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CHAPTER

15 Automatic Speech Recognition

I KNOW not whether
I see your meaning: if I do, it lies
Upon the wordy wavelets of your voice,
Dim as an evening shadow in a brook,

Thomas Lovell Beddoes, 1851

Understanding spoken language, or at least transcribing the words into writing, is
one of the earliest goals of computer language processing. In fact, speech processing
predates the computer by many decades!
The first machine that recognized speech
was a toy from the 1920s. “Radio Rex”,
shown to the right, was a celluloid dog
that moved (by means of a spring) when
the spring was released by 500 Hz acous-
tic energy. Since 500 Hz is roughly the
first formant of the vowel [eh] in “Rex”,
Rex seemed to come when he was called
(David, Jr. and Selfridge, 1962).

In modern times, we expect more of our automatic systems. The task of auto-
matic speech recognition (ASR) is to map any waveform like this:ASR

to the appropriate string of words:

It’s time for lunch!

Automatic transcription of speech by any speaker in any environment is still far from
solved, but ASR technology has matured to the point where it is now viable for many
practical tasks. Speech is a natural interface for communicating with appliances, or
with digital assistants or chatbots, especially on cellphones, where keyboards are
less convenient. ASR is also useful for general transcription, for example for auto-
matically generating captions for audio or video text (transcribing movies or videos
or live discussions). Transcription is important in fields like law where dictation
plays an important role. Finally, ASR is important as part of augmentative commu-
nication (interaction between computers and humans with some disability resulting
in difficulties or inabilities in typing or audition). The blind Milton famously dic-
tated Paradise Lost to his daughters, and Henry James dictated his later novels after
a repetitive stress injury.

In the next sections we’ll introduce the various goals of the ASR task, describe
how acoustic features are extracted, and introduce the convolutional neural net
architecture which is commonly used as an initial layer in speech recognition tasks.
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We’ll then introduce two families of methods for ASR. The first is the encoder-
decoder paradigm, and we’ll introduce the baseline attention-based encoder decoder
algorithm, sometimes called Listen Attend and Spell after an early implementation.
We’ll also introduce a more advanced encoder-decoder system, OpenAI’s Whisper
system (Radford et al., 2023) as well an open system based on the same architecture,
OWSM (the Open Whisper-style Speech Model) (Peng et al., 2023). (These mod-
els have additional capabilities including translation, as we’ll discuss later). The
second is the use of self-supervised speech models (sometimes called SSL for self-
supervised learning) like Wav2Vec2.0 or HuBERT, which are encoders that learn
abstract representations of speech that can be used for ASR by pairing them with the
CTC loss function for decoding.

We’ll conclude with the standard word error rate metric used to evaluate ASR.

15.1 The Automatic Speech Recognition Task

Before describing algorithms for ASR, let’s talk about how the ASR task itself
varies. One dimension of variation is vocabulary size. Some ASR tasks have long
been solved with extremely high accuracy, like those with a 2-word vocabulary (yes
versus no) or an 11 word vocabulary like digit recognition (recognizing sequencesdigit

recognition
of digits including zero to nine plus oh). Open-ended tasks like accurately tran-
scribing videos or human conversations, with large vocabularies of 60,000 or more
words, are much harder.

A second dimension of variation is who the speaker is talking to. Humans speak-
ing to machines (either dictating or talking to a dialogue system) are easier to recog-
nize than humans speaking to humans. Read speech, in which humans are readingread speech

out loud, for example in audio books, is also relatively easy to recognize. Recog-
nizing the speech of two humans talking to each other in conversational speech,conversational

speech
for example, for transcribing a business meeting, is the hardest. It seems that when
humans talk to machines, or read without an audience present, they simplify their
speech quite a bit, talking more slowly and more clearly.

A third dimension of variation is channel and noise. Speech is easier to recognize
if it’s recorded in a quiet room with head-mounted microphones than if it’s recorded
by a distant microphone on a noisy city street, or in a car with the window open.

A final dimension of variation is accent or speaker-class characteristics. Speech
is easier to recognize if the speaker is speaking the same dialect or variety that the
system was trained on. Speech by speakers of regional or ethnic dialects, or speech
by children can be quite difficult to recognize if the system is only trained on speak-
ers of standard dialects, or only adult speakers.

A number of publicly available corpora with human-created transcripts are used
to create ASR test and training sets to explore this variation; we mention a few of
them here since you will encounter them in the literature. LibriSpeech is a largeLibriSpeech

open-source read-speech 16 kHz dataset with over 1000 hours of audio books from
the LibriVox project, which has volunteers read and record copyright-free books
(Panayotov et al., 2015). It has transcripts aligned at the sentence level. It is divided
into an easier (“clean”) and a more difficult portion (“other”) with the clean portion
of higher recording quality and with accents closer to US English; The division was
done when the corpus was first released by running a speech recognizer (trained
on read speech from the Wall Street Journal) on all the audio, computing the WER
for each speaker based on the gold transcripts, and dividing the speakers roughly in
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half, with recordings from lower-WER speakers called “clean” and recordings from
higher-WER speakers “other”.

The Switchboard corpus of prompted telephone conversations between strangersSwitchboard

was collected in the early 1990s; it contains 2430 conversations averaging 6 min-
utes each, totaling 240 hours of 8 kHz speech and about 3 million words (Godfrey
et al., 1992). Switchboard has the singular advantage of an enormous amount of
auxiliary hand-done linguistic labeling, including parses, dialogue act tags, phonetic
and prosodic labeling, and discourse and information structure. The CALLHOMECALLHOME

corpus was collected in the late 1990s and consists of 120 unscripted 30-minute
telephone conversations between native speakers of English who were usually close
friends or family (Canavan et al., 1997).

A variety of corpora try to include input that is more natural. The CHiMECHiME

Challenge is a series of difficult shared tasks with corpora that deal with robustness
in ASR. The CHiME 6 task, for example, is ASR of conversational speech in real
home environments (specifically dinner parties). The corpus contains recordings of
twenty different dinner parties in real homes, each with four participants, and in three
locations (kitchen, dining area, living room), recorded with distant microphones.
The AMI Meeting Corpus contains 100 hours of recorded group meetings (someAMI

natural meetings, some specially organized), with manual transcriptions and some
additional hand-labels (Renals et al., 2007). CORAAL is a collection of over 150CORAAL

sociolinguistic interviews with African American speakers, with the goal of studying
African American English (AAE), the many variations of language used in African
American communities and others (Kendall and Farrington, 2020). The interviews
are anonymized with transcripts aligned at the utterance level.

There are a wide variety of corpora available in other languages. In Chinese,
for example, the HKUST Mandarin Telephone Speech corpus has 1206 transcribedHKUST

ten-minute telephone conversations between speakers of Mandarin across China in-
cluding conversations between friends and between strangers (Liu et al., 2006). The
AISHELL-1 corpus contains 170 hours of Mandarin read speech of sentences takenAISHELL-1

from various domains, read by different speakers mainly from northern China (Bu
et al., 2017).

Finally, there are many multilingual corpora. Common Voice (Ardila et al.,
2020) is a freely available crowd-sourced corpus of transcribed read speech, stored
in MPEG-3 format and designed for ASR. Crowd-working volunteers record them-
selves reading scripted speech, with scripts often extracted from from Wikipedia
articles. The recordings are then verified by other contributors. As of the writing of
this chapter, Common Voice includes 33,150 hours of speech from 133 languages.
FLEURS (Conneau et al., 2023) is a parallel speech dataset, built on the MT bench-
mark FLoRes-101 (Goyal et al., 2022), which has 3001 sentences extracted from
English Wikipedia and translated into 101 other languages by human translators.
For a subset of 2009 of the sentences in each of the 102 languages, FLEURS has
recordings of 3 different native speakers reading the sentence, in total about 12 hours
of speech per language.

Figure 15.1 shows the rough percentage of incorrect words (the word error rate,
or WER, defined on page 22) from roughly state-of-the-art systems as of the time of
this writing on some of these tasks. Note that the error rate on English read speech
(like the LibriSpeech clean audiobook corpus) is around 2% ; transcription of speech
read in English is highly accurate. By contrast, the error rate for transcribing conver-
sations between humans is higher; 5.8 to 11% for the Switchboard and CALLHOME
corpora or AMI meetings. The error rate is higher yet again for speakers of varieties
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like African American English, and yet again for difficult conversational tasks like
transcription of 4-speaker dinner party speech, which can have error rates as high as
25.5%. Character error rates (CER) are also higher for Mandarin natural conversa-
tion than for Mandarin read speech. Error rates are even higher for lower resource
languages; we’ve shown a handful of examples.

English Tasks WER%
LibriSpeech audiobooks 960hour clean 1.4
LibriSpeech audiobooks 960hour other 2.6
Switchboard telephone conversations between strangers 5.8
CALLHOME telephone conversations between family 11
AMI meetings 11
Sociolinguistic interviews, CORAAL (AAE) 16.2
CHiME6 dinner parties with distant microphones 25.5
Sample tasks in other languages WER%
Common Voice 15 Vietnamese 39.8
Common Voice 15 Swahili 51.2
FLEURS Bengali 50
Chinese (Mandarin) Tasks CER%
AISHELL-1 Mandarin read speech corpus 3.9
HKUST Mandarin Chinese telephone conversations 18.5

Figure 15.1 Rough Word Error Rates (WER = % of words misrecognized) reported around
2023-4 for ASR on various American English and other language recognition tasks, and char-
acter error rates (CER) for two Chinese recognition tasks.

15.2 Convolutional Neural Networks

The convolutional neural network, or CNN (and sometimes shortened as convnet),CNN

is a network architecture that is particularly useful for extracting features in speech
and vision applications. A convolutional layer for speech takes as input a represen-
tation of the audio input (either as the raw audio or as Mel spectra) and produces
as output a sequence of latent representations of the input speech. In ASR systems
like Whisper, wav2vec2.0, or HuBERT, convolutional layers are stacked as an initial
set of layers producing speech representations that are then passed to transformer
layers.

A standard feedforward layer is fully connected; every input is connected to ev-
ery output. By contrast, a convolutional network makes use of the idea of a kernel, a
kind of smaller network that we pass over the input. For example in image classifica-
tion tasks, we pass the kernel horizontally and vertically over the image to recognize
visual features, and so we describe a visual as a 2d (for 2 dimensional) convolutional
network. For speech, we will slide our kernel over the signal in the time dimension
to extract speech features, so CNNs for speech are 1d convolutional networks.

Let’s flesh out this intuition a bit more. We’ll start with a very schematic version
of a convolutional layer that takes as input a single sequence of vectors x1 . . .xt
and produces as output a single sequence of vectors z1 . . .zt , of the same length t.
Afterwards we’ll see how to deal with more complex inputs and outputs.

A CNN uses a kernel, a small vector of weights w1 . . .wk, to extract features. Itkernel

does this by convolving this kernel with the input. The convolution of a kernel withconvolving
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a signal has 3 steps

1. Flip the kernel left-to-right
2. Pass the kernel frame by frame (temporally) across the input

• At each frame computing the dot product of the kernel with the local
input values

3. The output is the resulting sequence of dot products

We can think of the convolution process as finding regions in the signal that are
similar to the kernel, since the dot product is high when two vectors are similar. The
convolution operation is represented by the * operator (an unfortunate overloading
of this symbol that also refers to simple multiplication). Let’s see how to compute
x ∗w, the convolution of a single vector x with a kernel vector w. Let’s first think
about the simple case of a kernel width of 1. We compute each output element z j as
the product of the kernel with x j:

convolution with width-1 kernel: z j = x jw1 ∀ j : 1≤ j ≤ t (15.1)

Fig. 15.2 shows an intuition of this computation.

x1 xt

input x[n]

kernel w[k]
w1

output z[n]
z1 z2 z3 …

…

zt

Figure 15.2 A schematic view of convolution with a kernel (filter) w whose width is 1.
The kernel is walked across the input, and the output at each frame zi is the dot product of the
kernel with the input frame. With a kernel of length 1 we don’t have to worry about flipping
the kernel, and the dot product is just the scalar product. The figure shows the computation of
z3 as x3×w1.

Let’s now turn to longer kernels. Although we’ve described the first step of the
convolution as flipping the kernel, in fact in ASR systems (or in component libraries
like pytorch) we skip this step. Technically this means that the algorithm we are
using is not in fact convolution, it’s instead cross-correlation, which is the name forcross-

correlation
an algorithm of walking a kernel across a signal, computing its dot product frame by
frame, without flipping it first. The difference doesn’t matter, since the parameters
of the kernel will be learned during training, and so the model could easily learn a
kernel with the parameters in either order. Still, for historical reasons we still call
this process a 1d convolution rather than cross-correlation.

Let’s see a more general equation for these longer kernels. To avoid the con-
volution being undefined at the left and right edges of the signal, we can pad thepad

input by adding a small number p of zeros at the beginning and end of the signal,
so that we can start the center of the kernel at the first element x1, and there will be
a defined value to the left of x1. This also turns out to make it simple to have the
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output length as the same as the input length. To do this, it’s convenient to define the
kernel vector as having an odd number of elements of length k = 2p+1, thus with
the center element having p elements on either side. Each element z j of the output
vector z is then computed as the following dot product:

z j =

p∑
i=−p

x j+iwi+p (15.2)

Fig. 15.3 shows the computation of the convolution x∗w with a kernel whose width
is 3, and with padding of 1 frame at the beginning and end of x with a value of zero.

x1 xt

input x[n]

kernel w[k]
w1 wk

output z[n]
z1 z2 z3 …

…

padding padding

Figure 15.3 A schematic view of convolution with a kernel (filter) width of 3, and with a
padding of 1, showing a zero value added at the start and end of the signal. The (already
flipped) kernel is walked across the input, and the output at each frame zi is the dot product
of the kernel with the input in the window. The figure shows the computation of z3.

Note that the size k (the receptive field) of the kernel is designed to be small
compared to the signal. For example for the convolutional layers in Whisper, the
kernel width is 3 frames, meaning the kernel is a vector of length 3 (we say that
the kernel has a receptive field of 3). That means that the kernel is being comparedreceptive field

to 3 frames of speech. In Whisper there is a frame every 10 ms and each frame
represent a window of 25ms of speech information. That means each kernel is ex-
tracting information from about 40 ms of speech (10 + 10 + 12.5 + 12.5). That’s long
enough to extract various phonetic features like formant transitions or stop closures
or aspiration.

We’ve now described a simplified view of convolution in which the input is a
single vector x and the output is a single vector z, both corresponding to a signal
over time. In practice, the input to a convolutional layer is commonly the output
from a log mel spectrum, which means it has many (say 128) channels, one for each
log mel filters output. The kernel will have separate vectors for each of these input
channels. We say that the kernel has a depth of 128, meaning that the kernel is ofdepth

shape [128,3].
To get the output of the kernel, we sum over all the input channels. That is, we

get a single output zc for each of the input channels xc by convolving the kernel w
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with it, and then we sum up all the resulting outputs:

z=

Ci∑
c=1

xc ∗w (15.3)

The output at frame j, z j, thus integrates information from all of the input channels.
Finally, the output from a convolution layer is also more complex than just a vec-

tor consisting of a single scalar value to represent each frame. Instead, the output of
the convolution layer for a given input frame needs to be an embedding, a latent rep-
resentation of that frame. As with all neural models, latent representations should
have the model dimensionality, whatever that is. For example the model dimen-
sionality of Whisper is 1280, and so the convolutional layer needs have one output
channel for each of these 1280 dimensions of the model. In order to do this, we’ll
actually learn one separate kernel for each of the model dimensions. That is, we’ll
learn 1280 separate kernels, each kernel having the depth of the number of input
channels (for example 128), and a filter-width (say of 3). That way, the embedding
representation of each frame will have 1280 independently computed features of the
input signal. We show a schematic in Fig. 15.4

128 
log mel
input

channels

1024
output

dimension
channels

xixi-1 xi+1

∑

Depth
128

Width 3
dot product

with
kernel 35

kernel 35

zi

dim 35

dim 1

…

dim 1024

…

1

2

…

128

1

2

…

128

time

time

1

2

128

…

Figure 15.4 A schematic view of a convolutional net with 128 input channels and 1024
output channels. We see how at time point i one of the 1024 kernels (“kernel 35”, each of
depth 128 and width 3) is dot-product-ed with (each of) the 128 log mel spectrum input vec-
tors, and then summed to produce a single value for one dimension of the output embedding
at time i.

A 1d convolution layer can also have a stride. Stride is the amount that we movestride

the kernel over the input between each step. The figures above show a stride of 1,
meaning that we first position the kernel over x1, then x2, then x3, and so on. For a
stride of 2, we would first position the kernel over x1, then x3, then x5, and so on.
A longer stride means a shorter output sequence; a stride of two means the output
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sequence z will be half the length of the input sequence x. Convolutional layers with
strides greater than 1 are commonly used to shorten an input sequence. This is useful
partly because a shorter signal takes less memory and computational bandwidth, but
also, as we’ll see in the next section, because it helps address the mismatch between
the length of acoustic frame embeddings (10 ms) and letters or words, which cover
much more of the signal.

Finally, in practice a convolutional layer can be followed by an output nonlin-
earity, like a ReLU layer.

15.3 The Encoder-Decoder Architecture for ASR

The first ASR architecture we introduce is the encoder-decoder architecture, the
same architecture introduced for MT in Chapter 12. Fig. 15.5 sketches this architec-
ture, called attention-based encoder decoder or AED, or listen attend and spellAED

listen attend
and spell (LAS) after the two papers which first applied it to speech (Chorowski et al. 2014,

Chan et al. 2016).
The input to the architecture x is a sequence of t acoustic feature vectors X =

x1,x2, ...,xt , one vector per 10 ms frame. We often start from the log mel spectral
features described in the previous section, although it’s also possible to start from a
raw wavfile. The output sequence Y can be either letters or tokens (BPE or senten-
cepiece); we’ll assume letters just to simplify the explanation here.. Thus the output
sequence Y = (〈SOS〉,y1, ...,ym〈EOS〉), assuming special start of sequence and end
of sequence tokens 〈sos〉 and 〈eos〉 and each yi is a character; for English we might
choose the set:

yi ∈ {a,b,c, ...,z,0, ...,9,〈space〉,〈comma〉,〈period〉,〈apostrophe〉,〈unk〉}

ENCODER
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Figure 15.5 Schematic architecture for an encoder-decoder speech recognizer.

This architecture is also used in the Whisper model from OpenAI (Radford et al.,
2023). Fig. 15.6 shows a subpart of the Whisper architecture (Whisper also does
other speech tasks like speech translation and voice activity detection, which we’ll
discuss in the next chapter). Whisper models and inference code are publicly re-
leased, but the training code and training data are not. However, there are open-
source projects that use a Whisper-style architecture, like the Open Whisper-style
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Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

Figure 15.6 A sketch of the Whisper architecture from Radford et al. (2023). Because
Whisper is a multitask system that also does translation and diarization (we’ll discuss these
non-ASR tasks in the following chapter), Whisper’s transcription format has a Start of Tran-
script (SOT) token, a language tag, and then an instruction token for whether to transcribe or
translate.

Speech Model (OWSM), which reproduces reproduces Whisper-style training but
offers a fully open-source toolkit and publicly available data (Peng et al., 2023).

15.3.1 Input and Convolutional Layers

The encoder-decoder architecture is particularly appropriate when input and output
sequences have stark length differences, as they do for speech, with long acoustic
feature sequences mapping to much shorter sequences of letters or words. For ex-
ample English, words are on average 5 letters or 1.3 BPE tokens long (Bostrom and
Durrett, 2020) and, in natural conversation, the average word lasts about 250 mil-
liseconds (Yuan et al., 2006), or 25 frames of 10ms. So the speech signal in 10ms
frames is about 5 (25/5) to 19 (25/1.3) times longer than the text signal in words or
tokens.

Because this length difference is so extreme for speech, encoder-decoder ar-
chitectures for speech usually have a compression stage that shortens the acoustic
feature sequence before the encoder stage. (We can additionally make use of a loss
function that is designed to deal well with compression, like the CTC loss function
we’ll introduce later.)

The goal of the subsampling is to produce a shorter sequence X= x1, ...,xn that
will be the input to the transformer encoder. A very simple baseline algorithm is a
method sometimes called low frame rate (Pundak and Sainath, 2016): for time i welow frame rate

stack (concatenate) the acoustic feature vector fi with the prior two vectors fi−1 and
fi−2 to make a new vector three times longer. Then we simply delete fi−1 and fi−2.
Thus instead of (say) a 40-dimensional acoustic feature vector every 10 ms, we have
a longer vector (say 120-dimensional) every 30 ms, with a shorter sequence length
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n = t
3 .

But the most common way of creating a shorter input sequence is to use the
convolutional layers we introduced in the previous section. When a convolutional
layer has a stride greater than 1, the output sequence becomes shorter than the input
sequence. Let’s see this in two commonly used ASR systems.

The Whisper system (Radford et al., 2023) has an audio context window of 30
seconds. It extracts 128 channel log mel features for each frame, with a 25ms win-
dow and a stride of 10ms. These are then normalized to 0 mean and a range of -1
to 1. A stride of 10 ms (100 frames per second) means there are 3000 input frames
in a 30 second context window. These 3000 frames are passed to two convolutional
layers, each one followed by a nonlinearity (Whisper uses GELU (Gaussian Error
Linear Unit), which is a smoother version of ReLU). The first convolutional layer
has 128 input channels and uses a stride of 1, with number of output channels being
the model dimensionality, and the window length is 3000. For the second convo-
lutional layer the number of input and output channels is the model dimensionality,
and there is a stride of 2. The stride of 2 in the second convolutional layer makes the
output sequence half the length of the input sequence, bringing the output window
length down to 1500 and producing an audio token every 20 ms. Sinusoidal position
embeddings are added to these audio encodings before the output of this front end
is passed to the transformer encoder.

HuBERT (Hsu et al., 2021) uses an alternative front end architecture, in which
convolutional layers are used to completely replace the computation of the spectrum.
So the input is raw 16kHz sampled audio, and it is passed through seven 512-channel
layers with strides [5,2,2,2,2,2,2] and kernel widths [10,3,3,3,3,2,2] which learn both
to extract spectral information, and to shorten the input sequence by 320x, from
16kHz (= one representation per .0625 ms) down to a 20 ms framerate. Positional
encodings are added to the input, and then a GELU and layer norm are applied
before the output is passed to the transformer encoder.

15.3.2 Inference
After the convolutional stage, encoder-decoders for speech use the same architecture
(transformer with cross-attention) as for MT.

Let’s remind ourselves of the encoder-decoder architecture that we introduced
in Chapter 12. It uses two transformers: an encoder, which is the same as the basic
transformer from Chapter 8, and a decoder, which has one addition: a new layer
called the cross-attention layer. The encoder takes the acoustic input X= x1, ...,xn
and maps them to an output representation Henc = h1, ...,hn; via a stack of encoder
blocks.

The decoder is essentially a conditional language model that attends to the en-
coder representation and generates the target text (letters or tokens) one by one, at
each timestep conditioning on the audio representations from the encoder and the
previously generated text to generate a new letter or token.

The transformer blocks in the decoder have an extra layer with a special kind
of attention, cross-attention. Cross-attention has the same form as the multi-headcross-attention

attention in a normal transformer block, except that while the queries as usual come
from the previous layer of the decoder, the keys and values come from the output of
the encoder.

That is, where in standard multi-head attention the input to each attention layer is
X, in cross attention the input is the the final output of the encoder Henc = h1, ...,hn.
Henc is of shape [n×d], each row representing one acoustic input token. To link the
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Figure 15.7 The transformer block for the encoder and the decoder, showing the residual stream view. The
final output of the encoder Henc = h1, ...,hn is the context used in the decoder. The decoder is a standard
transformer except with one extra layer, the cross-attention layer, which takes that encoder output Henc and
uses it to form its K and V inputs.

keys and values from the encoder with the query from the prior layer of the decoder,
we multiply the encoder output Henc by the cross-attention layer’s key weights WK

and value weights WV. The query comes from the output from the prior decoder
layer Hdec[`−1], which is multiplied by the cross-attention layer’s query weights WQ:

Q=Hdec[`−1]WQ; K=HencWK; V =HencWV (15.4)

CrossAttention(Q,K,V) = softmax
(
QKᵀ

√
dk

)
V (15.5)

The cross attention thus allows the decoder to attend to the acoustic input as pro-
jected into the entire encoder final output representations. The other attention layer
in each decoder block, the multi-head attention layer, is the same causal (left-to-
right) attention that we saw in Chapter 8. But the multi-head attention in the en-
coder, however, is allowed to look ahead at the entire source language text, so it is
not masked.

For inference, the probability of the output string y is decomposed as:

p(y1, . . . ,yn) =

n∏
i=1

p(yi|y1, . . . ,yi−1,X) (15.6)

We can produce each letter of the output via greedy decoding:

ŷi = argmaxchar∈ AlphabetP(char|y1...yi−1,X) (15.7)
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Alternatively encoder-decoders like Whisper or OWSM also use beam search as
described in the next section. This is particularly relevant when we are adding a
language model.

Adding a language model Since an encoder-decoder model is essentially a con-
ditional language model, encoder-decoders implicitly learn a language model for the
output domain of letters from their training data. However, the training data (speech
paired with text transcriptions) may not include sufficient text to train a good lan-
guage model. After all, it’s easier to find enormous amounts of pure text training
data than it is to find text paired with speech. Thus we can can usually improve a
model at least slightly by incorporating a very large language model.

The simplest way to do this is to use beam search to get a final beam of hy-
pothesized sentences; this beam is sometimes called an n-best list. We then use an-best list

language model to rescore each hypothesis on the beam. The scoring is done by in-rescore

terpolating the score assigned by the language model with the encoder-decoder score
used to create the beam, with a weight λ tuned on a held-out set. Also, since most
models prefer shorter sentences, ASR systems normally have some way of adding a
length factor. One way to do this is to normalize the probability by the number of
characters in the hypothesis |Y |c. The following is the scoring function for Listen,
Attend, and Spell (Chan et al., 2016):

score(Y |X) = 1
|Y |c

logP(Y |X)+λ logPLM(Y ) (15.8)

15.3.3 Learning
Encoder-decoders for speech are trained with the normal cross-entropy loss gener-
ally used for conditional language models. At timestep i of decoding, the loss is the
log probability of the correct token (letter) yi:

LCE = − log p(yi|y1, . . . ,yi−1,X) (15.9)

The loss for the entire sentence is the sum of these losses:

LCE = −
m∑

i=1

log p(yi|y1, . . . ,yi−1,X) (15.10)

This loss is then backpropagated through the entire end-to-end model to train the
entire encoder-decoder.

As we described in Chapter 12, we normally use teacher forcing, in which the
decoder history is forced to be the correct gold yi rather than the predicted ŷi. It’s
also possible to use a mixture of the gold and decoder output, for example using
the gold output 90% of the time, but with probability .1 taking the decoder output
instead:

LCE = − log p(yi|y1, . . . , ŷi−1,X) (15.11)

Modern data sizes are quite large. For example Whisper-v2 is trained on a corpus
of 680,000 hours of speech, mostly from English, but also including 118,000 hours
from 96 other languages. Data quality is important, so systems that scrape web
data for training implement methods to remove ASR-generated transcripts from their
training corpora, such as filtering data that is all uppercase or all lowercase. The
open OWSM system is trained on 180k hours, mainly hand-transcribed publicly
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available data, including such datasets as LibriSpeech and Multilingual LibriSpeech,
Common Voice, FLEURS, Switchboard, AMI, and others; see (Peng et al., 2023) for
details.

15.4 Self-supervised models: HuBERT

An alternative to the encoder-decoder architecture are the class of self-supervisedself-supervised

speech models. These models don’t directly learn to map an acoustic input to a
string of letters and tokens. Instead, they first bootstrap a set of discrete phonetic
units from the acoustic input, learning to map from waveforms to these induced
units. This pretraining phase doesn’t require transcripts; just unlabeled speech files..
After they are pretrained, these models can then be finetuned to do ASR on a smaller
set of labeled data, audio paired with transcripts. These models have the advantage
that they can take advantage of large amounts of untranscribed audio for most of
their training.

Here’s we’ll introduce one self-supervised model called HuBERT (Hsu et al.,HuBERT

2021). HuBERT and similar models like wav2vec 2.0 (Baevski et al., 2020) use thewav2vec 2.0

same intuition as the masked language models like BERT introduced in Chapter 10.
We mask out some part of the input, and train the model to guess what was hidden
by the mask.

…
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Figure 15.8 Schematic architecture for the HuBERT inference pass in training. A 16kHz
wavfile is passed through a series of convolutional layers, some frames are replaced with a
MASK token, and then the sequence is passed though a transformer stack, and then a linear
layer that projects the transformer output to an output embedding. This embedding is com-
pared via cosine with the embeddings for each of the 100/500 phonetic classes to produce a
logit which is passed through softmax to get a probability distribution over the classes at each
frame.
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15.4.1 HuBERT forward pass

Let’s first show just the forward pass for HuBERT used during training, and then
we’ll see this in its full training context with the backwards pass. As discussed
earlier, the input to the HuBERT forward pass is raw 16kHz wavefiles as input,
and the output at each 20ms time frame will be a probability distribution over a
set of induced phonetic classes C (100 classes or 500 classes, depending on the
stage). Fig. 15.8 shows a sketch of the components. The wavefile is passed through
7 512-channel convolutional layers which learn both to extract spectral information,
and to shorten the input sequence down to a 20 ms frame, after which positional
encodings are added, and then GELU and layer norm. Selected tokens are then
replaced with a mask token, a trained embedding that is shared by all masked frames.
The whole sequence is passed through a transformer stack, and the output is passed
through a linear projection layer A. The output embedding at each 20ms frame is
then compared via cosine with each of the embeddings for the 100 (/500) phonetic
classes, resulting in a set of 100 logits representing the similarity of the current
20ms audio timestep to each class. These are then passed through a softmax to get a
probability distribution over the classes.

15.4.2 Learning for HuBERT

Let’s first discuss how we induce the 100 or 500 phonetic classes that are the target
of training. To bootstrap these units, HuBERT starts with mel frequency cepstral
coefficients, or MFCC vectors, a 39-dimensional feature vector that emphasizes as-
pects of the signal that are relevant for detection of phonetic units. These vectors
can be extracted from the acoustic signal as summarized in Section ??. We extract
MFCC vectors for the entire acoustic training dataset (the original HuBERT imple-
mentation used 960 hours of LibriSpeech data resulting in 172 million vectors). Next
we cluster the MFCC vectors using the k-means clustering algorithm described be-
low in Section 15.4.3. Clustering means to group the vectors into k classes. The
output of clustering is a codebook of k vectors, called codewords or templates or
prototypes, each representing a cluster. Each of these k clusters is an acoustic unit
that we can use as the gold targets for training.

Now let’s consider the entire training process. After the acoustic input is run
through the CNN layers, a span of tokens in the context window is chosen to be
masked, and for those tokens the CNN output is replaced by a MASK embedding.
The entire context window is passed through the transformer layers, and the trans-
former output hL

t at each timestep t is multiplied by the projection layer matrix A to
project it into the class embedding space. The resulting representation is then com-
pared to the embedding for each of the classes in C (using cosine), and a softmax
(with temperature parameter τ=0.1) is used to turn the similarity into a probability:

p(c|X, t) = exp(sim(Aht ,ec)/τ)∑C
c′=1 exp(sim(Aht,ec′)/τ)

(15.12)

As Fig. 15.9 shows, in parallel with this forward pass, the input waveform is
passed through an MFCC to create a 39-dimensional vector which is then mapped
to one of the 100 classes by choosing the most similar centroid in the codebook. The
loss function is then the sum, over the set of masked tokens M, of the probability
that the model assigns to these correct units:
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L =
∑
t∈M

log p(zt |X) (15.13)

Thus, as in masked language modeling, the model is being trained to predict the
units associated with the masked frames. This loss is then backpropagated through
the model
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Figure 15.9 The first phase of HuBERT training. A codebook of 100 units (defined as clus-
ters of 39-dimensional MFCC vectors) is used as the targets for training. For each timestep t,
computes the probability of that class, and uses the logprob as the loss.

Once the model has been initially trained to map to MFCC vector centroids, a
second stage of training occurs, where we take the representations produced by the
model, cluster them into 500 clusters, and use those instead as the target for training.
The intuition is that the initial MFCC clusters will bias the model toward phonetic
representations, but after enough training the model will learn more accurate and
fine-grained representations. Fig. 15.10 shows the intuition.

After HuBERT has been pretrained, the projection and cosine layers are removed
and a randomly initialized linear + softmax layer is added, mapping into 29 classes
(corresponding to the 26 English letters and a few extra characters) for the ASR task.
The CNNs are frozen and the rest of the model is finetuned for ASR using the CTC
loss function to be described in Section 15.5.

15.4.3 K-means clustering
In this section we give the k-means clustering algorithm more formally. K-meansk-means

is a family of algorithms for grouping a set of vector data into k clusters. Clustering
is useful whenever we want to treat a group of elements in the same way. In speech
processing it is very commonly used whenever we need to convert a set of vectors
over real values into a set of discrete symbols. Besides its use here in HuBERT,
we’ll return to it in Chapter 16 as an algorithm for creating discrete acoustic tokens
for TTS.

We generally use the name k-means to mean a simple version of the family:
a two-step iterative algorithm that is given a set of N vectors v(1)..v(N) each of d
dimensions, i.e. ∀i,v(i) ∈ Rd , and a constant k, where usually N >> k.
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Figure 15.10 Creating the targets for the two stages of HuBERT training. In the first stage,
100 acoustic units are created by computing 39-dimensional MFCC vectors for the entire
training data and then clustering them with k-means. In the second stage, 500 units are created
by passing a subsample of the training data through the HuBERT model after the first stage
training, taking the output of an intermediate transformer layer (layer 6) and clustering them
with k-means.
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Figure 15.11 The HuBERT finetuning pass after pretraining. The projection layer and co-
sine steps are removed, leaving only a randomly initialized projection/softmax layer. The
CNN layers are frozen, and the rest of the model is finetuned on a dataset of audio with tran-
scripts, trained with the CTC loss (Section 15.5) to produce letters as output. The parameters
that are updated in finetuning are shown in red (the projection layer and the transformer stack).

The two-step algorithm is based on iteratively updating a set of k centroid vec-
tors. A centroid is the geometric center of a set of a points in n-dimensional space..centroid

The algorithm has two steps. In the assignment step, given a set of k current cen-
troids and a dataset of vectors, it assigns each vector to the cluster whose codeword
is the closest (by squared Euclidean distance). In the re-estimation step, it recom-
putes the codeword for each cluster by recomputing the mean vector. Note that the
resulting mean vector need not be an actual point from the dataset. We iterate back
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and forth between these two steps.
Here’s the algorithm:

Initialization: For each cluster k choose a random vector µk ∈ Rd to be the
codeword (also called template or prototype) for the cluster. The result is acodeword

template

prototype
codebook that has one codeword for each of the k clusters.

codebook
Then repeat iteratively until convergence:

1. Assignment: For each vector v(i) in the dataset assign it to one of the k clusters
by choosing the one with the nearest codeword µ . Most simply we can define
‘nearest’ as the cluster whose codeword has the smallest squared Euclidean
distance to v(i).

cluster(i) = argmin
1< j<k

||v(i)−µ j||2 (15.14)

where ||v|| is the L2 norm of the vector
∑d

j=1 v
2
j

2. Re-estimation: Re-estimate the codeword for each cluster by recomputing
the mean (centroid) of all the vectors in the cluster. If Si is the set of vectors
in cluster i, then

∀i :

µi =
1
|Si|
∑
v∈Si

v (15.15)

15.5 CTC

We pointed out in the previous section that speech recognition has two particular
properties that make it very appropriate for the encoder-decoder architecture, where
the encoder produces an encoding of the input that the decoder uses attention to
explore. First, in speech we have a very long acoustic input sequence X mapping to
a much shorter sequence of letters Y , and second, it’s hard to know exactly which
part of X maps to which part of Y .

In this section we briefly introduce an alternative to encoder-decoder: an algo-
rithm and loss function called CTC, short for Connectionist Temporal Classifica-CTC

tion (Graves et al., 2006), that deals with these problems in a very different way. The
intuition of CTC is to output a single character for every frame of the input, so that
the output is the same length as the input, and then to apply a collapsing function
that combines sequences of identical letters, resulting in a shorter sequence.

Let’s imagine inference on someone saying the word dinner, and let’s suppose
we had a function that chooses the most probable letter for each input spectral frame
representation xi. We’ll call the sequence of letters corresponding to each input
frame an alignment, because it tells us where in the acoustic signal each letter alignsalignment

to. Fig. 15.12 shows one such alignment, and what happens if we use a collapsing
function that just removes consecutive duplicate letters.

Well, that doesn’t work; our naive algorithm has transcribed the speech as diner,
not dinner! Collapsing doesn’t handle double letters. There’s also another problem
with our naive function; it doesn’t tell us what symbol to align with silence in the
input. We don’t want to be transcribing silence as random letters!

The CTC algorithm solves both problems by adding to the transcription alphabet
a special symbol for a blank, which we’ll represent as . The blank can be used inblank
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Figure 15.12 A naive algorithm for collapsing an alignment between input and letters.

the alignment whenever we don’t want to transcribe a letter. Blank can also be used
between letters; since our collapsing function collapses only consecutive duplicate
letters, it won’t collapse across . More formally, let’s define the mapping B : a→ y
between an alignment a and an output y, which collapses all repeated letters and
then removes all blanks. Fig. 15.13 sketches this collapsing function B.
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Figure 15.13 The CTC collapsing function B, showing the space blank character ; re-
peated (consecutive) characters in an alignment A are removed to form the output Y .

The CTC collapsing function is many-to-one; lots of different alignments map
to the same output string. For example, the alignment shown in Fig. 15.13 is not
the only alignment that results in the string dinner. Fig. 15.14 shows some other
alignments that would produce the same output.

d i n n n e e e r r r␣ ␣
d d i n n n e r r␣ ␣ ␣
d d d i n n n e r r␣

i
␣␣

␣ ␣ ␣
Figure 15.14 Three other legitimate alignments producing the transcript dinner.

It’s useful to think of the set of all alignments that might produce the same output
Y . We’ll use the inverse of our B function, called B−1, and represent that set as
B−1(Y ).

15.5.1 CTC Inference

Before we see how to compute PCTC(Y |X) let’s first see how CTC assigns a proba-
bility to one particular alignment Â = {â1, . . . , ân}. CTC makes a strong conditional
independence assumption: it assumes that, given the input X, the CTC model output
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at at time t is independent of the output labels at any other time ai. Thus:

PCTC(A|X) =

T∏
t=1

p(at |X) (15.16)

Thus to find the best alignment Â = {â1, . . . , âT} we can greedily choose the charac-
ter with the max probability at each time step t:

ât = argmax
c∈C

pt(c|X) (15.17)

We then pass the resulting sequence A to the CTC collapsing function B to get the
output sequence Y .

Let’s talk about how this simple inference algorithm for finding the best align-
ment A would be implemented. Because we are making a decision at each time
point, we can treat CTC as a sequence-modeling task, where we output one letter
ŷt at time t corresponding to each input token xt , eliminating the need for a full de-
coder. Fig. 15.15 sketches this architecture, where we take an encoder, produce a
hidden state ht at each timestep, and decode by taking a softmax over the character
vocabulary at each time step.
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Figure 15.15 Inference with CTC: using an encoder-only model, with decoding done by
simple softmaxes over the hidden state ht at each output step.

Alas, there is a potential flaw with the inference algorithm sketched in (Eq. 15.17)
and Fig. 15.14. The problem is that we chose the most likely alignment A, but the
most likely alignment may not correspond to the most likely final collapsed output
string Y . That’s because there are many possible alignments that lead to the same
output string, and hence the most likely output string might not correspond to the
most probable alignment. For example, imagine the most probable alignment A for
an input X= [x1x2x3] is the string [a b ε] but the next two most probable alignments
are [b ε b] and [ε b b]. The output Y =[b b], summing over those two alignments,
might be more probable than Y =[a b].

For this reason, the most probable output sequence Y is the one that has, not
the single best CTC alignment, but the highest sum over the probability of all its
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possible alignments:

PCTC(Y |X) =
∑

A∈B−1(Y )

P(A|X)

=
∑

A∈B−1(Y )

T∏
t=1

p(at |ht)

Ŷ = argmax
Y

PCTC(Y |X) (15.18)

Alas, summing over all alignments is very expensive (there are a lot of alignments),
so we approximate this sum by using a version of Viterbi beam search that cleverly
keeps in the beam the high-probability alignments that map to the same output string,
and sums those as an approximation of (Eq. 15.18). See Hannun (2017) for a clear
explanation of this extension of beam search for CTC.

Because of the strong conditional independence assumption mentioned earlier
(that the output at time t is independent of the output at time t−1, given the input),
CTC does not implicitly learn a language model over the data (unlike the attention-
based encoder-decoder architectures). It is therefore essential when using CTC to
interpolate a language model (and some sort of length factor L(Y )) using interpola-
tion weights that are trained on a devset:

scoreCTC(Y |X) = logPCTC(Y |X)+λ1 logPLM(Y )λ2L(Y ) (15.19)

15.5.2 CTC Training
To train a CTC-based ASR system, we use negative log-likelihood loss with a special
CTC loss function. Thus the loss for an entire dataset D is the sum of the negative
log-likelihoods of the correct output Y for each input X:

LCTC =
∑

(X ,Y )∈D

− logPCTC(Y |X) (15.20)

To compute CTC loss function for a single input pair (X,Y ), we need the probability
of the output Y given the input X. As we saw in Eq. 15.18, to compute the probability
of a given output Y we need to sum over all the possible alignments that would
collapse to Y . In other words:

PCTC(Y |X) =
∑

A∈B−1(Y )

T∏
t=1

p(at |ht) (15.21)

Naively summing over all possible alignments is not feasible (there are too many
alignments). However, we can efficiently compute the sum by using dynamic pro-
gramming to merge alignments, with a version of the forward-backward algo-
rithm also used to train HMMs (Appendix A) and CRFs. The original dynamic pro-
gramming algorithms for both training and inference are laid out in (Graves et al.,
2006); see (Hannun, 2017) for a detailed explanation of both.

15.5.3 Combining CTC and Encoder-Decoder
It’s also possible to combine the two architectures/loss functions we’ve described,
the cross-entropy loss from the encoder-decoder architecture, and the CTC loss.
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Fig. 15.16 shows a sketch. For training, we can simply weight the two losses with a
λ tuned on a devset:

L =−λ logPencdec(Y |X)− (1−λ ) logPctc(Y |X) (15.22)

For inference, we can combine the two with the language model (or the length
penalty), again with learned weights:

Ŷ = argmax
Y

[λ logPencdec(Y |X)− (1−λ ) logPCTC(Y |X)+ γ logPLM(Y )] (15.23)
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Figure 15.16 Combining the CTC and encoder-decoder loss functions.

15.5.4 Streaming Models: RNN-T for improving CTC
Because of the strong independence assumption in CTC (assuming that the output
at time t is independent of the output at time t − 1), recognizers based on CTC
don’t achieve as high an accuracy as the attention-based encoder-decoder recog-
nizers. CTC recognizers have the advantage, however, that they can be used for
streaming. Streaming means recognizing words on-line rather than waiting untilstreaming

the end of the sentence to recognize them. Streaming is crucial for many applica-
tions, from commands to dictation, where we want to start recognition while the
user is still talking. Algorithms that use attention need to compute the hidden state
sequence over the entire input first in order to provide the attention distribution con-
text, before the decoder can start decoding. By contrast, a CTC algorithm can input
letters from left to right immediately.

If we want to do streaming, we need a way to improve CTC recognition to re-
move the conditional independent assumption, enabling it to know about output his-
tory. The RNN-Transducer (RNN-T), shown in Fig. 15.17, is just such a modelRNN-T

(Graves 2012, Graves et al. 2013). The RNN-T has two main components: a CTC
acoustic model, and a separate language model component called the predictor that
conditions on the output token history. At each time step t, the CTC encoder outputs
a hidden state henc

t given the input x1...xt . The language model predictor takes as in-
put the previous output token (not counting blanks), outputting a hidden state hpred

u .
The two are passed through another network whose output is then passed through a
softmax to predict the next character.

PRNN−T (Y |X) =
∑

A∈B−1(Y )

P(A|X)

=
∑

A∈B−1(Y )

T∏
t=1

p(at |ht ,y<ut )
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ENCODER

P ( yt,u | x[1..t] , y[1..u-1] )

xt

PREDICTION
NETWORK

yu-1

JOINT NETWORK
henct

hpredu

SOFTMAX

zt,u
DECODER

Figure 15.17 The RNN-T model computing the output token distribution at time t by inte-
grating the output of a CTC acoustic encoder and a separate ‘predictor’ language model.

15.6 ASR Evaluation: Word Error Rate

The standard evaluation metric for speech recognition systems is the word errorword error

rate. The word error rate is based on how much the word string returned by the
recognizer (the hypothesized word string) differs from a reference transcription.
The first step in computing word error is to compute the minimum edit distance in
words between the hypothesized and correct strings, giving us the minimum num-
ber of word substitutions, word insertions, and word deletions necessary to map
between the correct and hypothesized strings. The word error rate (WER) is then
defined as follows (note that because the equation includes insertions, the error rate
can be greater than 100%):

Word Error Rate = 100× Insertions+Substitutions+Deletions
Total Words in Correct Transcript

Here is a sample alignment between a reference and a hypothesis utterance fromalignment

the CallHome corpus, showing the counts used to compute the error rate:

REF: i *** ** UM the PHONE IS i LEFT THE portable **** PHONE UPSTAIRS last night
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable FORM OF STORES last night
Eval: I I S D S S S I S S

This utterance has six substitutions, three insertions, and one deletion:

Word Error Rate = 100
6+3+1

13
= 76.9%

The standard method for computing word error rates is a free script called sclite,
available from the National Institute of Standards and Technologies (NIST) (NIST,
2005). Sclite is given a series of reference (hand-transcribed, gold-standard) sen-
tences and a matching set of hypothesis sentences. Besides performing alignments,
and computing word error rate, sclite performs a number of other useful tasks. For
example, for error analysis it gives useful information such as confusion matrices
showing which words are often misrecognized for others, and summarizes statistics
of words that are often inserted or deleted. sclite also gives error rates by speaker
(if sentences are labeled for speaker ID), as well as useful statistics like the sentence
error rate, the percentage of sentences with at least one word error.Sentence error

rate
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Text normalization before evaluation

It’s normal for systems to normalize text before computing word error rate. There
are a variety of packages for implementing normalization rules. For example some
standard English normalization rules include:

1. Removing metalanguage [non-language, notes, transcription comments] that
occur between matching brackets ([, ])

2. Remove or standardize interjections or filled pauses (“uh”, “um”, “err”)
3. Standardize contracted and non-contracted forms of English (“I’m”/“I am”)
4. Normalize non-standard-words (number, quantities, dates, times) [e.g., “$100
→ “One hundred dollars”]

5. Unify US and UK spelling conventions

Statistical significance for ASR: MAPSSWE or MacNemar

As with other language processing algorithms, we need to know whether a particular
improvement in word error rate is significant or not.

The standard statistical tests for determining if two word error rates are different
is the Matched-Pair Sentence Segment Word Error (MAPSSWE) test, introduced in
Gillick and Cox (1989).

The MAPSSWE test is a parametric test that looks at the difference between
the number of word errors the two systems produce, averaged across a number of
segments. The segments may be quite short or as long as an entire utterance; in
general, we want to have the largest number of (short) segments in order to justify
the normality assumption and to maximize power. The test requires that the errors
in one segment be statistically independent of the errors in another segment. Since
ASR systems tend to use trigram LMs, we can approximate this requirement by
defining a segment as a region bounded on both sides by words that both recognizers
get correct (or by turn/utterance boundaries). Here’s an example from NIST (2007)
with four regions:

I II III IV
REF: |it was|the best|of|times it|was the worst|of times| |it was

| | | | | | | |
SYS A:|ITS |the best|of|times it|IS the worst |of times|OR|it was

| | | | | | | |
SYS B:|it was|the best| |times it|WON the TEST |of times| |it was

In region I, system A has two errors (a deletion and an insertion) and system B
has zero; in region III, system A has one error (a substitution) and system B has two.
Let’s define a sequence of variables Z representing the difference between the errors
in the two systems as follows:

Ni
A the number of errors made on segment i by system A

Ni
B the number of errors made on segment i by system B

Z Ni
A−Ni

B, i = 1,2, · · · ,n where n is the number of segments

In the example above, the sequence of Z values is {2,−1,−1,1}. Intuitively, if
the two systems are identical, we would expect the average difference, that is, the
average of the Z values, to be zero. If we call the true average of the differences
muz, we would thus like to know whether muz = 0. Following closely the original
proposal and notation of Gillick and Cox (1989), we can estimate the true average
from our limited sample as µ̂z =

∑n
i=1 Zi/n. The estimate of the variance of the Zi’s
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is

σ
2
z =

1
n−1

n∑
i=1

(Zi−µz)
2 (15.24)

Let

W =
µ̂z

σz/
√

n
(15.25)

For a large enough n (> 50), W will approximately have a normal distribution with
unit variance. The null hypothesis is H0 : µz = 0, and it can thus be rejected if
2 ∗P(Z ≥ |w|) ≤ 0.05 (two-tailed) or P(Z ≥ |w|) ≤ 0.05 (one-tailed), where Z is
standard normal and w is the realized value W ; these probabilities can be looked up
in the standard tables of the normal distribution.

Earlier work sometimes used McNemar’s test for significance, but McNemar’sMcNemar’s test

is only applicable when the errors made by the system are independent, which is not
true in continuous speech recognition, where errors made on a word are extremely
dependent on errors made on neighboring words.

Could we improve on word error rate as a metric? It would be nice, for exam-
ple, to have something that didn’t give equal weight to every word, perhaps valuing
content words like Tuesday more than function words like a or of. While researchers
generally agree that this would be a good idea, it has proved difficult to agree on a
metric that works in every application of ASR.

15.7 Summary

This chapter introduced the fundamental algorithms of automatic speech recognition
(ASR).

• The task of speech recognition (or speech-to-text) is to map acoustic wave-
forms to sequences of graphemes.

• The input to a speech recognizer is a series of acoustic waves. that are sam-
pled, quantized, and converted to a spectral representation like the log mel
spectrum.

• Two common paradigms for speech recognition are the encoder-decoder with
attention model, and models based on the CTC loss function. Attention-
based models have higher accuracies, but models based on CTC more easily
adapt to streaming: outputting graphemes online instead of waiting until the
acoustic input is complete.

• ASR is evaluated using the Word Error Rate; the edit distance between the
hypothesis and the gold transcription.

Historical Notes
A number of speech recognition systems were developed by the late 1940s and early
1950s. An early Bell Labs system could recognize any of the 10 digits from a single
speaker (Davis et al., 1952). This system had 10 speaker-dependent stored patterns,
one for each digit, each of which roughly represented the first two vowel formants
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in the digit. They achieved 97%–99% accuracy by choosing the pattern that had
the highest relative correlation coefficient with the input. Fry (1959) and Denes
(1959) built a phoneme recognizer at University College, London, that recognized
four vowels and nine consonants based on a similar pattern-recognition principle.
Fry and Denes’s system was the first to use phoneme transition probabilities to con-
strain the recognizer.

The late 1960s and early 1970s produced a number of important paradigm shifts.
First were a number of feature-extraction algorithms, including the efficient fast
Fourier transform (FFT) (Cooley and Tukey, 1965), the application of cepstral pro-
cessing to speech (Oppenheim et al., 1968), and the development of LPC for speech
coding (Atal and Hanauer, 1971). Second were a number of ways of handling warp-
ing; stretching or shrinking the input signal to handle differences in speaking ratewarping

and segment length when matching against stored patterns. The natural algorithm for
solving this problem was dynamic programming, and, as we saw in Appendix A, the
algorithm was reinvented multiple times to address this problem. The first applica-
tion to speech processing was by Vintsyuk (1968), although his result was not picked
up by other researchers, and was reinvented by Velichko and Zagoruyko (1970) and
Sakoe and Chiba (1971) (and 1984). Soon afterward, Itakura (1975) combined this
dynamic programming idea with the LPC coefficients that had previously been used
only for speech coding. The resulting system extracted LPC features from incoming
words and used dynamic programming to match them against stored LPC templates.
The non-probabilistic use of dynamic programming to match a template against in-
coming speech is called dynamic time warping.dynamic time

warping
The third innovation of this period was the rise of the HMM. Hidden Markov

models seem to have been applied to speech independently at two laboratories around
1972. One application arose from the work of statisticians, in particular Baum and
colleagues at the Institute for Defense Analyses in Princeton who applied HMMs
to various prediction problems (Baum and Petrie 1966, Baum and Eagon 1967).
James Baker learned of this work and applied the algorithm to speech processing
(Baker, 1975) during his graduate work at CMU. Independently, Frederick Jelinek
and collaborators (drawing from their research in information-theoretical models
influenced by the work of Shannon (1948)) applied HMMs to speech at the IBM
Thomas J. Watson Research Center (Jelinek et al., 1975). One early difference was
the decoding algorithm; Baker’s DRAGON system used Viterbi (dynamic program-
ming) decoding, while the IBM system applied Jelinek’s stack decoding algorithm
(Jelinek, 1969). Baker then joined the IBM group for a brief time before founding
the speech-recognition company Dragon Systems.

The use of the HMM, with Gaussian Mixture Models (GMMs) as the phonetic
component, slowly spread through the speech community, becoming the dominant
paradigm by the 1990s. One cause was encouragement by ARPA, the Advanced
Research Projects Agency of the U.S. Department of Defense. ARPA started a
five-year program in 1971 to build 1000-word, constrained grammar, few speaker
speech understanding (Klatt, 1977), and funded four competing systems of which
Carnegie-Mellon University’s Harpy system (Lowerre, 1976), which used a simpli-
fied version of Baker’s HMM-based DRAGON system was the best of the tested sys-
tems. ARPA (and then DARPA) funded a number of new speech research programs,
beginning with 1000-word speaker-independent read-speech tasks like “Resource
Management” (Price et al., 1988), recognition of sentences read from the Wall Street
Journal (WSJ), Broadcast News domain (LDC 1998, Graff 1997) (transcription of
actual news broadcasts, including quite difficult passages such as on-the-street inter-
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views) and the Switchboard, CallHome, CallFriend, and Fisher domains (Godfrey
et al. 1992, Cieri et al. 2004) (natural telephone conversations between friends or
strangers). Each of the ARPA tasks involved an approximately annual bakeoff atbakeoff

which systems were evaluated against each other. The ARPA competitions resulted
in wide-scale borrowing of techniques among labs since it was easy to see which
ideas reduced errors the previous year, and the competitions were probably an im-
portant factor in the eventual spread of the HMM paradigm.

By around 1990 neural alternatives to the HMM/GMM architecture for ASR
arose, based on a number of earlier experiments with neural networks for phoneme
recognition and other speech tasks. Architectures included the time-delay neural
network (TDNN)—the first use of convolutional networks for speech— (Waibel
et al. 1989, Lang et al. 1990), RNNs (Robinson and Fallside, 1991), and the hybridhybrid

HMM/MLP architecture in which a feedforward neural network is trained as a pho-
netic classifier whose outputs are used as probability estimates for an HMM-based
architecture (Morgan and Bourlard 1990, Bourlard and Morgan 1994, Morgan and
Bourlard 1995).

While the hybrid systems showed performance close to the standard HMM/GMM
models, the problem was speed: large hybrid models were too slow to train on the
CPUs of that era. For example, the largest hybrid system, a feedforward network,
was limited to a hidden layer of 4000 units, producing probabilities over only a few
dozen monophones. Yet training this model still required the research group to de-
sign special hardware boards to do vector processing (Morgan and Bourlard, 1995).
A later analytic study showed the performance of such simple feedforward MLPs
for ASR increases sharply with more than 1 hidden layer, even controlling for the
total number of parameters (Maas et al., 2017). But the computational resources of
the time were insufficient for more layers.

Over the next two decades a combination of Moore’s law and the rise of GPUs
allowed deep neural networks with many layers. Performance was getting close to
traditional systems on smaller tasks like TIMIT phone recognition by 2009 (Mo-
hamed et al., 2009), and by 2012, the performance of hybrid systems had surpassed
traditional HMM/GMM systems (Jaitly et al. 2012, Dahl et al. 2012, inter alia).
Originally it seemed that unsupervised pretraining of the networks using a tech-
nique like deep belief networks was important, but by 2013, it was clear that for
hybrid HMM/GMM feedforward networks, all that mattered was to use a lot of data
and enough layers, although a few other components did improve performance: us-
ing log mel features instead of MFCCs, using dropout, and using rectified linear
units (Deng et al. 2013, Maas et al. 2013, Dahl et al. 2013).

Meanwhile early work had proposed the CTC loss function by 2006 (Graves
et al., 2006), and by 2012 the RNN-Transducer was defined and applied to phone
recognition (Graves 2012, Graves et al. 2013), and then to end-to-end speech recog-
nition rescoring (Graves and Jaitly, 2014), and then recognition (Maas et al., 2015),
with advances such as specialized beam search (Hannun et al., 2014). (Our de-
scription of CTC in the chapter draws on Hannun (2017), which we encourage the
interested reader to follow).

The encoder-decoder architecture was applied to speech at about the same time
by two different groups, in the Listen Attend and Spell system of Chan et al. (2016)
and the attention-based encoder decoder architecture of Chorowski et al. (2014)
and Bahdanau et al. (2016). By 2018 Transformers were included in this encoder-
decoder architecture. Karita et al. (2019) is a nice comparison of RNNs vs Trans-
formers in encoder-architectures for ASR, TTS, and speech-to-speech translation.
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Popular toolkits for speech processing include Kaldi (Povey et al., 2011) andKaldi

ESPnet (Watanabe et al. 2018, Hayashi et al. 2020).ESPnet
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