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CHAPTER

14 Phonetics and Speech Feature
Extraction

The characters that make up the texts we’ve been discussing in this book aren’t just
random symbols. They are also an amazing scientific invention: a theoretical model
of the elements that make up human speech.

The earliest writing systems we know of (Sumerian, Chinese, Mayan) were
mainly logographic: one symbol representing a whole word. But from the ear-
liest stages we can find, some symbols were also used to represent the sounds
that made up words. The cuneiform sign to the right pro-
nounced ba and meaning “ration” in Sumerian could also
function purely as the sound /ba/. The earliest Chinese char-
acters we have, carved into bones for divination, similarly
contain phonetic elements. Purely sound-based writing systems, whether syllabic
(like Japanese hiragana), alphabetic (like the Roman alphabet), or consonantal (like
Semitic writing systems), trace back to these early logo-syllabic systems, often as
two cultures came together. Thus, the Arabic, Aramaic, Hebrew, Greek, and Roman
systems all derive from a West Semitic script that is presumed to have been modified
by Western Semitic mercenaries from a cursive form of Egyptian hieroglyphs. The
Japanese syllabaries were modified from a cursive form of Chinese phonetic charac-
ters, which themselves were used in Chinese to phonetically represent the Sanskrit
in the Buddhist scriptures that came to China in the Tang dynasty.

This implicit idea that the spoken word is composed of smaller units of speech
underlies algorithms for both speech recognition (transcribing waveforms into text)
and text-to-speech (converting text into waveforms). In this chapter we give a com-
putational perspective on phonetics, the study of the speech sounds used in thephonetics

languages of the world, how they are produced in the human vocal tract, how they
are realized acoustically, and how they can be digitized and processed.

14.1 Speech Sounds and Phonetic Transcription

A letter like ‘p’ or ‘a’ is already a useful model of the sounds of human speech,
and indeed we’ll see in Chapter 15 how to map between letters and waveforms.
Nonetheless, it is helpful to represent sounds slightly more abstractly. We’ll repre-
sent the pronunciation of a word as a string of phones, which are speech sounds,phone

each represented with symbols adapted from the Roman alphabet.
The standard phonetic representation for transcribing the world’s languages is

the International Phonetic Alphabet (IPA), an evolving standard first developed inIPA

1888, But in this chapter we’ll instead represent phones with the ARPAbet (Shoup,
1980), a simple phonetic alphabet (Fig. 14.1) that conveniently uses ASCII symbols
to represent an American-English subset of the IPA.

Many of the IPA and ARPAbet symbols are equivalent to familiar Roman let-
ters. So, for example, the ARPAbet phone [p] represents the consonant sound at the
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ARPAbet IPA ARPAbet ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription Symbol Symbol Word Transcription
[p] [p] parsley [p aa r s l iy] [iy] [i] lily [l ih l iy]
[t] [t] tea [t iy] [ih] [I] lily [l ih l iy]
[k] [k] cook [k uh k] [ey] [eI] daisy [d ey z iy]
[b] [b] bay [b ey] [eh] [E] pen [p eh n]
[d] [d] dill [d ih l] [ae] [æ] aster [ae s t axr]
[g] [g] garlic [g aa r l ix k] [aa] [A] poppy [p aa p iy]
[m] [m] mint [m ih n t] [ao] [O] orchid [ao r k ix d]
[n] [n] nutmeg [n ah t m eh g] [uh] [U] wood [w uh d]
[ng] [N] baking [b ey k ix ng] [ow] [oU] lotus [l ow dx ax s]
[f] [f] flour [f l aw axr] [uw] [u] tulip [t uw l ix p]
[v] [v] clove [k l ow v] [ah] [2] butter [b ah dx axr]
[th] [T] thick [th ih k] [er] [Ç] bird [b er d]
[dh] [D] those [dh ow z] [ay] [aI] iris [ay r ix s]
[s] [s] soup [s uw p] [aw] [aU] flower [f l aw axr]
[z] [z] eggs [eh g z] [oy] [oI] soil [s oy l]
[sh] [S] squash [s k w aa sh] [ax] [@] pita [p iy t ax]
[zh] [Z] ambrosia [ae m b r ow zh ax]
[ch] [tS] cherry [ch eh r iy]
[jh] [dZ] jar [jh aa r]
[l] [l] licorice [l ih k axr ix sh]
[w] [w] kiwi [k iy w iy]
[r] [r] rice [r ay s]
[y] [j] yellow [y eh l ow]
[h] [h] honey [h ah n iy]

Figure 14.1 ARPAbet and IPA symbols for English consonants (left) and vowels (right).

beginning of platypus, puma, and plantain, the middle of leopard, or the end of an-
telope. In general, however, the mapping between the letters of English orthography
and phones is relatively opaque; a single letter can represent very different sounds
in different contexts. The English letter c corresponds to phone [k] in cougar [k uw
g axr], but phone [s] in cell [s eh l]. Besides appearing as c and k, the phone [k] can
appear as part of x (fox [f aa k s]), as ck (jackal [jh ae k el]) and as cc (raccoon [r ae
k uw n]). Many other languages, for example, Spanish, are much more transparent
in their sound-orthography mapping than English.

There are a wide variety of phonetic resources for phonetic transcription. On-
line pronunciation dictionaries give phonetic transcriptions for words. The LDCpronunciation

dictionary
distributes pronunciation lexicons for Egyptian Arabic, Dutch, English, German,
Japanese, Korean, Mandarin, and Spanish. For English, the CELEX dictionary
(Baayen et al., 1995) has pronunciations for 160,595 wordforms, with syllabifica-
tion, stress, and morphological and part-of-speech information. The open-source
CMU Pronouncing Dictionary (CMU, 1993) has pronunciations for about 134,000
wordforms, while the fine-grained 110,000 word UNISYN dictionary (Fitt, 2002),
freely available for research purposes, gives syllabifications, stress, and also pronun-
ciations for dozens of dialects of English.

Another useful resource is a phonetically annotated corpus, in which a col-
lection of waveforms is hand-labeled with the corresponding string of phones. The
TIMIT corpus (NIST, 1990), originally a joint project between Texas Instruments
(TI), MIT, and SRI, is a corpus of 6300 read sentences, with 10 sentences each from
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630 speakers. The 6300 sentences were drawn from a set of 2342 sentences, some
selected to have particular dialect shibboleths, others to maximize phonetic diphone
coverage. Each sentence in the corpus was phonetically hand-labeled, the sequence
of phones was automatically aligned with the sentence wavefile, and then the au-
tomatic phone boundaries were manually hand-corrected (Seneff and Zue, 1988).
The result is a time-aligned transcription: a transcription in which each phone istime-aligned

transcription
associated with a start and end time in the waveform, like the example in Fig. 14.2.

she had your dark suit in greasy wash water all year
sh iy hv ae dcl jh axr dcl d aa r kcl s ux q en gcl g r iy s ix w aa sh q w aa dx axr q aa l y ix axr

Figure 14.2 Phonetic transcription from the TIMIT corpus, using special ARPAbet features for narrow tran-
scription, such as the palatalization of [d] in had, unreleased final stop in dark, glottalization of final [t] in suit
to [q], and flap of [t] in water. The TIMIT corpus also includes time-alignments (not shown).

The Switchboard Transcription Project phonetically annotated corpus consists
of 3.5 hours of sentences extracted from the Switchboard corpus (Greenberg et al.,
1996), together with transcriptions time-aligned at the syllable level. Figure 14.3
shows an example .

0.470 0.640 0.720 0.900 0.953 1.279 1.410 1.630
dh er k aa n ax v ih m b ix t w iy n r ay n aw

Figure 14.3 Phonetic transcription of the Switchboard phrase they’re kind of in between
right now. Note vowel reduction in they’re and of, coda deletion in kind and right, and re-
syllabification (the [v] of of attaches as the onset of in). Time is given in number of seconds
from the beginning of sentence to the start of each syllable.

The Buckeye corpus (Pitt et al. 2007, Pitt et al. 2005) is a phonetically tran-
scribed corpus of spontaneous American speech, containing about 300,000 words
from 40 talkers. Phonetically transcribed corpora are also available for other lan-
guages, including the Kiel corpus of German and Mandarin corpora transcribed by
the Chinese Academy of Social Sciences (Li et al., 2000).

14.2 Articulatory Phonetics

Articulatory phonetics is the study of how these phones are produced as the variousarticulatory
phonetics

organs in the mouth, throat, and nose modify the airflow from the lungs.

The Vocal Organs

Figure 14.4 shows the organs of speech. Sound is produced by the rapid movement
of air. Humans produce most sounds in spoken languages by expelling air from the
lungs through the windpipe (technically, the trachea) and then out the mouth or
nose. As it passes through the trachea, the air passes through the larynx, commonly
known as the Adam’s apple or voice box. The larynx contains two small folds of
muscle, the vocal folds (often referred to non-technically as the vocal cords), which
can be moved together or apart. The space between these two folds is called the
glottis. If the folds are close together (but not tightly closed), they will vibrate as airglottis

passes through them; if they are far apart, they won’t vibrate. Sounds made with the
vocal folds together and vibrating are called voiced; sounds made without this vocalvoiced sound

cord vibration are called unvoiced or voiceless. Voiced sounds include [b], [d], [g],unvoiced sound
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Figure 14.4 The vocal organs, shown in side view. (Figure from OpenStax University
Physics, CC BY 4.0)

[v], [z], and all the English vowels, among others. Unvoiced sounds include [p], [t],
[k], [f], [s], and others.

The area above the trachea is called the vocal tract; it consists of the oral tract
and the nasal tract. After the air leaves the trachea, it can exit the body through the
mouth or the nose. Most sounds are made by air passing through the mouth. Sounds
made by air passing through the nose are called nasal sounds; nasal sounds (likenasal

English [m], [n], and [ng]) use both the oral and nasal tracts as resonating cavities.
Phones are divided into two main classes: consonants and vowels. Both kindsconsonant

vowel of sounds are formed by the motion of air through the mouth, throat or nose. Con-
sonants are made by restriction or blocking of the airflow in some way, and can be
voiced or unvoiced. Vowels have less obstruction, are usually voiced, and are gen-
erally louder and longer-lasting than consonants. The technical use of these terms is
much like the common usage; [p], [b], [t], [d], [k], [g], [f], [v], [s], [z], [r], [l], etc.,
are consonants; [aa], [ae], [ao], [ih], [aw], [ow], [uw], etc., are vowels. Semivow-
els (such as [y] and [w]) have some of the properties of both; they are voiced like
vowels, but they are short and less syllabic like consonants.

Consonants: Place of Articulation

Because consonants are made by restricting airflow, we can group them into classes
by their point of maximum restriction, their place of articulation (Fig. 14.5).place of

articulation

Labial: Consonants whose main restriction is formed by the two lips coming to-labial

gether have a bilabial place of articulation. In English these include [p] as
in possum, [b] as in bear, and [m] as in marmot. The English labiodental
consonants [v] and [f] are made by pressing the bottom lip against the upper
row of teeth and letting the air flow through the space in the upper teeth.
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(nasal tract)

dental

bilabial
glottal

palatal velar

alveolar

Figure 14.5 Major English places of articulation.

Dental: Sounds that are made by placing the tongue against the teeth are dentals.dental

The main dentals in English are the [th] of thing and the [dh] of though, which
are made by placing the tongue behind the teeth with the tip slightly between
the teeth.

Alveolar: The alveolar ridge is the portion of the roof of the mouth just behind thealveolar

upper teeth. Most speakers of American English make the phones [s], [z], [t],
and [d] by placing the tip of the tongue against the alveolar ridge. The word
coronal is often used to refer to both dental and alveolar.

Palatal: The roof of the mouth (the palate) rises sharply from the back of thepalatal

palate alveolar ridge. The palato-alveolar sounds [sh] (shrimp), [ch] (china), [zh]
(Asian), and [jh] (jar) are made with the blade of the tongue against the rising
back of the alveolar ridge. The palatal sound [y] of yak is made by placing the
front of the tongue up close to the palate.

Velar: The velum, or soft palate, is a movable muscular flap at the very back of thevelar

roof of the mouth. The sounds [k] (cuckoo), [g] (goose), and [N] (kingfisher)
are made by pressing the back of the tongue up against the velum.

Glottal: The glottal stop [q] is made by closing the glottis (by bringing the vocalglottal

folds together).

Consonants: Manner of Articulation

Consonants are also distinguished by how the restriction in airflow is made, for ex-
ample, by a complete stoppage of air or by a partial blockage. This feature is called
the manner of articulation of a consonant. The combination of place and mannermanner of

articulation
of articulation is usually sufficient to uniquely identify a consonant. Following are
the major manners of articulation for English consonants:

A stop is a consonant in which airflow is completely blocked for a short time.stop

This blockage is followed by an explosive sound as the air is released. The period
of blockage is called the closure, and the explosion is called the release. English
has voiced stops like [b], [d], and [g] as well as unvoiced stops like [p], [t], and [k].
Stops are also called plosives.

The nasal sounds [n], [m], and [ng] are made by lowering the velum and allow-nasal

ing air to pass into the nasal cavity.
In fricatives, airflow is constricted but not cut off completely. The turbulentfricatives

airflow that results from the constriction produces a characteristic “hissing” sound.
The English labiodental fricatives [f] and [v] are produced by pressing the lower
lip against the upper teeth, allowing a restricted airflow between the upper teeth.
The dental fricatives [th] and [dh] allow air to flow around the tongue between the
teeth. The alveolar fricatives [s] and [z] are produced with the tongue against the
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alveolar ridge, forcing air over the edge of the teeth. In the palato-alveolar fricatives
[sh] and [zh], the tongue is at the back of the alveolar ridge, forcing air through a
groove formed in the tongue. The higher-pitched fricatives (in English [s], [z], [sh]
and [zh]) are called sibilants. Stops that are followed immediately by fricatives aresibilants

called affricates; these include English [ch] (chicken) and [jh] (giraffe).
In approximants, the two articulators are close together but not close enough toapproximant

cause turbulent airflow. In English [y] (yellow), the tongue moves close to the roof
of the mouth but not close enough to cause the turbulence that would characterize a
fricative. In English [w] (wood), the back of the tongue comes close to the velum.
American [r] can be formed in at least two ways; with just the tip of the tongue
extended and close to the palate or with the whole tongue bunched up near the palate.
[l] is formed with the tip of the tongue up against the alveolar ridge or the teeth, with
one or both sides of the tongue lowered to allow air to flow over it. [l] is called a
lateral sound because of the drop in the sides of the tongue.

A tap or flap [dx] is a quick motion of the tongue against the alveolar ridge. Thetap

consonant in the middle of the word lotus ([l ow dx ax s]) is a tap in most dialects of
American English; speakers of many U.K. dialects would use a [t] instead.

Vowels

Like consonants, vowels can be characterized by the position of the articulators as
they are made. The three most relevant parameters for vowels are what is called
vowel height, which correlates roughly with the height of the highest part of the
tongue, vowel frontness or backness, indicating whether this high point is toward
the front or back of the oral tract and whether the shape of the lips is rounded or
not. Figure 14.6 shows the position of the tongue for different vowels.

boot [uw]

closed
velum

bat [ae]

palate

beet [iy]

tongue

Figure 14.6 Tongue positions for English high front [iy], low front [ae] and high back [uw].

In the vowel [iy], for example, the highest point of the tongue is toward the
front of the mouth. In the vowel [uw], by contrast, the high-point of the tongue is
located toward the back of the mouth. Vowels in which the tongue is raised toward
the front are called front vowels; those in which the tongue is raised toward theFront vowel

back are called back vowels. Note that while both [ih] and [eh] are front vowels,back vowel

the tongue is higher for [ih] than for [eh]. Vowels in which the highest point of the
tongue is comparatively high are called high vowels; vowels with mid or low valueshigh vowel

of maximum tongue height are called mid vowels or low vowels, respectively.
Figure 14.7 shows a schematic characterization of the height of different vowels.

It is schematic because the abstract property height correlates only roughly with ac-
tual tongue positions; it is, in fact, a more accurate reflection of acoustic facts. Note
that the chart has two kinds of vowels: those in which tongue height is represented
as a point and those in which it is represented as a path. A vowel in which the tongue
position changes markedly during the production of the vowel is a diphthong. En-diphthong
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front back

low

high

iy

ih

eh

ae

uw

uh

ax

ah
ao

aa

y uw

ey o
w

oy

ay

a
w

Figure 14.7 The schematic “vowel space” for English vowels.

glish is particularly rich in diphthongs.
The second important articulatory dimension for vowels is the shape of the lips.

Certain vowels are pronounced with the lips rounded (the same lip shape used for
whistling). These rounded vowels include [uw], [ao], and [ow].rounded vowel

Syllables

Consonants and vowels combine to make a syllable. A syllable is a vowel-like (orsyllable

sonorant) sound together with some of the surrounding consonants that are most
closely associated with it. The word dog has one syllable, [d aa g] (in our dialect);
the word catnip has two syllables, [k ae t] and [n ih p]. We call the vowel at the
core of a syllable the nucleus. Initial consonants, if any, are called the onset. Onsetsnucleus

onset with more than one consonant (as in strike [s t r ay k]), are called complex onsets.
The coda is the optional consonant or sequence of consonants following the nucleus.coda

Thus [d] is the onset of dog, and [g] is the coda. The rime, or rhyme, is the nucleusrime

plus coda. Figure 14.8 shows some sample syllable structures.

σ

Rime

Coda

m

Nucleus

ae

Onset

h

σ

Rime

Coda

n

Nucleus

iy

Onset

rg

σ

Rime

Coda

zg

Nucleus

eh

Figure 14.8 Syllable structure of ham, green, eggs. σ=syllable.

The task of automatically breaking up a word into syllables is called syllabifica-
tion. Syllable structure is also closely related to the phonotactics of a language. Thesyllabification

term phonotactics means the constraints on which phones can follow each other inphonotactics

a language. For example, English has strong constraints on what kinds of conso-
nants can appear together in an onset; the sequence [zdr], for example, cannot be a
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legal English syllable onset. Phonotactics can be represented by a language model
or finite-state model of phone sequences.

14.3 Prosody

Prosody is the study of the intonational and rhythmic aspects of language, and inprosody

particular the use of F0, energy, and duration to convey pragmatic, affective, or
conversation-interactional meanings.1 We’ll introduce these acoustic quantities in
detail in the next section when we turn to acoustic phonetics, but briefly we can
think of energy as the acoustic quality that we perceive as loudness, and F0 as the
frequency of the sound that is produced, the acoustic quality that we hear as the
pitch of an utterance. Prosody can be used to mark discourse structure, like the
difference between statements and questions, or the way that a conversation is struc-
tured. Prosody is used to mark the saliency of a particular word or phrase. Prosody
is heavily used for paralinguistic functions like conveying affective meanings like
happiness, surprise, or anger. And prosody plays an important role in managing
turn-taking in conversation.

14.3.1 Prosodic Prominence: Accent, Stress and Schwa
In a natural utterance of American English, some words sound more prominent thanprominence

others, and certain syllables in these words are also more prominent than others.
What we mean by prominence is that these words or syllables are perceptually more
salient to the listener. Speakers make a word or syllable more salient in English
by saying it louder, saying it slower (so it has a longer duration), or by varying F0
during the word, making it higher or more variable.

Accent We represent prominence via a linguistic marker called pitch accent. Wordspitch accent

or syllables that are prominent are said to bear (be associated with) a pitch accent.
Thus this utterance might be pronounced by accenting the underlined words:
(14.1) I’m a little surprised to hear it characterized as happy.

Lexical Stress The syllables that bear pitch accent are called accented syllables.
Not every syllable of a word can be accented: pitch accent has to be realized on the
syllable that has lexical stress. Lexical stress is a property of the word’s pronuncia-lexical stress

tion in dictionaries; the syllable that has lexical stress is the one that will be louder
or longer if the word is accented. For example, the word surprised is stressed on its
second syllable, not its first. (Try stressing the other syllable by saying SURprised;
hopefully that sounds wrong to you). Thus, if the word surprised receives a pitch
accent in a sentence, it is the second syllable that will be stronger. The following ex-
ample shows underlined accented words with the stressed syllable bearing the accent
(the louder, longer syllable) in boldface:
(14.2) I’m a little surprised to hear it characterized as happy.

Stress is marked in dictionaries. The CMU dictionary (CMU, 1993), for ex-
ample, marks vowels with 0 (unstressed) or 1 (stressed) as in entries for counter:
[K AW1 N T ER0], or table: [T EY1 B AH0 L]. Difference in lexical stress can
affect word meaning; the noun content is pronounced [K AA1 N T EH0 N T], while
the adjective is pronounced [K AA0 N T EH1 N T].

1 The word is used in a different but related way in poetry, to mean the study of verse metrical structure.



14.3 • PROSODY 9

Reduced Vowels and Schwa Unstressed vowels can be weakened even further to
reduced vowels, the most common of which is schwa ([ax]), as in the second vowelreduced vowel

schwa of parakeet: [p ae r ax k iy t]. In a reduced vowel the articulatory gesture isn’t as
complete as for a full vowel. Not all unstressed vowels are reduced; any vowel, and
diphthongs in particular, can retain its full quality even in unstressed position. For
example, the vowel [iy] can appear in stressed position as in the word eat [iy t] or in
unstressed position as in the word carry [k ae r iy].

In summary, there is a continuum of prosodic prominence, for which it is oftenprominence

useful to represent levels like accented, stressed, full vowel, and reduced vowel.

14.3.2 Prosodic Structure
Spoken sentences have prosodic structure: some words seem to group naturally to-
gether, while some words seem to have a noticeable break or disjuncture between
them. Prosodic structure is often described in terms of prosodic phrasing, mean-prosodic

phrasing
ing that an utterance has a prosodic phrase structure in a similar way to it having
a syntactic phrase structure. For example, the sentence I wanted to go to London,
but could only get tickets for France seems to have two main intonation phrases,intonation

phrase
their boundary occurring at the comma. Furthermore, in the first phrase, there seems
to be another set of lesser prosodic phrase boundaries (often called intermediate
phrases) that split up the words as I wanted | to go | to London. These kinds ofintermediate

phrase
intonation phrases are often correlated with syntactic structure constituents (Price
et al. 1991, Bennett and Elfner 2019).

Automatically predicting prosodic boundaries can be important for tasks like
TTS. Modern approaches use sequence models that take either raw text or text an-
notated with features like parse trees as input, and make a break/no-break decision
at each word boundary. They can be trained on data labeled for prosodic structure
like the Boston University Radio News Corpus (Ostendorf et al., 1995).

14.3.3 Tune
Two utterances with the same prominence and phrasing patterns can still differ
prosodically by having different tunes. The tune of an utterance is the rise andtune

fall of its F0 over time. A very obvious example of tune is the difference between
statements and yes-no questions in English. The same words can be said with a final
F0 rise to indicate a yes-no question (called a question rise):question rise

You    know    what    I mean ?

or a final drop in F0 (called a final fall) to indicate a declarative intonation:final fall

You    know        what         I mean .

Languages make wide use of tune to express meaning (Xu, 2005). In English,
for example, besides this well-known rise for yes-no questions, a phrase containing
a list of nouns separated by commas often has a short rise called a continuation
rise after each noun. Other examples include the characteristic English contours forcontinuation

rise
expressing contradiction and expressing surprise.
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Linking Prominence and Tune

Pitch accents come in different varieties that are related to tune; high pitched accents,
for example, have different functions than low pitched accents. There are many
typologies of accent classes in different languages. One such typology is part of the
ToBI (Tone and Break Indices) theory of intonation (Silverman et al. 1992). EachToBI

word in ToBI can be associated with one of five types of pitch accents shown in
in Fig. 14.9. Each utterance in ToBI consists of a sequence of intonational phrases,
each of which ends in one of four boundary tones shown in Fig. 14.9, representingboundary tone

the utterance final aspects of tune. There are version of ToBI for many languages.

Pitch Accents Boundary Tones
H* peak accent L-L% “final fall”: “declarative contour” of American

English
L* low accent L-H% continuation rise
L*+H scooped accent H-H% “question rise”: cantonical yes-no question

contour
L+H* rising peak accent H-L% final level plateau
H+!H* step down

Figure 14.9 The accent and boundary tones labels from the ToBI transcription system for
American English intonation (Beckman and Ayers 1997, Beckman and Hirschberg 1994).

14.4 Acoustic Phonetics and Signals

We begin with a very brief introduction to the acoustic waveform and its digitization
and frequency analysis; the interested reader is encouraged to consult the references
at the end of the chapter.

14.4.1 Waves
Acoustic analysis is based on the sine and cosine functions. Figure 14.10 shows a
plot of a sine wave, in particular the function

y = A∗ sin(2π f t) (14.3)

where we have set the amplitude A to 1 and the frequency f to 10 cycles per second.

Time (s)
0 0.5

–1.0

1.0

0

0 0.1 0.2 0.3 0.4 0.5

Figure 14.10 A sine wave with a frequency of 10 Hz and an amplitude of 1.

Recall from basic mathematics that two important characteristics of a wave are
its frequency and amplitude. The frequency is the number of times a second thatfrequency

amplitude
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a wave repeats itself, that is, the number of cycles. We usually measure frequency
in cycles per second. The signal in Fig. 14.10 repeats itself 5 times in .5 seconds,
hence 10 cycles per second. Cycles per second are usually called hertz (shortenedHertz

to Hz), so the frequency in Fig. 14.10 would be described as 10 Hz. The amplitude
A of a sine wave is the maximum value on the Y axis. The period T of the wave isperiod

the time it takes for one cycle to complete, defined as

T =
1
f

(14.4)

Each cycle in Fig. 14.10 lasts a tenth of a second; hence T = .1 seconds.

14.4.2 Speech Sound Waves
Let’s turn from hypothetical waves to sound waves. The input to a speech recog-
nizer, like the input to the human ear, is a complex series of changes in air pressure.
These changes in air pressure obviously originate with the speaker and are caused
by the specific way that air passes through the glottis and out the oral or nasal cav-
ities. We represent sound waves by plotting the change in air pressure over time.
One metaphor which sometimes helps in understanding these graphs is that of a ver-
tical plate blocking the air pressure waves (perhaps in a microphone in front of a
speaker’s mouth, or the eardrum in a hearer’s ear). The graph measures the amount
of compression or rarefaction (uncompression) of the air molecules at this plate.
Figure 14.11 shows a short segment of a waveform taken from the Switchboard
corpus of telephone speech of the vowel [iy] from someone saying “she just had a
baby”.

Time (s)
0 0.03875

–0.01697

0.02283

0

Figure 14.11 A waveform of the vowel [iy] from an utterance shown later in Fig. 14.15 on page 15. The
y-axis shows the level of air pressure above and below normal atmospheric pressure. The x-axis shows time.
Notice that the wave repeats regularly.

The first step in digitizing a sound wave like Fig. 14.11 is to convert the analog
representations (first air pressure and then analog electric signals in a microphone)
into a digital signal. This analog-to-digital conversion has two steps: sampling andsampling

quantization. To sample a signal, we measure its amplitude at a particular time; the
sampling rate is the number of samples taken per second. To accurately measure a
wave, we must have at least two samples in each cycle: one measuring the positive
part of the wave and one measuring the negative part. More than two samples per
cycle increases the amplitude accuracy, but fewer than two samples causes the fre-
quency of the wave to be completely missed. Thus, the maximum frequency wave
that can be measured is one whose frequency is half the sample rate (since every
cycle needs two samples). This maximum frequency for a given sampling rate is
called the Nyquist frequency. Most information in human speech is in frequenciesNyquist

frequency
below 10,000 Hz; thus, a 20,000 Hz sampling rate would be necessary for com-
plete accuracy. But telephone speech is filtered by the switching network, and only
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frequencies less than 4,000 Hz are transmitted by telephones. Thus, an 8,000 Hz
sampling rate is sufficient for telephone-bandwidth speech like the Switchboard
corpus, while 16,000 Hz sampling is often used for microphone speech.

Even an 8,000 Hz sampling rate requires 8000 amplitude measurements for each
second of speech, so it is important to store amplitude measurements efficiently.
They are usually stored as integers, either 8 bit (values from -128–127) or 16 bit
(values from -32768–32767). This process of representing real-valued numbers as
integers is called quantization because the difference between two integers acts asquantization

a minimum granularity (a quantum size) and all values that are closer together than
this quantum size are represented identically.

Once data is quantized, it is stored in various formats. One parameter of these
formats is the sample rate and sample size discussed above; telephone speech is
often sampled at 8 kHz and stored as 8-bit samples, and microphone data is often
sampled at 16 kHz and stored as 16-bit samples. Another parameter is the number of
channels. For stereo data or for two-party conversations, we can store both channelschannel

in the same file or we can store them in separate files. A final parameter is individual
sample storage—linearly or compressed. One common compression format used for
telephone speech is µ-law (often written u-law but still pronounced mu-law). The
intuition of log compression algorithms like µ-law is that human hearing is more
sensitive at small intensities than large ones; the log represents small values with
more faithfulness at the expense of more error on large values. The linear (unlogged)
values are generally referred to as linear PCM values (PCM stands for pulse codePCM

modulation, but never mind that). Here’s the equation for compressing a linear PCM
sample value x to 8-bit µ-law, (where µ=255 for 8 bits):

F(x) =
sgn(x) log(1+µ|x|)

log(1+µ)
−1≤ x≤ 1 (14.5)

There are a number of standard file formats for storing the resulting digitized wave-
file, such as Microsoft’s .wav and Apple’s AIFF all of which have special headers;
simple headerless “raw” files are also used. For example, the .wav format is a subset
of Microsoft’s RIFF format for multimedia files; RIFF is a general format that can
represent a series of nested chunks of data and control information. Figure 14.12
shows a simple .wav file with a single data chunk together with its format chunk.

Figure 14.12 Microsoft wavefile header format, assuming simple file with one chunk. Fol-
lowing this 44-byte header would be the data chunk.

14.4.3 Frequency and Amplitude; Pitch and Loudness
Sound waves, like all waves, can be described in terms of frequency, amplitude, and
the other characteristics that we introduced earlier for pure sine waves. In sound
waves, these are not quite as simple to measure as they were for sine waves. Let’s
consider frequency. Note in Fig. 14.11 that although not exactly a sine, the wave is
nonetheless periodic, repeating 10 times in the 38.75 milliseconds (.03875 seconds)
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captured in the figure. Thus, the frequency of this segment of the wave is 10/.03875
or 258 Hz.

Where does this periodic 258 Hz wave come from? It comes from the speed
of vibration of the vocal folds; since the waveform in Fig. 14.11 is from the vowel
[iy], it is voiced. Recall that voicing is caused by regular openings and closing of
the vocal folds. When the vocal folds are open, air is pushing up through the lungs,
creating a region of high pressure. When the folds are closed, there is no pressure
from the lungs. Thus, when the vocal folds are vibrating, we expect to see regular
peaks in amplitude of the kind we see in Fig. 14.11, each major peak corresponding
to an opening of the vocal folds. The frequency of the vocal fold vibration, or the
frequency of the complex wave, is called the fundamental frequency of the wave-fundamental

frequency
form, often abbreviated F0. We can plot F0 over time in a pitch track. Figure 14.13F0

pitch track shows the pitch track of a short question, “Three o’clock?” represented below the
waveform. Note the rise in F0 at the end of the question.

three o’clock

Time (s)
0 0.544375

0 Hz

500 Hz

Figure 14.13 Pitch track of the question “Three o’clock?”, shown below the wavefile. Note
the rise in F0 at the end of the question. Note the lack of pitch trace during the very quiet part
(the “o’” of “o’clock”; automatic pitch tracking is based on counting the pulses in the voiced
regions, and doesn’t work if there is no voicing (or insufficient sound).

The vertical axis in Fig. 14.11 measures the amount of air pressure variation;
pressure is force per unit area, measured in Pascals (Pa). A high value on the vertical
axis (a high amplitude) indicates that there is more air pressure at that point in time,
a zero value means there is normal (atmospheric) air pressure, and a negative value
means there is lower than normal air pressure (rarefaction).

In addition to this value of the amplitude at any point in time, we also often
need to know the average amplitude over some time range, to give us some idea
of how great the average displacement of air pressure is. But we can’t just take
the average of the amplitude values over a range; the positive and negative values
would (mostly) cancel out, leaving us with a number close to zero. Instead, we
generally use the RMS (root-mean-square) amplitude, which squares each number
before averaging (making it positive), and then takes the square root at the end.

RMS amplitudeN
i=1 =

√√√√ 1
N

N∑
i=1

x2
i (14.6)

The power of the signal is related to the square of the amplitude. If the numberpower
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of samples of a sound is N, the power is

Power =
1
N

N∑
i=1

x2
i (14.7)

Rather than power, we more often refer to the intensity of the sound, whichintensity

normalizes the power to the human auditory threshold and is measured in dB. If P0
is the auditory threshold pressure = 2×10−5 Pa, then intensity is defined as follows:

Intensity = 10log10
1

NP0

N∑
i=1

x2
i (14.8)

Figure 14.14 shows an intensity plot for the sentence “Is it a long movie?” from
the CallHome corpus, again shown below the waveform plot.

is it a long movie?

Time (s)
0 1.1675

Figure 14.14 Intensity plot for the sentence “Is it a long movie?”. Note the intensity peaks
at each vowel and the especially high peak for the word long.

Two important perceptual properties, pitch and loudness, are related to fre-
quency and intensity. The pitch of a sound is the mental sensation, or perceptualpitch

correlate, of fundamental frequency; in general, if a sound has a higher fundamen-
tal frequency we perceive it as having a higher pitch. We say “in general” because
the relationship is not linear, since human hearing has different acuities for different
frequencies. Roughly speaking, human pitch perception is most accurate between
100 Hz and 1000 Hz and in this range pitch correlates linearly with frequency. Hu-
man hearing represents frequencies above 1000 Hz less accurately, and above this
range, pitch correlates logarithmically with frequency. Logarithmic representation
means that the differences between high frequencies are compressed and hence not
as accurately perceived. There are various psychoacoustic models of pitch percep-
tion scales. One common model is the mel scale (Stevens et al. 1937, Stevens andMel

Volkmann 1940). A mel is a unit of pitch defined such that pairs of sounds which
are perceptually equidistant in pitch are separated by an equal number of mels. The
mel frequency m can be computed from the raw acoustic frequency as follows:

m = 1127ln(1+
f

700
) (14.9)

As we’ll see in Chapter 15, the mel scale plays an important role in speech
recognition.
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The loudness of a sound is the perceptual correlate of the power. So sounds with
higher amplitudes are perceived as louder, but again the relationship is not linear.
First of all, as we mentioned above when we defined µ-law compression, humans
have greater resolution in the low-power range; the ear is more sensitive to small
power differences. Second, it turns out that there is a complex relationship between
power, frequency, and perceived loudness; sounds in certain frequency ranges are
perceived as being louder than those in other frequency ranges.

Various algorithms exist for automatically extracting F0. In a slight abuse of ter-
minology, these are called pitch extraction algorithms. The autocorrelation methodpitch extraction

of pitch extraction, for example, correlates the signal with itself at various offsets.
The offset that gives the highest correlation gives the period of the signal. There
are various publicly available pitch extraction toolkits; for example, an augmented
autocorrelation pitch tracker is provided with Praat (Boersma and Weenink, 2005).

14.4.4 Interpretation of Phones from a Waveform
Much can be learned from a visual inspection of a waveform. For example, vowels
are pretty easy to spot. Recall that vowels are voiced; another property of vowels
is that they tend to be long and are relatively loud (as we can see in the intensity
plot in Fig. 14.14). Length in time manifests itself directly on the x-axis, and loud-
ness is related to (the square of) amplitude on the y-axis. We saw in the previous
section that voicing is realized by regular peaks in amplitude of the kind we saw in
Fig. 14.11, each major peak corresponding to an opening of the vocal folds. Fig-
ure 14.15 shows the waveform of the short sentence “she just had a baby”. We have
labeled this waveform with word and phone labels. Notice that each of the six vow-
els in Fig. 14.15, [iy], [ax], [ae], [ax], [ey], [iy], all have regular amplitude peaks
indicating voicing.

she just had a baby

sh iy j ax s h ae dx ax b ey b iy

Time (s)
0 1.059

Figure 14.15 A waveform of the sentence “She just had a baby” from the Switchboard corpus (conversation
4325). The speaker is female, was 20 years old in 1991, which is approximately when the recording was made,
and speaks the South Midlands dialect of American English.

For a stop consonant, which consists of a closure followed by a release, we can
often see a period of silence or near silence followed by a slight burst of amplitude.
We can see this for both of the [b]’s in baby in Fig. 14.15.

Another phone that is often quite recognizable in a waveform is a fricative. Re-
call that fricatives, especially very strident fricatives like [sh], are made when a
narrow channel for airflow causes noisy, turbulent air. The resulting hissy sounds
have a noisy, irregular waveform. This can be seen somewhat in Fig. 14.15; it’s even
clearer in Fig. 14.16, where we’ve magnified just the first word she.
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she

sh iy

Time (s)
0 0.257

Figure 14.16 A more detailed view of the first word “she” extracted from the wavefile in Fig. 14.15. Notice
the difference between the random noise of the fricative [sh] and the regular voicing of the vowel [iy].

14.4.5 Spectra and the Frequency Domain
While some broad phonetic features (such as energy, pitch, and the presence of voic-
ing, stop closures, or fricatives) can be interpreted directly from the waveform, most
computational applications such as speech recognition (as well as human auditory
processing) are based on a different representation of the sound in terms of its com-
ponent frequencies. The insight of Fourier analysis is that every complex wave can
be represented as a sum of many sine waves of different frequencies. Consider the
waveform in Fig. 14.17. This waveform was created (in Praat) by summing two sine
waveforms, one of frequency 10 Hz and one of frequency 100 Hz.

Time (s)
0 0.5

–1

1

0

Figure 14.17 A waveform that is the sum of two sine waveforms, one of frequency 10
Hz (note five repetitions in the half-second window) and one of frequency 100 Hz, both of
amplitude 1.

We can represent these two component frequencies with a spectrum. The spec-spectrum

trum of a signal is a representation of each of its frequency components and their
amplitudes. Figure 14.18 shows the spectrum of Fig. 14.17. Frequency in Hz is
on the x-axis and amplitude on the y-axis. Note the two spikes in the figure, one
at 10 Hz and one at 100 Hz. Thus, the spectrum is an alternative representation of
the original waveform, and we use the spectrum as a tool to study the component
frequencies of a sound wave at a particular time point.

Let’s look now at the frequency components of a speech waveform. Figure 14.19
shows part of the waveform for the vowel [ae] of the word had, cut out from the
sentence shown in Fig. 14.15.

Note that there is a complex wave that repeats about ten times in the figure; but
there is also a smaller repeated wave that repeats four times for every larger pattern
(notice the four small peaks inside each repeated wave). The complex wave has a
frequency of about 234 Hz (we can figure this out since it repeats roughly 10 times
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Figure 14.18 The spectrum of the waveform in Fig. 14.17.

Time (s)
0 0.04275

–0.05554

0.04968

0

Figure 14.19 The waveform of part of the vowel [ae] from the word had cut out from the
waveform shown in Fig. 14.15.

in .0427 seconds, and 10 cycles/.0427 seconds = 234 Hz).
The smaller wave then should have a frequency of roughly four times the fre-

quency of the larger wave, or roughly 936 Hz. Then, if you look carefully, you can
see two little waves on the peak of many of the 936 Hz waves. The frequency of this
tiniest wave must be roughly twice that of the 936 Hz wave, hence 1872 Hz.

Figure 14.20 shows a smoothed spectrum for the waveform in Fig. 14.19, com-
puted with a discrete Fourier transform (DFT).
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Figure 14.20 A spectrum for the vowel [ae] from the word had in the waveform of She just
had a baby in Fig. 14.15.

The x-axis of a spectrum shows frequency, and the y-axis shows some mea-
sure of the magnitude of each frequency component (in decibels (dB), a logarithmic
measure of amplitude that we saw earlier). Thus, Fig. 14.20 shows significant fre-
quency components at around 930 Hz, 1860 Hz, and 3020 Hz, along with many
other lower-magnitude frequency components. These first two components are just
what we noticed in the time domain by looking at the wave in Fig. 14.19!

Why is a spectrum useful? It turns out that these spectral peaks that are easily
visible in a spectrum are characteristic of different phones; phones have characteris-



18 CHAPTER 14 • PHONETICS AND SPEECH FEATURE EXTRACTION

tic spectral “signatures”. Just as chemical elements give off different wavelengths of
light when they burn, allowing us to detect elements in stars by looking at the spec-
trum of the light, we can detect the characteristic signature of the different phones
by looking at the spectrum of a waveform. This use of spectral information is essen-
tial to both human and machine speech recognition. In human audition, the function
of the cochlea, or inner ear, is to compute a spectrum of the incoming waveform.cochlea

Similarly, the acoustic features used in speech recognition are spectral representa-
tions.

Let’s look at the spectrum of different vowels. Since some vowels change over
time, we’ll use a different kind of plot called a spectrogram. While a spectrum
shows the frequency components of a wave at one point in time, a spectrogram is aspectrogram

way of envisioning how the different frequencies that make up a waveform change
over time. The x-axis shows time, as it did for the waveform, but the y-axis now
shows frequencies in hertz. The darkness of a point on a spectrogram corresponds
to the amplitude of the frequency component. Very dark points have high amplitude,
light points have low amplitude. Thus, the spectrogram is a useful way of visualizing
the three dimensions (time x frequency x amplitude).

Figure 14.21 shows spectrograms of three American English vowels, [ih], [ae],
and [ah]. Note that each vowel has a set of dark bars at various frequency bands,
slightly different bands for each vowel. Each of these represents the same kind of
spectral peak that we saw in Fig. 14.19.
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Figure 14.21 Spectrograms for three American English vowels, [ih], [ae], and [uh]

Each dark bar (or spectral peak) is called a formant. As we discuss below, aformant

formant is a frequency band that is particularly amplified by the vocal tract. Since
different vowels are produced with the vocal tract in different positions, they will
produce different kinds of amplifications or resonances. Let’s look at the first two
formants, called F1 and F2. Note that F1, the dark bar closest to the bottom, is in a
different position for the three vowels; it’s low for [ih] (centered at about 470 Hz)
and somewhat higher for [ae] and [ah] (somewhere around 800 Hz). By contrast,
F2, the second dark bar from the bottom, is highest for [ih], in the middle for [ae],
and lowest for [ah].

We can see the same formants in running speech, although the reduction and
coarticulation processes make them somewhat harder to see. Figure 14.22 shows
the spectrogram of “she just had a baby”, whose waveform was shown in Fig. 14.15.
F1 and F2 (and also F3) are pretty clear for the [ax] of just, the [ae] of had, and the
[ey] of baby.

What specific clues can spectral representations give for phone identification?
First, since different vowels have their formants at characteristic places, the spectrum
can distinguish vowels from each other. We’ve seen that [ae] in the sample waveform
had formants at 930 Hz, 1860 Hz, and 3020 Hz. Consider the vowel [iy] at the
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she just had a baby

sh iy j ax s h ae dx ax b ey b iy

Time (s)
0 1.059

Figure 14.22 A spectrogram of the sentence “she just had a baby” whose waveform was shown in Fig. 14.15.
We can think of a spectrogram as a collection of spectra (time slices), like Fig. 14.20 placed end to end.

beginning of the utterance in Fig. 14.15. The spectrum for this vowel is shown in
Fig. 14.23. The first formant of [iy] is 540 Hz, much lower than the first formant for
[ae], and the second formant (2581 Hz) is much higher than the second formant for
[ae]. If you look carefully, you can see these formants as dark bars in Fig. 14.22 just
around 0.5 seconds.
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Figure 14.23 A smoothed (LPC) spectrum for the vowel [iy] at the start of She just had a
baby. Note that the first formant (540 Hz) is much lower than the first formant for [ae] shown
in Fig. 14.20, and the second formant (2581 Hz) is much higher than the second formant for
[ae].

The location of the first two formants (called F1 and F2) plays a large role in de-
termining vowel identity, although the formants still differ from speaker to speaker.
Higher formants tend to be caused more by general characteristics of a speaker’s
vocal tract rather than by individual vowels. Formants also can be used to identify
the nasal phones [n], [m], and [ng] and the liquids [l] and [r].

14.4.6 The Source-Filter Model
Why do different vowels have different spectral signatures? As we briefly mentioned
above, the formants are caused by the resonant cavities of the mouth. The source-
filter model is a way of explaining the acoustics of a sound by modeling how thesource-filter

model
pulses produced by the glottis (the source) are shaped by the vocal tract (the filter).

Let’s see how this works. Whenever we have a wave such as the vibration in air
caused by the glottal pulse, the wave also has harmonics. A harmonic is anotherharmonic

wave whose frequency is a multiple of the fundamental wave. Thus, for example, a
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115 Hz glottal fold vibration leads to harmonics (other waves) of 230 Hz, 345 Hz,
460 Hz, and so on on. In general, each of these waves will be weaker, that is, will
have much less amplitude than the wave at the fundamental frequency.

It turns out, however, that the vocal tract acts as a kind of filter or amplifier;
indeed any cavity, such as a tube, causes waves of certain frequencies to be amplified
and others to be damped. This amplification process is caused by the shape of the
cavity; a given shape will cause sounds of a certain frequency to resonate and hence
be amplified. Thus, by changing the shape of the cavity, we can cause different
frequencies to be amplified.

When we produce particular vowels, we are essentially changing the shape of
the vocal tract cavity by placing the tongue and the other articulators in particular
positions. The result is that different vowels cause different harmonics to be ampli-
fied. So a wave of the same fundamental frequency passed through different vocal
tract positions will result in different harmonics being amplified.

We can see the result of this amplification by looking at the relationship between
the shape of the vocal tract and the corresponding spectrum. Figure 14.24 shows
the vocal tract position for three vowels and a typical resulting spectrum. The for-
mants are places in the spectrum where the vocal tract happens to amplify particular
harmonic frequencies.
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Figure 14.24 Visualizing the vocal tract position as a filter: the tongue positions for three English vowels and
the resulting smoothed spectra showing F1 and F2.

14.5 Feature Extraction for Speech Recognition: Log
Mel Spectrum

The same tools that we used to analyze the acoustic phonetics of the waveforms are
also often used as inputs to speech processing algorithms. In this section we intro-
duce a signal processing pipeline that is often used as part of tasks like automatic
speech recognition (ASR), as we we will see in Chapter 15. The first step in speech
processing is often to transform the input waveform into a sequence of acoustic fea-
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ture vectors, each vector representing the information in a small time window offeature vector

the signal. Sometimes speech recognition or processing algorithms will start with
the waveform, in which case that processing is done by the convolutional networks
(convnets) that we will introduce in Chapter 15.

Other systems begin instead at a higher level, with the log mel spectrum. So in
this section we introduce this commonly used feature vector: sequences of log mel
spectrum vectors. In the following section we’ll introduce an alternative vector, the
MFCC representation. We’ll introduce these concepts at a relatively high level; a
speech signal processing course is recommended for more details.

We begin by repeating from Section 14.4.2 the process of digitizing and quan-
tizing an analog speech waveform.

14.5.1 Sampling and Quantization
The input to a speech recognizer is a complex series of changes in air pressure.
These changes in air pressure obviously originate with the speaker and are caused
by the specific way that air passes through the glottis and out the oral or nasal cav-
ities. We represent sound waves by plotting the change in air pressure over time.
One metaphor which sometimes helps in understanding these graphs is that of a ver-
tical plate blocking the air pressure waves (perhaps in a microphone in front of a
speaker’s mouth, or the eardrum in a hearer’s ear). The graph measures the amount
of compression or rarefaction (uncompression) of the air molecules at this plate.
Figure 14.25 (repeated from figreffig:waveform1) shows a short segment of a wave-
form taken from the Switchboard corpus of telephone speech of the vowel [iy] from
someone saying “she just had a baby”.

Time (s)
0 0.03875

–0.01697

0.02283

0

Figure 14.25 A waveform of an instance of the vowel [iy] (the last vowel in the word “baby”). The y-axis
shows the level of air pressure above and below normal atmospheric pressure. The x-axis shows time. Notice
that the wave repeats regularly. Repeated from Fig. 14.11.

The first step in digitizing a sound wave like Fig. 14.15 is to convert the analog
representations (first air pressure and then analog electric signals in a microphone)
into a digital signal. This analog-to-digital conversion has two steps: sampling andsampling

quantization. To sample a signal, we measure its amplitude at a particular time; the
sampling rate is the number of samples taken per second. To accurately measure a
wave, we must have at least two samples in each cycle: one measuring the positive
part of the wave and one measuring the negative part. More than two samples per
cycle increases the amplitude accuracy, but fewer than two samples causes the fre-
quency of the wave to be completely missed. Thus, the maximum frequency wave
that can be measured is one whose frequency is half the sample rate (since every
cycle needs two samples). This maximum frequency for a given sampling rate is
called the Nyquist frequency. Most information in human speech is in frequenciesNyquist

frequency
below 10,000 Hz; thus, a 20,000 Hz sampling rate would be necessary for com-
plete accuracy. But telephone speech is filtered by the switching network, and only
frequencies less than 4,000 Hz are transmitted by telephones. Thus, an 8,000 Hz
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sampling rate is sufficient for telephone-bandwidth speech like the Switchboard
corpus, while 16,000 Hz sampling is often used for microphone speech.

Although using higher sampling rates produces higher ASR accuracy, we can’t
combine different sampling rates for training and testing ASR systems. Thus if
we are testing on a telephone corpus like Switchboard (8 KHz sampling), we must
downsample our training corpus to 8 KHz. Similarly, if we are training on mul-
tiple corpora and one of them includes telephone speech, we downsample all the
wideband corpora to 8KHz.

Amplitude measurements are stored as integers, either 8 bit (values from -128–
127) or 16 bit (values from -32768–32767). This process of representing real-valued
numbers as integers is called quantization; all values that are closer together thanquantization

the minimum granularity (the quantum size) are represented identically. We refer to
each sample at time index n in the digitized, quantized waveform as x[n].

Once data is quantized, it is stored in various formats. One parameter of these
formats is the sample rate and sample size discussed above; telephone speech is
often sampled at 8 kHz and stored as 8-bit samples, and microphone data is often
sampled at 16 kHz and stored as 16-bit samples. Another parameter is the number of
channels. For stereo data or for two-party conversations, we can store both channelschannel

in the same file or we can store them in separate files. A final parameter is individual
sample storage—linearly or compressed. One common compression format used for
telephone speech is µ-law (often written u-law but still pronounced mu-law). The
intuition of log compression algorithms like µ-law is that human hearing is more
sensitive at small intensities than large ones; the log represents small values with
more faithfulness at the expense of more error on large values. The linear (unlogged)
values are generally referred to as linear PCM values (PCM stands for pulse codePCM

modulation, but never mind that). Here’s the equation for compressing a linear PCM
sample value x to 8-bit µ-law, (where µ=255 for 8 bits):

F(x) =
sgn(x) log(1+µ|x|)

log(1+µ)
−1≤ x≤ 1 (14.10)

14.5.2 Windowing
From the digitized, quantized representation of the waveform, we need to extract
spectral features from a small window of speech that characterizes part of a par-
ticular phoneme. Inside this small window, we can roughly think of the signal as
stationary (that is, its statistical properties are constant within this region). (Bystationary

contrast, in general, speech is a non-stationary signal, meaning that its statisticalnon-stationary

properties are not constant over time). We extract this roughly stationary portion of
speech by using a window which is non-zero inside a region and zero elsewhere, run-
ning this window across the speech signal and multiplying it by the input waveform
to produce a windowed waveform.

The speech extracted from each window is called a frame. The windowing isframe

characterized by three parameters: the window size or frame size of the window
(its width in milliseconds), the frame stride, (also called shift or offset) betweenstride

successive windows, and the shape of the window.
To extract the signal we multiply the value of the signal at time n, s[n] by the

value of the window at time n, w[n]:

y[n] = w[n]s[n] (14.11)

The window shape sketched in Fig. 14.26 is rectangular; you can see the ex-rectangular
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Figure 14.26 Windowing, showing a 25 ms rectangular window with a 10ms stride.

tracted windowed signal looks just like the original signal. The rectangular window,
however, abruptly cuts off the signal at its boundaries, which creates problems when
we do Fourier analysis. For this reason, for acoustic feature creation we more com-
monly use the Hamming window, which shrinks the values of the signal towardHamming

zero at the window boundaries, avoiding discontinuities. Figure 14.27 shows both;
the equations are as follows (assuming a window that is L frames long):

rectangular w[n] =

{
1 0≤ n≤ L−1
0 otherwise (14.12)

Hamming w[n] =

{
0.54−0.46cos( 2πn

L ) 0≤ n≤ L−1
0 otherwise

(14.13)
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Figure 14.27 Windowing a sine wave with the rectangular or Hamming windows.
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14.5.3 Discrete Fourier Transform
The next step is to extract spectral information for our windowed signal; we need to
know how much energy the signal contains at different frequency bands. The tool
for extracting spectral information for discrete frequency bands for a discrete-time
(sampled) signal is the discrete Fourier transform or DFT.

Discrete
Fourier

transform
DFT The input to the DFT is a windowed signal x[n]...x[m], and the output, for each of

N discrete frequency bands, is a complex number X [k] representing the magnitude
and phase of that frequency component in the original signal. If we plot the magni-
tude against the frequency, we can visualize the spectrum (see Chapter 14 for more
on spectra). For example, Fig. 14.28 shows a 25 ms Hamming-windowed portion of
a signal and its spectrum as computed by a DFT (with some additional smoothing).
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Figure 14.28 (a) A 25 ms Hamming-windowed portion of a signal from the vowel [iy]
and (b) its spectrum computed by a DFT.

We do not introduce the mathematical details of the DFT here, except to note
that Fourier analysis relies on Euler’s formula, with j as the imaginary unit:Euler’s formula

e jθ = cosθ + j sinθ (14.14)

As a brief reminder for those students who have already studied signal processing,
the DFT is defined as follows:

X [k] =
N−1∑
n=0

x[n]e− j 2π
N kn (14.15)

A commonly used algorithm for computing the DFT is the fast Fourier transformfast Fourier
transform

or FFT. This implementation of the DFT is very efficient but only works for valuesFFT

of N that are powers of 2.

14.5.4 Mel Filter Bank and Log
The results of the FFT tell us the energy at each frequency band. Human hearing,
however, is not equally sensitive at all frequency bands; it is less sensitive at higher
frequencies. This bias toward low frequencies helps human recognition, since in-
formation in low frequencies (like formants) is crucial for distinguishing vowels or
nasals, while information in high frequencies (like stop bursts or fricative noise) is
less crucial for successful recognition. Modeling this human perceptual property
improves speech recognition performance in the same way.

We implement this intuition by collecting energies, not equally at each frequency
band, but according to the mel scale, an auditory frequency scale. A mel (Stevensmel
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et al. 1937, Stevens and Volkmann 1940) is a unit of pitch. Pairs of sounds that are
perceptually equidistant in pitch are separated by an equal number of mels. The mel
frequency m can be computed from the raw acoustic frequency by a log transforma-
tion:

mel( f ) = 1127ln(1+
f

700
) (14.16)

We implement this intuition by creating a bank of filters that collect energy from
each frequency band, spread logarithmically so that we have very fine resolution
at low frequencies, and less resolution at high frequencies. Figure 14.29 shows a
sample bank of triangular filters that implement this idea, that can be multiplied by
the spectrum to get a mel spectrum.

m1 m2 mM...mel spectrum

0 7700
0

0.5

1

Am
pl

itu
de

Frequency (Hz)
8K

Figure 14.29 The mel filter bank (Davis and Mermelstein, 1980). Each triangular filter,
spaced logarithmically along the mel scale, collects energy from a given frequency range.

Finally, we take the log of each of the mel spectrum values. The human response
to signal level is logarithmic (like the human response to frequency). Humans are
less sensitive to slight differences in amplitude at high amplitudes than at low ampli-
tudes. In addition, using a log makes the feature estimates less sensitive to variations
in input such as power variations due to the speaker’s mouth moving closer or further
from the microphone.

We call each scalar output from a particular filter a channel, and so the outputchannel

for each input frame from the filterbank is a vector of, say 80 or 128 channels, each
of which represents the log energy of a particular (mel-spaced) frequency band.

Before we send this log mel channel vector to the downstream neural network
layers, it’s common for speech systems to rescale them so they have comparable
ranges. A common type of normalization for speech is to scale the input to be be-
tween -1 and 1 with zero mean across the entire pretraining dataset (see Section ??
in Chapter 4).

14.6 MFCC: Mel Frequency Cepstral Coefficients

The MFCC, mel frequency cepstral coefficients, is a useful representation of theMFCC

waveform that emphasizes aspects of the signal that are relevant for detection of
phonetic units. The MFCC is a 39-dimensional feature vector consisting of:

12 cepstral coefficients 1 energy coefficient
12 delta cepstral coefficients 1 delta energy coefficient
12 double delta cepstral coefficients 1 double delta energy coefficient

Below we sketch how these features are computed; students interested in more
detail are encouraged to follow up with a signal processing course.
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The Cepstrum: Inverse Discrete Fourier Transform

MFCC coefficients are based on the cepstrum. One way to think about the cepstrumcepstrum

is as a useful way of separating the source and filter. Recall from Section 14.4.6
that the speech waveform is created when a glottal source waveform of a particular
fundamental frequency is passed through the vocal tract, which because of its shape
has a particular filtering characteristic. But many characteristics of the glottal source
(its fundamental frequency, the details of the glottal pulse, etc.) are not important
for distinguishing different phones. Instead, the most useful information for phone
detection is the filter, that is, the exact position of the vocal tract. If we knew the
shape of the vocal tract, we would know which phone was being produced. This
suggests that useful features for phone detection would find a way to deconvolve
(separate) the source and filter and show us only the vocal tract filter. It turns out
that the cepstrum is one way to do this.
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Figure 14.30 The magnitude spectrum (a), log magnitude spectrum (b), and cepstrum (c), from Taylor (2009),
by permission. The two spectra have a smoothed spectral envelope laid on top to help visualize the spectrum.

For simplicity, let’s consider as input the log magnitude spectrum and ignore
the mel scaling. The cepstrum can be thought of as the spectrum of the log of the
spectrum. This may sound confusing. But let’s begin with the easy part: the log
of the spectrum. That is, the cepstrum begins with a standard magnitude spectrum,
such as the one for a vowel shown in Fig. 14.30(a) from Taylor (2009). We then take
the log, that is, replace each amplitude value in the magnitude spectrum with its log,
as shown in Fig. 14.30(b).

The next step is to visualize the log spectrum as if itself were a waveform. In
other words, consider the log spectrum in Fig. 14.30(b). Let’s imagine removing the
axis labels that tell us that this is a spectrum (frequency on the x-axis) and imagine
that we are dealing with just a normal speech signal with time on the x-axis. What
can we now say about the spectrum of this “pseudo-signal”? Notice that there is a
high frequency repetitive component in this wave: small waves that repeat about 8
times in each 1000 along the x-axis, for a frequency of about 120 Hz. This high
frequency component is caused by the fundamental frequency of the signal and rep-
resents the little peaks in the spectrum at each harmonic of the signal. In addition,
there are some lower frequency components in this “pseudo-signal”; for example,
the envelope or formant structure has about four large peaks in the window, for a
much lower frequency.

Figure 14.30(c) shows the cepstrum: the spectrum that we have been describing
of the log spectrum. This cepstrum (the word cepstrum is formed by reversing
the first four letters of spectrum) is shown with samples along the x-axis. This
is because by taking the spectrum of the log spectrum, we have left the frequency
domain of the spectrum, and gone back to the time domain. It turns out that the
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correct unit of a cepstrum is the sample.
Examining this cepstrum, we see that there is indeed a large peak around 120,

corresponding to the F0 and representing the glottal pulse. There are other various
components at lower values on the x-axis. These represent the vocal tract filter
(the position of the tongue and the other articulators). Thus, if we are interested
in detecting phones, we can make use of just the lower cepstral values. If we are
interested in detecting pitch, we can use the higher cepstral values.

For the purposes of MFCC extraction, we generally just take the first 12 cepstral
values. These 12 coefficients will represent information solely about the vocal tract
filter, cleanly separated from information about the glottal source.

It turns out that cepstral coefficients have the extremely useful property that the
variance of the different coefficients tends to be uncorrelated. This is not true for the
spectrum, where spectral coefficients at different frequency bands are correlated.

For those who have had signal processing, the cepstrum is more formally defined
as the inverse DFT of the log magnitude of the DFT of a signal; hence, for a
windowed frame of speech x[n],

c[n] =
N−1∑
n=0

log

(∣∣∣∣∣
N−1∑
n=0

x[n]e− j 2π
N kn

∣∣∣∣∣
)

e j 2π
N kn (14.17)

Energy To the 12 cepstral coefficients from the prior section we add a 13th feature:
the energy from the frame. Energy is a useful cue for phone detection (for example
vowels and sibilants have more energy than stops). The energy in a frame is the sumenergy

over time of the power of the samples in the frame; thus, for a signal x in a window
from time sample t1 to time sample t2, the energy is

Energy =
t2∑

t=t1

x2[t] (14.18)

Delta features We also add features related to the change in cepstral features over
time. Changes in the speech signal, like the slope of a formant at its transitions,
or the change from a stop closure to stop burst, can again provide a useful cue for
phone identity. To each of the 13 features (12 cepstral features plus energy) a deltadelta feature

or velocity feature and a double delta or acceleration feature. Each of the 13 deltadouble delta

features represents the change between frames in the corresponding cepstral/energy
feature, and each of the 13 double delta features represents the change between
frames in the corresponding delta features. These deltas can be simply computed by
just subtracting the value at a frame from the prior value, but in practice it’s common
to fit a polynomial and take its first and second derivative.

14.7 Summary

This chapter has introduced many of the important concepts of phonetics and com-
putational phonetics.

• We can represent the pronunciation of words in terms of units called phones.
The standard system for representing phones is the International Phonetic
Alphabet or IPA. The most common computational system for transcription
of English is the ARPAbet, which conveniently uses ASCII symbols.
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• Phones can be described by how they are produced articulatorily by the vocal
organs; consonants are defined in terms of their place and manner of articu-
lation and voicing; vowels by their height, backness, and roundness.

• Speech sounds can also be described acoustically. Sound waves can be de-
scribed in terms of frequency, amplitude, or their perceptual correlates, pitch
and loudness.

• The spectrum of a sound describes its different frequency components. While
some phonetic properties are recognizable from the waveform, both humans
and machines rely on spectral analysis for phone detection.

• A spectrogram is a plot of a spectrum over time. Vowels are described by
characteristic harmonics called formants.

Historical Notes
The major insights of articulatory phonetics date to the linguists of 800–150 B.C.
India. They invented the concepts of place and manner of articulation, worked out
the glottal mechanism of voicing, and understood the concept of assimilation. Eu-
ropean science did not catch up with the Indian phoneticians until over 2000 years
later, in the late 19th century. The Greeks did have some rudimentary phonetic
knowledge; by the time of Plato’s Theaetetus and Cratylus, for example, they distin-
guished vowels from consonants, and stop consonants from continuants. The Stoics
developed the idea of the syllable and were aware of phonotactic constraints on pos-
sible words. An unknown Icelandic scholar of the 12th century exploited the concept
of the phoneme and proposed a phonemic writing system for Icelandic, including
diacritics for length and nasality. But his text remained unpublished until 1818 and
even then was largely unknown outside Scandinavia (Robins, 1967). The modern
era of phonetics is usually said to have begun with Sweet, who proposed what is
essentially the phoneme in his Handbook of Phonetics 1877. He also devised an al-
phabet for transcription and distinguished between broad and narrow transcription,
proposing many ideas that were eventually incorporated into the IPA. Sweet was
considered the best practicing phonetician of his time; he made the first scientific
recordings of languages for phonetic purposes and advanced the state of the art of
articulatory description. He was also infamously difficult to get along with, a trait
that is well captured in Henry Higgins, the stage character that George Bernard Shaw
modeled after him. The phoneme was first named by the Polish scholar Baudouin
de Courtenay, who published his theories in 1894.

Introductory phonetics textbooks include Ladefoged (1993) and Clark and Yal-
lop (1995). Wells (1982) is the definitive three-volume source on dialects of English.

Many of the classic insights in acoustic phonetics had been developed by the
late 1950s or early 1960s; just a few highlights include techniques like the sound
spectrograph (Koenig et al., 1946), theoretical insights like the working out of the
source-filter theory and other issues in the mapping between articulation and acous-
tics ((Fant, 1960), Stevens et al. 1953, Stevens and House 1955, Heinz and Stevens
1961, Stevens and House 1961) the F1xF2 space of vowel formants (Peterson and
Barney, 1952), the understanding of the phonetic nature of stress and the use of
duration and intensity as cues (Fry, 1955), and a basic understanding of issues in
phone perception (Miller and Nicely 1955,Liberman et al. 1952). Lehiste (1967) is
a collection of classic papers on acoustic phonetics. Many of the seminal papers of
Gunnar Fant have been collected in Fant (2004).
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Speech feature-extraction algorithms were developed in the 1960s and early
1970s, including the efficient fast Fourier transform (FFT) (Cooley and Tukey, 1965),
the application of cepstral processing to speech (Oppenheim et al., 1968), and the
development of LPC for speech coding (Atal and Hanauer, 1971).

Excellent textbooks on acoustic phonetics include Johnson (2003) and Lade-
foged (1996). Coleman (2005) includes an introduction to computational process-
ing of acoustics and speech from a linguistic perspective. Stevens (1998) lays out
an influential theory of speech sound production. There are a number of software
packages for acoustic phonetic analysis. Many of the figures in this book were gen-
erated by the Praat package (Boersma and Weenink, 2005), which includes pitch,Praat

spectral, and formant analysis, as well as a scripting language.

Exercises
14.1 Find the mistakes in the ARPAbet transcriptions of the following words:

a. “three” [dh r i] d. “study” [s t uh d i] g. “slight” [s l iy t]
b. “sing” [s ih n g] e. “though” [th ow]
c. “eyes” [ay s] f. “planning” [p pl aa n ih ng]

14.2 Ira Gershwin’s lyric for Let’s Call the Whole Thing Off talks about two pro-
nunciations (each) of the words “tomato”, “potato”, and “either”. Transcribe
into the ARPAbet both pronunciations of each of these three words.

14.3 Transcribe the following words in the ARPAbet:

1. dark
2. suit
3. greasy
4. wash
5. water

14.4 Take a wavefile of your choice. Some examples are on the textbook website.
Download the Praat software, and use it to transcribe the wavefiles at the word
level and into ARPAbet phones, using Praat to help you play pieces of each
wavefile and to look at the wavefile and the spectrogram.

14.5 Record yourself saying five of the English vowels: [aa], [eh], [ae], [iy], [uw].
Find F1 and F2 for each of your vowels.
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