Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2025. All
rights reserved. Draft of August 24, 2025.

CHAPTER

Sequence Labeling for Parts of
Speech and Named Entities

To each word a warbling note
A Midsummer Night’s Dream, V.1

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (it was a long
time ago), wrote a grammatical sketch of Greek (a “fechne’”) that summarized the
linguistic knowledge of his day. This work is the source of an astonishing proportion
of modern linguistic vocabulary, including the words syntax, diphthong, clitic, and
parts of speech analogy. Also included are a description of eight parts of speech: noun, verb,
pronoun, preposition, adverb, conjunction, participle, and article. Although earlier
scholars (including Aristotle as well as the Stoics) had their own lists of parts of
speech, it was Thrax’s set of eight that became the basis for descriptions of European
languages for the next 2000 years. (All the way to the Schoolhouse Rock educational
television shows of our childhood, which had songs about 8 parts of speech, like the
late great Bob Dorough’s Conjunction Junction.) The durability of parts of speech
through two millennia speaks to their centrality in models of human language.

Proper names are another important and anciently studied linguistic category.
While parts of speech are generally assigned to individual words or morphemes, a
proper name is often an entire multiword phrase, like the name “Marie Curie”, the
location “New York City”, or the organization “Stanford University”. We’ll use the

named entity term named entity for, roughly speaking, anything that can be referred to with a
proper name: a person, a location, an organization, although as we’ll see the term is
commonly extended to include things that aren’t entities per se.

POS Parts of speech (also known as POS) and named entities are useful clues to
sentence structure and meaning. Knowing whether a word is a noun or a verb tells us
about likely neighboring words (nouns in English are preceded by determiners and
adjectives, verbs by nouns) and syntactic structure (verbs have dependency links to
nouns), making part-of-speech tagging a key aspect of parsing. Knowing if a named
entity like Washington is a name of a person, a place, or a university is important to
many natural language processing tasks like question answering, stance detection,
or information extraction.

In this chapter we’ll introduce the task of part-of-speech tagging, taking a se-
quence of words and assigning each word a part of speech like NOUN or VERB, and
the task of named entity recognition (NER), assigning words or phrases tags like
PERSON, LOCATION, or ORGANIZATION.

Such tasks in which we assign, to each word x; in an input word sequence, a
label y;, so that the output sequence Y has the same length as the input sequence X

“labeling are called sequence labeling tasks. We’ll introduce classic sequence labeling algo-
rithms, one generative— the Hidden Markov Model (HMM)—and one discriminative—
the Conditional Random Field (CRF). In following chapters we’ll introduce modern
sequence labelers based on RNNs and Transformers.

2 CHAPTER 17 -

(Mostly) English Word Classes

17.1

SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

Until now we have been using part-of-speech terms like noun and verb rather freely.
In this section we give more complete definitions. While word classes do have
semantic tendencies—adjectives, for example, often describe properties and nouns
people— parts of speech are defined instead based on their grammatical relationship

with neighboring words or the morphological properties about their affixes.

Tag Description Example
ADJ Adjective: noun modifiers describing properties red, young, awesome
§ ADV Adverb: verb modifiers of time, place, manner very, slowly, home, yesterday
U NOUN words for persons, places, things, etc. algorithm, cat, mango, beauty
2 VERB words for actions and processes draw, provide, go
O PROPN Proper noun: name of a person, organization, place, etc.. Regina, IBM, Colorado
INTJ Interjection: exclamation, greeting, yes/no response, etc. oh, um, yes, hello
ADP Adposition (Preposition/Postposition): marks a noun’s in, on, by, under
- spacial, temporal, or other relation
g AUX Auxiliary: helping verb marking tense, aspect, mood, etc., can, may, should, are
£ CCONJ Coordinating Conjunction: joins two phrases/clauses and, or, but
2 DET Determiner: marks noun phrase properties a, an, the, this
) NUM Numeral one, two, 2026, 11:00, hundred
_52 PART Particle: a function word that must be associated with an- s, not, (infinitive) to
Go other word
PRON Pronoun: a shorthand for referring to an entity or event she, who, I, others
SCONJ Subordinating Conjunction: joins a main clause with a whether, because
subordinate clause such as a sentential complement
5 PUNCT Punctuation 5,0
g SYM Symbols like $ or emoji $, %
X Other asdf, qwfg
ST BYB] The 17 parts of speech in the Universal Dependencies tagset (de Marneffe et al., 2021). Features

can be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

closed class
open class

function word

noun

common noun

count noun

mass noun

proper noun

Parts of speech fall into two broad categories: closed class and open class.
Closed classes are those with relatively fixed membership, such as prepositions—
new prepositions are rarely coined. By contrast, nouns and verbs are open classes—
new nouns and verbs like iPhone or to fax are continually being created or borrowed.
Closed class words are generally function words like of, it, and, or you, which tend
to be very short, occur frequently, and often have structuring uses in grammar.

Four major open classes occur in the languages of the world: nouns (including
proper nouns), verbs, adjectives, and adverbs, as well as the smaller open class of
interjections. English has all five, although not every language does.

Nouns are words for people, places, or things, but include others as well. Com-
mon nouns include concrete terms like car and mango, abstractions like algorithm
and beauty, and verb-like terms like pacing as in His pacing to and fro became quite
annoying. Nouns in English can occur with determiners (a goat, this bandwidth)
take possessives (IBM’s annual revenue), and may occur in the plural (goats, abaci).
Many languages, including English, divide common nouns into count nouns and
mass nouns. Count nouns can occur in the singular and plural (goat/goats, rela-
tionship/relationships) and can be counted (one goat, two goats). Mass nouns are
used when something is conceptualized as a homogeneous group. So snow, salt, and
communism are not counted (i.e., *two snows or *two communisms). Proper nouns,
like Regina, Colorado, and IBM, are names of specific persons or entities.

verb

adjective

adverb

locative

degree

manner

temporal

interjection

preposition

particle

phrasal verb

determiner

article

conjunction

complementizer
pronoun

wh

17.1 + (MOSTLY) ENGLISH WORD CLASSES 3

Verbs refer to actions and processes, including main verbs like draw, provide,
and go. English verbs have inflections (non-third-person-singular (eat), third-person-
singular (eats), progressive (eating), past participle (eaten)). While many scholars
believe that all human languages have the categories of noun and verb, others have
argued that some languages, such as Riau Indonesian and Tongan, don’t even make
this distinction (Broschart 1997; Evans 2000; Gil 2000) .

Adjectives often describe properties or qualities of nouns, like color (white,
black), age (old, young), and value (good, bad), but there are languages without
adjectives. In Korean, for example, the words corresponding to English adjectives
act as a subclass of verbs, so what is in English an adjective “beautiful” acts in
Korean like a verb meaning “to be beautiful”.

Adverbs are a hodge-podge. All the italicized words in this example are adverbs:

Actually, I ran home extremely quickly yesterday

Adverbs generally modify something (often verbs, hence the name “adverb”, but
also other adverbs and entire verb phrases). Directional adverbs or locative ad-
verbs (home, here, downhill) specify the direction or location of some action; degree
adverbs (extremely, very, somewhat) specify the extent of some action, process, or
property; manner adverbs (slowly, slinkily, delicately) describe the manner of some
action or process; and temporal adverbs describe the time that some action or event
took place (yesterday, Monday).

Interjections (oh, hey, alas, uh, um) are a smaller open class that also includes
greetings (hello, goodbye) and question responses (yes, no, uh-huh).

English adpositions occur before nouns, hence are called prepositions. They can
indicate spatial or temporal relations, whether literal (on it, before then, by the house)
or metaphorical (on time, with gusto, beside herself), and relations like marking the
agent in Hamlet was written by Shakespeare.

A particle resembles a preposition or an adverb and is used in combination with
a verb. Particles often have extended meanings that aren’t quite the same as the
prepositions they resemble, as in the particle over in she turned the paper over. A
verb and a particle acting as a single unit is called a phrasal verb. The meaning
of phrasal verbs is often non-compositional—not predictable from the individual
meanings of the verb and the particle. Thus, turn down means ‘reject’, rule out
‘eliminate’, and go on ‘continue’.

Determiners like this and that (this chapter, that page) can mark the start of an
English noun phrase. Articles like a, an, and the, are a type of determiner that mark
discourse properties of the noun and are quite frequent; the is the most common
word in written English, with a and an right behind.

Conjunctions join two phrases, clauses, or sentences. Coordinating conjunc-
tions like and, or, and but join two elements of equal status. Subordinating conjunc-
tions are used when one of the elements has some embedded status. For example,
the subordinating conjunction that in “I thought that you might like some milk” links
the main clause 7 thought with the subordinate clause you might like some milk. This
clause is called subordinate because this entire clause is the “content” of the main
verb thought. Subordinating conjunctions like that which link a verb to its argument
in this way are also called complementizers.

Pronouns act as a shorthand for referring to an entity or event. Personal pro-
nouns refer to persons or entities (you, she, I, it, me, etc.). Possessive pronouns are
forms of personal pronouns that indicate either actual possession or more often just
an abstract relation between the person and some object (my, your, his, her, its, one’s,
our, their). Wh-pronouns (what, who, whom, whoever) are used in certain question

4 CHAPTER 17 ¢ SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

forms, or act as complementizers (Frida, who married Diego. ..).

auxiliary Auxiliary verbs mark semantic features of a main verb such as its tense, whether
it is completed (aspect), whether it is negated (polarity), and whether an action is
necessary, possible, suggested, or desired (mood). English auxiliaries include the
copula copula verb be, the two verbs do and have, forms, as well as modal verbs used to
modal mark the mood associated with the event depicted by the main verb: can indicates
ability or possibility, may permission or possibility, must necessity.
An English-specific tagset, the Penn Treebank tagset (Marcus et al., 1993), shown
in Fig. 17.2, has been used to label many syntactically annotated corpora like the
Penn Treebank corpora, so it is worth knowing about.
Tag Description Example Tag Description Example Tag Description Example
CC coord. conj. and, but, or NNP proper noun, sing. IBM TO infinitive to to
CD cardinal number one, two NNPS proper noun, plu. Carolinas UH interjection ah, oops
DT determiner a, the NNS noun, plural llamas VB verb base eat
EX existential ‘there’ there PDT predeterminer all, both VBD verb past tense ate
FW foreign word mea culpa POS possessive ending s VBG verb gerund eating
IN preposition/ of, in, by PRP personal pronoun 1, you, he VBN verb past partici- eaten
subordin-conj ple
JJ adjective yellow PRP$ possess. pronoun your VBP verb non-3sg-pr eat
JJIR comparative adj ~ bigger RB adverb quickly ~ VBZ verb 3sg pres eats
JJS superlative adj wildest RBR comparative adv faster WDT wh-determ. which, that
LS listitem marker I, 2, One RBS superlatv. adv fastest WP wh-pronoun what, who
MD modal can, should RP particle up, off WP$ wh-possess. whose
NN sing or mass noun llama SYM symbol +, %, & WRB wh-adverb how, where

10TulvBW®] Penn Treebank core 36 part-of-speech tags.

Below we show some examples with each word tagged according to both the UD
(in blue) and Penn (in red) tagsets. Notice that the Penn tagset distinguishes tense
and participles on verbs, and has a special tag for the existential there construction in
English. Note that since London Journal of Medicine is a proper noun, both tagsets
mark its component nouns as PROPN/NNP, including journal and medicine, which
might otherwise be labeled as common nouns (NOUN/NN).

(17.1) There/PRON/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS
there/ADV/RB ./PUNC/.

(17.2) Preliminary/ADI/1J findings/NOUN/NNS were/AUX/VBD
reported/VERB/VBN in/ADP/IN today/NOUN/NN ’s/PART/POS
London/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

17.2 Part-of-Speech Tagging

par

t-of-speech
tagging

ambiguous

Part-of-speech tagging is the process of assigning a part-of-speech to each word in
a text. The input is a sequence x1,x3,...,x;, of (tokenized) words and a tagset, and
the output is a sequence y1,ys, ..., ¥, of tags, each output y; corresponding exactly to
one input x;, as shown in the intuition in Fig. 17.3.

Tagging is a disambiguation task; words are ambiguous —have more than one
possible part-of-speech—and the goal is to find the correct tag for the situation.
For example, book can be a verb (book that flight) or a noun (hand me that book).
That can be a determiner (Does that flight serve dinner) or a complementizer (/

ambiguity
resolution

accuracy

17.2 + PART-OF-SPEECH TAGGING 5

eSS

Part of Speech Tagger
! \ ! !
Janet will back the bill
X, X, Xy X, Xg

ISR WAR] The task of part-of-speech tagging: mapping from input words x;,x3, ..., x, to
output POS tags yi,v2,...,yn -

thought that your flight was earlier). The goal of POS-tagging is to resolve these
ambiguities, choosing the proper tag for the context.

The accuracy of part-of-speech tagging algorithms (the percentage of test set
tags that match human gold labels) is extremely high. One study found accuracies
over 97% across 15 languages from the Universal Dependency (UD) treebank (Wu
and Dredze, 2019). Accuracies on various English treebanks are also 97% (no matter
the algorithm; HMMs, CRFs, BERT perform similarly). This 97% number is also
about the human performance on this task, at least for English (Manning, 2011).

Types: WSJ Brown
Unambiguous (1 tag) 44,432 (86%) 45,799 (85%)
Ambiguous (2+ tags) 7,025 (14%) 8,050 (15%)

Tokens:

Unambiguous (1 tag) 577,421 (45%) 384,349 (33%)
Ambiguous (2+ tags) 711,780 (55%) 786,646 (67%)

BTN Tag ambiguity in the Brown and WSJ corpora (Treebank-3 45-tag tagset).

We’ll introduce algorithms for the task in the next few sections, but first let’s
explore the task. Exactly how hard is it? Fig. 17.4 shows that most word types
(85-86%) are unambiguous (Janet is always NNP, hesitantly is always RB). But the
ambiguous words, though accounting for only 14-15% of the vocabulary, are very
common, and 55-67% of word tokens in running text are ambiguous. Particularly
ambiguous common words include that, back, down, put and set; here are some
examples of the 6 different parts of speech for the word back:

earnings growth took a back/JJ seat

a small building in the back/NN

a clear majority of senators back/VBP the bill
Dave began to back/VB toward the door
enable the country to buy back/RP debt

I was twenty-one back/RB then

Nonetheless, many words are easy to disambiguate, because their different tags
aren’t equally likely. For example, a can be a determiner or the letter a, but the
determiner sense is much more likely.

This idea suggests a useful baseline: given an ambiguous word, choose the tag
which is most frequent in the training corpus. This is a key concept:

Most Frequent Class Baseline: Always compare a classifier against a baseline at
least as good as the most frequent class baseline (assigning each token to the class
it occurred in most often in the training set).

6 CHAPTER 17 * SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

The most-frequent-tag baseline has an accuracy of about 92%'. The baseline
thus differs from the state-of-the-art and human ceiling (97%) by only 5%.

17.3 Named Entities and Named Entity Tagging

named entity

named entity

named entity
recognition

NER

Part of speech tagging can tell us that words like Janet, Stanford University, and
Colorado are all proper nouns; being a proper noun is a grammatical property of
these words. But viewed from a semantic perspective, these proper nouns refer to
different kinds of entities: Janet is a person, Stanford University is an organization,
and Colorado is a location.

Here we re-introduce the concept of a named entity, which was also introduced
in Section ?? for readers who haven’t yet read Chapter 10.

A named entity is, roughly speaking, anything that can be referred to with a
proper name: a person, a location, an organization. The task of named entity recog-
nition (NER) is to find spans of text that constitute proper names and tag the type of
the entity. Four entity tags are most common: PER (person), LOC (location), ORG
(organization), or GPE (geo-political entity). However, the term named entity is
commonly extended to include things that aren’t entities per se, including dates,
times, and other kinds of temporal expressions, and even numerical expressions like
prices. Here’s an example of the output of an NER tagger:

Citing high fuel prices, [org United Airlines] said [T\ Friday] it
has increased fares by [\jongy $6] per round trip on flights to some
cities also served by lower-cost carriers. [org American Airlines], a
unit of [prg AMR Corp.], immediately matched the move, spokesman
[per Tim Wagner] said. [org United], a unit of [org UAL Corp.],
said the increase took effect [Tr\g Thursday] and applies to most
routes where it competes against discount carriers, such as [oc Chicago]
to [1 oc Dallas] and [o Denver] to [{ ¢ San Francisco].

The text contains 13 mentions of named entities including 5 organizations, 4 loca-
tions, 2 times, 1 person, and 1 mention of money. Figure 17.5 shows typical generic
named entity types. Many applications will also need to use specific entity types like
proteins, genes, commercial products, or works of art.

Type

Tag Sample Categories Example sentences

People
Organization
Location

PER people, characters Turing is a giant of computer science.
ORG companies, sports teams The IPCC warned about the cyclone.
LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.

Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.
JOTUNMWR] A list of generic named entity types with the kinds of entities they refer to.

Named entity tagging is a useful first step in lots of natural language processing
tasks. In sentiment analysis we might want to know a consumer’s sentiment toward a
particular entity. Entities are a useful first stage in question answering, or for linking
text to information in structured knowledge sources like Wikipedia. And named
entity tagging is also central to tasks involving building semantic representations,
like extracting events and the relationship between participants.

I In English, on the WSJ corpus, tested on sections 22-24.

BIO

17.3 <+ NAMED ENTITIES AND NAMED ENTITY TAGGING 7

Unlike part-of-speech tagging, where there is no segmentation problem since
each word gets one tag, the task of named entity recognition is to find and label
spans of text, and is difficult partly because of the ambiguity of segmentation; we
need to decide what’s an entity and what isn’t, and where the boundaries are. Indeed,
most words in a text will not be named entities. Another difficulty is caused by type
ambiguity. The mention JFK can refer to a person, the airport in New York, or any
number of schools, bridges, and streets around the United States. Some examples of
this kind of cross-type confusion are given in Figure 17.6.

[per Washington] was born into slavery on the farm of James Burroughs.
[org Washington] went up 2 games to 1 in the four-game series.

Blair arrived in [[oc Washington] for what may well be his last state visit.
In June, [gpg Washington] passed a primary seatbelt law.

ISR Examples of type ambiguities in the use of the name Washington.

The standard approach to sequence labeling for a span-recognition problem like
NER is BIO tagging (Ramshaw and Marcus, 1995). This is a method that allows us
to treat NER like a word-by-word sequence labeling task, via tags that capture both
the boundary and the named entity type. Consider the following sentence:

[per Jane Villanueva] of [org United] , a unit of [org United Airlines
Holding] , said the fare applies to the [oc Chicago | route.

Figure 17.7 shows the same excerpt represented with BIO tagging, as well as
variants called IO tagging and BIOES tagging. In BIO tagging we label any token
that begins a span of interest with the label B, tokens that occur inside a span are
tagged with an I, and any tokens outside of any span of interest are labeled 0. While
there is only one O tag, we’ll have distinct B and I tags for each named entity class.
The number of tags is thus 2n + 1 tags, where n is the number of entity types. BIO
tagging can represent exactly the same information as the bracketed notation, but has
the advantage that we can represent the task in the same simple sequence modeling
way as part-of-speech tagging: assigning a single label y; to each input word x;:

Words 10 Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of (0] (@) (@)
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O (0]
the (0] (0] (0]
Chicago I-LOC B-LOC S-LOC
route O O (0]

(0] (0] (0)

IOTCBUM NER as a sequence model, showing 10, BIO, and BIOES taggings.

We’ve also shown two variant tagging schemes: 10 tagging, which loses some
information by eliminating the B tag, and BIOES tagging, which adds an end tag
E for the end of a span, and a span tag S for a span consisting of only one word.
A sequence labeler (HMM, CRF, RNN, Transformer, etc.) is trained to label each
token in a text with tags that indicate the presence (or absence) of particular kinds
of named entities.

8 CHAPTER 17 * SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

17.4 HMM Part-of-Speech Tagging

Markov chain

Markov
assumption

In this section we introduce our first sequence labeling algorithm, the Hidden Markov
Model, and show how to apply it to part-of-speech tagging. Recall that a sequence
labeler is a model whose job is to assign a label to each unit in a sequence, thus
mapping a sequence of observations to a sequence of labels of the same length.
The HMM is a classic model that introduces many of the key concepts of sequence
modeling that we will see again in more modern models.

An HMM is a probabilistic sequence model: given a sequence of units (words,
letters, morphemes, sentences, whatever), it computes a probability distribution over
possible sequences of labels and chooses the best label sequence.

17.4.1 Markov Chains

The HMM is based on augmenting the Markov chain. A Markov chain is a model
that tells us something about the probabilities of sequences of random variables,
states, each of which can take on values from some set. These sets can be words, or
tags, or symbols representing anything, for example the weather. A Markov chain
makes a very strong assumption that if we want to predict the future in the sequence,
all that matters is the current state. All the states before the current state have no im-
pact on the future except via the current state. It’s as if to predict tomorrow’s weather
you could examine today’s weather but you weren’t allowed to look at yesterday’s
weather.

IPTIICBWRY A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution 7 is required; setting £ = [0.1, 0.7, 0.2] for (a) would mean a
probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables ¢,¢2,...,q;. A Markov
model embodies the Markov assumption on the probabilities of this sequence: that
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(g; = alqi...qi—1) = P(qi = algi—1) (17.3)

Figure 17.8a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. The
states are represented as nodes in the graph, and the transitions, with their probabil-
ities, as edges. The transitions are probabilities: the values of arcs leaving a given
state must sum to 1. Figure 17.8b shows a Markov chain for assigning a probabil-
ity to a sequence of words wj...w;. This Markov chain should be familiar; in fact,
it represents a bigram language model, with each edge expressing the probability
p(wilw;)! Given the two models in Fig. 17.8, we can assign a probability to any
sequence from our vocabulary.

17.4 + HMM PART-OF-SPEECH TAGGING 9

Formally, a Markov chain is specified by the following components:
0=q192--.9n a set of N states

A=ajay2...ayi...ayy a transition probability matrix A, each g;; represent-
ing the probability of moving from state i to state j, s.t.
E?:l ajj = 1 Vi

T=T,T,..,JaN an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state i.
Some states j may have 77; = 0, meaning that they cannot
be initial states. Also, > ' ;=1

Before you go on, use the sample probabilities in Fig. 17.8a (with 7 = [0.1,0.7,0.2])
to compute the probability of each of the following sequences:

(17.4) hot hot hot hot
(17.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 17.8a?

17.4.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden hidden: we don’t observe them directly. For example we don’t normally observe
part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.
hidden Markoy A hidden Markov model (HMM) allows us to talk about both observed events

model
(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:
0=q192---9N a set of IV states

A=aji...a;j...ayy atransition probability matrix A, each g;; representing the probability
of moving from state i to state j, s.t. szv:l aj=1 Vi

B =b;(o;) a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation o, (drawn from a
vocabulary V = vj,vy,...,vy) being generated from a state g;

T=T,T,...., TN an initial probability distribution over states. ; is the probability that
the Markov chain will start in state i. Some states j may have 7; = 0,
meaning that they cannot be initial states. Also, Y .\ m; = 1

The HMM is given as input O = 0103 ...07: a sequence of T observations, each
one drawn from the vocabulary V.

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(g;i|q1,...,qi—1) = P(qi|qi-1) (17.6)

Second, the probability of an output observation o; depends only on the state that
produced the observation ¢; and not on any other states or any other observations:

Output Independence: P(0;|q1,-..Gi,---,qT,01,-,0i,...,07) = P(0i|q;) (17.7)

10 CHAPTER 17 ¢ SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

17.4.3 The components of an HMM tagger

An HMM has two components, the A and B probabilities, both estimated by counting
on a tagged training corpus. (For this example we’ll use the tagged WSJ corpus.)

The A matrix contains the tag transition probabilities P(f;|f;—;) which represent
the probability of a tag occurring given the previous tag. For example, modal verbs
like will are very likely to be followed by a verb in the base form, a VB, like race, so
we expect this probability to be high. We compute the maximum likelihood estimate
of this transition probability by counting, out of the times we see the first tag in a
labeled corpus, how often the first tag is followed by the second:

C(ti—1,t)

P(tilti1) = C(ti-1)

(17.8)

In the WSJ corpus, for example, MD occurs 13124 times of which it is followed
by VB 10471, for an MLE estimate of

C(MD,VB) 10471 _
C(MD) 13124

P(VB|MD) = 80 (17.9)

The B emission probabilities, P(w;|t;), represent the probability, given a tag (say
MD), that it will be associated with a given word (say will). The MLE of the emis-
sion probability is

C(l‘,‘,W,‘)
P(w;|t;) = 17.10
L) =) (710
Of the 13124 occurrences of MD in the WSJ corpus, it is associated with will 4046
times:
MD, will 4046
Plwitimp) = EMPwil) 31 (17.11)

C(MD) 13124

We saw this kind of Bayesian modeling in Appendix K; recall that this likelihood
term is not asking “which is the most likely tag for the word will?” That would be
the posterior P(MD|will). Instead, P(will|MD) answers the slightly counterintuitive
question “If we were going to generate a MD, how likely is it that this modal would

be will?”
B,
P("aardvark" | MD)
P(“will" | MD)
P(the' IMD) [~ —=—=—=—=——-—_
P(“back” | MD) By
P("aardvark" | NN)
P("zebra" | MD) A
P("the” | NN)
B1 o ”
P("aardvark" | VB) _l?(back” | NN)
P(will’ | VB) P("zebra" | NN)
P("the” | VB)
P(back” | VB)
P("zebra" | VB)

DTG An illustration of the two parts of an HMM representation: the A transition
probabilities used to compute the prior probability, and the B observation likelihoods that are
associated with each state, one likelihood for each possible observation word.

decoding

17.4 + HMM PART-OF-SPEECH TAGGING 11

The A transition probabilities, and B observation likelihoods of the HMM are
illustrated in Fig. 17.9 for three states in an HMM part-of-speech tagger; the full
tagger would have one state for each tag.

17.4.4 HMM tagging as decoding

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining the hidden variables sequence corresponding to the sequence of observations
is called decoding. More formally,

Decoding: Given as input an HMM A = (A, B) and a sequence of ob-
servations O = 01,0, ...,0r, find the most probable sequence of states

0=q19293-..9t.

For part-of-speech tagging, the goal of HMM decoding is to choose the tag
sequence 11 ...t, that is most probable given the observation sequence of n words
Wi... Wy

fin = argmax P(f ...ty w1 ... wy) (17.12)
oot

The way we’ll do this in the HMM is to use Bayes’ rule to instead compute:

P(wi...owylty...t,)P(t1 .. . 1)

f1., = argmax (17.13)
b t%..tn P(wi...wy)

Furthermore, we simplify Eq. 17.13 by dropping the denominator P(wf):
fil;n = argmax P(wy ... wylty ... 1) P(t1 .. . 1) (17.14)

N...ln

HMM taggers make two further simplifying assumptions. The first (output in-
dependence, from Eq. 17.7) is that the probability of a word appearing depends only
on its own tag and is independent of neighboring words and tags:

n
Pwy...walty...1y) ~ HP(W,»|t,-) (17.15)
i=1

The second assumption (the Markov assumption, Eq. 17.6) is that the probability of
a tag is dependent only on the previous tag, rather than the entire tag sequence;

P(ty...t,) = []P(tlti) (17.16)
i=1

Plugging the simplifying assumptions from Eq. 17.15 and Eq. 17.16 into Eq. 17.14
results in the following equation for the most probable tag sequence from a bigram
tagger:

emission transition
R A~~~ ——
fl.p = argmax P(ty .. .ty|wy ... wy) &= argmaxH P(wilt;) P(ti|ti—1) (17.17)

tl.o Heotn 327

The two parts of Eq. 17.17 correspond neatly to the B emission probability and A
transition probability that we just defined above!

12 CHAPTER 17 ¢ SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

function VITERBI(observations of len T,state-graph of len N) returns best-path, path-prob

create a path probability matrix viterbi[N,T]
for each state s from 1 to N do ; initialization step
viterbi[s,1]<+—ms * bs(01)
backpointer(s,1]1<0
for each time step ¢ from 2 to 7T do ; recursion step
for each state s from 1 to N do

. . N . .
viterbi[s,t] < max viterbils',t — 1] * ag g * bs(o;)
s'=1 :

N
backpointers,t] < argmax viterbi[s',t — 1] * ag s * bs(or)

s'=1

N , . o
bestpathprob <+ max viterbi[s, T] ; termination step
s=1
. N . . L.
bestpathpointer < argmax viterbils, T] ; termination step

s=1
bestpath +—the path starting at state bestpathpointer, that follows backpointer([] to states back in time
return bestpath, bestpathprob

ISR VAL] Viterbi algorithm for finding the optimal sequence of tags. Given an observation sequence and
an HMM A = (A, B), the algorithm returns the state path through the HMM that assigns maximum likelihood
to the observation sequence.

17.4.5 The Viterbi Algorithm

algonim The decoding algorithm for HMMs is the Viterbi algorithm shown in Fig. 17.10.
As an instance of dynamic programming, Viterbi resembles the dynamic program-
ming minimum edit distance algorithm of Chapter 2.

The Viterbi algorithm first sets up a probability matrix or lattice, with one col-
umn for each observation o, and one row for each state in the state graph. Each col-
umn thus has a cell for each state g; in the single combined automaton. Figure 17.11
shows an intuition of this lattice for the sentence Janet will back the bill.

Each cell of the lattice, v, (j), represents the probability that the HMM is in state
J after seeing the first # observations and passing through the most probable state
sequence ¢, ...,q;—1, given the HMM A. The value of each cell v,(j) is computed
by recursively taking the most probable path that could lead us to this cell. Formally,
each cell expresses the probability

vi(j) = g max P(q1--91-1,01,02...01,q: = j|A) (17.18)
15-4t—1
We represent the most probable path by taking the maximum over all possible

previous state sequences max . Like other dynamic programming algorithms,
G150 gt—1

1>
Viterbi fills each cell recursively. Given that we had already computed the probabil-
ity of being in every state at time ¢ — 1, we compute the Viterbi probability by taking
the most probable of the extensions of the paths that lead to the current cell. For a
given state ¢; at time ¢, the value v,(j) is computed as

. N .
v(j) = Iln:alxvt,l(t) aijbi(or) (17.19)

The three factors that are multiplied in Eq. 17.19 for extending the previous paths to
compute the Viterbi probability at time ¢ are

17.4 + HMM PART-OF-SPEECH TAGGING 13

Janet will back the bill

A sketch of the lattice for Janet will back the bill, showing the possible tags
(gi) for each word and highlighting the path corresponding to the correct tag sequence through
the hidden states. States (parts of speech) which have a zero probability of generating a
particular word according to the B matrix (such as the probability that a determiner DT will
be realized as Janet) are greyed out.

vi—1(i) the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state g; to current state g;

bj(o;) the state observation likelihood of the observation symbol o, given
the current state j

17.4.6 Working through an example

Let’s tag the sentence Janet will back the bill; the goal is the correct series of tags
(see also Fig. 17.11):

(17.20) Janet/NNP will/MD back/VB the/DT bill/NN

NNP MD VB JJ NN RB DT

<s> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322 0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017

JQTSBYAP] The A transition probabilities P(#;|r;_1) computed from the WSJ corpus with-
out smoothing. Rows are labeled with the conditioning event; thus P(VB|MD) is 0.7968.
<s> is the start token.

Let the HMM be defined by the two tables in Fig. 17.12 and Fig. 17.13. Fig-
ure 17.12 lists the a;; probabilities for transitioning between the hidden states (part-
of-speech tags). Figure 17.13 expresses the b;(o;) probabilities, the observation
likelihoods of words given tags. This table is (slightly simplified) from counts in the
WSJ corpus. So the word Janet only appears as an NNP, back has 4 possible parts

14 CHAPTER 17 ¢ SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

Janet will back the bill
NNP 0.000032 0 0 0.000048 0
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 O 0
NN 0 0.000200 0.000223 0 0.002337
RB 0 0 0.010446 0 0
DT 0 0 0 0.506099 0

ISR VAR] Observation likelihoods B computed from the WSJ corpus without smooth-
ing, simplified slightly.

of speech, and the word the can appear as a determiner or as an NNP (in titles like
“Somewhere Over the Rainbow” all words are tagged as NNP).

L3 2
AN 4 T T - .

{ start | \ bac tazie start { start } { start } i start }
\ backtrace N
Janet back
o, [N 0, (A

The first few entries in the individual state columns for the Viterbi algorithm. Each cell keeps
the probability of the best path so far and a pointer to the previous cell along that path. We have only filled out
columns 1 and 2; to avoid clutter most cells with value 0 are left empty. The rest is left as an exercise for the
reader. After the cells are filled in, backtracing from the end state, we should be able to reconstruct the correct
state sequence NNP MD VB DT NN.

Figure 17.14 shows a fleshed-out version of the sketch we saw in Fig. 17.11,
the Viterbi lattice for computing the best hidden state sequence for the observation
sequence Janet will back the bill.

There are N = 5 state columns. We begin in column 1 (for the word Janet) by
setting the Viterbi value in each cell to the product of the 7 transition probability (the
start probability for that state i, which we get from the <s> entry of Fig. 17.12), and

17.5 <+ CONDITIONAL RANDOM FIELDS (CRFs) 15

the observation likelihood of the word Janet given the tag for that cell. Most of the
cells in the column are zero since the word Janet cannot be any of those tags. The
reader should find this in Fig. 17.14.

Next, each cell in the will column gets updated. For each state, we compute the
value viterbils,t] by taking the maximum over the extensions of all the paths from
the previous column that lead to the current cell according to Eq. 17.19. We have
shown the values for the MD, VB, and NN cells. Each cell gets the max of the 7 val-
ues from the previous column, multiplied by the appropriate transition probability;
as it happens in this case, most of them are zero from the previous column. The re-
maining value is multiplied by the relevant observation probability, and the (trivial)
max is taken. In this case the final value, 2.772e-8, comes from the NNP state at the
previous column. The reader should fill in the rest of the lattice in Fig. 17.14 and
backtrace to see whether or not the Viterbi algorithm returns the gold state sequence
NNP MD VB DT NN.

17.5 Conditional Random Fields (CRFs)

unknown
words

CRF

While the HMM is a useful and powerful model, it turns out that HMMs need a
number of augmentations to achieve high accuracy. For example, in POS tagging
as in other tasks, we often run into unknown words: proper names and acronyms
are created very often, and even new common nouns and verbs enter the language
at a surprising rate. It would be great to have ways to add arbitrary features to
help with this, perhaps based on capitalization or morphology (words starting with
capital letters are likely to be proper nouns, words ending with -ed tend to be past
tense (VBD or VBN), etc.) Or knowing the previous or following words might be a
useful feature (if the previous word is the, the current tag is unlikely to be a verb).

Although we could try to hack the HMM to find ways to incorporate some of
these, in general it’s hard for generative models like HMMs to add arbitrary features
directly into the model in a clean way. We’ve already seen a model for combining
arbitrary features in a principled way: log-linear models like the logistic regression
model of Chapter 4! But logistic regression isn’t a sequence model; it assigns a class
to a single observation.

Luckily, there is a discriminative sequence model based on log-linear models:
the conditional random field (CRF). We’ll describe here the linear chain CREF,
the version of the CRF most commonly used for language processing, and the one
whose conditioning closely matches the HMM.

Assuming we have a sequence of input words X = x...x,, and want to compute
a sequence of output tags ¥ = y;...y,. In an HMM to compute the best tag sequence
that maximizes P(Y|X) we rely on Bayes’ rule and the likelihood P(X|Y):

Y = argmaxp(Y|X)
Y
= argmax p(X|Y)p(Y)
Y

= arg;naXHp(xilyi)Hp(yilyi_l) (17.21)

1

In a CREF, by contrast, we compute the posterior p(Y|X) directly, training the CRF

16 CHAPTER 17 ¢ SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

linear chain
CRF

to discriminate among the possible tag sequences:

Y = argmaxP(Y|X) (17.22)
Yew
However, the CRF does not compute a probability for each tag at each time step. In-
stead, at each time step the CRF computes log-linear functions over a set of relevant
features, and these local features are aggregated and normalized to produce a global
probability for the whole sequence.

Let’s introduce the CRF more formally, again using X and Y as the input and
output sequences. A CRF is a log-linear model that assigns a probability to an entire
output (tag) sequence Y, out of all possible sequences %/, given the entire input
(word) sequence X. We can think of a CRF as like a giant sequential version of
the multinomial logistic regression algorithm we saw for text categorization. Recall
that we introduced the feature function f in regular multinomial logistic regression
for text categorization as a function of a tuple: the input text x and a single class y
(page ??). In a CRF, we’re dealing with a sequence, so the function F' maps an entire
input sequence X and an entire output sequence Y to a feature vector. Let’s assume
we have K features, with a weight wy for each feature F;:

K
exp (Z wiF (X, Y))

k=1
K
S exp (z kak<x,Y'>)
Y'ew k=1

It’s common to also describe the same equation by pulling out the denominator into
a function Z(X):

pYX) = (17.23)

=

=

o)
!

K
1
= ——eXx wiF (XY (17.24)
7 p(; K Fi())

K
Z(X) =) exp <Zkak(X,Y’)> (17.25)
Y'ew k=1

We’ll call these K functions Fi(X,Y) global features, since each one is a property
of the entire input sequence X and output sequence Y. We compute them by decom-
posing into a sum of local features for each position i in Y:

F(X,Y) = filvi1,y0,X,1) (17.26)

i=1

Each of these local features f; in a linear-chain CRF is allowed to make use of the
current output token y;, the previous output token y;_p, the entire input string X (or
any subpart of it), and the current position i. This constraint to only depend on
the current and previous output tokens y; and y;_| are what characterizes a linear
chain CRF. As we will see, this limitation makes it possible to use versions of the
efficient Viterbi and Forward-Backwards algorithms from the HMM. A general CRF,
by contrast, allows a feature to make use of any output token, and are thus necessary
for tasks in which the decision depend on distant output tokens, like y;_4. General
CRFs require more complex inference, and are less commonly used for language
processing.

feature
templates

word shape

17.5 <+ CONDITIONAL RANDOM FIELDS (CRFs) 17

17.5.1 Features in a CRF POS Tagger

Let’s look at some of these features in detail, since the reason to use a discriminative
sequence model is that it’s easier to incorporate a lot of features.”

Again, in a linear-chain CREF, each local feature f; at position i can depend on
any information from: (y;_1,y;,X,i). So some legal features representing common
situations might be the following:

1{x; = the, y; = DET}
1{y; = PROPN, x;1| = Street, y;_; = NUM}
1{y; = VERB, y;_| = AUX}

For simplicity, we’ll assume all CRF features take on the value 1 or 0. Above, we
explicitly use the notation 1{x} to mean “1 if x is true, and O otherwise”. From now
on, we’ll leave off the 1 when we define features, but you can assume each feature
has it there implicitly.

Although the idea of what features to use is done by the system designer by hand,
the specific features are automatically populated by using feature templates as we
briefly mentioned in Chapter 4. Here are some templates that only use information
from (yi—1,y:,X,0):

<)’i7xi>a <)’i7)’i—1>7 <)’iaxi—1 ,xi+2>

These templates automatically populate the set of features from every instance in
the training and test set. Thus for our example Janet/NNP will/MD back/VB the/DT
bill/NN, when x; is the word back, the following features would be generated and
have the value 1 (we’ve assigned them arbitrary feature numbers):

f3743: yi = VB and x; = back
fise: yi=VBand y,_; =MD
f997321 yi= VB and x;_ = will and Xiyo = bill

It’s also important to have features that help with unknown words. One of the
most important is word shape features, which represent the abstract letter pattern
of the word by mapping lower-case letters to ‘x’, upper-case to ‘X’, numbers to
’d’, and retaining punctuation. Thus for example I.M.F. would map to X.X.X. and
DC10-30 would map to XXdd-dd. A second class of shorter word shape features is
also used. In these features consecutive character types are removed, so words in all
caps map to X, words with initial-caps map to Xx, DC10-30 would be mapped to
Xd-d but I.M.F would still map to X.X.X. Prefix and suffix features are also useful.
In summary, here are some sample feature templates that help with unknown words:

X; contains a particular prefix (perhaps from all prefixes of length < 2)
x; contains a particular suffix (perhaps from all suffixes of length < 2)
x;’s word shape

x;’s short word shape

For example the word well-dressed might generate the following non-zero val-
ued feature values:

2 Because in HMMs all computation is based on the two probabilities P(tag|tag) and P(word|tag), if
we want to include some source of knowledge into the tagging process, we must find a way to encode
the knowledge into one of these two probabilities. Each time we add a feature we have to do a lot of
complicated conditioning which gets harder and harder as we have more and more such features.

18 CHAPTER 17 ¢ SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

gazetteer

prefix(x;) =w

prefix(x;) = we

suffix(x;) = ed

suffix(x;) =d

word-shape(x;) = XXXX-XXXXXXX
short-word-shape(x;) = x-x

The known-word templates are computed for every word seen in the training
set; the unknown word features can also be computed for all words in training, or
only on training words whose frequency is below some threshold. The result of the
known-word templates and word-signature features is a very large set of features.
Generally a feature cutoff is used in which features are thrown out if they have count
< 5 in the training set.

Remember that in a CRF we don’t learn weights for each of these local features
fx- Instead, we first sum the values of each local feature (for example feature f3743)
over the entire sentence, to create each global feature (for example F3743). It is those
global features that will then be multiplied by weight w3743. Thus for training and
inference there is always a fixed set of K features with K weights, even though the
length of each sentence is different.

17.5.2 Features for CRF Named Entity Recognizers

A CREF for NER makes use of very similar features to a POS tagger, as shown in
Figure 17.15.

identity of wj;, identity of neighboring words
embeddings for w;, embeddings for neighboring words
part of speech of w;, part of speech of neighboring words
presence of w; in a gazetteer
w; contains a particular prefix (from all prefixes of length < 4)
w; contains a particular suffix (from all suffixes of length < 4)
word shape of w;, word shape of neighboring words
short word shape of w;, short word shape of neighboring words
gazetteer features

Typical features for a feature-based NER system.

One feature that is especially useful for locations is a gazetteer, a list of place
names, often providing millions of entries for locations with detailed geographical
and political information.® This can be implemented as a binary feature indicating a
phrase appears in the list. Other related resources like name-lists, for example from
the United States Census Bureau®, can be used, as can other entity dictionaries like
lists of corporations or products, although they may not be as helpful as a gazetteer
(Mikheeyv et al., 1999).

The sample named entity token L’Occitane would generate the following non-
zero valued feature values (assuming that L’Occitane is neither in the gazetteer nor
the census).

3 www.geonames.org

4 www.census.gov

17.5 + CONDITIONAL RANDOM FIELDS (CRFs) 19

prefix(x;) =L suffix(x;) = tane
prefix(x;) =L’ suffix(x;) = ane
prefix(x;) =L’0 suffix(x;) = ne
prefix(x;) =L’0c suffix(x;) = e

word-shape(x;) = X’ Xxxxxxxx short-word-shape(x;) = X’ Xx

Figure 17.16 illustrates the result of adding part-of-speech tags and some shape
information to our earlier example.

Words POS Short shape Gazetteer BIO Label
Jane NNP Xx 0 B-PER
Villanueva NNP Xx 1 I-PER
of IN X 0 (0]
United NNP Xx 0 B-ORG
Airlines NNP Xx 0 I-ORG
Holding NNP Xx 0 I-ORG
discussed VBD x 0 (0]
the DT X 0 (0]
Chicago NNP Xx 1 B-LOC
route NN X 0 (0]

0 (0]

I3TUNCHWALY Some NER features for a sample sentence, assuming that Chicago and Vil-
lanueva are listed as locations in a gazetteer. We assume features only take on the values 0 or
1, so the first POS feature, for example, would be represented as 1{POS = NNP}.

17.5.3 Inference and Training for CRF's
How do we find the best tag sequence ¥ for a given input X ? We start with Eq. 17.22:
Y = argmaxP(Y|X)

Yew
| K
= argmax exp wiF (X,Y) (17.27)
Ye¥ Z(X) (kz;

K n
= argmaxexp (Zwkak(yi_l,yi,X,i)> (17.28)

Yey =1 =l
K n
= argmaxZwkak(yi_l,y,-,X,i) (17.29)
YE¥ =1 =
n K
= afgmaXZZkak(yifuyhX’i) (17.30)
YEY ol k=1

We can ignore the exp function and the denominator Z(X), as we do above, because
exp doesn’t change the argmax, and the denominator Z(X) is constant for a given
observation sequence X.

How should we decode to find this optimal tag sequence y? Just as with HMMs,
we’ll turn to the Viterbi algorithm, which works because, like the HMM, the linear-
chain CRF depends at each timestep on only one previous output token y;_.

Concretely, this involves filling an N x T array with the appropriate values, main-
taining backpointers as we proceed. As with HMM Viterbi, when the table is filled,
we simply follow pointers back from the maximum value in the final column to
retrieve the desired set of labels.

20 CHAPTER 17 + SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

The requisite changes from HMM Viterbi have to do only with how we fill each
cell. Recall from Eq. 17.19 that the recursive step of the Viterbi equation computes
the Viterbi value of time ¢ for state j as

v(j) = m%x vi—1(i)aijbj(o); 1<j<N,1<t<T (17.31)
which is the HMM implementation of
w(j) = m’élx vio1 (i) P(sjls0) Plog]s;) 1<j<N<t<T (1732
i=

The CRF requires only a slight change to this latter formula, replacing the a and b
prior and likelihood probabilities with the CRF features:

K

N
v(j) = max vt () + Y wifee 1,y X,t) 1< <N 1<t <T| (1733)
e
k=1

Learning in CRFs relies on the same supervised learning algorithms we presented
for logistic regression. Given a sequence of observations, feature functions, and cor-
responding outputs, we use stochastic gradient descent to train the weights to maxi-
mize the log-likelihood of the training corpus. The local nature of linear-chain CRFs
means that the forward-backward algorithm introduced for HMMs in Appendix A
can be extended to a CRF version that will efficiently compute the necessary deriva-
tives. As with logistic regression, L1 or L2 regularization is important.

17.6 Evaluation of Named Entity Recognition

Part-of-speech taggers are evaluated by the standard metric of accuracy. Named
entity recognizers are evaluated by recall, precision, and F; measure. Recall that
recall is the ratio of the number of correctly labeled responses to the total that should
have been labeled; precision is the ratio of the number of correctly labeled responses
to the total labeled; and F-measure is the harmonic mean of the two.

To know if the difference between the F; scores of two NER systems is a signif-
icant difference, we use the paired bootstrap test, or the similar randomization test
(Section ??).

For named entity tagging, the entity rather than the word is the unit of response.
Thus in the example in Fig. 17.16, the two entities Jane Villanueva and United Air-
lines Holding and the non-entity discussed would each count as a single response.

The fact that named entity tagging has a segmentation component which is not
present in tasks like text categorization or part-of-speech tagging causes some prob-
lems with evaluation. For example, a system that labeled Jane but not Jane Vil-
lanueva as a person would cause two errors, a false positive for O and a false nega-
tive for I-PER. In addition, using entities as the unit of response but words as the unit
of training means that there is a mismatch between the training and test conditions.

17.7 Further Details

In this section we summarize a few remaining details of the data and models for
part-of-speech tagging and NER, beginning with data. Since the algorithms we have

17.7 + FURTHER DETAILS 21

presented are supervised, having labeled data is essential for training and testing. A
wide variety of datasets exist for part-of-speech tagging and/or NER. The Universal
Dependencies (UD) dataset (de Marneffe et al., 2021) has POS tagged corpora in
over a hundred languages, as do the Penn Treebanks in English, Chinese, and Arabic.
OntoNotes has corpora labeled for named entities in English, Chinese, and Arabic
(Hovy et al., 2006). Named entity tagged corpora are also available in particular
domains, such as for biomedical (Bada et al., 2012) and literary text (Bamman et al.,
2019).

17.7.1 Rule-based Methods

While machine learned (neural or CRF) sequence models are the norm in academic
research, commercial approaches to NER are often based on pragmatic combina-
tions of lists and rules, with some smaller amount of supervised machine learning
(Chiticariu et al., 2013). For example in the IBM System T architecture, a user
specifies declarative constraints for tagging tasks in a formal query language that
includes regular expressions, dictionaries, semantic constraints, and other operators,
which the system compiles into an efficient extractor (Chiticariu et al., 2018).

One common approach is to make repeated rule-based passes over a text, starting
with rules with very high precision but low recall, and, in subsequent stages, using
machine learning methods that take the output of the first pass into account (an
approach first worked out for coreference (Lee et al., 2017)):

1. First, use high-precision rules to tag unambiguous entity mentions.

2. Then, search for substring matches of the previously detected names.

3. Use application-specific name lists to find likely domain-specific mentions.
4

. Finally, apply supervised sequence labeling techniques that use tags from pre-
vious stages as additional features.

Rule-based methods were also the earliest methods for part-of-speech tagging.
Rule-based taggers like the English Constraint Grammar system (Karlsson et al.
1995, Voutilainen 1999) use a two-stage formalism invented in the 1950s and 1960s:
(1) a morphological analyzer with tens of thousands of word stem entries returns all
parts of speech for a word, then (2) a large set of thousands of constraints are applied
to the input sentence to rule out parts of speech inconsistent with the context.

17.7.2 POS Tagging for Morphologically Rich Languages

Augmentations to tagging algorithms become necessary when dealing with lan-
guages with rich morphology like Czech, Hungarian and Turkish.

These productive word-formation processes result in a large vocabulary for these
languages: a 250,000 word token corpus of Hungarian has more than twice as many
word types as a similarly sized corpus of English (Oravecz and Dienes, 2002), while
a 10 million word token corpus of Turkish contains four times as many word types
as a similarly sized English corpus (Hakkani-Tiir et al., 2002). Large vocabular-
ies mean many unknown words, and these unknown words cause significant per-
formance degradations in a wide variety of languages (including Czech, Slovene,
Estonian, and Romanian) (Haji¢, 2000).

Highly inflectional languages also have much more information than English
coded in word morphology, like case (nominative, accusative, genitive) or gender
(masculine, feminine). Because this information is important for tasks like pars-
ing and coreference resolution, part-of-speech taggers for morphologically rich lan-

22 CHAPTER 17 + SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

guages need to label words with case and gender information. Tagsets for morpho-
logically rich languages are therefore sequences of morphological tags rather than a
single primitive tag. Here’s a Turkish example, in which the word izin has three pos-
sible morphological/part-of-speech tags and meanings (Hakkani-Tiir et al., 2002):

1. Yerdeki izin temizlenmesi gerek. iz + Noun+A3sg+Pnon+Gen
The trace on the floor should be cleaned.

2. Uzerinde parmak izin kalmis. iz + Noun+A3sg+P2sg+Nom
Your finger print is left on (it).

3. Igeri girmek i¢in izin alman gerekiyor. izin + Noun+A3sg+Pnon+Nom
You need permission to enter.

Using a morphological parse sequence like Noun+A3sg+Pnon+Gen as the part-
of-speech tag greatly increases the number of parts of speech, and so tagsets can
be 4 to 10 times larger than the 50—100 tags we have seen for English. With such
large tagsets, each word needs to be morphologically analyzed to generate the list
of possible morphological tag sequences (part-of-speech tags) for the word. The
role of the tagger is then to disambiguate among these tags. This method also helps
with unknown words since morphological parsers can accept unknown stems and
still segment the affixes properly.

17.8 Summary

This chapter introduced parts of speech and named entities, and the tasks of part-
of-speech tagging and named entity recognition:

» Languages generally have a small set of closed class words that are highly
frequent, ambiguous, and act as function words, and open-class words like
nouns, verbs, adjectives. Various part-of-speech tagsets exist, of between 40
and 200 tags.

* Part-of-speech tagging is the process of assigning a part-of-speech label to
each of a sequence of words.

* Named entities are words for proper nouns referring mainly to people, places,
and organizations, but extended to many other types that aren’t strictly entities
Or even proper nouns.

* Two common approaches to sequence modeling are a generative approach,
HMM tagging, and a discriminative approach, CRF tagging. We will see a
neural approach in following chapters.

* The probabilities in HMM taggers are estimated by maximum likelihood es-
timation on tag-labeled training corpora. The Viterbi algorithm is used for
decoding, finding the most likely tag sequence

* Conditional Random Fields or CRF taggers train a log-linear model that can
choose the best tag sequence given an observation sequence, based on features
that condition on the output tag, the prior output tag, the entire input sequence,
and the current timestep. They use the Viterbi algorithm for inference, to
choose the best sequence of tags, and a version of the Forward-Backward
algorithm (see Appendix A) for training,

HISTORICAL NOTES 23

Historical Notes

What is probably the earliest part-of-speech tagger was part of the parser in Zellig
Harris’s Transformations and Discourse Analysis Project (TDAP), implemented be-
tween June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962),
although earlier systems had used part-of-speech dictionaries. TDAP used 14 hand-
written rules for part-of-speech disambiguation; the use of part-of-speech tag se-
quences and the relative frequency of tags for a word prefigures modern algorithms.
The parser was implemented essentially as a cascade of finite-state transducers; see
Joshi and Hopely (1999) and Karttunen (1999) for a reimplementation.

The Computational Grammar Coder (CGC) of Klein and Simmons (1963) had
three components: a lexicon, a morphological analyzer, and a context disambigua-
tor. The small 1500-word lexicon listed only function words and other irregular
words. The morphological analyzer used inflectional and derivational suffixes to as-
sign part-of-speech classes. These were run over words to produce candidate parts
of speech which were then disambiguated by a set of 500 context rules by relying on
surrounding islands of unambiguous words. For example, one rule said that between
an ARTICLE and a VERB, the only allowable sequences were ADJ-NOUN, NOUN-
ADVERB, or NOUN-NOUN. The TAGGIT tagger (Greene and Rubin, 1971) used
the same architecture as Klein and Simmons (1963), with a bigger dictionary and
more tags (87). TAGGIT was applied to the Brown corpus and, according to Francis
and Kucera (1982, p. 9), accurately tagged 77% of the corpus; the remainder of the
Brown corpus was then tagged by hand. All these early algorithms were based on
a two-stage architecture in which a dictionary was first used to assign each word a
set of potential parts of speech, and then lists of handwritten disambiguation rules
winnowed the set down to a single part of speech per word.

Probabilities were used in tagging by Stolz et al. (1965) and a complete proba-
bilistic tagger with Viterbi decoding was sketched by Bahl and Mercer (1976). The
Lancaster-Oslo/Bergen (LOB) corpus, a British English equivalent of the Brown cor-
pus, was tagged in the early 1980’s with the CLAWS tagger (Marshall 1983; Mar-
shall 1987; Garside 1987), a probabilistic algorithm that approximated a simplified
HMM tagger. The algorithm used tag bigram probabilities, but instead of storing the
word likelihood of each tag, the algorithm marked tags either as rare (P(tag|word) <
.01) infrequent (P(tag|word) < .10) or normally frequent (P(tag|word) > .10).

DeRose (1988) developed a quasi-HMM algorithm, including the use of dy-
namic programming, although computing P(t|w)P(w) instead of P(w|t)P(w). The
same year, the probabilistic PARTS tagger of Church 1988, 1989 was probably the
first implemented HMM tagger, described correctly in Church (1989), although
Church (1988) also described the computation incorrectly as P(¢|w)P(w) instead
of P(w|t)P(w). Church (p.c.) explained that he had simplified for pedagogical pur-
poses because using the probability P(¢|w) made the idea seem more understandable
as “storing a lexicon in an almost standard form”.

Later taggers explicitly introduced the use of the hidden Markov model (Kupiec
1992; Weischedel et al. 1993; Schiitze and Singer 1994). Merialdo (1994) showed
that fully unsupervised EM didn’t work well for the tagging task and that reliance
on hand-labeled data was important. Charniak et al. (1993) showed the importance
of the most frequent tag baseline; the 92.3% number we give above was from Abney
et al. (1999). See Brants (2000) for HMM tagger implementation details, includ-
ing the extension to trigram contexts, and the use of sophisticated unknown word
features; its performance is still close to state of the art taggers.

24 CHAPTER 17 + SEQUENCE LABELING FOR PARTS OF SPEECH AND NAMED ENTITIES

Log-linear models for POS tagging were introduced by Ratnaparkhi (1996),
who introduced a system called MXPOST which implemented a maximum entropy
Markov model (MEMM), a slightly simpler version of a CRF. Around the same
time, sequence labelers were applied to the task of named entity tagging, first with
HMMs (Bikel et al., 1997) and MEMMSs (McCallum et al., 2000), and then once
CRFs were developed (Lafferty et al. 2001), they were also applied to NER (Mc-
Callum and Li, 2003). A wide exploration of features followed (Zhou et al., 2005).
Neural approaches to NER mainly follow from the pioneering results of Collobert
et al. (2011), who applied a CRF on top of a convolutional net. BILSTMs with word
and character-based embeddings as input followed shortly and became a standard
neural algorithm for NER (Huang et al. 2015, Ma and Hovy 2016, Lample et al.
2016) followed by the more recent use of Transformers and BERT.

The idea of using letter suffixes for unknown words is quite old; the early Klein
and Simmons (1963) system checked all final letter suffixes of lengths 1-5. The
unknown word features described on page 17 come mainly from Ratnaparkhi (1996),
with augmentations from Toutanova et al. (2003) and Manning (2011).

State of the art POS taggers use neural algorithms, either bidirectional RNNs or
Transformers like BERT; see Chapter 13 to Chapter 10. HMM (Brants 2000; Thede
and Harper 1999) and CRF tagger accuracies are likely just a tad lower.

Manning (2011) investigates the remaining 2.7% of errors in a high-performing
tagger (Toutanova et al., 2003). He suggests that a third or half of these remaining
errors are due to errors or inconsistencies in the training data, a third might be solv-
able with richer linguistic models, and for the remainder the task is underspecified
or unclear.

Supervised tagging relies heavily on in-domain training data hand-labeled by
experts. Ways to relax this assumption include unsupervised algorithms for cluster-
ing words into part-of-speech-like classes, summarized in Christodoulopoulos et al.
(2010), and ways to combine labeled and unlabeled data, for example by co-training
(Clark et al. 2003; Sggaard 2010).

See Householder (1995) for historical notes on parts of speech, and Sampson
(1987) and Garside et al. (1997) on the provenance of the Brown and other tagsets.

Exercises

17.1 Find one tagging error in each of the following sentences that are tagged with
the Penn Treebank tagset:
1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

17.2 Use the Penn Treebank tagset to tag each word in the following sentences
from Damon Runyon’s short stories. You may ignore punctuation. Some of
these are quite difficult; do your best.

1. It is a nice night.

2. This crap game is over a garage in Fifty-second Street. ..
3. ...Nobody ever takes the newspapers she sells ...
4

. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a
mournful voice.

17.3

174

17.5

17.6

17.7

17.8

17.9

EXERCISES 25

5. ...Tam sitting in Mindy’s restaurant putting on the gefillte fish, which is
a dish I am very fond of, ...

6. When a guy and a doll get to taking peeks back and forth at each other,
why there you are indeed.

Now compare your tags from the previous exercise with one or two friend’s
answers. On which words did you disagree the most? Why?

Implement the “most likely tag” baseline. Find a POS-tagged training set,
and use it to compute for each word the tag that maximizes p(z/w). You will
need to implement a simple tokenizer to deal with sentence boundaries. Start
by assuming that all unknown words are NN and compute your error rate on
known and unknown words. Now write at least five rules to do a better job of
tagging unknown words, and show the difference in error rates.

Build a bigram HMM tagger. You will need a part-of-speech-tagged corpus.
First split the corpus into a training set and test set. From the labeled training
set, train the transition and observation probabilities of the HMM tagger di-
rectly on the hand-tagged data. Then implement the Viterbi algorithm so you
can decode a test sentence. Now run your algorithm on the test set. Report its
error rate and compare its performance to the most frequent tag baseline.

Do an error analysis of your tagger. Build a confusion matrix and investigate
the most frequent errors. Propose some features for improving the perfor-
mance of your tagger on these errors.

Develop a set of regular expressions to recognize the character shape features
described on page 17.

The BIO and other labeling schemes given in this chapter aren’t the only
possible one. For example, the B tag can be reserved only for those situations
where an ambiguity exists between adjacent entities. Propose a new set of
BIO tags for use with your NER system. Experiment with it and compare its
performance with the schemes presented in this chapter.

Names of works of art (books, movies, video games, etc.) are quite different
from the kinds of named entities we’ve discussed in this chapter. Collect a
list of names of works of art from a particular category from a Web-based
source (e.g., gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list
and give examples of ways that the names in it are likely to be problematic for
the techniques described in this chapter.

17.10 Develop an NER system specific to the category of names that you collected

in the last exercise. Evaluate your system on a collection of text likely to
contain instances of these named entities.

26 Chapter 17 -

Sequence Labeling for Parts of Speech and Named Entities

Abney, S. P, R. E. Schapire, and Y. Singer. 1999. Boosting
applied to tagging and PP attachment. EMNLP/VLC.

Bada, M., M. Eckert, D. Evans, K. Garcia, K. Shipley, D. Sit-
nikov, W. A. Baumgartner, K. B. Cohen, K. Verspoor,
J. A. Blake, and L. E. Hunter. 2012. Concept annotation
in the craft corpus. BMC bioinformatics, 13(1):161.

Bahl, L. R. and R. L. Mercer. 1976. Part of speech as-
signment by a statistical decision algorithm. Proceedings
IEEE International Symposium on Information Theory.

Bamman, D., S. Popat, and S. Shen. 2019. An annotated
dataset of literary entities. NAACL HLT.

Bikel, D. M., S. Miller, R. Schwartz, and R. Weischedel.
1997. Nymble: A high-performance learning name-
finder. ANLP.

Brants, T. 2000. TnT: A statistical part-of-speech tagger.
ANLP.

Broschart, J. 1997. Why Tongan does it differently. Linguis-
tic Typology, 1:123-165.

Charniak, E., C. Hendrickson, N. Jacobson, and
M. Perkowitz. 1993. Equations for part-of-speech tag-
ging. AAAL

Chiticariu, L., M. Danilevsky, Y. Li, F. Reiss, and H. Zhu.
2018. SystemT: Declarative text understanding for enter-
prise. NAACL HLT, volume 3.

Chiticariu, L., Y. Li, and F. R. Reiss. 2013. Rule-Based In-
formation Extraction is Dead! Long Live Rule-Based In-
formation Extraction Systems! EMNLP.

Christodoulopoulos, C., S. Goldwater, and M. Steedman.
2010. Two decades of unsupervised POS induction: How
far have we come? EMNLP.

Church, K. W. 1988. A stochastic parts program and noun
phrase parser for unrestricted text. ANLP.

Church, K. W. 1989. A stochastic parts program and noun
phrase parser for unrestricted text. /[CASSP.

Clark, S., J. R. Curran, and M. Osborne. 2003. Bootstrapping
POS-taggers using unlabelled data. CoNLL.

Collobert, R., J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural language
processing (almost) from scratch. JMLR, 12:2493-2537.

DeRose, S. J. 1988. Grammatical category disambiguation
by statistical optimization. Computational Linguistics,
14:31-39.

Evans, N. 2000. Word classes in the world’s languages. In
G. Booij, C. Lehmann, and J. Mugdan, eds, Morphology:
A Handbook on Inflection and Word Formation, 708-732.
Mouton.

Francis, W. N. and H. Kucera. 1982. Frequency Analysis of

English Usage. Houghton Mifflin, Boston.

Garside, R. 1987. The CLAWS word-tagging system. In
R. Garside, G. Leech, and G. Sampson, eds, The Compu-
tational Analysis of English, 30-41. Longman.

Garside, R., G. Leech, and A. McEnery. 1997. Corpus An-
notation. Longman.

Gil, D. 2000. Syntactic categories, cross-linguistic variation
and universal grammar. In P. M. Vogel and B. Comrie,

eds, Approaches to the Typology of Word Classes, 173—
216. Mouton.

Greene, B. B. and G. M. Rubin. 1971. Automatic grammati-
cal tagging of English. Department of Linguistics, Brown
University, Providence, Rhode Island.

Hajic, J. 2000. Morphological tagging: Data vs. dictionaries.
NAACL.

Hakkani-Tiir, D., K. Oflazer, and G. Tir. 2002. Sta-
tistical morphological disambiguation for agglutinative
languages. Journal of Computers and Humanities,
36(4):381-410.

Harris, Z. S. 1962. String Analysis of Sentence Structure.
Mouton, The Hague.

Householder, F. W. 1995. Dionysius Thrax, the fechnai, and
Sextus Empiricus. In E. F. K. Koerner and R. E. Asher,
eds, Concise History of the Language Sciences, 99-103.
Elsevier Science.

Hovy, E. H., M. P. Marcus, M. Palmer, L. A. Ramshaw,
and R. Weischedel. 2006. OntoNotes: The 90% solution.
HLT-NAACL.

Huang, Z., W. Xu, and K. Yu. 2015. Bidirectional LSTM-
CRF models for sequence tagging. arXiv preprint
arXiv:1508.01991.

Joshi, A. K. and P. Hopely. 1999. A parser from antiquity.
In A. Kornai, ed., Extended Finite State Models of Lan-
guage, 6-15. Cambridge University Press.

Karlsson, F., A. Voutilainen, J. Heikkild, and A. Anttila, eds.
1995. Constraint Grammar: A Language-Independent
System for Parsing Unrestricted Text. Mouton de Gruyter.

Karttunen, L. 1999. Comments on Joshi. In A. Kornai, ed.,
Extended Finite State Models of Language, 16—18. Cam-
bridge University Press.

Klein, S. and R. F. Simmons. 1963. A computational ap-
proach to grammatical coding of English words. Journal
of the ACM, 10(3):334-347.

Kupiec, J. 1992. Robust part-of-speech tagging using a hid-
den Markov model. Computer Speech and Language,
6:225-242.

Lafferty, J. D., A. McCallum, and F. C. N. Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. /CML.

Lample, G., M. Ballesteros, S. Subramanian, K. Kawakami,
and C. Dyer. 2016. Neural architectures for named entity
recognition. NAACL HLT.

Lee, H., M. Surdeanu, and D. Jurafsky. 2017. A scaffolding
approach to coreference resolution integrating statistical
and rule-based models. Natural Language Engineering,
23(5):733-762.

Ma, X. and E. H. Hovy. 2016. End-to-end sequence labeling
via bi-directional LSTM-CNNs-CRF. ACL.

Manning, C. D. 2011. Part-of-speech tagging from 97% to
100%: Is it time for some linguistics? CICLing 2011.
Marcus, M. P, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn

treebank. Computational Linguistics, 19(2):313-330.

de Marneffe, M.-C., C. D. Manning, J. Nivre, and D. Zeman.
2021. Universal Dependencies. Computational Linguis-
tics, 47(2):255-308.

Marshall, 1. 1983. Choice of grammatical word-class with-
out global syntactic analysis: Tagging words in the LOB
corpus. Computers and the Humanities, 17:139-150.

https://www.aclweb.org/anthology/W99-0606
https://www.aclweb.org/anthology/W99-0606
https://www.aclweb.org/anthology/2020.lrec-1.6
https://www.aclweb.org/anthology/2020.lrec-1.6
https://doi.org/10.3115/974557.974586
https://doi.org/10.3115/974557.974586
https://doi.org/10.3115/974147.974178
https://www.aclweb.org/anthology/P11-4019
https://www.aclweb.org/anthology/P11-4019
https://www.aclweb.org/anthology/D13-1079
https://www.aclweb.org/anthology/D13-1079
https://www.aclweb.org/anthology/D13-1079
https://www.aclweb.org/anthology/D10-1056
https://www.aclweb.org/anthology/D10-1056
https://doi.org/10.3115/974235.974260
https://doi.org/10.3115/974235.974260
https://www.aclweb.org/anthology/W03-0407
https://www.aclweb.org/anthology/W03-0407
http://jmlr.org/papers/v12/collobert11a.html
http://jmlr.org/papers/v12/collobert11a.html
https://www.aclweb.org/anthology/J88-1003
https://www.aclweb.org/anthology/J88-1003
https://www.aclweb.org/anthology/A00-2013
https://www.aclweb.org/anthology/N06-2015
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.1162/coli_a_00402

Exercises

27

Marshall, 1. 1987. Tag selection using probabilistic meth-
ods. In R. Garside, G. Leech, and G. Sampson, eds, The
Computational Analysis of English, 42-56. Longman.

McCallum, A., D. Freitag, and F. C. N. Pereira. 2000. Max-
imum entropy Markov models for information extraction
and segmentation. /CML.

McCallum, A. and W. Li. 2003. Early results for named
entity recognition with conditional random fields, feature
induction and web-enhanced lexicons. CoNLL.

Merialdo, B. 1994. Tagging English text with a probabilistic
model. Computational Linguistics, 20(2):155-172.

Mikheev, A., M. Moens, and C. Grover. 1999. Named entity
recognition without gazetteers. EACL.

Oravecz, C. and P. Dienes. 2002. Efficient stochastic part-
of-speech tagging for Hungarian. LREC.

Ramshaw, L. A. and M. P. Marcus. 1995. Text chunking
using transformation-based learning. Proceedings of the
3rd Annual Workshop on Very Large Corpora.

Ratnaparkhi, A. 1996. A maximum entropy part-of-speech
tagger. EMNLP.

Sampson, G. 1987. Alternative grammatical coding systems.
In R. Garside, G. Leech, and G. Sampson, eds, The Com-
putational Analysis of English, 165-183. Longman.

Schiitze, H. and Y. Singer. 1994. Part-of-speech tagging us-
ing a variable memory Markov model. ACL.

S@gaard, A. 2010. Simple semi-supervised training of part-
of-speech taggers. ACL.

Stolz, W. S., P. H. Tannenbaum, and F. V. Carstensen. 1965.
A stochastic approach to the grammatical coding of En-
glish. CACM, 8(6):399-405.

Thede, S. M. and M. P. Harper. 1999. A second-order hidden
Markov model for part-of-speech tagging. ACL.

Toutanova, K., D. Klein, C. D. Manning, and Y. Singer.
2003. Feature-rich part-of-speech tagging with a cyclic
dependency network. HLT-NAACL.

Voutilainen, A. 1999. Handcrafted rules. In H. van Halteren,
ed., Syntactic Wordclass Tagging, 217-246. Kluwer.

Weischedel, R., M. Meteer, R. Schwartz, L. A. Ramshaw,
and J. Palmucci. 1993. Coping with ambiguity and un-
known words through probabilistic models. Computa-
tional Linguistics, 19(2):359-382.

Wau, S. and M. Dredze. 2019. Beto, Bentz, Becas: The sur-
prising cross-lingual effectiveness of BERT. EMNLP.
Zhou, G., J. Su, J. Zhang, and M. Zhang. 2005. Exploring

various knowledge in relation extraction. ACL.

https://www.aclweb.org/anthology/W03-0430
https://www.aclweb.org/anthology/W03-0430
https://www.aclweb.org/anthology/W03-0430
https://www.aclweb.org/anthology/J94-2001
https://www.aclweb.org/anthology/J94-2001
https://www.aclweb.org/anthology/E99-1001
https://www.aclweb.org/anthology/E99-1001
http://www.lrec-conf.org/proceedings/lrec2002/pdf/201.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/201.pdf
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W96-0213
https://www.aclweb.org/anthology/W96-0213
https://doi.org/10.3115/981732.981757
https://doi.org/10.3115/981732.981757
https://www.aclweb.org/anthology/P10-2038
https://www.aclweb.org/anthology/P10-2038
https://doi.org/10.3115/1034678.1034712
https://doi.org/10.3115/1034678.1034712
https://www.aclweb.org/anthology/N03-1033
https://www.aclweb.org/anthology/N03-1033
https://www.aclweb.org/anthology/J93-2006
https://www.aclweb.org/anthology/J93-2006
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.3115/1219840.1219893
https://doi.org/10.3115/1219840.1219893

	Sequence Labeling for Parts of Speech and Named Entities
	(Mostly) English Word Classes
	Part-of-Speech Tagging
	Named Entities and Named Entity Tagging
	HMM Part-of-Speech Tagging
	Markov Chains
	The Hidden Markov Model
	The components of an HMM tagger
	HMM tagging as decoding
	The Viterbi Algorithm
	Working through an example

	Conditional Random Fields (CRFs)
	Features in a CRF POS Tagger
	Features for CRF Named Entity Recognizers
	Inference and Training for CRFs

	Evaluation of Named Entity Recognition
	Further Details
	Rule-based Methods
	POS Tagging for Morphologically Rich Languages

	Summary
	Historical Notes
	Exercises

