Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright (© 2018. All
rights reserved. Draft of September 23, 2018.

CHAPTER

deep learning

deep

Neural Networks and Neural
Language Models

“[M]achines of this character can behave in a very complicated manner when
the number of units is large.”
Alan Turing (1948) “Intelligent Machines”, page 6

Neural networks are an essential computational tool for language processing, and
a very old one. They are called neural because their origins lie in the McCulloch-
Pitts neuron (McCulloch and Pitts, 1943), a simplified model of the human neuron
as a kind of computing element that could be described in terms of propositional
logic. But the modern use in language processing no longer draws on these early
biological inspirations.

Instead, a modern neural network is a network of small computing units, each
of which takes a vector of input values and produces a single output value. In this
chapter we introduce the neural net applied to classification. The architecture we
introduce is called a feed-forward network because the computation proceeds iter-
atively from one layer of units to the next. The use of modern neural nets is often
called deep learning, because modern networks are often deep (have many layers).

Neural networks share much of the same mathematics as logistic regression. But
neural networks are a more powerful classifier than logistic regression, and indeed a
minimal neural network (technically one with a single ‘hidden layer’) can be shown
to learn any function.

Neural net classifiers are different from logistic regression in another way. With
logistic regression, we applied the regression classifier to many different tasks by
developing many rich kinds of feature templates based on domain knowledge. When
working with neural networks, it is more common to avoid the use of rich hand-
derived features, instead building neural networks that take raw words as inputs
and learn to induce features as part of the process of learning to classify. We saw
examples of this kind of representation learning for embeddings in Chapter 6. Nets
that are very deep are particularly good at representation learning for that reason
deep neural nets are the right tool for large scale problems that offer sufficient data
to learn features automatically.

In this chapter we’ll see feedforward networks as classifiers, and apply them to
the simple task of language modeling: assigning probabilities to word sequences and
predicting upcoming words. In later chapters we’ll introduce many other aspects of
neural models, such as the recurrent neural network and the encoder-decoder
model.

2 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1

Units

bias term

vector

activation

sigmoid

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Thus given a set of inputs x;...x,, a unit
has a set of corresponding weights wj...w, and a bias b, so the weighted sum z can
be represented as:

z=b+Y w; (7.1
i

Often it’s more convenient to express this weighted sum using vector notation;
recall from linear algebra that a vector is, at heart, just a list or array of numbers.
Thus we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input
vector x, and we’ll replace the sum with the convenient dot product:

z=w-x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.

Finally, instead of using z, a linear function of x, as the output, neural units
apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, the
activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y=a=f(z)
(7.3)

We’ll discuss three popular non-linear functions f() below (the sigmoid, the
tanh, and the rectified linear ReLU) but it’s pedagogically convenient to start with
the sigmoid function since we saw it in Chapter 5:

1
Cl4e
The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0, 1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.
Substituting the sigmoid equation into Eq. 7.2 gives us the final value for the
output of a neural unit:

y=0(z2) (7.4)

1

1+exp(—(w-x+b))

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x», and x3, and computes a weighted sum, multiplying each
value by a weight (w1, wy, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

y=o(w-x+b)=

(7.5)

tanh

ReLU

7.1 e UNITS 3

0.8

0.6|

003 =3 2 =2 0 2 2 6 8

JOTNS KA The sigmoid function takes a real value and maps it to the range [0, 1]. Because
it is nearly linear around O but has a sharp slope toward the ends, it tends to squash outlier
values toward O or 1.

Wl W2 W3

Xq X2 X3

A neural unit, taking 3 inputs xj, x,, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

w = [0.2,0.3,0.9]
b = 05

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]
The resulting output y would be:

_ _ 1 _ 1 _ 087 _
y=0(w-x+b)= I Lo rath) | 4o (5+216e3+.1x9¢3) ¢ =.70

In practice, the sigmoid is not commonly used as an activation function. A
function that is very similar but almost always better is the tanh function shown
in Fig. 7.3a; tanh is a variant of the sigmoid that ranges from -1 to +1:

eZ _ e*Z
=— 7.6
V= e (7.6)

The simplest activation function, and perhaps the most commonly used, is the

rectified linear unit, also called the ReLLU, shown in Fig. 7.3b. It’s just the same as x

4 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

when x is positive, and 0 otherwise:

y = max(x,0) (7.7

1.0

0.5

0.0

y = tanh(x)

-0.5

10

max(z,0)

y=

(a) (b)

saturated

13T VW] The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for
different language applications or network architectures. For example the rectifier
function has nice properties that result from it being very close to linear. In the sig-
moid or tanh functions, very high values of z result in values of y that are saturated,
i.e., extremely close to 1, which causes problems for learning. Rectifiers don’t have
this problem, since the output of values close to 1 also approaches 1 in a nice gentle
linear way. By contrast, the tanh function has the nice properties of being smoothly
differentiable and mapping outlier values toward the mean.

7.2 The XOR problem

perceptron

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the very simple task of computing
simple logical functions of two inputs, like AND, OR, and XOR. As a reminder,
here are the truth tables for those functions:

AND OR XOR
x1l x2|y x1 x2|y x1l x2|y
0 0 |0 0 0 |0 0 0 |0
0 1|0 0 1 |1 0 1 |1
1 0 |0 1 0 |1 1 0 |1
1 1|1 1 1|1 1 110

This example was first shown for the perceptron, which is a very simple neural
unit that has a binary output and no non-linear activation function. The output y of

decision
boundary

linearly
separable

7.2 e THE XOR PROBLEM 5§

a perceptron is 0 or 1, and just computed as follows (using the same weight w, input
x, and bias b as in Eq. 7.2):

(7.8)

] 0, ifw-x+b<0
YTV, ifwex+b>0

It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 7.4 shows the necessary weights.

X, Xy
x—1—30) 130
2 2
/' 1/ / 0
+1 +1
(@) (b)
ISR The weights w and bias b for perceptrons for computing logical functions. The

inputs are shown as x| and x, and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, showing weights w; = 1 and w, = 1 and bias weight
b= —1. (b) logical OR, showing weights w; = 1 and wp = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input xo and xi, the perception
equation, wixj + waxz + b = 0 is the equation of a line (we can see this by putting
it in the standard linear format: x, = —(w; /w7)x; — b.) This line acts as a decision
boundary in two-dimensional space in which the output 0 is assigned to all inputs
lying on one side of the line, and the output 1 to all input points lying on the other
side of the line. If we had more than 2 inputs, the decision boundary becomes a
hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 7.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

7.2.1 The solution: neural networks

While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of units. Let’s see an example of how to do this from
Goodfellow et al. (2016) that computes XOR using two layers of ReLU-based units.
Fig. 7.6 shows a figure with the input being processed by two layers of neural units.
The middle layer (called %) has two units, and the output layer (called y) has one
unit. A set of weights and biases are shown for each ReL.U that correctly computes
the XOR function

Let’s walk through what happens with the input x = [0 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the vector

6 CHAPTER 7

e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

qu *2 *2
0] ° 1 1 O
?
0 C/ =X1 0 0 Xl
0 1 0 1
a) Xl AND X2 b) Xl OR X2 C) Xl XOR XZ

The

functions AND, OR, and XOR, represented with input xy on the x-axis and input x| on the

y axis, Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no
way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig

(2002).

T
Iy 1 I \
le §<2 3

XOR solution after Goodfellow et al. (2016). There are three ReLU units, in
two layers; we’ve called them h;, hy (h for “hidden layer”) and y;. As before, the numbers
on the arrows represent the weights w for each unit, and we represent the bias b as a weight
on a unit clamped to +1, with the bias weights/units in gray.

[0 -1], and we then we apply the rectified linear transformation to give the output
of the & layer as [0 0]. Now we once again multiply by the weights, sum, and add
the bias (0 in this case) resulting in the value 0. The reader should work through the
computation of the remaining 3 possible input pairs to see that the resulting y values
correctly are 1 for the inputs [0 1] and [1 0] and O for [0 O] and [1 1].

It’s also instructive to look at the intermediate results, the outputs of the two
hidden nodes Ao and #;. We showed in the previous paragraph that the & vector for
the inputs x = [0 0] was [0 0]. Fig. 7.7b shows the values of the & layer for all 4
inputs. Notice that hidden representations of the two input points x = [0 1] and x
= [1 0] (the two cases with XOR output = 1) are merged to the single point & = [1
0]. The merger makes it easy to linearly separate the positive and negative cases
of XOR. In other words, we can view the hidden layer of the network is forming a
representation for the input.

In this example we just stipulated the weights in Fig. 7.6. But for real exam-
ples the weights for neural networks are learned automatically using the error back-
propagation algorithm to be introduced in Section 7.4. That means the hidden layers
will learn to form useful representations. This intuition, that neural networks can au-
tomatically learn useful representations of the input, is one of their key advantages,

7.3 e FEED-FORWARD NEURAL NETWORKS 7

" hlu
1 O 1 O
0 %o 0 O @ h:
0 1 0 1 2 0
a) The original x space b) The new /4 space
I3ICWl The hidden layer forming a new representation of the input. Here is the rep-

resentation of the hidden layer, /4, compared to the original input representation x. Notice
that the input point [0 1] has been collapsed with the input point [1 0], making it possible to
linearly separate the positive and negative cases of XOR. After Goodfellow et al. (2016).

and one that we will return to again and again in later chapters.

Note that the solution to the XOR problem requires a network of units with non-
linear activation functions. A network made up of simple linear (perceptron) units
cannot solve the XOR problem. This is because a network formed by many layers
of purely linear units can always be reduced (shown to be computationally identical
to) a single layer of linear units with appropriate weights, and we’ve already shown
(visually, in Fig. 7.5) that a single unit cannot solve the XOR problem.

7.3 Feed-Forward Neural Networks

feed-forward
network

multi-layer
perceptrons

MLP

hidden layer

fully-connected

Let’s now walk through a slightly more formal presentation of the simplest kind of
neural network, the feed-forward network. A feed-forward network is a multilayer
network in which the units are connected with no cycles; the outputs from units in
each layer are passed to units in the next higher layer, and no outputs are passed
back to lower layers. (In Chapter 9 we’ll introduce networks with cycles, called
recurrent neural networks.)

For historical reasons multilayer networks, especially feedforward networks, are
sometimes called multi-layer perceptrons (or MLPs); this is a technical misnomer,
since the units in modern multilayer networks aren’t perceptrons (perceptrons are
purely linear, but modern networks are made up of units with non-linearities like
sigmoids), but at some point the name stuck.

Simple feed-forward networks have three kinds of nodes: input units, hidden
units, and output units. Fig. 7.8 shows a picture.

The input units are simply scalar values just as we saw in Fig. 7.2.

The core of the neural network is the hidden layer formed of hidden units,
each of which is a neural unit as described in Section 7.1, taking a weighted sum of
its inputs and then applying a non-linearity. In the standard architecture, each layer
is fully-connected, meaning that each unit in each layer takes as input the outputs
from all the units in the previous layer, and there is a link between every pair of units
from two adjacent layers. Thus each hidden unit sums over all the input units.

8 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

IPTICWR] A simple 2-layer feed-forward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

Recall that a single hidden unit has parameters w (the weight vector) and b (the
bias scalar). We represent the parameters for the entire hidden layer by combining
the weight vector w; and bias b; for each unit i into a single weight matrix W and
a single bias vector b for the whole layer (see Fig. 7.8). Each element W;; of the
weight matrix W represents the weight of the connection from the ith input unit x; to
the the jth hidden unit £;.

The advantage of using a single matrix W for the weights of the entire layer is
that now that hidden layer computation for a feedforward network can be done very
efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or relu activation
function defined above).

The output of the hidden layer, the vector A, is thus the following, using the
sigmoid function o

h=0o(Wx+Db) (7.9)

Notice that we’re applying the ¢ function here to a vector, while in Eq. 7.4 it was
applied to a scalar. We’re thus allowing o (+), and indeed any activation function
g(+), to apply to a vector element-wise, so g[z1,22,23] = [g(z1),8(z2),8(z3)]-

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer O of the network, and use have
no represent the number of inputs, so x is a vector of real numbers of dimension
ng, or more formally x € R™. Let’s call the hidden layer layer 1 and the output
layer layer 2. The hidden layer has dimensionality n;, so i € R"! and also b € R™
(since each hidden unit can take a different bias value). And the weight matrix W
has dimensionality W € R"1*"0,

Take a moment to convince yourself that the matrix multiplication in Eq. 7.9 will
compute the value of each h;j as >, wjjx; + b;.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation 4 and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a single

normalizing

softmax

7.3 e FEED-FORWARD NEURAL NETWORKS 9

output node, and its value y is the probability of positive versus negative sentiment.
If we are doing multinomial classification, such as assigning a part-of-speech tag, we
might have one output node for each potential part-of-speech, whose output value
is the probability of that part-of-speech, and the values of all the output nodes must
sum to one. The output layer thus gives a probability distribution across the output
nodes.

Let’s see how this happens. Like the hidden layer, the output layer has a weight
matrix (let’s call it U), but output layers may not t have a bias vector b, so we’ll sim-
plify by eliminating the bias vector in this example. The weight matrix is multiplied
by its input vector (%) to produce the intermediate output z.

z=Uh

There are ny output nodes, so z € R"2, weight matrix U has dimensionality U €
R"™>™ and element U;; is the weight from unit j in the hidden layer to unit i in the
output layer.

However, z can’t be the output of the classifier, since it’s a vector of real-valued
numbers, while what we need for classification is a vector of probabilities. There is
a convenient function for normalizing a vector of real values, by which we mean
converting it to a vector that encodes a probability distribution (all the numbers lie
between 0 and 1 and sum to 1): the softmax function that we saw on page ?? of
Chapter 5. For a vector z of dimensionality d, the softmax is defined as:

et
27:1 e

Thus for example given a vector z=[0.6 1.1 -1.5 1.2 3.2 -1.1], softmax(z) is [0.055
0.090 0.0067 0.10 0.74 0.010].

You may recall that softmax was exactly what is used to create a probability
distribution from a vector of real-valued numbers (computed from summing weights
times features) in logistic regression in Chapter 5.

That means we can think of a neural network classifier with one hidden layer
as building a vector & which is a hidden layer representation of the input, and then
running standard logistic regression on the features that the network develops in 4.
By contrast, in Chapter 5 the features were mainly designed by hand via feature
templates. So a neural network is like logistic regression, but (a) with many layers,
since a deep neural network is like layer after layer of logistic regression classifiers,
and (b) rather than forming the features by feature templates, the prior layers of the
network induce the feature representations themselves.

Here are the final equations for a feed-forward network with a single hidden
layer, which takes an input vector x, outputs a probability distribution y, and is pa-
rameterized by weight matrices W and U and a bias vector b:

softmax(z;) = 1<i<d (7.10)

h = oc(Wx+Db)
z = Uh
y = softmax(z) (7.11)

We’ll call this network a 2-layer network (we traditionally don’t count the input
layer when numbering layers, but do count the output layer). So by this terminology
logistic regression is a 1-layer network.

Let’s now set up some notation to make it easier to talk about deeper networks
of depth more than 2. We’ll use superscripts in square brackets to mean layer num-
bers, starting at O for the input layer. So Wl will mean the weight matrix for the

10 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(first) hidden layer, and bl will mean the bias vector for the (first) hidden layer. n;
will mean the number of units at layer j. We’ll use g(+) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use al! to mean the output from layer i, and 2! to mean the
combination of weights and biases wlilgli=1 4 plil, The Oth layer is for inputs, so the
inputs x we’ll refer to more generally as aldl,
Thus we’ll represent a 3-layer net as follows:

A il o pl

gl = gl
2w)
= g
$ = a? (7.12)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feed-forward
network, given the input vector al" is thus simply:

foriin 1..n

Al = wll gli=1 4 pli

all = g[f] (Z[i]) The
$ = al

activation functions g(-) are generally different at the final layer. Thus gl? might
be softmax for multinomial classification or sigmoid for binary classification, while
ReLU or tanh might be the activation function g() at the internal layers.

7.4 Training Neural Nets

A feedforward neural net is an instance of supervised machine learning in which we
know the correct output y for each observation x. What the system produces, via
Eq. 7.12, is y, the system’s estimate of the true y. The goal of the training procedure
is to learn parameters Wl and b[i] for each layer i that make J for each training
observation as close as possible to the true y .

In general, we do all this by drawing on the methods we introduced in Chapter 5
for logistic regression, so the reader should be comfortable with that chapter before
proceeding.

First, we’ll need a loss function that models the distance between the system
output and the gold output, and it’s common to use the loss used for logistic regres-
sion, the cross-entropy loss.

Second, to find the parameters that minimize this loss function, we’ll use the
gradient descent optimization algorithm introduced in Chapter 5. There are some
differences

Third, gradient descent requires knowing the gradient of the loss function, the
vector that contains the partial derivative of the loss function with respect to each of
the parameters. Here is one part where learning for neural networks is more complex
than for logistic logistic regression. In logistic regression, for each observation we
could directly compute the derivative of the loss function with respect to an individ-
ual w or b. But for neural networks, with millions of parameters in many layers, it’s

7.4 e TRAINING NEURAL NETS 11

much harder to see how to compute the partial derivative of some weight in layer 1
when the loss is attached to some much later layer. How do we partial out the loss
over all those intermediate layers?

The answer is the algorithm called error back-propagation or reverse differ-
entiation.

7.4.1 Loss function

crossentropy The cross entropy loss, that is used in neural networks is the same one we saw for
logistic regression.
In fact, if the neural network is being used as a binary classifier, with the sig-
moid at the final layer, the loss function is exactly the same as we saw with logistic
regression in Eq. ??:

Lee(9,y) = —logp(ylx) = —[ylogy+ (1 —y)log(l—7)] (7.13)

What about if the neural network is being used as a multinomial classifier? Let
y be a vector over the C classes representing the true output probability distribution.
The cross entropy loss here is

C
Leg(§,y) ==Y yilog$i (7.14)
i=1

We can simplify this equation further. Assume this is a hard classification task,
meaning that only one class is the correct one, and that there is one output unit in y
for each class. If the true class is i, then y is a vector where y; =1landy; =0 Vj#i.
A vector like this, with one value=1 and the rest 0, is called a one-hot vector. Now
let be the vector output from the network. The sum in Eq. 7.14 will be 0 except
for the true class. Hence the cross-entropy loss is simply the log probability of the
likel? *})‘(i)‘éelf)‘;g correct class, and we therefore also call this the negative log likelihood loss:

Leg(9,y) = —logj (7.15)

Plugging in the softmax formula from Eq. 7.10, and with K the number of classes:

A eZi
Lee($,y) = —log —g—— (7.16)

)

Z:
e

7.4.2 Computing the Gradient

How do we compute the gradient of this loss function? Computing the gradient
requires the partial derivative of the loss function with respect to each parameter.
For a network with one weight layer and sigmoid output (which is what logistic
regression is), we could simply use the derivative of the loss that we used for logistic
regression in: Eq. 7.17 (and derived in Section ??):

dLcp(w,b)
&Wj
= (o(w-x+b)—y)x; (7.17)

12 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

error back-
propagation

chain rule

Or for a network with one hidden layer and softmax output, we could use the deriva-
tive of the softmax loss from Eq. ??:

dLck
E)wk

= ({y =k} —p(y = klx))xx

ewk-x+bk
= | {y=kt—-——— | x (7.18)

K wixtb;
Zj:le I

But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.

7.4.3 Computation Graphs

A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c¢(a+ 2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2%b
e = a+d
L = cxe

We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 7.9. The simplest use of computation graphs is to compute the value of the
function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b =1, c = —1, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,—1) = 10. In the forward pass of a computation graph, we apply each
operation left to right, passing the outputs of each computation as the input to the
next node.

7.4.4 Backward differentiation on computation graphs

The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
to each of the input variables, i.e., 3—2, %, and % The derivative %, tells us how
much a small change in a affects L.

Backwards differentiation makes use of the chain rule in calculus. Suppose we

are computing the derivative of a composite function f(x) = u(v(x)). The derivative

7.4 e TRAINING NEURAL NETS 13

forward pass
e=5

JQTsgA] Computation graph for the function L(a,b,c) = c(a+ 2b), with values for input
nodes a = 3, b =1, ¢ = —1, showing the forward pass computation of L.

of f(x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

df du dv (7.19)

dx dv dx '
The chain rule extends to more than two functions. If computing the derivative of a
composite function f(x) = u(v(w(x))), the derivative of f(x) is:

df _ du dv dw (7.20)
dx — dv dw dx '

Let’s now compute the 3 derivatives we need. Since in the computation graph

L = ce, we can directly compute the derivative %:

oL _ (7.21)
ac ¢ '

For the other two, we’ll need to use the chain rule:

dL dL de
da ~ deda
db de dd db '
Eq. 7.22 thus requires four intermediate derivatives: %, %, %, and %, which
are as follows (making use of the fact that the derivative of a sum is the sum of the

derivatives):

. L oL
=ce : ae—C,aC—e
de de
€:Cl+d. %:1,%:1
ad
d=72b E_Z

(7.23)

In the backward pass, we compute each of these partials along each edge of
the graph from right to left, multiplying the necessary partials to result in the final
derivative we need. Thus we begin by annotating the final node with g—ﬁ = 1. Moving

to the left, we then compute % and %, and so on, until we have annotated the graph

14 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

all the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
to compute these derivatives. Fig. 7.10 shows the backward pass. At each node we
need to compute the local partial derivative with respect to the parent, multiply it by
the partial derivative that is being passed down from the parent, and then pass it to
the child.

backward pass

JITNSRAN] Computation graph for the function L(a,b,c) = c¢(a+2b), showing the back-

ward pass computation of % %, and g—f

Of course computation graphs for real neural networks are much more complex.
Fig. 7.11 shows a sample computation graph for a 2-layer neural network with ng =
2, n; =2, and ny = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The weights that need updating (those for which we need
to know the partial derivative of the loss function) are shown in orange.

OBl Sample computation graph for a simple 2-layer neural net (= 1 hidden layer)
with two input dimensions and 2 hidden dimensions.

In order to do the backward pass, we’ll need to know the derivatives of all the
functions in the graph. We already saw in Section ?? the derivative of the sigmoid
o:

do(z)
dz

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

=0(z)(1-2) (7.24)

dtanh(z)

=1 —tanh?(z) (7.25)
dz

dropout

hyperparameter

7.5 e NEURAL LANGUAGE MODELS 15

The derivative of the ReLLU is

dReLU(z7) {O for x<0

dz 11 for x>0 (7.26)

7.4.5 More details on learning

Optimization in neural networks is a non-convex optimization problem, more com-
plex than for logistic regression, and for that and other reasons there are many best
practices for successful learning.

For logistic regression we can initialize gradient descent with all the weights and
biases having the value 0. In neural networks, by contrast, we need to initialize the
weights with small random numbers. It’s also helpful to normalize the input values
to have 0 mean and unit variance.

Various forms of regularization are used to prevent overfitting. One of the most
important is dropout: randomly dropping some units and their connections from the
network during training (Hinton et al. 2012, Srivastava et al. 2014).

Hyperparameter tuning is also important. The parameters of a neural network
are the weights W and biases b; those are learned by gradient descent. The hyperpa-
rameters are things that are set by the algorithm designer and not learned in the same
way, although they must be tuned. Hyperparameters include the learning rate 7, the
minibatch size, the model architecture (the number of layers, the number of hidden
nodes per layer, the choice of activation functions), how to regularize, and so on.
Gradient descent itself also has many architectural variants such as Adam (Kingma
and Ba, 2015).

Finally, most modern neural networks are built using computation graph for-
malisms that make all the work of gradient computation and parallelization onto
vector-based GPUs (Graphic Processing Units) very easy and natural. Pytorch (Paszke
et al., 2017) and TensorFlow (Abadi et al., 2015) are two of the most popular. The
interested reader should consult a neural network textbook for further details; some
suggestions are at the end of the chapter.

7.5 Neural Language Models

As our first application of neural networks, let’s consider language modeling: pre-
dicting upcoming words from prior word context.

Neural net-based language models turn out to have many advantages over the n-
gram language models of Chapter 3. Among these are that neural language models
don’t need smoothing, they can handle much longer histories, and they can general-
ize over contexts of similar words. For a training set of a given size, a neural lan-
guage model has much higher predictive accuracy than an n-gram language model
Furthermore, neural language models underlie many of the models we’ll introduce
for tasks like machine translation, dialog, and language generation.

On the other hand, there is a cost for this improved performance: neural net
language models are strikingly slower to train than traditional language models, and
so for many tasks an n-gram language model is still the right tool.

In this chapter we’ll describe simple feedforward neural language models, first
introduced by Bengio et al. (2003). Modern neural language models are generally
not feedforward but recurrent, using the technology that we will introduce in Chap-
ter 9.

16 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

pretraining

one-hot vector

A feedforward neural LM is a standard feedforward network that takes as input
at time ¢ a representation of some number of previous words (w;_1,w;_3, etc) and
outputs a probability distribution over possible next words. Thus—Iike the n-gram
LM—the feedforward neural LM approximates the probability of a word given the
entire prior context P(w, |w’l_1) by approximating based on the N previous words:

P(wi W™ ~ P(wi w5) (1.27)

In the following examples we’ll use a 4-gram example, so we’ll show a net to
estimate the probability P(w, = i|wy—1,w;—2, w,;—3).

7.5.1 Embeddings

In neural language models, the prior context is represented by embeddings of the
previous words. Representing the prior context as embeddings, rather than by ex-
act words as used in n-gram language models, allows neural language models to
generalize to unseen data much better than n-gram language models. For example,
suppose we’ve seen this sentence in training:

I have to make sure when I get home to feed the cat.

but we’ve never seen the word “dog” after the words “feed the”. In our test set we
are trying to predict what comes after the prefix “I forgot when I got home to feed
the”.

An n-gram language model will predict “cat”, but not “dog”. But a neural LM,
which can make use of the fact that “cat” and “dog” have similar embeddings, will
be able to assign a reasonably high probability to “dog” as well as “cat”, merely
because they have similar vectors.

Let’s see how this works in practice. Let’s assume we have an embedding dic-
tionary E that gives us, for each word in our vocabulary V, the embedding for that
word, perhaps precomputed by an algorithm like word2vec from Chapter 6.

Fig. 7.12 shows a sketch of this simplified FFNNLM with N=3; we have a mov-
ing window at time ¢ with an embedding vector representing each of the 3 previous
words (words w;_1, w,_», and w;_3). These 3 vectors are concatenated together to
produce x, the input layer of a neural network whose output is a softmax with a
probability distribution over words. Thus y4», the value of output node 42 is the
probability of the next word w; being Vi, the vocabulary word with index 42.

The model shown in Fig. 7.12 is quite sufficient, assuming we learn the embed-
dings separately by a method like the word2vec methods of Chapter 6. The method
of using another algorithm to learn the embedding representations we use for input
words is called pretraining. If those pretrained embeddings are sufficient for your
purposes, then this is all you need.

However, often we’d like to learn the embeddings simultaneously with training
the network. This is true when whatever task the network is designed for (sentiment
classification, or translation, or parsing) places strong constraints on what makes a
good representation.

Let’s therefore show an architecture that allows the embeddings to be learned.
To do this, we’ll add an extra layer to the network, and propagate the error all the
way back to the embedding vectors, starting with embeddings with random values
and slowly moving toward sensible representations.

For this to work at the input layer, instead of pre-trained embeddings, we’re
going to represent each of the N previous words as a one-hot vector of length |V |, i.e.,
with one dimension for each word in the vocabulary. A one-hot vector is a vector

7.5 e NEURAL LANGUAGE MODELS 17

Output layer P(wju) XV

IVIxd, U -
h Pow=V golwi 3w 2wy 3)

Hjdden layer 1xdy

Projection layer 1x3d

concatenated embeddings | embedding for embedding for embedding for

for context words wo/rﬁ_Si word 9925 word 45180 word 42
A A
Z.]hole[in| the | ground | there lived |.§

W W Wi Wi

A simplified view of a feedforward neural language model moving through a text. At each
timestep ¢ the network takes the 3 context words, converts each to a d-dimensional embeddings, and concate-
nates the 3 embeddings together to get the 1 X Nd unit input layer x for the network. These units are multiplied
by a weight matrix W and bias vector b and then an activation function to produce a hidden layer /4, which
is then multiplied by another weight matrix U. (For graphic simplicity we don’t show & in this and future
pictures). Finally, a softmax output layer predicts at each node i the probability that the next word w; will be
vocabulary word V;. (This picture is simplified because it assumes we just look up in an embedding dictionary
E the d-dimensional embedding vector for each word, precomputed by an algorithm like word2vec.)

that has one element equal to 1—in the dimension corresponding to that word’s
index in the vocabulary— while all the other elements are set to zero.

Thus in a one-hot representation for the word “toothpaste”, supposing it happens
to have index 5 in the vocabulary, x5 is one and and x; = 0 Vi # 5, as shown here:

(0000100 ...0000]
1234567 |V|

Fig. 7.13 shows the additional layers needed to learn the embeddings during LM
training. Here the N=3 context words are represented as 3 one-hot vectors, fully
connected to the embedding layer via 3 instantiations of the £ embedding matrix.
Note that we don’t want to learn separate weight matrices for mapping each of the 3
previous words to the projection layer, we want one single embedding dictionary E
that’s shared among these three. That’s because over time, many different words will
appear as wy_, or w,_1, and we’d like to just represent each word with one vector,
whichever context position it appears in. The embedding weight matrix E thus has
a row for each word, each a vector of d dimensions, and hence has dimensionality
V xd.

Let’s walk through the forward pass of Fig. 7.13.

1. Select three embeddings from E: Given the three previous words, we look
up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider w,_3. The one-hot vector for ‘the’ is (index 35) is
multiplied by the embedding matrix E, to give the first part of the first hidden

projection layer layer, called the projection layer. Since each row of the input matrix E is just
an embedding for a word, and the input is a one-hot columnvector x; for word

18 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Output layer 1X|V] ‘@ @‘
P(w|context) AP, —
Hidden layer 1xdy, | (h h, hy) ... h
dhX3d W
P(w,=V, R
Projection layer 1x3d o - W=V oW 3w 2w 3)
vl E RVNE =i---.. E is shared
across words
Inputlayer |\, 1 SR Vi
one-hot vectors 00--1N--- 00
index
word 35 word 9925 word 45180
word 42
Z.]lhole]in] the | ground | there lived |.§
Wt.3 W2 Wt-1 Wi

IUTICR] learning all the way back to embeddings. notice that the embedding matrix E is shared among
the 3 context words.

Vi, the projection layer for input w will be Ex; = ¢;, the embedding for word i.
‘We now concatenate the three embeddings for the context words.
2. Multiply by W: We now multiply by W (and add b) and pass through the
rectified linear (or other) activation function to get the hidden layer 4.
3. Multiply by U: /4 is now multiplied by U
4. Apply softmax: After the softmax, each node i in the output layer estimates
the probability P(w; = i|lw;—1,Wr—2,w;—3)
In summary, if we use e to represent the projection layer, formed by concatenat-
ing the 3 embedding for the three context vectors, the equations for a neural language
model become:

e = (Ex1,Exa,...,EX) (7.28)
h = oc(We+b) (7.29)
z = Uh (7.30)
y = softmax(z) (7.31)

7.5.2 Training the neural language model

To train the model, i.e. to set all the parameters 8 = E,W,U,b, we do gradient
descent (Fig. ??), using error back propagation on the computation graph to compute
the gradient. Training thus not only sets the weights W and U of the network, but
also as we’re predicting upcoming words, we’re learning the embeddings E for each
words that best predict upcoming words.

7.6 e SUMMARY 19

Generally training proceedings by taking as input a very long text, concatenating
all the sentences, start with random weights, and then iteratively moving through
the text predicting each word w;. At each word wy, the cross-entropy (negative log
likelihood) loss is:

L=—1ogp(Wi|Wi—1y.ccyWr—nt1) (7.32)

The gradient is for this loss is then:

d —log p(Wi|Wi—1,.cc, Wi—pt1)
a0
This gradient can be computed in any standard neural network framework which
will then backpropagate through U, W, b, E.
Training the parameters to minimize loss will result both in an algorithm for
language modeling (a word predictor) but also a new set of embeddings E that can
be used as word representations for other tasks.

641=6"—n

(7.33)

7.6 Summary

e Neural networks are built out of neural units, originally inspired by human
neurons but now simple an abstract computational device.

e Each neural unit multiplies input values by a weight vector, adds a bias, and
then applies a non-linear activation function like sigmoid, tanh, or rectified
linear.

e In a fully-connected, feedforward network, each unit in layer i is connected
to each unit in layer i + 1, and there are no cycles.

e The power of neural networks comes from the ability of early layers to learn
representations that can be utilized by later layers in the network.

e Neural networks are trained by optimization algorithms like gradient de-
scent.

e Error back propagation, backward differentiation on a computation graph,
is used to compute the gradients of the loss function for a network.

e Neural language models use a neural network as a probabilistic classifier, to
compute the probability of the next word given the previous n words.

e Neural language models can use pretrained embeddings, or can learn embed-
dings from scratch in the process of language modeling.

Bibliographical and Historical Notes

The origins of neural networks lie in the 1940s McCulloch-Pitts neuron (McCul-
loch and Pitts, 1943), a simplified model of the human neuron as a kind of com-
puting element that could be described in terms of propositional logic. By the late
1950s and early 1960s, a number of labs (including Frank Rosenblatt at Cornell and
Bernard Widrow at Stanford) developed research into neural networks; this phase
saw the development of the perceptron (Rosenblatt, 1958), and the transformation
of the threshold into a bias, a notation we still use (Widrow and Hoff, 1960).

20 CHAPTER7 e NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

connectionist

The field of neural networks declined after it was shown that a single percep-
tron unit was unable to model functions as simple as XOR (Minsky and Papert,
1969). While some small amount of work continued during the next two decades,
a major revival for the field didn’t come until the 1980s, when practical tools for
building deeper networks like error back propagation became widespread (Rumel-
hart et al., 1986). During the 1980s a wide variety of neural network and related
architectures were developed, particularly for applications in psychology and cog-
nitive science (Rumelhart and McClelland 1986b, McClelland and Elman 1986,
Rumelhart and McClelland 1986a,Elman 1990), for which the term connection-
ist or parallel distributed processing was often used (Feldman and Ballard 1982,
Smolensky 1988). Many of the principles and techniques developed in this period
are foundational to modern work, including the ideas of distributed representations
(Hinton, 1986), recurrent networks (Elman, 1990), and the use of tensors for com-
positionality (Smolensky, 1990).

By the 1990s larger neural networks began to be applied to many practical lan-
guage processing tasks as well, like handwriting recognition (LeCun et al. 1989,
LeCun et al. 1990) and speech recognition (Morgan and Bourlard 1989, Morgan
and Bourlard 1990). By the early 2000s, improvements in computer hardware and
advances in optimization and training techniques made it possible to train even larger
and deeper networks, leading to the modern term deep learning (Hinton et al. 2006,
Bengio et al. 2007). We cover more related history in Chapter 9.

There are a number of excellent books on the subject. Goldberg (2017) has a
superb and comprehensive coverage of neural networks for natural language pro-
cessing. For neural networks in general see Goodfellow et al. (2016) and Nielsen
(2015).

Bibliographical and Historical Notes 21

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems.. Soft-
ware available from tensorflow.org.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003).
A neural probabilistic language model. Journal of machine
learning research, 3(Feb), 1137-1155.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
(2007). Greedy layer-wise training of deep networks. In
NIPS 2007, pp. 153-160.

Elman, J. L. (1990). Finding structure in time. Cognitive
science, 14(2), 179-211.

Feldman, J. A. and Ballard, D. H. (1982). Connectionist
models and their properties. Cognitive Science, 6, 205—
254.

Goldberg, Y. (2017). Neural Network Methods for Natural
Language Processing, Vol. 10 of Synthesis Lectures on Hu-
man Language Technologies. Morgan & Claypool.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press.

Hinton, G. E. (1986). Learning distributed representations
of concepts. In COGSCI-86, pp. 1-12.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural computa-
tion, 18(7), 1527-1554.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. (2012). Improving neural
networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580.

Kingma, D. and Ba, J. (2015). Adam: A method for stochas-
tic optimization. In /ICLR 2015.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropa-
gation applied to handwritten zip code recognition. Neural
computation, 1(4), 541-551.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. E., and Jackel, L. D. (1990).
Handwritten digit recognition with a back-propagation net-
work. In NIPS 1990, pp. 396-404.

McClelland, J. L. and Elman, J. L. (1986). The TRACE
model of speech perception. Cognitive Psychology, 18, 1—
86.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of
ideas immanent in nervous activity. Bulletin of Mathemat-
ical Biophysics, 5, 115-133. Reprinted in Neurocomput-
ing: Foundations of Research, ed. by J. A. Anderson and E
Rosenfeld. MIT Press 1988.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press.
Morgan, N. and Bourlard, H. (1989). Generalization and pa-
rameter estimation in feedforward nets: Some experiments.

In Advances in neural information processing systems, pp.
630-637.

Morgan, N. and Bourlard, H. (1990). Continuous speech
recognition using multilayer perceptrons with hidden
markov models. In ICASSP-90, pp. 413—-416.

Nielsen, M. A. (2015). Neural networks and Deep learning.
Determination Press USA.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., De-
Vito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A.
(2017). Automatic differentiation in pytorch. In NIPS-W.

Rosenblatt, F. (1958). The perceptron: A probabilistic model
for information storage and organization in the brain.. Psy-
chological review, 65(6), 386—408.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning internal representations by error propagation. In
Rumelhart, D. E. and McClelland, J. L. (Eds.), Parallel
Distributed Processing, Vol. 2, pp. 318-362. MIT Press.

Rumelhart, D. E. and McClelland, J. L. (1986a). On learn-
ing the past tense of English verbs. In Rumelhart, D. E. and
McClelland, J. L. (Eds.), Parallel Distributed Processing,
Vol. 2, pp. 216-271. MIT Press.

Rumelhart, D. E. and McClelland, J. L. (Eds.). (1986b). Par-
allel Distributed Processing. MIT Press.

Russell, S. and Norvig, P. (2002). Artificial Intelligence: A
Modern Approach (2nd Ed.). Prentice Hall.

Smolensky, P. (1988). On the proper treatment of connec-
tionism. Behavioral and brain sciences, 11(1), 1-23.

Smolensky, P. (1990). Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial intelligence, 46(1-2), 159-216.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. R. (2014). Dropout: a simple way
to prevent neural networks from overfitting.. Journal of
Machine Learning Research, 15(1), 1929-1958.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching cir-
cuits. In IRE WESCON Convention Record, Vol. 4, pp.
96-104.

	Neural Networks and Neural Language Models
	Units
	The XOR problem
	The solution: neural networks

	Feed-Forward Neural Networks
	Training Neural Nets
	Loss function
	Computing the Gradient
	Computation Graphs
	Backward differentiation on computation graphs
	More details on learning

	Neural Language Models
	Embeddings
	Training the neural language model

	Summary
	Bibliographical and Historical Notes

