Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2023. All
rights reserved. Draft of February 3, 2024.

CHAPTER

RNNs and LSTMs

Time will explain.
Jane Austen, Persuasion

Language is an inherently temporal phenomenon. Spoken language is a sequence of
acoustic events over time, and we comprehend and produce both spoken and written
language as a continuous input stream. The temporal nature of language is reflected
in the metaphors we use; we talk of the flow of conversations, news feeds, and twitter
streams, all of which emphasize that language is a sequence that unfolds in time.

This temporal nature is reflected in some language processing algorithms. For
example, the Viterbi algorithm we introduced for HMM part-of-speech tagging pro-
ceeds through the input a word at a time, carrying forward information gleaned along
the way. Yet other machine learning approaches, like those we’ve studied for senti-
ment analysis or other text classification tasks don’t have this temporal nature — they
assume simultaneous access to all aspects of their input.

The feedforward networks of Chapter 7 also assumed simultaneous access, al-
though they also had a simple model for time. Recall that we applied feedforward
networks to language modeling by having them look only at a fixed-size window
of words, and then sliding this window over the input, making independent predic-
tions along the way. This sliding-window approach is also used in the transformer
architecture we will introduce in Chapter 10.

This chapter introduces a deep learning architecture that offers an alternative
way of representing time: recurrent neural networks (RNNs), and their variants like
LSTMs. RNNs have a mechanism that deals directly with the sequential nature of
language, allowing them to handle the temporal nature of language without the use of
arbitrary fixed-sized windows. The recurrent network offers a new way to represent
the prior context, in its recurrent connections, allowing the model’s decision to
depend on information from hundreds of words in the past. We’ll see how to apply
the model to the task of language modeling, to sequence modeling tasks like part-
of-speech tagging, and to text classification tasks like sentiment analysis.

9.1 Recurrent Neural Networks

Elman
Networks

A recurrent neural network (RNN) is any network that contains a cycle within its
network connections, meaning that the value of some unit is directly, or indirectly,
dependent on its own earlier outputs as an input. While powerful, such networks
are difficult to reason about and to train. However, within the general class of recur-
rent networks there are constrained architectures that have proven to be extremely
effective when applied to language. In this section, we consider a class of recurrent
networks referred to as ElIman Networks (Elman, 1990) or simple recurrent net-

2 CHAPTER9 ¢ RNNsS AND LSTMs

works. These networks are useful in their own right and serve as the basis for more
complex approaches like the Long Short-Term Memory (LSTM) networks discussed
later in this chapter. In this chapter when we use the term RNN we’ll be referring to
these simpler more constrained networks (although you will often see the term RNN
to mean any net with recurrent properties including LSTMs).

Simple recurrent neural network after Elman (1990). The hidden layer includes
a recurrent connection as part of its input. That is, the activation value of the hidden layer
depends on the current input as well as the activation value of the hidden layer from the
previous time step.

Fig. 9.1 illustrates the structure of an RNN. As with ordinary feedforward net-
works, an input vector representing the current input, x;, is multiplied by a weight
matrix and then passed through a non-linear activation function to compute the val-
ues for a layer of hidden units. This hidden layer is then used to calculate a cor-
responding output, y,. In a departure from our earlier window-based approach, se-
quences are processed by presenting one item at a time to the network. We’ll use
subscripts to represent time, thus x, will mean the input vector x at time 7. The key
difference from a feedforward network lies in the recurrent link shown in the figure
with the dashed line. This link augments the input to the computation at the hidden
layer with the value of the hidden layer from the preceding point in time.

The hidden layer from the previous time step provides a form of memory, or
context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this approach does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer can include
information extending back to the beginning of the sequence.

Adding this temporal dimension makes RNNs appear to be more complex than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation introduced in Chapter 7. To
see this, consider Fig. 9.2 which clarifies the nature of the recurrence and how it
factors into the computation at the hidden layer. The most significant change lies in
the new set of weights, U, that connect the hidden layer from the previous time step
to the current hidden layer. These weights determine how the network makes use of
past context in calculating the output for the current input. As with the other weights
in the network, these connections are trained via backpropagation.

9.1.1 Inference in RNNs

Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output y; for an input x,, we need the activation value for the hidden
layer h;. To calculate this, we multiply the input x, with the weight matrix W, and
the hidden layer from the previous time step h,_; with the weight matrix U. We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, h;. Once we have the

9.1 ¢ RECURRENT NEURAL NETWORKS 3

N\
<
—

(hy_4) (Xt)

I3t Simple recurrent neural network illustrated as a feedforward network.

values for the hidden layer, we proceed with the usual computation to generate the
output vector.

ht = g(Uht71+WXt) (91)
Y: = f(Vh,) 9.2)

It’s worthwhile here to be careful about specifying the dimensions of the input, hid-
den and output layers, as well as the weight matrices to make sure these calculations
are correct. Let’s refer to the input, hidden and output layer dimensions as d;,, dj,
and d,,; respectively. Given this, our three parameter matrices are: W € R%*din,
U e R% >4 and V & Rou ¥

In the commonly encountered case of soft classification, computing y; consists
of a softmax computation that provides a probability distribution over the possible
output classes.

y; = softmax(Vhy) (9.3)

The fact that the computation at time ¢ requires the value of the hidden layer from
time ¢ — 1 mandates an incremental inference algorithm that proceeds from the start
of the sequence to the end as illustrated in Fig. 9.3. The sequential nature of simple
recurrent networks can also be seen by unrolling the network in time as is shown in
Fig. 9.4. In this figure, the various layers of units are copied for each time step to
illustrate that they will have differing values over time. However, the various weight
matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

ho 0

for i+ 1 to LENGTH(x) do
h; < g(Uh;_; + Wx;)
yi+ f(Vh;)

return y

13T K] Forward inference in a simple recurrent network. The matrices U, V and W are
shared across time, while new values for h and y are calculated with each time step.

4 CHAPTER9 ¢ RNNSs AND LSTMs

v w
Ch (Xo)
w

»
>

A simple recurrent neural network shown unrolled in time. Network layers are recalculated for
each time step, while the weights U, V and W are shared across all time steps.

9.1.2 Training

As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.2, we now have 3 sets of weights to update: W, the
weights from the input layer to the hidden layer, U, the weights from the previous
hidden layer to the current hidden layer, and finally V, the weights from the hidden
layer to the output layer.

Fig. 9.4 highlights two considerations that we didn’t have to worry about with
backpropagation in feedforward networks. First, to compute the loss function for
the output at time ¢ we need the hidden layer from time # — 1. Second, the hidden
layer at time ¢ influences both the output at time ¢ and the hidden layer at time 7 + 1
(and hence the output and loss at 7 4 1). It follows from this that to assess the error
accruing to h,, we’ll need to know its influence on both the current output as well as
the ones that follow.

Tailoring the backpropagation algorithm to this situation leads to a two-pass al-
gorithm for training the weights in RNNs. In the first pass, we perform forward
inference, computing h;, y;, accumulating the loss at each step in time, saving the
value of the hidden layer at each step for use at the next time step. In the second
phase, we process the sequence in reverse, computing the required gradients as we
go, computing and saving the error term for use in the hidden layer for each step

backpropagn- backward in time. This general approach is commonly referred to as backpropaga-

tion through tion through time (Werbos 1974, Rumelhart et al. 1986, Werbos 1990).

time Fortunately, with modern computational frameworks and adequate computing
resources, there is no need for a specialized approach to training RNNs. As illus-

trated in Fig. 9.4, explicitly unrolling a recurrent network into a feedforward com-

putational graph eliminates any explicit recurrences, allowing the network weights

to be trained directly. In such an approach, we provide a template that specifies the

basic structure of the network, including all the necessary parameters for the input,

9.2 ¢ RNNSsS AS LANGUAGE MODELS 5

output, and hidden layers, the weight matrices, as well as the activation and output
functions to be used. Then, when presented with a specific input sequence, we can
generate an unrolled feedforward network specific to that input, and use that graph
to perform forward inference or training via ordinary backpropagation.

For applications that involve much longer input sequences, such as speech recog-
nition, character-level processing, or streaming continuous inputs, unrolling an en-
tire input sequence may not be feasible. In these cases, we can unroll the input into
manageable fixed-length segments and treat each segment as a distinct training item.

9.2 RNNs as Language Models

Let’s see how to apply RNNs to the language modeling task. Recall from Chapter 3
that language models predict the next word in a sequence given some preceding
context. For example, if the preceding context is “Thanks for all the” and we want
to know how likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. We can also
assign probabilities to entire sequences by combining these conditional probabilities
with the chain rule:

P(win) = HP(Wi|W<i)
i=1

The n-gram language models of Chapter 3 compute the probability of a word given
counts of its occurrence with the n — 1 prior words. The context is thus of size n — 1.
For the feedforward language models of Chapter 7, the context is the window size.

RNN language models (Mikolov et al., 2010) process the input sequence one
word at a time, attempting to predict the next word from the current word and the
previous hidden state. RNNs thus don’t have the limited context problem that n-gram
models have, or the fixed context that feedforward language models have, since the
hidden state can in principle represent information about all of the preceding words
all the way back to the beginning of the sequence. Fig. 9.5 sketches this difference
between a FFN language model and an RNN language model, showing that the
RNN language model uses /;_1, the hidden state from the previous time step, as a
representation of the past context.

9.2.1 Forward Inference in an RNN language model

Forward inference in a recurrent language model proceeds exactly as described in
Section 9.1.1. The input sequence X = [Xj;...;X;; ...; Xy] consists of a series of words
each represented as a one-hot vector of size |V| x 1, and the output prediction, y, is a
vector representing a probability distribution over the vocabulary. At each step, the
model uses the word embedding matrix E to retrieve the embedding for the current
word, and then combines it with the hidden layer from the previous step to compute a
new hidden layer. This hidden layer is then used to generate an output layer which is
passed through a softmax layer to generate a probability distribution over the entire

6 CHAPTERY9 <+ RNNs AND LSTMs

self-supervision

N b
B
(Cheg oy)

PG Simplified sketch of (a) a feedforward neural language model versus (b) an
RNN language model moving through a text.

vocabulary. That is, at time ¢:

e = Ext (94)
h, = g(Uh,_; +We,) 9.5)
y; = softmax(Vh,) 9.6)

The vector resulting from Vh can be thought of as a set of scores over the vocabulary
given the evidence provided in h. Passing these scores through the softmax normal-
izes the scores into a probability distribution. The probability that a particular word
[in the vocabulary is the next word is represented by y,[k], the kth component of y,:

P(Wt+1 :k|W1,...,Wt) = yt[k] (97)

The probability of an entire sequence is just the product of the probabilities of each
item in the sequence, where we’ll use y;[w;] to mean the probability of the true word
w; at time step i.

n

P(Wl:n) = HP(Wi‘Wl:ifl) 9.8)
i=1

= []vilwi 9.9)
i=1

9.2.2 Training an RNN language model

To train an RNN as a language model, we use the same self-supervision (or self-
training) algorithm we saw in Section ??: we take a corpus of text as training
material and at each time step ¢ ask the model to predict the next word. We call
such a model self-supervised because we don’t have to add any special gold labels
to the data; the natural sequence of words is its own supervision! We simply train
the model to minimize the error in predicting the true next word in the training
sequence, using cross-entropy as the loss function. Recall that the cross-entropy
loss measures the difference between a predicted probability distribution and the
correct distribution.

Leg = =Y yi[w]log§i[w] 9.10)
weV

In the case of language modeling, the correct distribution y; comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary

9.2 ¢ RNNSsS AS LANGUAGE MODELS 7

Next word

Loss

long and thanks for all

T
1
[~ 10g Yiong] [=10gYand] [Z108Yimans | [=108Ytor| [—108 Yan o Ler

=1
y

Softmax over
Vocabulary

RNN

(V:@ (ol) G) Goln) ()
S
e

Input
Embeddings

8 8 8

So long and thanks for

Figure 9.6 Vs

teacher forcing

weight typing

aining RNNSs as language models.

where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word. So at time ¢ the CE loss is the negative log
probability the model assigns to the next word in the training sequence.

Lee(Yi,y:) = —log¥:[wii1] (9.11)

Thus at each word position ¢ of the input, the model takes as input the correct se-
quence of tokens wy,, and uses them to compute a probability distribution over
possible next words so as to compute the model’s loss for the next token w; 1. Then
we move to the next word, we ignore what the model predicted for the next word
and instead use the correct sequence of tokens wy.,1 to estimate the probability of
token w;;. This idea that we always give the model the correct history sequence to
predict the next word (rather than feeding the model its best case from the previous
time step) is called teacher forcing.

The weights in the network are adjusted to minimize the average CE loss over
the training sequence via gradient descent. Fig. 9.6 illustrates this training regimen.

9.2.3 Weight Tying

Careful readers may have noticed that the input embedding matrix E and the final
layer matrix V, which feeds the output softmax, are quite similar. The columns of E
represent the word embeddings for each word in the vocabulary learned during the
training process with the goal that words that have similar meaning and function will
have similar embeddings. And, since the length of these embeddings corresponds to
the size of the hidden layer dj, the shape of the embedding matrix E is dj, x |V|.
The final layer matrix V provides a way to score the likelihood of each word in
the vocabulary given the evidence present in the final hidden layer of the network
through the calculation of Vh. This results in dimensionality |V| x d,. That is, the
rows of V provide a second set of learned word embeddings that capture relevant
aspects of word meaning. This leads to an obvious question — is it even necessary
to have both? Weight tying is a method that dispenses with this redundancy and
simply uses a single set of embeddings at the input and softmax layers. That is, we

8 CHAPTERY9 <+ RNNSs AND LSTMs

dispense with V and use E in both the start and end of the computation.

e, = Ex; 9.12)
h, = g(Uh,_; +We,) (9.13)
y; = softmax(ETh,) (9.14)

In addition to providing improved model perplexity, this approach significantly re-
duces the number of parameters required for the model.

9.3 RNNSs for other NLP tasks

Now that we’ve seen the basic RNN architecture, let’s consider how to apply it to
three types of NLP tasks: sequence classification tasks like sentiment analysis and
topic classification, sequence labeling tasks like part-of-speech tagging, and fext
generation tasks, including with a new architecture called the encoder-decoder.

9.3.1 Sequence Labeling

In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each element of a sequence, like the part-of-speech tagging and
named entity recognition tasks from Chapter 8. In an RNN approach to sequence
labeling, inputs are word embeddings and the outputs are tag probabilities generated
by a softmax layer over the given tagset, as illustrated in Fig. 9.7.

Argmax NNP MD VB DT NN
y

St over [DDDDMDD]mﬂaﬂ][:D[LMDD][[H:LUDD]ﬂmﬂﬂ]

Vh
RNN [_I h]] [] []

Layer(s) | L | \Tf

§

Words Janet will back the bill

IPTC] Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

Ce®

Embeddings e g

Ce®
C0®

In this figure, the inputs at each time step are pretrained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U, V and W weight matrices
that comprise the network. The outputs of the network at each time step represent
the distribution over the POS tagset generated by a softmax layer.

end-to-end
training

pooling

9.3 ¢ RNNS FOR OTHER NLP TASKS 9

To generate a sequence of tags for a given input, we run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
tagset at each time step, we will again employ the cross-entropy loss during training.

9.3.2 RNN:s for Sequence Classification

Another use of RNNSs is to classify entire sequences rather than the tokens within
them. This is the set of tasks commonly called text classification, like sentiment
analysis or spam detection, in which we classify a text into two or three classes
(like positive or negative), as well as classification tasks with a large number of
categories, like document-level topic classification, or message routing for customer
service applications.

To apply RNNss in this setting, we pass the text to be classified through the RNN
a word at a time generating a new hidden layer at each time step. We can then take
the hidden layer for the last token of the text, h,, to constitute a compressed repre-
sentation of the entire sequence. We can pass this representation h,, to a feedforward
network that chooses a class via a softmax over the possible classes. Fig. 9.8 illus-
trates this approach.

AT R] Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

]

-]
)
pd
pzd

—

Note that in this approach we don’t need intermediate outputs for the words in
the sequence preceding the last element. Therefore, there are no loss terms associ-
ated with those elements. Instead, the loss function used to train the weights in the
network is based entirely on the final text classification task. The output from the
softmax output from the feedforward classifier together with a cross-entropy loss
drives the training. The error signal from the classification is backpropagated all the
way through the weights in the feedforward classifier through, to its input, and then
through to the three sets of weights in the RNN as described earlier in Section 9.1.2.
The training regimen that uses the loss from a downstream application to adjust the
weights all the way through the network is referred to as end-to-end training.

Another option, instead of using just the last token A, to represent the whole
sequence, is to use some sort of pooling function of all the hidden states 4; for each
word i in the sequence. For example, we can create a representation that pools all

10 CHAPTERY9 <+ RNNS AND LSTMs

autoregressive
generation

the n hidden states by taking their element-wise mean:
1 n
huean = ; z; h; (9.15)
=

Or we can take the element-wise max; the element-wise max of a set of n vectors is
a new vector whose kth element is the max of the kth elements of all the n vectors.

9.3.3 Generation with RNN-Based Language Models

RNN-based language models can also be used to generate text. Text generation is
of enormous practical importance, part of tasks like question answering, machine
translation, text summarization, grammar correction, story generation, and conver-
sational dialogue; any task where a system needs to produce text, conditioned on
some other text. This use of a language model to generate text is one of the areas
in which the impact of neural language models on NLP has been the largest. Text
generation, along with image generation and code generation, constitute a new area
of Al that is often called generative Al.

Recall back in Chapter 3 we saw how to generate text from an n-gram language
model by adapting a sampling technique suggested at about the same time by Claude
Shannon (Shannon, 1951) and the psychologists George Miller and Jennifer Self-
ridge (Miller and Selfridge, 1950). We first randomly sample a word to begin a
sequence based on its suitability as the start of a sequence. We then continue to
sample words conditioned on our previous choices until we reach a pre-determined
length, or an end of sequence token is generated.

Today, this approach of using a language model to incrementally generate words
by repeatedly sampling the next word conditioned on our previous choices is called
autoregressive generation or causal LM generation. The procedure is basically
the same as that described on page ??, but adapted to a neural context:

* Sample a word in the output from the softmax distribution that results from
using the beginning of sentence marker, <s>, as the first input.

* Use the word embedding for that first word as the input to the network at the
next time step, and then sample the next word in the same fashion.

» Continue generating until the end of sentence marker, </s>, is sampled or a
fixed length limit is reached.

Technically an autoregressive model is a model that predicts a value at time ¢ based
on a linear function of the previous values at times # — 1, — 2, and so on. Although
language models are not linear (since they have many layers of non-linearities), we
loosely refer to this generation technique as autoregressive generation since the
word generated at each time step is conditioned on the word selected by the network
from the previous step. Fig. 9.9 illustrates this approach. In this figure, the details of
the RNN’s hidden layers and recurrent connections are hidden within the blue block.

This simple architecture underlies state-of-the-art approaches to applications
such as machine translation, summarization, and question answering. The key to
these approaches is to prime the generation component with an appropriate context.
That is, instead of simply using <s> to get things started we can provide a richer
task-appropriate context; for translation the context is the sentence in the source
language; for summarization it’s the long text we want to summarize.

9.4 ¢ STACKED AND BIDIRECTIONAL RNN ARCHITECTURES 11

-

b e
Sampled Word So

NG

Softmax (el

A

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
RNN B : [: [
| |
| |
| |
| |
| |
| |
| |
| |
| |

Embedding

Input Word <&>

IO Autoregressive generation with an RNN-based neural language model.

9.4 Stacked and Bidirectional RNN architectures

Stacked RNNs

Recurrent networks are quite flexible. By combining the feedforward nature of un-
rolled computational graphs with vectors as common inputs and outputs, complex
networks can be treated as modules that can be combined in creative ways. This
section introduces two of the more common network architectures used in language
processing with RNNs.

94.1 Stacked RNNs

In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves as
the input to a subsequent layer, as shown in Fig. 9.10.

ﬁ} [} EZL RNN3—G]

[in LI L] RNN 2]
[]] RNN 1]
x x | |
X1 X2 X3 Xn

I3TuN NI Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

12 CHAPTERY9 <+ RNNS AND LSTMSs

bidirectional
RNN

Stacked RNNs generally outperform single-layer networks. One reason for this
success seems to be that the network induces representations at differing levels of
abstraction across layers. Just as the early stages of the human visual system detect
edges that are then used for finding larger regions and shapes, the initial layers of
stacked networks can induce representations that serve as useful abstractions for
further layers—representations that might prove difficult to induce in a single RNN.
The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.

9.4.2 Bidirectional RNNs

The RNN uses information from the left (prior) context to make its predictions at
time 7. But in many applications we have access to the entire input sequence; in
those cases we would like to use words from the context to the right of z. One way
to do this is to run two separate RNNs, one left-to-right, and one right-to-left, and
concatenate their representations.

In the left-to-right RNNs we’ve discussed so far, the hidden state at a given time
t represents everything the network knows about the sequence up to that point. The
state is a function of the inputs x1, ..., x; and represents the context of the network to
the left of the current time.

hj; = RNN¢orward (X17 . ,X;) (9.16)

This new notation h’; simply corresponds to the normal hidden state at time ¢, repre-
senting everything the network has gleaned from the sequence so far.

To take advantage of context to the right of the current input, we can train an
RNN on a reversed input sequence. With this approach, the hidden state at time ¢
represents information about the sequence to the right of the current input:

h% = RNNpackward (X5 - - - X») 9.17)

Here, the hidden state hZ; represents all the information we have discerned about the
sequence from ¢ to the end of the sequence.

A bidirectional RNN (Schuster and Paliwal, 1997) combines two independent
RNNs, one where the input is processed from the start to the end, and the other from
the end to the start. We then concatenate the two representations computed by the
networks into a single vector that captures both the left and right contexts of an input

at each point in time. Here we use either the semicolon ;” or the equivalent symbol
@ to mean vector concatenation:

[h): b’
= hloh? (9.18)

h,

Fig. 9.11 illustrates such a bidirectional network that concatenates the outputs of
the forward and backward pass. Other simple ways to combine the forward and
backward contexts include element-wise addition or multiplication. The output at
each step in time thus captures information to the left and to the right of the current
input. In sequence labeling applications, these concatenated outputs can serve as the
basis for a local labeling decision.

Bidirectional RNNs have also proven to be quite effective for sequence classifi-
cation. Recall from Fig. 9.8 that for sequence classification we used the final hidden

9.4 ¢ STACKED AND BIDIRECTIONAL RNN ARCHITECTURES 13

Y1 Yo Y3

Yn
Uﬂ concatenated
»U outputs
(e RNN 2 ———{ |

| L ! J
[D\— —RNN 1] ‘

AT ML A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

state of the RNN as the input to a subsequent feedforward classifier. A difficulty
with this approach is that the final state naturally reflects more information about
the end of the sentence than its beginning. Bidirectional RNNs provide a simple
solution to this problem; as shown in Fig. 9.12, we simply combine the final hidden
states from the forward and backward passes (for example by concatenation) and
use that as input for follow-on processing.

SR

X1 X2 XS Xn

IOTICAP] A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

14 CHAPTERY9 <+ RNNS AND LSTMs

9.5 The LSTM

vanishing
gradients

long short-term
memory

In practice, it is quite difficult to train RNNs for tasks that require a network to make
use of information distant from the current point of processing. Despite having ac-
cess to the entire preceding sequence, the information encoded in hidden states tends
to be fairly local, more relevant to the most recent parts of the input sequence and
recent decisions. Yet distant information is critical to many language applications.
Consider the following example in the context of language modeling.

(9.19) The flights the airline was canceling were full.

Assigning a high probability to was following airline is straightforward since airline
provides a strong local context for the singular agreement. However, assigning an
appropriate probability to were is quite difficult, not only because the plural flights
is quite distant, but also because the singular noun airline is closer in the intervening
context. Ideally, a network should be able to retain the distant information about
plural flights until it is needed, while still processing the intermediate parts of the
sequence correctly.

One reason for the inability of RNNSs to carry forward critical information is that
the hidden layers, and, by extension, the weights that determine the values in the hid-
den layer, are being asked to perform two tasks simultaneously: provide information
useful for the current decision, and updating and carrying forward information re-
quired for future decisions.

A second difficulty with training RNNs arises from the need to backpropagate
the error signal back through time. Recall from Section 9.1.2 that the hidden layer at
time ¢ contributes to the loss at the next time step since it takes part in that calcula-
tion. As a result, during the backward pass of training, the hidden layers are subject
to repeated multiplications, as determined by the length of the sequence. A frequent
result of this process is that the gradients are eventually driven to zero, a situation
called the vanishing gradients problem.

To address these issues, more complex network architectures have been designed
to explicitly manage the task of maintaining relevant context over time, by enabling
the network to learn to forget information that is no longer needed and to remember
information required for decisions still to come.

The most commonly used such extension to RNNss is the long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhuber, 1997). LSTMs divide the con-
text management problem into two subproblems: removing information no longer
needed from the context, and adding information likely to be needed for later de-
cision making. The key to solving both problems is to learn how to manage this
context rather than hard-coding a strategy into the architecture. LSTMs accomplish
this by first adding an explicit context layer to the architecture (in addition to the
usual recurrent hidden layer), and through the use of specialized neural units that
make use of gates to control the flow of information into and out of the units that
comprise the network layers. These gates are implemented through the use of addi-
tional weights that operate sequentially on the input, and previous hidden layer, and
previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values

forget gate

add gate

output gate

9.5 ¢« THELSTM 15

in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate is
to delete information from the context that is no longer needed. The forget gate
computes a weighted sum of the previous state’s hidden layer and the current in-
put and passes that through a sigmoid. This mask is then multiplied element-wise
by the context vector to remove the information from context that is no longer re-
quired. Element-wise multiplication of two vectors (represented by the operator ©,
and sometimes called the Hadamard product) is the vector of the same dimension
as the two input vectors, where each element i is the product of element i in the two
input vectors:

fi = o(Ush,_1 +Wyx) (9.20)
ki = ¢, 10f (9.21)

The next task is to compute the actual information we need to extract from the previ-
ous hidden state and current inputs—the same basic computation we’ve been using
for all our recurrent networks.

gt - tanh(Ugh[71+WgX[) (922)

Next, we generate the mask for the add gate to select the information to add to the
current context.

i; = G(U,’ht_l-l-W,'X,) (9.23)
= g0i (9.24)

Next, we add this to the modified context vector to get our new context vector.
¢ =j+k (9.25)

The final gate we’ll use is the output gate which is used to decide what informa-
tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

o, = o(Uyh,—1 +W,x,) (9.26)
h[= O @tanh(Ct) (927)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given the
appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output.

It is the hidden state, 4, that provides the output for the LSTM at each time step.
This output can be used as the input to subsequent layers in a stacked RNN, or at the
final layer of a network /; can be used to provide the final output of the LSTM.

9.5.1 Gated Units, Layers and Networks

The neural units used in LSTMs are obviously much more complex than those used
in basic feedforward networks. Fortunately, this complexity is encapsulated within
the basic processing units, allowing us to maintain modularity and to easily exper-
iment with different architectures. To see this, consider Fig. 9.14 which illustrates
the inputs and outputs associated with each kind of unit.

16

CHAPTER 9 ¢ RNNsS AND LSTMs

=
Ct 1 -1
—/
N
hi1 =
—/
Xp—{—x

~ >‘<,>/ ° LSTM
+ /
N)

IFTNCIPRR] A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the

current input, x, the previous hidden state, /;_1, and the previous context, ¢;_1. The outputs are a new hidden
state, i, and an updated context, c;.

h hy o hy

a a

(2) (>) \
X hi_q X Ct1 heq X

@ (b) (©

ISV CPAEY Basic neural units used in feedforward, simple recurrent networks (SRN), and
long short-term memory (LSTM).

At the far left, (a) is the basic feedforward unit where a single set of weights and
a single activation function determine its output, and when arranged in a layer there
are no connections among the units in the layer. Next, (b) represents the unit in a
simple recurrent network. Now there are two inputs and an additional set of weights
to go with it. However, there is still a single activation function and output.

The increased complexity of the LSTM units is encapsulated within the unit
itself. The only additional external complexity for the LSTM over the basic recurrent
unit (b) is the presence of the additional context vector as an input and output.

This modularity is key to the power and widespread applicability of LSTM units.
LSTM units (or other varieties, like GRUs) can be substituted into any of the network
architectures described in Section 9.4. And, as with simple RNNs, multi-layered
networks making use of gated units can be unrolled into deep feedforward networks
and trained in the usual fashion with backpropagation. In practice, therefore, LSTMs
rather than RNNs have become the standard unit for any modern system that makes
use of recurrent networks.

9.6 ¢ SUMMARY: COMMON RNN NLP ARCHITECTURES 17

9.6 Summary: Common RNN NLP Architectures

We’ve now introduced the RNN, seen advanced components like stacking multiple
layers and using the LSTM version, and seen how the RNN can be applied to various
tasks. Let’s take a moment to summarize the architectures for these applications.

Fig. 9.15 shows the three architectures we’ve discussed so far: sequence la-
beling, sequence classification, and language modeling. In sequence labeling (for
example for part of speech tagging), we train a model to produce a label for each
input word or token. In sequence classification, for example for sentiment analysis,
we ignore the output for each token, and only take the value from the end of the
sequence (and similarly the model’s training signal comes from backpropagation
from that last token). In language modeling, we train the model to predict the next
word at each token step. In the next section we’ll introduce a fourth architecture, the
encoder-decoder.

vor - 4
))

t t t t t t
X4 X Xn X4 Xo Xn
a) sequence labeling b) sequence classification
Yy Y2 Ym
t ¢ t
Xo X3 Xt (Decoder RNN)

)

(Encoder RNN)

t t t
X1 X2 Xt-1 x: xl xt]
¢) language modeling d) encoder-decoder

Four architectures for NLP tasks. In sequence labeling (POS or named entity tagging) we map
each input token x; to an output token y;. In sequence classification we map the entire input sequence to a single
class. In language modeling we output the next token conditioned on previous tokens. In the encoder model we
have two separate RNN models, one of which maps from an input sequence x to an intermediate representation
we call the context, and a second of which maps from the context to an output sequence y.

9.7 The Encoder-Decoder Model with RNNs

In this section we introduce a new model, the encoder-decoder model, which is used
when we are taking an input sequence and translating it to an output sequence that is
of a different length than the input, and doesn’t align with it in a word-to-word way.
Recall that in the sequence labeling task, we have two sequences, but they are the

18 CHAPTERY9 <+ RNNS AND LSTMSs

encoder-
decoder

same length (for example in part-of-speech tagging each token gets an associated
tag), each input is associated with a specific output, and the labeling for that output
takes mostly local information. Thus deciding whether a word is a verb or a noun,
we look mostly at the word and the neighboring words.

By contrast, encoder-decoder models are used especially for tasks like machine
translation, where the input sequence and output sequence can have different lengths
and the mapping between a token in the input and a token in the output can be very
indirect (in some languages the verb appears at the beginning of the sentence; in
other languages at the end). We’ll introduce machine translation in detail in Chap-
ter 13, but for now we’ll just point out that the mapping for a sentence in English to
a sentence in Tagalog or Yoruba can have very different numbers of words, and the
words can be in a very different order.

Encoder-decoder networks, sometimes called sequence-to-sequence networks,
are models capable of generating contextually appropriate, arbitrary length, output
sequences given an input sequence. Encoder-decoder networks have been applied
to a very wide range of applications including summarization, question answering,
and dialogue, but they are particularly popular for machine translation.

The key idea underlying these networks is the use of an encoder network that
takes an input sequence and creates a contextualized representation of it, often called
the context. This representation is then passed to a decoder which generates a task-
specific output sequence. Fig. 9.16 illustrates the architecture.

Y1 Yo Ym
Lt !
(Decoder)
(Encoder)
f f f
X1 X2 *n

IR AIY The encoder-decoder architecture. The context is a function of the hidden
representations of the input, and may be used by the decoder in a variety of ways.

Encoder-decoder networks consist of three conceptual components:

1. An encoder that accepts an input sequence, x1.,, and generates a correspond-
ing sequence of contextualized representations, hy.,. LSTMs, convolutional
networks, and transformers can all be employed as encoders.

2. A context vector, c, which is a function of A;.,, and conveys the essence of
the input to the decoder.

3. A decoder, which accepts ¢ as input and generates an arbitrary length se-
quence of hidden states 1., from which a corresponding sequence of output
states y1.,, can be obtained. Just as with encoders, decoders can be realized
by any kind of sequence architecture.

In this section we’ll describe an encoder-decoder network based on a pair of
RNNS, but we’ll see in Chapter 13 how to apply them to transformers as well. We’ll
build up the equations for encoder-decoder models by starting with the conditional
RNN language model p(y), the probability of a sequence y.

Recall that in any language model, we can break down the probability as follows:

p(y) = pO)p»)r(ayy2) - pOmlyts - ym-1) (9.28)

9.7 ¢ THE ENCODER-DECODER MODEL WITH RNNs 19

In RNN language modeling, at a particular time ¢, we pass the prefix of r — 1
tokens through the language model, using forward inference to produce a sequence
of hidden states, ending with the hidden state corresponding to the last word of
the prefix. We then use the final hidden state of the prefix as our starting point to
generate the next token.

More formally, if g is an activation function like tanh or ReLU, a function of
the input at time ¢ and the hidden state at time ¢ — 1, and f is a softmax over the
set of possible vocabulary items, then at time ¢ the output y, and hidden state h, are
computed as:

ht = g(h,_l,x,«) (929)
y: = f(ht) (9.30)

We only have to make one slight change to turn this language model with au-
toregressive generation into an encoder-decoder model that is a translation model
that can translate from a source text in one language to a target text in a second:

seporation add a sentence separation marker at the end of the source text, and then simply
concatenate the target text.

Let’s use <s> for our sentence separator token, and let’s think about translating
an English source text (“the green witch arrived”), to a Spanish sentence (“llego
la bruja verde” (which can be glossed word-by-word as ‘arrived the witch green’).
We could also illustrate encoder-decoder models with a question-answer pair, or a
text-summarization pair.

Let’s use x to refer to the source text (in this case in English) plus the separator
token <s>, and y to refer to the target text y (in this case in Spanish). Then an
encoder-decoder model computes the probability p(y|x) as follows:

pOlx) = piX)p2ly,X)p(3[y1,y2:X) . Omly1s s Ym—1,X) (9.31)

Fig. 9.17 shows the setup for a simplified version of the encoder-decoder model
(we’ll see the full model, which requires the new concept of attention, in the next

section).
Target Text
A
~ “ TN
P ///\\ 7 //\\
llegd i la” ! bruja | verde | </s>
S S I S N S
softmax (output of source is ignored) %} } i i i
|
| | ! |
hidden [b 4\ 4\ !hi\ ! : i ;
n |
M B IR R
beddi - - - [! - [
TR ERRR ER RN
| | |
the green witch arrived <s> i llegd | _la | bruja | verde
\ / L/ﬂ L/’/ ‘_//4 ‘\J//(
v Separator
Source Text
ISP AY] Translating a single sentence (inference time) in the basic RNN version of encoder-decoder ap-

proach to machine translation. Source and target sentences are concatenated with a separator token in between,
and the decoder uses context information from the encoder’s last hidden state.

Fig. 9.17 shows an English source text (“the green witch arrived”), a sentence
separator token (<s>, and a Spanish target text (“llego la bruja verde”). To trans-

20 CHAPTER9 <+ RNNS AND LSTMsS

late a source text, we run it through the network performing forward inference to
generate hidden states until we get to the end of the source. Then we begin autore-
gressive generation, asking for a word in the context of the hidden layer from the
end of the source input as well as the end-of-sentence marker. Subsequent words
are conditioned on the previous hidden state and the embedding for the last word

generated.

Let’s formalize and generalize this model a bit in Fig. 9.18. (To help keep things
straight, we’ll use the superscripts e and d where needed to distinguish the hidden
states of the encoder and the decoder.) The elements of the network on the left
process the input sequence x and comprise the encoder. While our simplified figure
shows only a single network layer for the encoder, stacked architectures are the
norm, where the output states from the top layer of the stack are taken as the final
representation, and the encoder consists of stacked biLSTMs where the hidden states
from top layers from the forward and backward passes are concatenated to provide

the contextualized representations for each time step.

Decoder
A A
| 7
} I </s>
(output is ignored during encoding) } A } 4
i ;
| |
| |
hidden he Et] Et] | he,=c=hd } f:" } @
L | t
! : - ft
embedding] i
layer } }
| |
X4 Xy X3 X, | ’Y3 | 'ym
7
N— _ - ‘\ - - - L i
v
Encoder

I3TCBE] A more formal version of translating a sentence at inference time in the basic RNN-based
encoder-decoder architecture. The final hidden state of the encoder RNN, %¢,

serves as the context for the

decoder in its role as hg in the decoder RNN, and is also made available to each decoder hidden state.

The entire purpose of the encoder is to generate a contextualized representation
of the input. This representation is embodied in the final hidden state of the encoder,
h¢. This representation, also called c for context, is then passed to the decoder.

The simplest version of the decoder network would takes this state and use it
just to initialize the first hidden state of the decoder; the first decoder RNN cell
would use c as its prior hidden state hg . The decoder would then autoregressively
generates a sequence of outputs, an element at a time, until an end-of-sequence
marker is generated. Each hidden state is conditioned on the previous hidden state

and the output generated in the previous state.

As Fig. 9.18 shows, we do something more complex: we make the context vector
c available to more than just the first decoder hidden state, to ensure that the influence
of the context vector, ¢, doesn’t wane as the output sequence is generated. We do
this by adding ¢ as a parameter to the computation of the current hidden state. using

the following equation:

h _g(yt laht 1)

(9.32)

Now we’re ready to see the full equations for this version of the decoder in the basic
encoder-decoder model, with context available at each decoding timestep. Recall

9.7 ¢ THE ENCODER-DECODER MODEL WITH RNNs 21

that g is a stand-in for some flavor of RNN and y,_; is the embedding for the output
sampled from the softmax at the previous step:

c =h

hi = ¢

h;i = g(yAt—l,hfi—hC)

Z; = f(h?)

y: = softmax(z,) (9.33)

Finally, as shown earlier, the output y at each time step consists of a softmax com-
putation over the set of possible outputs (the vocabulary, in the case of language
modeling or MT). We compute the most likely output at each time step by taking the
argmax over the softmax output:

¥ = argmaxyevP(W|yi...y—1,%) (9.34)

9.7.1 Training the Encoder-Decoder Model

Encoder-decoder architectures are trained end-to-end. Each training example is a
tuple of paired strings, a source and a target. Concatenated with a separator token,
these source-target pairs can now serve as training data.

For MT, the training data typically consists of sets of sentences and their transla-
tions. These can be drawn from standard datasets of aligned sentence pairs, as we’ll
discuss in Section ??. Once we have a training set, the training itself proceeds as
with any RNN-based language model. The network is given the source text and then
starting with the separator token is trained autoregressively to predict the next word,
as shown in Fig. 9.19.

Decoder
A
-~ N
. gold
llegd la bl’l‘,l]a ver‘de </§> answers
Yi Y2 V3 V4 Vs
T
Total loss is the average 1
cross-entropy loss per L= T Z L; per-word
target word: i=1 loss
%] %] i
)
[] [] [N hidden
s S . L L - e
embedding
layer
)"1 x‘z X3 X4
the green witch arrived <s> llegd la bruja verde
N— _/
YT
Encoder
IR AR] Training the basic RNN encoder-decoder approach to machine translation. Note that in the

decoder we usually don’t propagate the model’s softmax outputs ¥;, but use teacher forcing to force each input
to the correct gold value for training. We compute the softmax output distribution over y in the decoder in order
to compute the loss at each token, which can then be averaged to compute a loss for the sentence.

22 CHAPTERY9 -

teacher forcing

RNNSs AND LSTMS

Note the differences between training (Fig. 9.19) and inference (Fig. 9.17) with
respect to the outputs at each time step. The decoder during inference uses its own
estimated output y; as the input for the next time step x;+1. Thus the decoder will
tend to deviate more and more from the gold target sentence as it keeps generating
more tokens. In training, therefore, it is more common to use teacher forcing in the
decoder. Teacher forcing means that we force the system to use the gold target token
from training as the next input x,, rather than allowing it to rely on the (possibly
erroneous) decoder output y;. This speeds up training.

9.8 Attention

attention
mechanism

The simplicity of the encoder-decoder model is its clean separation of the encoder—
which builds a representation of the source text—from the decoder, which uses this
context to generate a target text. In the model as we’ve described it so far, this
context vector is /4, the hidden state of the last (n™) time step of the source text.
This final hidden state is thus acting as a bottleneck: it must represent absolutely
everything about the meaning of the source text, since the only thing the decoder
knows about the source text is what’s in this context vector (Fig. 9.20). Information
at the beginning of the sentence, especially for long sentences, may not be equally
well represented in the context vector.

Encoder bottleneck Decoder
¥ : ' S ; ;

IOTCR @Il Requiring the context ¢ to be only the encoder’s final hidden state forces all the
information from the entire source sentence to pass through this representational bottleneck.

The attention mechanism is a solution to the bottleneck problem, a way of
allowing the decoder to get information from all the hidden states of the encoder,
not just the last hidden state.

In the attention mechanism, as in the vanilla encoder-decoder model, the context
vector c is a single vector that is a function of the hidden states of the encoder, that
is, c = f(h{...h{). Because the number of hidden states varies with the size of
the input, we can’t use the entire set of encoder hidden state vectors directly as the
context for the decoder.

The idea of attention is instead to create the single fixed-length vector ¢ by taking
a weighted sum of all the encoder hidden states. The weights focus on (‘attend
to’) a particular part of the source text that is relevant for the token the decoder is
currently producing. Attention thus replaces the static context vector with one that
is dynamically derived from the encoder hidden states, different for each token in
decoding.

This context vector, c;, is generated anew with each decoding step i and takes
all of the encoder hidden states into account in its derivation. We then make this
context available during decoding by conditioning the computation of the current
decoder hidden state on it (along with the prior hidden state and the previous output
generated by the decoder), as we see in this equation (and Fig. 9.21):

h! = g(¥i_1,h? |,c;) (9.35)

dot-product
attention

9.8 ¢ ATTENTION 23

IO WIY The attention mechanism allows each hidden state of the decoder to see a
different, dynamic, context, which is a function of all the encoder hidden states.

The first step in computing c; is to compute how much to focus on each encoder
state, how relevant each encoder state is to the decoder state captured in h;{l. We
capture relevance by computing— at each state i during decoding—a score(h?_1 , h;’)
for each encoder state j.

The simplest such score, called dot-product attention, implements relevance as
similarity: measuring how similar the decoder hidden state is to an encoder hidden
state, by computing the dot product between them:

score(h?fl,hj-) = ht,. h (9.36)

The score that results from this dot product is a scalar that reflects the degree of
similarity between the two vectors. The vector of these scores across all the encoder
hidden states gives us the relevance of each encoder state to the current step of the
decoder.

To make use of these scores, we’ll normalize them with a softmax to create a
vector of weights, o}, that tells us the proportional relevance of each encoder hidden
state j to the prior hidden decoder state, h?,l-

o = softmax (score(h?_|, h7))
exp(score(h?

,hé
— 1 h) (9.37)

S exp(score(h? b))

Finally, given the distribution in &, we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden
states.

Cc; = Z(X{j hj (9.38)
J

With this, we finally have a fixed-length context vector that takes into account
information from the entire encoder state that is dynamically updated to reflect the
needs of the decoder at each step of decoding. Fig. 9.22 illustrates an encoder-
decoder network with attention, focusing on the computation of one context vector
C;.

It’s also possible to create more sophisticated scoring functions for attention
models. Instead of simple dot product attention, we can get a more powerful function
that computes the relevance of each encoder hidden state to the decoder hidden state
by parameterizing the score with its own set of weights, W;.

score(hf’_l,hj) = hfl_lwshj
The weights Wy, which are then trained during normal end-to-end training, give the
network the ability to learn which aspects of similarity between the decoder and

24 CHAPTERY9 <+ RNNsS AND LSTMsS

attention
weights
Q5

hidden
layer(s)

Decoder

Encoder

IRTICRWPA A sketch of the encoder-decoder network with attention, focusing on the computation of c;. The

context value c; is one of the inputs to the computation of hld. It is computed by taking the weighted sum of all

the encoder hidden states, each weighted by their dot product with the prior decoder hidden state hf_l .

encoder states are important to the current application. This bilinear model also
allows the encoder and decoder to use different dimensional vectors, whereas the
simple dot-product attention requires that the encoder and decoder hidden states
have the same dimensionality.

We’ll return to the concept of attention when we defined the transformer archi-
tecture in Chapter 10, which is based on a slight modification of attention called
self-attention.

9.9 Summary

This chapter has introduced the concepts of recurrent neural networks and how they
can be applied to language problems. Here’s a summary of the main points that we
covered:

* In simple Recurrent Neural Networks sequences are processed one element at
a time, with the output of each neural unit at time ¢ based both on the current
input at ¢ and the hidden layer from time ¢ — 1.

* RNNSs can be trained with a straightforward extension of the backpropagation
algorithm, known as backpropagation through time (BPTT).

» Simple recurrent networks fail on long inputs because of problems like van-
ishing gradients; instead modern systems use more complex gated architec-
tures such as LSTMs that explicitly decide what to remember and forget in
their hidden and context layers.

* Common language-based applications for RNNs include:

— Probabilistic language modeling: assigning a probability to a sequence,
or to the next element of a sequence given the preceding words.

— Auto-regressive generation using a trained language model.

— Sequence labeling like part-of-speech tagging, where each element of a
sequence is assigned a label.

BIBLIOGRAPHICAL AND HISTORICAL NOTES 25

— Sequence classification, where an entire text is assigned to a category, as
in spam detection, sentiment analysis or topic classification.

— Encoder-decoder architectures, where an input is mapped to an output
of different length and alignment.

Bibliographical and Historical Notes

Influential investigations of RNNs were conducted in the context of the Parallel Dis-
tributed Processing (PDP) group at UC San Diego in the 1980’s. Much of this work
was directed at human cognitive modeling rather than practical NLP applications
(Rumelhart and McClelland 1986, McClelland and Rumelhart 1986). Models using
recurrence at the hidden layer in a feedforward network (Elman networks) were in-
troduced by Elman (1990). Similar architectures were investigated by Jordan (1986)
with a recurrence from the output layer, and Mathis and Mozer (1995) with the
addition of a recurrent context layer prior to the hidden layer. The possibility of
unrolling a recurrent network into an equivalent feedforward network is discussed
in (Rumelhart and McClelland, 1986).

In parallel with work in cognitive modeling, RNNs were investigated extensively
in the continuous domain in the signal processing and speech communities (Giles
et al. 1994, Robinson et al. 1996). Schuster and Paliwal (1997) introduced bidirec-
tional RNNs and described results on the TIMIT phoneme transcription task.

While theoretically interesting, the difficulty with training RNNs and manag-
ing context over long sequences impeded progress on practical applications. This
situation changed with the introduction of LSTMs in Hochreiter and Schmidhuber
(1997) and Gers et al. (2000). Impressive performance gains were demonstrated
on tasks at the boundary of signal processing and language processing including
phoneme recognition (Graves and Schmidhuber, 2005), handwriting recognition
(Graves et al., 2007) and most significantly speech recognition (Graves et al., 2013).

Interest in applying neural networks to practical NLP problems surged with the
work of Collobert and Weston (2008) and Collobert et al. (2011). These efforts made
use of learned word embeddings, convolutional networks, and end-to-end training.
They demonstrated near state-of-the-art performance on a number of standard shared
tasks including part-of-speech tagging, chunking, named entity recognition and se-
mantic role labeling without the use of hand-engineered features.

Approaches that married LSTMs with pretrained collections of word-embeddings
based on word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)
quickly came to dominate many common tasks: part-of-speech tagging (Ling et al.,
2015), syntactic chunking (Sggaard and Goldberg, 2016), named entity recognition
(Chiu and Nichols, 2016; Ma and Hovy, 2016), opinion mining (Irsoy and Cardie,
2014), semantic role labeling (Zhou and Xu, 2015) and AMR parsing (Foland and
Martin, 2016). As with the earlier surge of progress involving statistical machine
learning, these advances were made possible by the availability of training data pro-
vided by CONLL, SemEval, and other shared tasks, as well as shared resources such
as Ontonotes (Pradhan et al., 2007), and PropBank (Palmer et al., 2005).

The modern neural encoder-decoder approach was pioneered by Kalchbrenner
and Blunsom (2013), who used a CNN encoder and an RNN decoder. Cho et al.
(2014) (who coined the name “encoder-decoder’) and Sutskever et al. (2014) then
showed how to use extended RNNs for both encoder and decoder. The idea that a

26 CHAPTERY9 <+ RNNsS AND LSTMsS

generative decoder should take as input a soft weighting of the inputs, the central
idea of attention, was first developed by Graves (2013) in the context of handwriting
recognition. Bahdanau et al. (2015) extended the idea, named it “attention” and
applied it to MT.

Bibliographical and Historical Notes 27

Bahdanau, D., K. H. Cho, and Y. Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate.
ICLR 2015.

Chiu, J. P. C. and E. Nichols. 2016. Named entity recognition
with bidirectional LSTM-CNNSs. TACL, 4:357-370.

Cho, K., B. van Merriénboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. 2014. Learn-
ing phrase representations using RNN encoder—decoder
for statistical machine translation. EMNLP.

Collobert, R. and J. Weston. 2008. A unified architecture for
natural language processing: Deep neural networks with
multitask learning. ICML.

Collobert, R., J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural language
processing (almost) from scratch. JMLR, 12:2493-2537.

Elman, J. L. 1990. Finding structure in time. Cognitive sci-
ence, 14(2):179-211.

Foland, W. and J. H. Martin. 2016. CU-NLP at SemEval-
2016 task 8: AMR parsing using LSTM-based recurrent
neural networks. SemEval-2016.

Gers, F. A., J. Schmidhuber, and F. Cummins. 2000. Learn-
ing to forget: Continual prediction with Istm. Neural
computation, 12(10):2451-2471.

Giles, C. L., G. M. Kuhn, and R. J. Williams. 1994. Dynamic
recurrent neural networks: Theory and applications.
IEEE Trans. Neural Netw. Learning Syst., 5(2):153-156.

Graves, A. 2013. Generating sequences with recurrent neural
networks. ArXiv.

Graves, A., S. Fernandez, M. Liwicki, H. Bunke, and
J. Schmidhuber. 2007. Unconstrained on-line handwrit-
ing recognition with recurrent neural networks. NeurIPS.

Graves, A., A.-r. Mohamed, and G. Hinton. 2013.
Speech recognition with deep recurrent neural networks.
ICASSP.

Graves, A. and J. Schmidhuber. 2005. Framewise phoneme
classification with bidirectional LSTM and other neural
network architectures. Neural Networks, 18(5-6):602—
610.

Hochreiter, S. and J. Schmidhuber. 1997. Long short-term
memory. Neural Computation, 9(8):1735-1780.

Irsoy, O. and C. Cardie. 2014. Opinion mining with deep
recurrent neural networks. EMNLP.

Jordan, M. 1986. Serial order: A parallel distributed process-
ing approach. Technical Report ICS Report 8604, Univer-
sity of California, San Diego.

Kalchbrenner, N. and P. Blunsom. 2013. Recurrent continu-
ous translation models. EMNLP.

Ling, W., C. Dyer, A. W. Black, I. Trancoso, R. Fermandez,
S. Amir, L. Marujo, and T. Luis. 2015. Finding function
in form: Compositional character models for open vocab-
ulary word representation. EMNLP.

Ma, X. and E. H. Hovy. 2016. End-to-end sequence labeling
via bi-directional LSTM-CNNs-CRF. ACL.

Mathis, D. A. and M. C. Mozer. 1995. On the computational
utility of consciousness. NeurlPS. MIT Press.

McClelland, J. L. and D. E. Rumelhart, editors. 1986. Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 2: Psychological and
Biological Models. MIT Press.

Mikolov, T., K. Chen, G. S. Corrado, and J. Dean. 2013. Ef-
ficient estimation of word representations in vector space.
ICLR 2013.

Mikolov, T., M. Karafiat, L. Burget, J. éemocky, and
S. Khudanpur. 2010. Recurrent neural network based lan-
guage model. INTERSPEECH.

Miller, G. A. and J. A. Selfridge. 1950. Verbal context and
the recall of meaningful material. American Journal of
Psychology, 63:176-185.

Palmer, M., P. Kingsbury, and D. Gildea. 2005. The proposi-
tion bank: An annotated corpus of semantic roles. Com-
putational Linguistics, 31(1):71-106.

Pennington, J., R. Socher, and C. D. Manning. 2014. GloVe:
Global vectors for word representation. EMNLP.

Pradhan, S., E. H. Hovy, M. P. Marcus, M. Palmer, L. A.
Ramshaw, and R. M. Weischedel. 2007. Ontonotes: a
unified relational semantic representation. Int. J. Seman-
tic Computing, 1(4):405-419.

Robinson, T., M. Hochberg, and S. Renals. 1996. The use
of recurrent neural networks in continuous speech recog-
nition. In C.-H. Lee, F. K. Soong, and K. K. Paliwal,
editors, Automatic speech and speaker recognition, pages
233-258. Springer.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986.
Learning internal representations by error propagation. In
D. E. Rumelhart and J. L. McClelland, editors, Parallel
Distributed Processing, volume 2, pages 318-362. MIT
Press.

Rumelhart, D. E. and J. L. McClelland, editors. 1986. Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 1: Foundations. MIT
Press.

Schuster, M. and K. K. Paliwal. 1997. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Process-
ing, 45:2673-2681.

Shannon, C. E. 1951. Prediction and entropy of printed En-
glish. Bell System Technical Journal, 30:50-64.

Sg@gaard, A. and Y. Goldberg. 2016. Deep multi-task learning
with low level tasks supervised at lower layers. ACL.
Sutskever, 1., O. Vinyals, and Q. V. Le. 2014. Sequence to

sequence learning with neural networks. NeurIPS.

Werbos, P. 1974. Beyond regression: new tools for predic-
tion and analysis in the behavioral sciences. Ph.D. thesis,
Harvard University.

Werbos, P. J. 1990. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE,
78(10):1550-1560.

Zhou, J. and W. Xu. 2015. End-to-end learning of semantic
role labeling using recurrent neural networks. ACL.

https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
http://jmlr.org/papers/v12/collobert11a.html
http://jmlr.org/papers/v12/collobert11a.html
https://doi.org/10.18653/v1/S16-1185
https://doi.org/10.18653/v1/S16-1185
https://doi.org/10.18653/v1/S16-1185
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.3115/v1/D14-1080
https://doi.org/10.3115/v1/D14-1080
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://proceedings.neurips.cc/paper/1994/file/6aab1270668d8cac7cef2566a1c5f569-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/6aab1270668d8cac7cef2566a1c5f569-Paper.pdf
10.21437/Interspeech.2010-343
10.21437/Interspeech.2010-343
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.3115/v1/P15-1109
https://doi.org/10.3115/v1/P15-1109

	RNNs and LSTMs
	Recurrent Neural Networks
	Inference in RNNs
	Training

	RNNs as Language Models
	Forward Inference in an RNN language model
	Training an RNN language model
	Weight Tying

	RNNs for other NLP tasks
	Sequence Labeling
	RNNs for Sequence Classification
	Generation with RNN-Based Language Models

	Stacked and Bidirectional RNN architectures
	Stacked RNNs
	Bidirectional RNNs

	The LSTM
	Gated Units, Layers and Networks

	Summary: Common RNN NLP Architectures
	The Encoder-Decoder Model with RNNs
	Training the Encoder-Decoder Model

	Attention
	Summary
	Bibliographical and Historical Notes

