence and segments it into the
tokens in the vocabulary. Two algorithms are widely used: byte-pair encoding
(Sennrich et al., 2016), and unigram language modeling (Kudo, 2018), There is
also a SentencePiece library that includes implementations of both of these (Kudo
and Richardson, 2018), and people often use the name SentencePiece to simply
mean unigram language modeling tokenization.

In this section we introduce the simplest of the three, the byte-pair encoding or
BPE algorithm (Sennrich et al., 2016); see Fig. 2.13. The BPE token learner beginsBPE

with a vocabulary that is just the set of all individual characters. It then examines the
training corpus, chooses the two symbols that are most frequently adjacent (say ‘A’,
‘B’), adds a new merged symbol ‘AB’ to the vocabulary, and replaces every adjacent
’A’ ’B’ in the corpus with the new ‘AB’. It continues to count and merge, creating
new longer and longer character strings, until k merges have been done creating
k novel tokens; k is thus a parameter of the algorithm. The resulting vocabulary
consists of the original set of characters plus k new symbols.

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,

2.5 • WORD TOKENIZATION 19

and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w

2 l o w e s t

6 n e w e r

3 w i d e r

2 n e w

The BPE algorithm first counts all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences.2 We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er

2 l o w e s t

6 n e w er

3 w i d er

2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t

6 n e w er

3 w i d er

2 n e w

Next n e (total count of 8) get merged to ne:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t

6 ne w er

3 w i d er

2 ne w

If we continue, the next merges are:

merge current vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token segmenter is used to tokenize a
test sentence. The token segmenter just runs on the test data the merges we have
learned from the training data, greedily, in the order we learned them. (Thus the
frequencies in the test data don’t play a role, just the frequencies in the training
data). So first we segment each test sentence word into characters. Then we apply
the first rule: replace every instance of e r in the test corpus with er, and then the
second rule: replace every instance of er in the test corpus with er , and so on.

2 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

20 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V←all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens k times

tL, tR←Most frequent pair of adjacent tokens in C
tNEW← tL + tR # make new token by concatenating
V←V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

By the end, if the test corpus contained the character sequence n e w e r , it
would be tokenized as a full word. But the characters of a new (unknown) word like
l o w e r would be merged into the two tokens low er .

Of course in real settings BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.6 Word Normalization, Lemmatization and Stemming

Word normalization is the task of putting words/tokens in a standard format. Thenormalization

simplest case of word normalization is case folding. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

Systems that use BPE or other kinds of bottom-up tokenization may do no fur-
ther word normalization. In other NLP systems, we may want to do further nor-
malizations, like choosing a single normal form for words with multiple forms like
USA and US or uh-huh and uhhuh. This standardization may be valuable, despite
the spelling information that is lost in the normalization process. For information
retrieval or information extraction about the US, we might want to see information
from documents whether they mention the US or the USA.

2.6.1 Lemmatization
For other natural language processing situations we also want two morphologically
different forms of a word to behave similarly. For example in web search, someone
may type the string woodchucks but a useful system might want to also return pages
that mention woodchuck with no s. This is especially common in morphologically
complex languages like Polish, where for example the word Warsaw has different
endings when it is the subject (Warszawa), or after a preposition like “in Warsaw” (w

2.6 • WORD NORMALIZATION, LEMMATIZATION AND STEMMING 21

Warszawie), or “to Warsaw” (do Warszawy), and so on. Lemmatization is the tasklemmatization

of determining that two words have the same root, despite their surface differences.
The words am, are, and is have the shared lemma be; the words dinner and dinners
both have the lemma dinner. Lemmatizing each of these forms to the same lemma
will let us find all mentions of words in Polish like Warsaw. The lemmatized form
of a sentence like He is reading detective stories would thus be He be read detective
story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem

pheme of the word, supplying the main meaning—and affixes—adding “additional”affix

meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or parses a Spanish word like amaren (‘if in the future
they would love’) into the morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

Stemming: The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make
use of a simpler but cruder method, which mainly consists of chopping off word-
final affixes. This naive version of morphological analysis is called stemming. Forstemming

example, the Porter stemmer, a widely used stemming algorithm (Porter, 1980),Porter stemmer

when applied to the following paragraph:
This was not the map we found in Billy Bones’s chest, but

an accurate copy, complete in all things-names and heights

and soundings-with the single exception of the red crosses

and the written notes.

produces the following stemmed output:
Thi wa not the map we found in Billi Bone s chest but an

accur copi complet in all thing name and height and sound

with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series: the output of each
pass is fed as input to the next pass. Here are some sample rules (more details can
be found at https://tartarus.org/martin/PorterStemmer/):

ATIONAL → ATE (e.g., relational→ relate)
ING → ε if the stem contains a vowel (e.g., motoring→ motor)

SSES → SS (e.g., grasses→ grass)

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analyzes analysis
numerical numerous noisy noise
policy police sparsity sparse

https://tartarus.org/martin/PorterStemmer/

22 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

2.7 Sentence Segmentation

Sentence segmentation is another important step in text processing. The most use-sentence
segmentation

ful cues for segmenting a text into sentences are punctuation, like periods, question
marks, and exclamation points. Question marks and exclamation points are rela-
tively unambiguous markers of sentence boundaries. Periods, on the other hand, are
more ambiguous. The period character “.” is ambiguous between a sentence bound-
ary marker and a marker of abbreviations like Mr. or Inc. The previous sentence that
you just read showed an even more complex case of this ambiguity, in which the final
period of Inc. marked both an abbreviation and the sentence boundary marker. For
this reason, sentence tokenization and word tokenization may be addressed jointly.

In general, sentence tokenization methods work by first deciding (based on rules
or machine learning) whether a period is part of the word or is a sentence-boundary
marker. An abbreviation dictionary can help determine whether the period is part
of a commonly used abbreviation; the dictionaries can be hand-built or machine-
learned (Kiss and Strunk, 2006), as can the final sentence splitter. In the Stanford
CoreNLP toolkit (Manning et al., 2014), for example sentence splitting is rule-based,
a deterministic consequence of tokenization; a sentence ends when a sentence-ending
punctuation (., !, or ?) is not already grouped with other characters into a token (such
as for an abbreviation or number), optionally followed by additional final quotes or
brackets.

2.8 Minimum Edit Distance

Much of natural language processing is concerned with measuring how similar two
strings are. For example in spelling correction, the user typed some erroneous
string—let’s say graffe–and we want to know what the user meant. The user prob-
ably intended a word that is similar to graffe. Among candidate similar words,
the word giraffe, which differs by only one letter from graffe, seems intuitively
to be more similar than, say grail or graf, which differ in more letters. Another
example comes from coreference, the task of deciding whether two strings such as
the following refer to the same entity:

Stanford President Marc Tessier-Lavigne

Stanford University President Marc Tessier-Lavigne

Again, the fact that these two strings are very similar (differing by only one word)
seems like useful evidence for deciding that they might be coreferent.

Edit distance gives us a way to quantify both of these intuitions about string sim-
ilarity. More formally, the minimum edit distance between two strings is definedminimum edit

distance
as the minimum number of editing operations (operations like insertion, deletion,
substitution) needed to transform one string into another.

The gap between intention and execution, for example, is 5 (delete an i, substi-
tute e for n, substitute x for t, insert c, substitute u for n). It’s much easier to see
this by looking at the most important visualization for string distances, an alignmentalignment

between the two strings, shown in Fig. 2.14. Given two sequences, an alignment is
a correspondence between substrings of the two sequences. Thus, we say I aligns
with the empty string, N with E, and so on. Beneath the aligned strings is another
representation; a series of symbols expressing an operation list for converting the

2.8 • MINIMUM EDIT DISTANCE 23

top string into the bottom string: d for deletion, s for substitution, i for insertion.

I N T E * N T I O N

| | | | | | | | | |
* E X E C U T I O N

d s s i s

Figure 2.14 Representing the minimum edit distance between two strings as an alignment.
The final row gives the operation list for converting the top string into the bottom string: d for
deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of these operations. The
Levenshtein distance between two sequences is the simplest weighting factor in
which each of the three operations has a cost of 1 (Levenshtein, 1966)—we assume
that the substitution of a letter for itself, for example, t for t, has zero cost. The Lev-
enshtein distance between intention and execution is 5. Levenshtein also proposed
an alternative version of his metric in which each insertion or deletion has a cost of
1 and substitutions are not allowed. (This is equivalent to allowing substitution, but
giving each substitution a cost of 2 since any substitution can be represented by one
insertion and one deletion). Using this version, the Levenshtein distance between
intention and execution is 8.

2.8.1 The Minimum Edit Distance Algorithm
How do we find the minimum edit distance? We can think of this as a search task, in
which we are searching for the shortest path—a sequence of edits—from one string
to another.

n t e n t i o n i n t e c n t i o n i n x e n t i o n

del ins subst

i n t e n t i o n

Figure 2.15 Finding the edit distance viewed as a search problem

The space of all possible edits is enormous, so we can’t search naively. However,
lots of distinct edit paths will end up in the same state (string), so rather than recom-
puting all those paths, we could just remember the shortest path to a state each time
we saw it. We can do this by using dynamic programming. Dynamic program-dynamic

programming
ming is the name for a class of algorithms, first introduced by Bellman (1957), that
apply a table-driven method to solve problems by combining solutions to subprob-
lems. Some of the most commonly used algorithms in natural language processing
make use of dynamic programming, such as the Viterbi algorithm (Chapter 8) and
the CKY algorithm for parsing (Chapter 17).

The intuition of a dynamic programming problem is that a large problem can
be solved by properly combining the solutions to various subproblems. Consider
the shortest path of transformed words that represents the minimum edit distance
between the strings intention and execution shown in Fig. 2.16.

Imagine some string (perhaps it is exention) that is in this optimal path (whatever
it is). The intuition of dynamic programming is that if exention is in the optimal

24 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

n t e n t i o n

i n t e n t i o n

e t e n t i o n

e x e n t i o n

e x e n u t i o n

e x e c u t i o n

delete i

substitute n by e

substitute t by x

insert u

substitute n by c

Figure 2.16 Path from intention to execution.

operation list, then the optimal sequence must also include the optimal path from
intention to exention. Why? If there were a shorter path from intention to exention,
then we could use it instead, resulting in a shorter overall path, and the optimal
sequence wouldn’t be optimal, thus leading to a contradiction.

The minimum edit distance algorithm was named by Wagner and Fischer
minimum edit

distance
algorithm

(1974) but independently discovered by many people (see the Historical Notes sec-
tion of Chapter 8).

Let’s first define the minimum edit distance between two strings. Given two
strings, the source string X of length n, and target string Y of length m, we’ll define
D[i, j] as the edit distance between X [1..i] and Y [1.. j], i.e., the first i characters of X
and the first j characters of Y . The edit distance between X and Y is thus D[n,m].

We’ll use dynamic programming to compute D[n,m] bottom up, combining so-
lutions to subproblems. In the base case, with a source substring of length i but an
empty target string, going from i characters to 0 requires i deletes. With a target
substring of length j but an empty source going from 0 characters to j characters
requires j inserts. Having computed D[i, j] for small i, j we then compute larger
D[i, j] based on previously computed smaller values. The value of D[i, j] is com-
puted by taking the minimum of the three possible paths through the matrix which
arrive there:

D[i, j] = min

 D[i−1, j]+del-cost(source[i])
D[i, j−1]+ ins-cost(target[j])
D[i−1, j−1]+ sub-cost(source[i], target[j])

(2.8)

If we assume the version of Levenshtein distance in which the insertions and dele-
tions each have a cost of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have a
cost of 2 (except substitution of identical letters have zero cost), the computation for
D[i, j] becomes:

D[i, j] = min

D[i−1, j]+1
D[i, j−1]+1

D[i−1, j−1]+
{

2; if source[i] 6= target[j]
0; if source[i] = target[j]

(2.9)

The algorithm is summarized in Fig. 2.17; Fig. 2.18 shows the results of applying
the algorithm to the distance between intention and execution with the version of
Levenshtein in Eq. 2.9.

Alignment Knowing the minimum edit distance is useful for algorithms like find-
ing potential spelling error corrections. But the edit distance algorithm is important
in another way; with a small change, it can also provide the minimum cost align-
ment between two strings. Aligning two strings is useful throughout speech and

2.8 • MINIMUM EDIT DISTANCE 25

function MIN-EDIT-DISTANCE(source, target) returns min-distance

n←LENGTH(source)
m←LENGTH(target)
Create a distance matrix D[n+1,m+1]

Initialization: the zeroth row and column is the distance from the empty string
D[0,0] = 0
for each row i from 1 to n do

D[i,0]←D[i-1,0] + del-cost(source[i])
for each column j from 1 to m do

D[0,j]←D[0, j-1] + ins-cost(target[j])

Recurrence relation:
for each row i from 1 to n do

for each column j from 1 to m do
D[i, j]←MIN(D[i−1, j] + del-cost(source[i]),

D[i−1, j−1] + sub-cost(source[i], target[j]),
D[i, j−1] + ins-cost(target[j]))

Termination
return D[n,m]

Figure 2.17 The minimum edit distance algorithm, an example of the class of dynamic
programming algorithms. The various costs can either be fixed (e.g., ∀x, ins-cost(x) = 1)
or can be specific to the letter (to model the fact that some letters are more likely to be in-
serted than others). We assume that there is no cost for substituting a letter for itself (i.e.,
sub-cost(x,x) = 0).

Src\Tar # e x e c u t i o n
0 1 2 3 4 5 6 7 8 9
i 1 2 3 4 5 6 7 6 7 8

n 2 3 4 5 6 7 8 7 8 7
t 3 4 5 6 7 8 7 8 9 8
e 4 3 4 5 6 7 8 9 10 9
n 5 4 5 6 7 8 9 10 11 10
t 6 5 6 7 8 9 8 9 10 11
i 7 6 7 8 9 10 9 8 9 10
o 8 7 8 9 10 11 10 9 8 9
n 9 8 9 10 11 12 11 10 9 8

Figure 2.18 Computation of minimum edit distance between intention and execution with
the algorithm of Fig. 2.17, using Levenshtein distance with cost of 1 for insertions or dele-
tions, 2 for substitutions.

language processing. In speech recognition, minimum edit distance alignment is
used to compute the word error rate (Chapter 16). Alignment plays a role in ma-
chine translation, in which sentences in a parallel corpus (a corpus with a text in two
languages) need to be matched to each other.

To extend the edit distance algorithm to produce an alignment, we can start by
visualizing an alignment as a path through the edit distance matrix. Figure 2.19
shows this path with boldfaced cells. Each boldfaced cell represents an alignment
of a pair of letters in the two strings. If two boldfaced cells occur in the same row,
there will be an insertion in going from the source to the target; two boldfaced cells

26 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

in the same column indicate a deletion.
Figure 2.19 also shows the intuition of how to compute this alignment path. The

computation proceeds in two steps. In the first step, we augment the minimum edit
distance algorithm to store backpointers in each cell. The backpointer from a cell
points to the previous cell (or cells) that we came from in entering the current cell.
We’ve shown a schematic of these backpointers in Fig. 2.19. Some cells have mul-
tiple backpointers because the minimum extension could have come from multiple
previous cells. In the second step, we perform a backtrace. In a backtrace, we startbacktrace

from the last cell (at the final row and column), and follow the pointers back through
the dynamic programming matrix. Each complete path between the final cell and the
initial cell is a minimum distance alignment. Exercise 2.7 asks you to modify the
minimum edit distance algorithm to store the pointers and compute the backtrace to
output an alignment.

e x e c u t i o n
0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8 ← 9
i ↑ 1 ↖←↑ 2 ↖←↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖ 6 ← 7 ← 8
n ↑ 2 ↖←↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↑ 7 ↖←↑ 8 ↖ 7
t ↑ 3 ↖←↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖ 7 ←↑ 8 ↖←↑ 9 ↑ 8
e ↑ 4 ↖ 3 ← 4 ↖← 5 ← 6 ← 7 ←↑ 8 ↖←↑ 9 ↖←↑ 10 ↑ 9
n ↑ 5 ↑ 4 ↖←↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↖↑ 10
t ↑ 6 ↑ 5 ↖←↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖ 8 ← 9 ← 10 ←↑ 11
i ↑ 7 ↑ 6 ↖←↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↑ 9 ↖ 8 ← 9 ← 10
o ↑ 8 ↑ 7 ↖←↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↑ 10 ↑ 9 ↖ 8 ← 9
n ↑ 9 ↑ 8 ↖←↑ 9 ↖←↑ 10 ↖←↑ 11 ↖←↑ 12 ↑ 11 ↑ 10 ↑ 9 ↖ 8

Figure 2.19 When entering a value in each cell, we mark which of the three neighboring
cells we came from with up to three arrows. After the table is full we compute an alignment
(minimum edit path) by using a backtrace, starting at the 8 in the lower-right corner and
following the arrows back. The sequence of bold cells represents one possible minimum cost
alignment between the two strings. Diagram design after Gusfield (1997).

While we worked our example with simple Levenshtein distance, the algorithm
in Fig. 2.17 allows arbitrary weights on the operations. For spelling correction, for
example, substitutions are more likely to happen between letters that are next to
each other on the keyboard. The Viterbi algorithm is a probabilistic extension of
minimum edit distance. Instead of computing the “minimum edit distance” between
two strings, Viterbi computes the “maximum probability alignment” of one string
with another. We’ll discuss this more in Chapter 8.

2.9 Summary

This chapter introduced a fundamental tool in language processing, the regular ex-
pression, and showed how to perform basic text normalization tasks including
word segmentation and normalization, sentence segmentation, and stemming.
We also introduced the important minimum edit distance algorithm for comparing
strings. Here’s a summary of the main points we covered about these ideas:

• The regular expression language is a powerful tool for pattern-matching.
• Basic operations in regular expressions include concatenation of symbols,

disjunction of symbols ([], |, and .), counters (*, +, and {n,m}), anchors

BIBLIOGRAPHICAL AND HISTORICAL NOTES 27

(ˆ, $) and precedence operators ((,)).

• Word tokenization and normalization are generally done by cascades of
simple regular expression substitutions or finite automata.

• The Porter algorithm is a simple and efficient way to do stemming, stripping
off affixes. It does not have high accuracy but may be useful for some tasks.

• The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed by dynamic programming, which also results in an alignment of
the two strings.

Bibliographical and Historical Notes
Kleene 1951; 1956 first defined regular expressions and the finite automaton, based
on the McCulloch-Pitts neuron. Ken Thompson was one of the first to build regular
expressions compilers into editors for text searching (Thompson, 1968). His edi-
tor ed included a command “g/regular expression/p”, or Global Regular Expression
Print, which later became the Unix grep utility.

Text normalization algorithms have been applied since the beginning of the
field. One of the earliest widely used stemmers was Lovins (1968). Stemming
was also applied early to the digital humanities, by Packard (1973), who built an
affix-stripping morphological parser for Ancient Greek. Currently a wide vari-
ety of code for tokenization and normalization is available, such as the Stanford
Tokenizer (https://nlp.stanford.edu/software/tokenizer.shtml) or spe-
cialized tokenizers for Twitter (O’Connor et al., 2010), or for sentiment (http:
//sentiment.christopherpotts.net/tokenizing.html). See Palmer (2012)
for a survey of text preprocessing. NLTK is an essential tool that offers both useful
Python libraries (https://www.nltk.org) and textbook descriptions (Bird et al.,
2009) of many algorithms including text normalization and corpus interfaces.

For more on Herdan’s law and Heaps’ Law, see Herdan (1960, p. 28), Heaps
(1978), Egghe (2007) and Baayen (2001); Yasseri et al. (2012) discuss the relation-
ship with other measures of linguistic complexity. For more on edit distance, see the
excellent Gusfield (1997). Our example measuring the edit distance from ‘intention’
to ‘execution’ was adapted from Kruskal (1983). There are various publicly avail-
able packages to compute edit distance, including Unix diff and the NIST sclite

program (NIST, 2005).
In his autobiography Bellman (1984) explains how he originally came up with

the term dynamic programming:

“...The 1950s were not good years for mathematical research. [the]
Secretary of Defense ...had a pathological fear and hatred of the word,
research... I decided therefore to use the word, “programming”. I
wanted to get across the idea that this was dynamic, this was multi-
stage... I thought, let’s ... take a word that has an absolutely precise
meaning, namely dynamic... it’s impossible to use the word, dynamic,
in a pejorative sense. Try thinking of some combination that will pos-
sibly give it a pejorative meaning. It’s impossible. Thus, I thought
dynamic programming was a good name. It was something not even a
Congressman could object to.”

https://nlp.stanford.edu/software/tokenizer.shtml
http://sentiment.christopherpotts.net/tokenizing.html
http://sentiment.christopherpotts.net/tokenizing.html
https://www.nltk.org

28 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Exercises
2.1 Write regular expressions for the following languages.

1. the set of all alphabetic strings;
2. the set of all lower case alphabetic strings ending in a b;
3. the set of all strings from the alphabet a,b such that each a is immedi-

ately preceded by and immediately followed by a b;

2.2 Write regular expressions for the following languages. By “word”, we mean
an alphabetic string separated from other words by whitespace, any relevant
punctuation, line breaks, and so forth.

1. the set of all strings with two consecutive repeated words (e.g., “Hum-
bert Humbert” and “the the” but not “the bug” or “the big bug”);

2. all strings that start at the beginning of the line with an integer and that
end at the end of the line with a word;

3. all strings that have both the word grotto and the word raven in them
(but not, e.g., words like grottos that merely contain the word grotto);

4. write a pattern that places the first word of an English sentence in a
register. Deal with punctuation.

2.3 Implement an ELIZA-like program, using substitutions such as those described
on page 10. You might want to choose a different domain than a Rogerian psy-
chologist, although keep in mind that you would need a domain in which your
program can legitimately engage in a lot of simple repetition.

2.4 Compute the edit distance (using insertion cost 1, deletion cost 1, substitution
cost 1) of “leda” to “deal”. Show your work (using the edit distance grid).

2.5 Figure out whether drive is closer to brief or to divers and what the edit dis-
tance is to each. You may use any version of distance that you like.

2.6 Now implement a minimum edit distance algorithm and use your hand-computed
results to check your code.

2.7 Augment the minimum edit distance algorithm to output an alignment; you
will need to store pointers and add a stage to compute the backtrace.

Exercises 29

Baayen, R. H. 2001. Word frequency distributions. Springer.

Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.

Bellman, R. 1984. Eye of the Hurricane: an autobiography.
World Scientific Singapore.

Bender, E. M. 2019. The #BenderRule: On naming the lan-
guages we study and why it matters. Blog post.

Bender, E. M., B. Friedman, and A. McMillan-Major. 2021.
A guide for writing data statements for natural language
processing. Available at http://techpolicylab.uw.
edu/data-statements/.

Bird, S., E. Klein, and E. Loper. 2009. Natural Language
Processing with Python. O’Reilly.

Blodgett, S. L., L. Green, and B. O’Connor. 2016. Demo-
graphic dialectal variation in social media: A case study
of African-American English. EMNLP.

Bostrom, K. and G. Durrett. 2020. Byte pair encoding is
suboptimal for language model pretraining. Findings of
EMNLP.

Chen, X., Z. Shi, X. Qiu, and X. Huang. 2017. Adversar-
ial multi-criteria learning for Chinese word segmentation.
ACL.

Church, K. W. 1994. Unix for Poets. Slides from 2nd EL-
SNET Summer School and unpublished paper ms.

Clark, H. H. and J. E. Fox Tree. 2002. Using uh and um in
spontaneous speaking. Cognition, 84:73–111.

Egghe, L. 2007. Untangling Herdan’s law and Heaps’
law: Mathematical and informetric arguments. JASIST,
58(5):702–709.

Gebru, T., J. Morgenstern, B. Vecchione, J. W. Vaughan,
H. Wallach, H. Daumé III, and K. Crawford. 2020.
Datasheets for datasets. ArXiv.

Godfrey, J., E. Holliman, and J. McDaniel. 1992. SWITCH-
BOARD: Telephone speech corpus for research and de-
velopment. ICASSP.

Gusfield, D. 1997. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biology.
Cambridge University Press.

Heaps, H. S. 1978. Information retrieval. Computational and
theoretical aspects. Academic Press.

Herdan, G. 1960. Type-token mathematics. Mouton.

Jones, T. 2015. Toward a description of African American
Vernacular English dialect regions using “Black Twitter”.
American Speech, 90(4):403–440.

Jurgens, D., Y. Tsvetkov, and D. Jurafsky. 2017. Incorpo-
rating dialectal variability for socially equitable language
identification. ACL.

King, S. 2020. From African American Vernacular English
to African American Language: Rethinking the study of
race and language in African Americans’ speech. Annual
Review of Linguistics, 6:285–300.

Kiss, T. and J. Strunk. 2006. Unsupervised multilingual
sentence boundary detection. Computational Linguistics,
32(4):485–525.

Kleene, S. C. 1951. Representation of events in nerve nets
and finite automata. Technical Report RM-704, RAND
Corporation. RAND Research Memorandum.

Kleene, S. C. 1956. Representation of events in nerve nets
and finite automata. In C. Shannon and J. McCarthy, edi-
tors, Automata Studies, pages 3–41. Princeton University
Press.

Krovetz, R. 1993. Viewing morphology as an inference pro-
cess. SIGIR-93.

Kruskal, J. B. 1983. An overview of sequence compar-
ison. In D. Sankoff and J. B. Kruskal, editors, Time
Warps, String Edits, and Macromolecules: The The-
ory and Practice of Sequence Comparison, pages 1–44.
Addison-Wesley.

Kudo, T. 2018. Subword regularization: Improving neural
network translation models with multiple subword candi-
dates. ACL.

Kudo, T. and J. Richardson. 2018. SentencePiece: A simple
and language independent subword tokenizer and detok-
enizer for neural text processing. EMNLP.

Kučera, H. and W. N. Francis. 1967. Computational Analy-
sis of Present-Day American English. Brown University
Press, Providence, RI.

Levenshtein, V. I. 1966. Binary codes capable of correct-
ing deletions, insertions, and reversals. Cybernetics and
Control Theory, 10(8):707–710. Original in Doklady
Akademii Nauk SSSR 163(4): 845–848 (1965).

Li, X., Y. Meng, X. Sun, Q. Han, A. Yuan, and J. Li. 2019.
Is word segmentation necessary for deep learning of Chi-
nese representations? ACL.

Lovins, J. B. 1968. Development of a stemming algorithm.
Mechanical Translation and Computational Linguistics,
11(1–2):9–13.

Manning, C. D., M. Surdeanu, J. Bauer, J. Finkel, S. Bethard,
and D. McClosky. 2014. The Stanford CoreNLP natural
language processing toolkit. ACL.

NIST. 2005. Speech recognition scoring toolkit (sctk) ver-
sion 2.1. http://www.nist.gov/speech/tools/.

O’Connor, B., M. Krieger, and D. Ahn. 2010. Tweetmotif:
Exploratory search and topic summarization for twitter.
ICWSM.

Packard, D. W. 1973. Computer-assisted morphological
analysis of ancient Greek. COLING.

Palmer, D. 2012. Text preprocessing. In N. Indurkhya and
F. J. Damerau, editors, Handbook of Natural Language
Processing, pages 9–30. CRC Press.

Porter, M. F. 1980. An algorithm for suffix stripping. Pro-
gram, 14(3):130–137.

Sennrich, R., B. Haddow, and A. Birch. 2016. Neural ma-
chine translation of rare words with subword units. ACL.

Simons, G. F. and C. D. Fennig. 2018. Ethnologue: Lan-
guages of the world, 21st edition. SIL International.

Solorio, T., E. Blair, S. Maharjan, S. Bethard, M. Diab,
M. Ghoneim, A. Hawwari, F. AlGhamdi, J. Hirschberg,
A. Chang, and P. Fung. 2014. Overview for the first
shared task on language identification in code-switched
data. First Workshop on Computational Approaches to
Code Switching.

Thompson, K. 1968. Regular expression search algorithm.
CACM, 11(6):419–422.

Wagner, R. A. and M. J. Fischer. 1974. The string-to-string
correction problem. Journal of the ACM, 21:168–173.

https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/
https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/
http://techpolicylab.uw.edu/data-statements/
http://techpolicylab.uw.edu/data-statements/
http://www.nltk.org/book/
http://www.nltk.org/book/
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/P17-1110
https://doi.org/10.18653/v1/P17-1110
https://doi.org/10.1016/S0010-0277(02)00017-3
https://doi.org/10.1016/S0010-0277(02)00017-3
https://doi.org/10.1002/asi.20524
https://doi.org/10.1002/asi.20524
https://arxiv.org/pdf/1803.09010.pdf
https://doi.ieeecomputersociety.org/10.1109/ICASSP.1992.225858
https://doi.ieeecomputersociety.org/10.1109/ICASSP.1992.225858
https://doi.ieeecomputersociety.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1215/00031283-3442117
https://doi.org/10.1215/00031283-3442117
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.1146/annurev-linguistics-011619-030556
https://doi.org/10.1146/annurev-linguistics-011619-030556
https://doi.org/10.1146/annurev-linguistics-011619-030556
https://www.aclweb.org/anthology/J06-4003
https://www.aclweb.org/anthology/J06-4003
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://www.aclweb.org/anthology/P19-1314
https://www.aclweb.org/anthology/P19-1314
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
http://www.nist.gov/speech/tools/
https://www.aclweb.org/anthology/C73-2026
https://www.aclweb.org/anthology/C73-2026
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.3115/v1/W14-3907
https://doi.org/10.3115/v1/W14-3907
https://doi.org/10.3115/v1/W14-3907
https://doi.org/10.1145/363347.363387

30 Chapter 2 • Regular Expressions, Text Normalization, Edit Distance

Weizenbaum, J. 1966. ELIZA – A computer program for the
study of natural language communication between man
and machine. CACM, 9(1):36–45.

Weizenbaum, J. 1976. Computer Power and Human Rea-
son: From Judgement to Calculation. W.H. Freeman and
Company.

Yasseri, T., A. Kornai, and J. Kertész. 2012. A practical ap-
proach to language complexity: a Wikipedia case study.
PLoS ONE, 7(11).

	Regular Expressions, Text Normalization, Edit Distance
	Regular Expressions
	Basic Regular Expression Patterns
	Disjunction, Grouping, and Precedence
	A Simple Example
	More Operators
	A More Complex Example
	Substitution, Capture Groups, and ELIZA
	Lookahead Assertions

	Words
	Corpora
	Simple Unix Tools for Word Tokenization
	Word Tokenization
	Top-down (rule-based) tokenization
	Byte-Pair Encoding: A Bottom-up Tokenization Algorithm

	Word Normalization, Lemmatization and Stemming
	Lemmatization

	Sentence Segmentation
	Minimum Edit Distance
	The Minimum Edit Distance Algorithm

	Summary
	Bibliographical and Historical Notes
	Exercises

