
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2025. All

rights reserved. Draft of August 24, 2025.

CHAPTER

19 Dependency Parsing

Tout mot qui fait partie d’une phrase... Entre lui et ses voisins, l’esprit aperçoit
des connexions, dont l’ensemble forme la charpente de la phrase.

[Between each word in a sentence and its neighbors, the mind perceives con-
nections. These connections together form the scaffolding of the sentence.]

Lucien Tesnière. 1959. Éléments de syntaxe structurale, A.1.§4

The focus of the last chapter was on context-free grammars and constituent-
based representations. Here we present another important family of grammar for-
malisms called dependency grammars. In dependency formalisms, phrasal con-dependency

grammars
stituents and phrase-structure rules do not play a direct role. Instead, the syntactic
structure of a sentence is described solely in terms of directed binary grammatical
relations between the words, as in the following dependency parse:

I prefer the morning flight through Denver

nsubj

obj

det

compound

nmod

case

root

(19.1)

Relations among the words are illustrated above the sentence with directed, labeled
arcs from heads to dependents. We call this a typed dependency structure becausetyped

dependency
the labels are drawn from a fixed inventory of grammatical relations. A root node
explicitly marks the root of the tree, the head of the entire structure.

Figure 19.1 on the next page shows the dependency analysis from Eq. 19.1 but
visualized as a tree, alongside its corresponding phrase-structure analysis of the kind
given in the prior chapter. Note the absence of nodes corresponding to phrasal con-
stituents or lexical categories in the dependency parse; the internal structure of the
dependency parse consists solely of directed relations between words. These head-
dependent relationships directly encode important information that is often buried in
the more complex phrase-structure parses. For example, the arguments to the verb
prefer are directly linked to it in the dependency structure, while their connection
to the main verb is more distant in the phrase-structure tree. Similarly, morning
and Denver, modifiers of flight, are linked to it directly in the dependency structure.
This fact that the head-dependent relations are a good proxy for the semantic rela-
tionship between predicates and their arguments is an important reason why depen-
dency grammars are currently more common than constituency grammars in natural
language processing.

Another major advantage of dependency grammars is their ability to deal with
languages that have a relatively free word order. For example, word order in Czechfree word order

can be much more flexible than in English; a grammatical object might occur before
or after a location adverbial. A phrase-structure grammar would need a separate rule



2 CHAPTER 19 • DEPENDENCY PARSING

prefer

flight

Denver

through

morningthe

I

S

VP

NP

Nom

PP

NP

Pro

Denver

P

through

Nom

Noun

flight

Nom

Noun

morning

Det

the

Verb

prefer

NP

Pro

I

Figure 19.1 Dependency and constituent analyses for I prefer the morning flight through Denver.

for each possible place in the parse tree where such an adverbial phrase could occur.
A dependency-based approach can have just one link type representing this particu-
lar adverbial relation; dependency grammar approaches can thus abstract away a bit
more from word order information.

In the following sections, we’ll give an inventory of relations used in dependency
parsing, discuss two families of parsing algorithms (transition-based, and graph-
based), and discuss evaluation.

19.1 Dependency Relations

The traditional linguistic notion of grammatical relation provides the basis for thegrammatical
relation

binary relations that comprise these dependency structures. The arguments to these
relations consist of a head and a dependent. The head plays the role of the centralhead

dependent organizing word, and the dependent as a kind of modifier. The head-dependent rela-
tionship is made explicit by directly linking heads to the words that are immediately
dependent on them.

In addition to specifying the head-dependent pairs, dependency grammars allow
us to classify the kinds of grammatical relations, or grammatical function that thegrammatical

function
dependent plays with respect to its head. These include familiar notions such as
subject, direct object and indirect object. In English these notions strongly corre-
late with, but by no means determine, both position in a sentence and constituent
type and are therefore somewhat redundant with the kind of information found in
phrase-structure trees. However, in languages with more flexible word order, the
information encoded directly in these grammatical relations is critical since phrase-
based constituent syntax provides little help.

Linguists have developed taxonomies of relations that go well beyond the famil-
iar notions of subject and object. While there is considerable variation from theory



19.1 • DEPENDENCY RELATIONS 3

Clausal Argument Relations Description
NSUBJ Nominal subject
OBJ Direct object
IOBJ Indirect object
CCOMP Clausal complement
Nominal Modifier Relations Description
NMOD Nominal modifier
AMOD Adjectival modifier
APPOS Appositional modifier
DET Determiner
CASE Prepositions, postpositions and other case markers
Other Notable Relations Description
CONJ Conjunct
CC Coordinating conjunction
Figure 19.2 Some of the Universal Dependency relations (de Marneffe et al., 2021).

to theory, there is enough commonality that cross-linguistic standards have been
developed. The Universal Dependencies (UD) project (de Marneffe et al., 2021),Universal

Dependencies
an open community effort to annotate dependencies and other aspects of grammar
across more than 100 languages, provides an inventory of 37 dependency relations.
Fig. 19.2 shows a subset of the UD relations and Fig. 19.3 provides some examples.

The motivation for all of the relations in the Universal Dependency scheme is
beyond the scope of this chapter, but the core set of frequently used relations can be
broken into two sets: clausal relations that describe syntactic roles with respect to a
predicate (often a verb), and modifier relations that categorize the ways that words
can modify their heads.

Consider, for example, the following sentence:

United canceled the morning flights to Houston

nsubj

obj

det

compound

nmod

case

root

(19.2)

Here the clausal relations NSUBJ and OBJ identify the subject and direct object of
the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of
the nouns flights and Houston.

19.1.1 Dependency Formalisms
A dependency structure can be represented as a directed graph G= (V,A), consisting
of a set of vertices V , and a set of ordered pairs of vertices A, which we’ll call arcs.

For the most part we will assume that the set of vertices, V , corresponds exactly
to the set of words in a given sentence. However, they might also correspond to
punctuation, or when dealing with morphologically complex languages the set of
vertices might consist of stems and affixes. The set of arcs, A, captures the head-
dependent and grammatical function relationships between the elements in V .

Different grammatical theories or formalisms may place further constraints on
these dependency structures. Among the more frequent restrictions are that the struc-
tures must be connected, have a designated root node, and be acyclic or planar. Of
most relevance to the parsing approaches discussed in this chapter is the common,



4 CHAPTER 19 • DEPENDENCY PARSING

Relation Examples with head and dependent
NSUBJ United canceled the flight.
OBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
IOBJ We booked her the flight to Miami.
COMPOUND We took the morning flight.
NMOD flight to Houston.
AMOD Book the cheapest flight.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.
Figure 19.3 Examples of some Universal Dependency relations.

computationally-motivated, restriction to rooted trees. That is, a dependency treedependency
tree

is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has no incoming arcs.
2. With the exception of the root node, each vertex has exactly one incoming arc.
3. There is a unique path from the root node to each vertex in V .

Taken together, these constraints ensure that each word has a single head, that the
dependency structure is connected, and that there is a single root node from which
one can follow a unique directed path to each of the words in the sentence.

19.1.2 Projectivity
The notion of projectivity imposes an additional constraint that is derived from the
order of the words in the input. An arc from a head to a dependent is said to be
projective if there is a path from the head to every word that lies between the headprojective

and the dependent in the sentence. A dependency tree is then said to be projective if
all the arcs that make it up are projective. All the dependency trees we’ve seen thus
far have been projective. There are, however, many valid constructions which lead
to non-projective trees, particularly in languages with relatively flexible word order.

Consider the following example.

JetBlue canceled our flight this morning which was already late

nsubj

obj

obl

det

acl:relcl

det nsubj

cop

adv

root

(19.3)

In this example, the arc from flight to its modifier late is non-projective since there
is no path from flight to the intervening words this and morning. As we can see from
this diagram, projectivity (and non-projectivity) can be detected in the way we’ve
been drawing our trees. A dependency tree is projective if it can be drawn with
no crossing edges. Here there is no way to link flight to its dependent late without
crossing the arc that links morning to its head.



19.1 • DEPENDENCY RELATIONS 5

Our concern with projectivity arises from two related issues. First, the most
widely used English dependency treebanks were automatically derived from phrase-
structure treebanks through the use of head-finding rules. The trees generated in such
a fashion will always be projective, and hence will be incorrect when non-projective
examples like this one are encountered.

Second, there are computational limitations to the most widely used families of
parsing algorithms. The transition-based approaches discussed in Section 19.2 can
only produce projective trees, hence any sentences with non-projective structures
will necessarily contain some errors. This limitation is one of the motivations for
the more flexible graph-based parsing approach described in Section 19.3.

19.1.3 Dependency Treebanks

Treebanks play a critical role in the development and evaluation of dependency
parsers. They are used for training parsers, they act as the gold labels for evaluating
parsers, and they also provide useful information for corpus linguistics studies.

Dependency treebanks are created by having human annotators directly generate
dependency structures for a given corpus, or by hand-correcting the output of an
automatic parser. A few early treebanks were also based on using a deterministic
process to translate existing constituent-based treebanks into dependency trees.

The largest open community project for building dependency trees is the Univer-
sal Dependencies project at https://universaldependencies.org/ introduced
above, which currently has almost 200 dependency treebanks in more than 100 lan-
guages (de Marneffe et al., 2021). Here are a few UD examples showing dependency
trees for sentences in Spanish, Basque, and Mandarin Chinese:

VERB ADP DET NOUN ADP DET NUM PUNCT
Subiremos a el tren a las cinco .

we-will-board on the train at the five .

obl

det

case

det

obl:tmod

case

punct

[Spanish] Subiremos al tren a las cinco. “We will be boarding the train at five.”(19.4)

NOUN NOUN VERB AUX PUNCT
Ekaitzak itsasontzia hondoratu du .

storm (Erg.) ship (Abs.) sunk has .

nsubj

obj aux

punct

[Basque] Ekaitzak itsasontzia hondoratu du. “The storm has sunk the ship.”(19.5)

https://universaldependencies.org/


6 CHAPTER 19 • DEPENDENCY PARSING

ADV PRON NOUN ADV VERB VERB NOUN
但 我 昨天 才 收 到 信
but I yesterday only-then receive arrive letter .

adv

nsubj

obj:tmod

advmod compound:vv

obj

[Chinese]但我昨天才收到信 “But I didn’t receive the letter until yesterday”(19.6)

19.2 Transition-Based Dependency Parsing

Our first approach to dependency parsing is called transition-based parsing. Thistransition-based
architecture draws on shift-reduce parsing, a paradigm originally developed for
analyzing programming languages (Aho and Ullman, 1972). In transition-based
parsing we’ll have a stack on which we build the parse, a buffer of tokens to be
parsed, and a parser which takes actions on the parse via a predictor called an oracle,
as illustrated in Fig. 19.4.

wnw1 w2

s2
...

s1

sn

Parser

Input buffer

Stack Oracle

LEFTARC

RIGHTARC

SHIFT

Action
Dependency

Relations

w3 w2

Figure 19.4 Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action by consulting an oracle that examines the current configuration.

The parser walks through the sentence left-to-right, successively shifting items
from the buffer onto the stack. At each time point we examine the top two elements
on the stack, and the oracle makes a decision about what transition to apply to build
the parse. The possible transitions correspond to the intuitive actions one might take
in creating a dependency tree by examining the words in a single pass over the input
from left to right (Covington, 2001):

• Assign the current word as the head of some previously seen word,
• Assign some previously seen word as the head of the current word,
• Postpone dealing with the current word, storing it for later processing.

We’ll formalize this intuition with the following three transition operators that
will operate on the top two elements of the stack:

• LEFTARC: Assert a head-dependent relation between the word at the top of
the stack and the second word; remove the second word from the stack.

• RIGHTARC: Assert a head-dependent relation between the second word on
the stack and the word at the top; remove the top word from the stack;



19.2 • TRANSITION-BASED DEPENDENCY PARSING 7

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

We’ll sometimes call operations like LEFTARC and RIGHTARC reduce operations,
based on a metaphor from shift-reduce parsing, in which reducing means combin-
ing elements on the stack. There are some preconditions for using operators. The
LEFTARC operator cannot be applied when ROOT is the second element of the stack
(since by definition the ROOT node cannot have any incoming arcs). And both the
LEFTARC and RIGHTARC operators require two elements to be on the stack to be
applied.

This particular set of operators implements what is known as the arc standardarc standard

approach to transition-based parsing (Covington 2001, Nivre 2003). In arc standard
parsing the transition operators only assert relations between elements at the top of
the stack, and once an element has been assigned its head it is removed from the
stack and is not available for further processing. As we’ll see, there are alterna-
tive transition systems which demonstrate different parsing behaviors, but the arc
standard approach is quite effective and is simple to implement.

The specification of a transition-based parser is quite simple, based on repre-
senting the current state of the parse as a configuration: the stack, an input bufferconfiguration

of words or tokens, and a set of relations representing a dependency tree. Parsing
means making a sequence of transitions through the space of possible configura-
tions. We start with an initial configuration in which the stack contains the ROOT
node, the buffer has the tokens in the sentence, and an empty set of relations repre-
sents the parse. In the final goal state, the stack and the word list should be empty,
and the set of relations will represent the final parse. Fig. 19.5 gives the algorithm.

function DEPENDENCYPARSE(words) returns dependency tree

state←{[root], [words], [] } ; initial configuration
while state not final

t←ORACLE(state) ; choose a transition operator to apply
state←APPLY(t, state) ; apply it, creating a new state

return state

Figure 19.5 A generic transition-based dependency parser

At each step, the parser consults an oracle (we’ll come back to this shortly) that
provides the correct transition operator to use given the current configuration. It then
applies that operator to the current configuration, producing a new configuration.
The process ends when all the words in the sentence have been consumed and the
ROOT node is the only element remaining on the stack.

The efficiency of transition-based parsers should be apparent from the algorithm.
The complexity is linear in the length of the sentence since it is based on a single
left to right pass through the words in the sentence. (Each word must first be shifted
onto the stack and then later reduced.)

Note that unlike the dynamic programming and search-based approaches dis-
cussed in Chapter 18, this approach is a straightforward greedy algorithm—the or-
acle provides a single choice at each step and the parser proceeds with that choice,
no other options are explored, no backtracking is employed, and a single parse is
returned in the end.

Figure 19.6 illustrates the operation of the parser with the sequence of transitions



8 CHAPTER 19 • DEPENDENCY PARSING

leading to a parse for the following example.

Book me the morning flight

iobj

obj

det

compound

root

(19.7)

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

Stack Word List Relations
[root, book, me] [the, morning, flight]

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

Stack Word List Relations
[root, book] [the, morning, flight] (book→ me)

After several subsequent applications of the SHIFT operator, the configuration in
Step 6 looks like the following:

Stack Word List Relations
[root, book, the, morning, flight] [] (book→ me)

Here, all the remaining words have been passed onto the stack and all that is left
to do is to apply the appropriate reduce operators. In the current configuration, we
employ the LEFTARC operator resulting in the following state.

Stack Word List Relations
[root, book, the, flight] [] (book→ me)

(morning← flight)

At this point, the parse for this sentence consists of the following structure.

Book me the morning flight

iobj compound
(19.8)

There are several important things to note when examining sequences such as
the one in Figure 19.6. First, the sequence given is not the only one that might lead
to a reasonable parse. In general, there may be more than one path that leads to the
same result, and due to ambiguity, there may be other transition sequences that lead
to different equally valid parses.

Second, we are assuming that the oracle always provides the correct operator
at each point in the parse—an assumption that is unlikely to be true in practice.
As a result, given the greedy nature of this algorithm, incorrect choices will lead to
incorrect parses since the parser has no opportunity to go back and pursue alternative
choices. Section 19.2.4 will introduce several techniques that allow transition-based
approaches to explore the search space more fully.



19.2 • TRANSITION-BASED DEPENDENCY PARSING 9

Step Stack Word List Action Relation Added
0 [root] [book, me, the, morning, flight] SHIFT

1 [root, book] [me, the, morning, flight] SHIFT

2 [root, book, me] [the, morning, flight] RIGHTARC (book→ me)
3 [root, book] [the, morning, flight] SHIFT

4 [root, book, the] [morning, flight] SHIFT

5 [root, book, the, morning] [flight] SHIFT

6 [root, book, the, morning, flight] [] LEFTARC (morning← flight)
7 [root, book, the, flight] [] LEFTARC (the← flight)
8 [root, book, flight] [] RIGHTARC (book→ flight)
9 [root, book] [] RIGHTARC (root→ book)

10 [root] [] Done
Figure 19.6 Trace of a transition-based parse.

Finally, for simplicity, we have illustrated this example without the labels on
the dependency relations. To produce labeled trees, we can parameterize the LEFT-
ARC and RIGHTARC operators with dependency labels, as in LEFTARC(NSUBJ) or
RIGHTARC(OBJ). This is equivalent to expanding the set of transition operators from
our original set of three to a set that includes LEFTARC and RIGHTARC operators for
each relation in the set of dependency relations being used, plus an additional one
for the SHIFT operator. This, of course, makes the job of the oracle more difficult
since it now has a much larger set of operators from which to choose.

19.2.1 Creating an Oracle
The oracle for greedily selecting the appropriate transition is trained by supervised
machine learning. As with all supervised machine learning methods, we will need
training data: configurations annotated with the correct transition to take. We can
draw these from dependency trees. And we need to extract features of the con-
figuration. We’ll introduce neural classifiers that represent the configuration via
embeddings, as well as classic systems that use hand-designed features.

Generating Training Data

The oracle from the algorithm in Fig. 19.5 takes as input a configuration and returns a
transition operator. Therefore, to train a classifier, we will need configurations paired
with transition operators (i.e., LEFTARC, RIGHTARC, or SHIFT). Unfortunately,
treebanks pair entire sentences with their corresponding trees, not configurations
with transitions.

To generate the required training data, we employ the oracle-based parsing algo-
rithm in a clever way. We supply our oracle with the training sentences to be parsed
along with their corresponding reference parses from the treebank. To produce train-
ing instances, we then simulate the operation of the parser by running the algorithm
and relying on a new training oracle to give us correct transition operators for eachtraining oracle

successive configuration.
To see how this works, let’s first review the operation of our parser. It begins with

a default initial configuration where the stack contains the ROOT, the input list is just
the list of words, and the set of relations is empty. The LEFTARC and RIGHTARC
operators each add relations between the words at the top of the stack to the set of
relations being accumulated for a given sentence. Since we have a gold-standard
reference parse for each training sentence, we know which dependency relations are
valid for a given sentence. Therefore, we can use the reference parse to guide the



10 CHAPTER 19 • DEPENDENCY PARSING

Step Stack Word List Predicted Action
0 [root] [book, the, flight, through, houston] SHIFT

1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] SHIFT

3 [root, book, the, flight] [through, houston] LEFTARC

4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston] SHIFT

6 [root, book, flight, through, houston] [] LEFTARC

7 [root, book, flight, houston ] [] RIGHTARC

8 [root, book, flight] [] RIGHTARC

9 [root, book] [] RIGHTARC

10 [root] [] Done
Figure 19.7 Generating training items consisting of configuration/predicted action pairs by simulating a parse
with a given reference parse.

selection of operators as the parser steps through a sequence of configurations.
To be more precise, given a reference parse and a configuration, the training

oracle proceeds as follows:

• Choose LEFTARC if it produces a correct head-dependent relation given the
reference parse and the current configuration,

• Otherwise, choose RIGHTARC if (1) it produces a correct head-dependent re-
lation given the reference parse and (2) all of the dependents of the word at
the top of the stack have already been assigned,

• Otherwise, choose SHIFT.

The restriction on selecting the RIGHTARC operator is needed to ensure that a
word is not popped from the stack, and thus lost to further processing, before all its
dependents have been assigned to it.

More formally, during training the oracle has access to the following:

• A current configuration with a stack S and a set of dependency relations Rc

• A reference parse consisting of a set of vertices V and a set of dependency
relations Rp

Given this information, the oracle chooses transitions as follows:

LEFTARC(r): if (S1 r S2) ∈ Rp

RIGHTARC(r): if (S2 r S1) ∈ Rp and ∀r′,w s.t.(S1 r′ w) ∈ Rp then (S1 r′ w) ∈ Rc

SHIFT: otherwise

Let’s walk through the processing of the following example as shown in Fig. 19.7.

Book the flight through Houston

obj

det

nmod

case

root

(19.9)

At Step 1, LEFTARC is not applicable in the initial configuration since it asserts
a relation, (root ← book), not in the reference answer; RIGHTARC does assert a
relation contained in the final answer (root → book), however book has not been
attached to any of its dependents yet, so we have to defer, leaving SHIFT as the only



19.2 • TRANSITION-BASED DEPENDENCY PARSING 11

possible action. The same conditions hold in the next two steps. In step 3, LEFTARC
is selected to link the to its head.

Now consider the situation in Step 4.

Stack Word buffer Relations
[root, book, flight] [through, Houston] (the← flight)

Here, we might be tempted to add a dependency relation between book and flight,
which is present in the reference parse. But doing so now would prevent the later
attachment of Houston since flight would have been removed from the stack. For-
tunately, the precondition on choosing RIGHTARC prevents this choice and we’re
again left with SHIFT as the only viable option. The remaining choices complete the
set of operators needed for this example.

To recap, we derive appropriate training instances consisting of configuration-
transition pairs from a treebank by simulating the operation of a parser in the con-
text of a reference dependency tree. We can deterministically record correct parser
actions at each step as we progress through each training example, thereby creating
the training set we require.

19.2.2 A feature-based classifier
We’ll now introduce two classifiers for choosing transitions, here a classic feature-
based algorithm and in the next section a neural classifier using embedding features.

Featured-based classifiers generally use the same features we’ve seen with part-
of-speech tagging and partial parsing: Word forms, lemmas, parts of speech, the
head, and the dependency relation to the head. Other features may be relevant for
some languages, for example morphosyntactic features like case marking on subjects
or objects. The features are extracted from the training configurations, which consist
of the stack, the buffer and the current set of relations. Most useful are features
referencing the top levels of the stack, the words near the front of the buffer, and the
dependency relations already associated with any of those elements.

We’ll use a feature template as we did for sentiment analysis and part-of-speechfeature
template

tagging. Feature templates allow us to automatically generate large numbers of spe-
cific features from a training set. For example, consider the following feature tem-
plates that are based on single positions in a configuration.

〈s1.w,op〉,〈s2.w,op〉〈s1.t,op〉,〈s2.t,op〉
〈b1.w,op〉,〈b1.t,op〉〈s1.wt,op〉 (19.10)

Here features are denoted as location.property, where s = stack, b = the word
buffer, w = word forms, t = part-of-speech, and op = operator. Thus the feature for
the word form at the top of the stack would be s1.w, the part of speech tag at the
front of the buffer b1.t, and the concatenated feature s1.wt represents the word form
concatenated with the part of speech of the word at the top of the stack. Consider
applying these templates to the following intermediate configuration derived from a
training oracle for (19.2).

Stack Word buffer Relations
[root, canceled, flights] [to Houston] (canceled→ United)

(flights→ morning)
(flights→ the)



12 CHAPTER 19 • DEPENDENCY PARSING

The correct transition here is SHIFT (you should convince yourself of this before
proceeding). The application of our set of feature templates to this configuration
would result in the following set of instantiated features.

〈s1.w = flights,op = shift〉 (19.11)

〈s2.w = canceled,op = shift〉
〈s1.t = NNS,op = shift〉
〈s2.t = VBD,op = shift〉
〈b1.w = to,op = shift〉
〈b1.t = TO,op = shift〉

〈s1.wt = flightsNNS,op = shift〉

Given that the left and right arc transitions operate on the top two elements of the
stack, features that combine properties from these positions are even more useful.
For example, a feature like s1.t ◦ s2.t concatenates the part of speech tag of the word
at the top of the stack with the tag of the word beneath it.

〈s1.t ◦ s2.t = NNSVBD,op = shift〉 (19.12)

Given the training data and features, any classifier, like multinomial logistic re-
gression or support vector machines, can be used.

19.2.3 A neural classifier
The oracle can also be implemented by a neural classifier. A standard architecture
is simply to pass the sentence through an encoder, then take the presentation of the
top 2 words on the stack and the first word of the buffer, concatenate them, and
present to a feedforward network that predicts the transition to take (Kiperwasser
and Goldberg, 2016; Kulmizev et al., 2019). Fig. 19.8 sketches this model. Learning
can be done with cross-entropy loss.

w …

s2

...

s1

Input buffer

Stack

LEFTARC
RIGHTARC
SHIFT

Action Dependency
Relations

w3 w2

ENCODER

w1 w2 w3 w4 w5 w6

Parser Oracle

Softm
ax

FFN

w

s1

s2

e(w)

e(s1)

e(s2)

Figure 19.8 Neural classifier for the oracle for the transition-based parser. The parser takes
the top 2 words on the stack and the first word of the buffer, represents them by their encodings
(from running the whole sentence through the encoder), concatenates the embeddings and
passes through a softmax to choose a parser action (transition).



19.2 • TRANSITION-BASED DEPENDENCY PARSING 13

19.2.4 Advanced Methods in Transition-Based Parsing
The basic transition-based approach can be elaborated in a number of ways to im-
prove performance by addressing some of the most obvious flaws in the approach.

Alternative Transition Systems

The arc-standard transition system described above is only one of many possible sys-
tems. A frequently used alternative is the arc eager transition system. The arc eagerarc eager

approach gets its name from its ability to assert rightward relations much sooner
than in the arc standard approach. To see this, let’s revisit the arc standard trace of
Example 19.9, repeated here.

Book the flight through Houston

obj

det

nmod

case

root

Consider the dependency relation between book and flight in this analysis. As
is shown in Fig. 19.7, an arc-standard approach would assert this relation at Step 8,
despite the fact that book and flight first come together on the stack much earlier at
Step 4. The reason this relation can’t be captured at this point is due to the presence
of the postnominal modifier through Houston. In an arc-standard approach, depen-
dents are removed from the stack as soon as they are assigned their heads. If flight
had been assigned book as its head in Step 4, it would no longer be available to serve
as the head of Houston.

While this delay doesn’t cause any issues in this example, in general the longer
a word has to wait to get assigned its head the more opportunities there are for
something to go awry. The arc-eager system addresses this issue by allowing words
to be attached to their heads as early as possible, before all the subsequent words
dependent on them have been seen. This is accomplished through minor changes to
the LEFTARC and RIGHTARC operators and the addition of a new REDUCE operator.

• LEFTARC: Assert a head-dependent relation between the word at the front of
the input buffer and the word at the top of the stack; pop the stack.

• RIGHTARC: Assert a head-dependent relation between the word on the top of
the stack and the word at the front of the input buffer; shift the word at the
front of the input buffer to the stack.

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

• REDUCE: Pop the stack.

The LEFTARC and RIGHTARC operators are applied to the top of the stack and
the front of the input buffer, instead of the top two elements of the stack as in the
arc-standard approach. The RIGHTARC operator now moves the dependent to the
stack from the buffer rather than removing it, thus making it available to serve as the
head of following words. The new REDUCE operator removes the top element from
the stack. Together these changes permit a word to be eagerly assigned its head and
still allow it to serve as the head for later dependents. The trace shown in Fig. 19.9
illustrates the new decision sequence for this example.

In addition to demonstrating the arc-eager transition system, this example demon-
strates the power and flexibility of the overall transition-based approach. We were
able to swap in a new transition system without having to make any changes to the



14 CHAPTER 19 • DEPENDENCY PARSING

Step Stack Word List Action Relation Added
0 [root] [book, the, flight, through, houston] RIGHTARC (root→ book)
1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] LEFTARC (the← flight)
3 [root, book] [flight, through, houston] RIGHTARC (book→ flight)
4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston] LEFTARC (through← houston)
6 [root, book, flight] [houston] RIGHTARC (flight→ houston)
7 [root, book, flight, houston] [] REDUCE

8 [root, book, flight] [] REDUCE

9 [root, book] [] REDUCE

10 [root] [] Done
Figure 19.9 A processing trace of Book the flight through Houston using the arc-eager transition operators.

underlying parsing algorithm. This flexibility has led to the development of a di-
verse set of transition systems that address different aspects of syntax and semantics
including: assigning part of speech tags (Choi and Palmer, 2011a), allowing the
generation of non-projective dependency structures (Nivre, 2009), assigning seman-
tic roles (Choi and Palmer, 2011b), and parsing texts containing multiple languages
(Bhat et al., 2017).

Beam Search

The computational efficiency of the transition-based approach discussed earlier de-
rives from the fact that it makes a single pass through the sentence, greedily making
decisions without considering alternatives. Of course, this is also a weakness – once
a decision has been made it can not be undone, even in the face of overwhelming
evidence arriving later in a sentence. We can use beam search to explore alterna-beam search

tive decision sequences. Recall from Chapter 8 that beam search uses a breadth-first
search strategy with a heuristic filter that prunes the search frontier to stay within a
fixed-size beam width.beam width

In applying beam search to transition-based parsing, we’ll elaborate on the al-
gorithm given in Fig. 19.5. Instead of choosing the single best transition operator
at each iteration, we’ll apply all applicable operators to each state on an agenda and
then score the resulting configurations. We then add each of these new configura-
tions to the frontier, subject to the constraint that there has to be room within the
beam. As long as the size of the agenda is within the specified beam width, we can
add new configurations to the agenda. Once the agenda reaches the limit, we only
add new configurations that are better than the worst configuration on the agenda
(removing the worst element so that we stay within the limit). Finally, to insure that
we retrieve the best possible state on the agenda, the while loop continues as long as
there are non-final states on the agenda.

The beam search approach requires a more elaborate notion of scoring than we
used with the greedy algorithm. There, we assumed that the oracle would be a
supervised classifier that chose the best transition operator based on features of the
current configuration. This choice can be viewed as assigning a score to all the
possible transitions and picking the best one.

T̂ (c) = argmaxScore(t,c)

With beam search we are now searching through the space of decision sequences,
so it makes sense to base the score for a configuration on its entire history. So we
can define the score for a new configuration as the score of its predecessor plus the



19.3 • GRAPH-BASED DEPENDENCY PARSING 15

score of the operator used to produce it.

ConfigScore(c0) = 0.0
ConfigScore(ci) = ConfigScore(ci−1)+Score(ti,ci−1)

This score is used both in filtering the agenda and in selecting the final answer. The
new beam search version of transition-based parsing is given in Fig. 19.10.

function DEPENDENCYBEAMPARSE(words, width) returns dependency tree

state←{[root], [words], [], 0.0} ;initial configuration
agenda←〈state〉 ;initial agenda

while agenda contains non-final states
newagenda←〈〉
for each state ∈ agenda do

for all {t | t ∈ VALIDOPERATORS(state)} do
child←APPLY(t, state)
newagenda←ADDTOBEAM(child, newagenda, width)

agenda←newagenda
return BESTOF(agenda)

function ADDTOBEAM(state, agenda, width) returns updated agenda

if LENGTH(agenda) < width then
agenda← INSERT(state, agenda)

else if SCORE(state) > SCORE(WORSTOF(agenda))
agenda←REMOVE(WORSTOF(agenda))
agenda← INSERT(state, agenda)

return agenda

Figure 19.10 Beam search applied to transition-based dependency parsing.

19.3 Graph-Based Dependency Parsing

Graph-based methods are the second important family of dependency parsing algo-
rithms. Graph-based parsers are more accurate than transition-based parsers, espe-
cially on long sentences; transition-based methods have trouble when the heads are
very far from the dependents (McDonald and Nivre, 2011). Graph-based methods
avoid this difficulty by scoring entire trees, rather than relying on greedy local de-
cisions. Furthermore, unlike transition-based approaches, graph-based parsers can
produce non-projective trees. Although projectivity is not a significant issue for
English, it is definitely a problem for many of the world’s languages.

Graph-based dependency parsers search through the space of possible trees for a
given sentence for a tree (or trees) that maximize some score. These methods encode
the search space as directed graphs and employ methods drawn from graph theory
to search the space for optimal solutions. More formally, given a sentence S we’re
looking for the best dependency tree in Gs, the space of all possible trees for that
sentence, that maximizes some score.

T̂ (S) = argmax
t∈GS

Score(t,S)



16 CHAPTER 19 • DEPENDENCY PARSING

We’ll make the simplifying assumption that this score can be edge-factored,edge-factored

meaning that the overall score for a tree is the sum of the scores of each of the scores
of the edges that comprise the tree.

Score(t,S) =
∑
e∈t

Score(e)

Graph-based algorithms have to solve two problems: (1) assigning a score to
each edge, and (2) finding the best parse tree given the scores of all potential edges.
In the next few sections we’ll introduce solutions to these two problems, beginning
with the second problem of finding trees, and then giving a feature-based and a
neural algorithm for solving the first problem of assigning scores.

19.3.1 Parsing via finding the maximum spanning tree
In graph-based parsing, given a sentence S we start by creating a graph G which is a
fully-connected, weighted, directed graph where the vertices are the input words and
the directed edges represent all possible head-dependent assignments. We’ll include
an additional ROOT node with outgoing edges directed at all of the other vertices.
The weights of each edge in G reflect the score for each possible head-dependent
relation assigned by some scoring algorithm.

It turns out that finding the best dependency parse for S is equivalent to finding
the maximum spanning tree over G. A spanning tree over a graph G is a subsetmaximum

spanning tree
of G that is a tree and covers all the vertices in G; a spanning tree over G that starts
from the ROOT is a valid parse of S. A maximum spanning tree is the spanning tree
with the highest score. Thus a maximum spanning tree of G emanating from the
ROOT is the optimal dependency parse for the sentence.

A directed graph for the example Book that flight is shown in Fig. 19.11, with the
maximum spanning tree corresponding to the desired parse shown in blue. For ease
of exposition, we’ll describe here the algorithm for unlabeled dependency parsing.

root Book that flight

12
4

4

5

6
8

7

5
7

Figure 19.11 Initial rooted, directed graph for Book that flight.

Before describing the algorithm it’s useful to consider two intuitions about di-
rected graphs and their spanning trees. The first intuition begins with the fact that
every vertex in a spanning tree has exactly one incoming edge. It follows from this
that every connected component of a spanning tree (i.e., every set of vertices that
are linked to each other by paths over edges) will also have one incoming edge.
The second intuition is that the absolute values of the edge scores are not critical
to determining its maximum spanning tree. Instead, it is the relative weights of the
edges entering each vertex that matters. If we were to subtract a constant amount
from each edge entering a given vertex it would have no impact on the choice of



19.3 • GRAPH-BASED DEPENDENCY PARSING 17

the maximum spanning tree since every possible spanning tree would decrease by
exactly the same amount.

The first step of the algorithm itself is quite straightforward. For each vertex
in the graph, an incoming edge (representing a possible head assignment) with the
highest score is chosen. If the resulting set of edges produces a spanning tree then
we’re done. More formally, given the original fully-connected graph G = (V,E), a
subgraph T = (V,F) is a spanning tree if it has no cycles and each vertex (other than
the root) has exactly one edge entering it. If the greedy selection process produces
such a tree then it is the best possible one.

Unfortunately, this approach doesn’t always lead to a tree since the set of edges
selected may contain cycles. Fortunately, in yet another case of multiple discovery,
there is a straightforward way to eliminate cycles generated during the greedy se-
lection phase. Chu and Liu (1965) and Edmonds (1967) independently developed
an approach that begins with greedy selection and follows with an elegant recursive
cleanup phase that eliminates cycles.

The cleanup phase begins by adjusting all the weights in the graph by subtracting
the score of the maximum edge entering each vertex from the score of all the edges
entering that vertex. This is where the intuitions mentioned earlier come into play.
We have scaled the values of the edges so that the weights of the edges in the cycle
have no bearing on the weight of any of the possible spanning trees. Subtracting the
value of the edge with maximum weight from each edge entering a vertex results
in a weight of zero for all of the edges selected during the greedy selection phase,
including all of the edges involved in the cycle.

Having adjusted the weights, the algorithm creates a new graph by selecting a
cycle and collapsing it into a single new node. Edges that enter or leave the cycle
are altered so that they now enter or leave the newly collapsed node. Edges that do
not touch the cycle are included and edges within the cycle are dropped.

Now, if we knew the maximum spanning tree of this new graph, we would have
what we need to eliminate the cycle. The edge of the maximum spanning tree di-
rected towards the vertex representing the collapsed cycle tells us which edge to
delete in order to eliminate the cycle. How do we find the maximum spanning tree
of this new graph? We recursively apply the algorithm to the new graph. This will
either result in a spanning tree or a graph with a cycle. The recursions can continue
as long as cycles are encountered. When each recursion completes we expand the
collapsed vertex, restoring all the vertices and edges from the cycle with the excep-
tion of the single edge to be deleted.

Putting all this together, the maximum spanning tree algorithm consists of greedy
edge selection, re-scoring of edge costs and a recursive cleanup phase when needed.
The full algorithm is shown in Fig. 19.12.

Fig. 19.13 steps through the algorithm with our Book that flight example. The
first row of the figure illustrates greedy edge selection with the edges chosen shown
in blue (corresponding to the set F in the algorithm). This results in a cycle between
that and flight. The scaled weights using the maximum value entering each node are
shown in the graph to the right.

Collapsing the cycle between that and flight to a single node (labelled tf) and
recursing with the newly scaled costs is shown in the second row. The greedy selec-
tion step in this recursion yields a spanning tree that links root to book, as well as an
edge that links book to the contracted node. Expanding the contracted node, we can
see that this edge corresponds to the edge from book to flight in the original graph.
This in turn tells us which edge to drop to eliminate the cycle.



18 CHAPTER 19 • DEPENDENCY PARSING

function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F← []
T’← []
score’← []
for each v ∈ V do

bestInEdge←argmaxe=(u,v)∈ E score[e]
F←F ∪ bestInEdge
for each e=(u,v) ∈ E do

score’[e]←score[e] − score[bestInEdge]

if T=(V,F) is a spanning tree then return it
else

C←a cycle in F
G’←CONTRACT(G, C)
T’←MAXSPANNINGTREE(G’, root, score’)
T←EXPAND(T’, C)
return T

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

Figure 19.12 The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a
weighted directed graph.

On arbitrary directed graphs, this version of the CLE algorithm runs in O(mn)
time, where m is the number of edges and n is the number of nodes. Since this par-
ticular application of the algorithm begins by constructing a fully connected graph
m = n2 yielding a running time of O(n3). Gabow et al. (1986) present a more effi-
cient implementation with a running time of O(m+nlogn).

19.3.2 A feature-based algorithm for assigning scores
Recall that given a sentence, S, and a candidate tree, T , edge-factored parsing models
make the simplification that the score for the tree is the sum of the scores of the edges
that comprise the tree:

score(S,T ) =
∑
e∈T

score(S,e)

In a feature-based algorithm we compute the edge score as a weighted sum of fea-
tures extracted from it:

score(S,e) =

N∑
i=1

wi fi(S,e)

Or more succinctly.

score(S,e) = w · f

Given this formulation, we need to identify relevant features and train the weights.
The features (and feature combinations) used to train edge-factored models mir-

ror those used in training transition-based parsers, such as



19.3 • GRAPH-BASED DEPENDENCY PARSING 19

root Book tf

root Book that flight

0

-3

-4

-7

-1

-6

-2

root Book
12

that
7

flight
8

-4

-3

0

-2

-6

-1

-7

0

0

root Book
0

tf
-1

0

-3

-4

-7

-1

-6

-2

root Book
12

that
7

flight
8

12

4
4

5

6

8

7

5

7

Deleted from cycle

Figure 19.13 Chu-Liu-Edmonds graph-based example for Book that flight

• Wordforms, lemmas, and parts of speech of the headword and its dependent.

• Corresponding features from the contexts before, after and between the words.

• Word embeddings.

• The dependency relation itself.

• The direction of the relation (to the right or left).

• The distance from the head to the dependent.

Given a set of features, our next problem is to learn a set of weights correspond-
ing to each. Unlike many of the learning problems discussed in earlier chapters,
here we are not training a model to associate training items with class labels, or
parser actions. Instead, we seek to train a model that assigns higher scores to cor-
rect trees than to incorrect ones. An effective framework for problems like this is to
use inference-based learning combined with the perceptron learning rule. In thisinference-based

learning
framework, we parse a sentence (i.e, perform inference) from the training set using
some initially random set of initial weights. If the resulting parse matches the cor-
responding tree in the training data, we do nothing to the weights. Otherwise, we
find those features in the incorrect parse that are not present in the reference parse
and we lower their weights by a small amount based on the learning rate. We do this
incrementally for each sentence in our training data until the weights converge.



20 CHAPTER 19 • DEPENDENCY PARSING

19.3.3 A neural algorithm for assigning scores
State-of-the-art graph-based multilingual parsers are based on neural networks. In-
stead of extracting hand-designed features to represent each edge between words wi
and w j, these parsers run the sentence through an encoder, and then pass the encoded
representation of the two words wi and w j through a network that estimates a score
for the edge i→ j.

book that flight

r1

score(h1
head, h3

dep)

Biaffine

b

ENCODER

U

h1 head

FFN
head

FFN
head

FFN
dep

FFN
dep

h1 dep

FFN
head

FFN
dep

h2 head h2 dep h3 head h3 dep

W

r2 r3

∑

+

Figure 19.14 Computing scores for a single edge (book→ flight) in the biaffine parser of
Dozat and Manning (2017); Dozat et al. (2017). The parser uses distinct feedforward net-
works to turn the encoder output for each word into a head and dependent representation for
the word. The biaffine function turns the head embedding of the head and the dependent
embedding of the dependent into a score for the dependency edge.

Here we’ll sketch the biaffine algorithm of Dozat and Manning (2017) and Dozat
et al. (2017) shown in Fig. 19.14, drawing on the work of Grünewald et al. (2021)
who tested many versions of the algorithm via their STEPS system. The algorithm
first runs the sentence X = x1, ...,xn through an encoder to produce a contextual
embedding representation for each token R = r1, ...,rn. The embedding for each
token is now passed through two separate feedforward networks, one to produce a
representation of this token as a head, and one to produce a representation of this
token as a dependent:

hhead
i = FFNhead(ri) (19.13)

hdep
i = FFNdep(ri) (19.14)

Now to assign a score to the directed edge i→ j, (wi is the head and w j is the depen-
dent), we feed the head representation of i, hhead

i , and the dependent representation
of j, hdep

j , into a biaffine scoring function:

Score(i→ j) = Biaff(hhead
i ,hdep

j ) (19.15)

Biaff(x,y) = xᵀUy+W(x⊕y)+b (19.16)



19.4 • EVALUATION 21

where U, W, and b are weights learned by the model. The idea of using a biaffine
function is to allow the system to learn multiplicative interactions between the vec-
tors x and y.

If we pass Score(i→ j) through a softmax, we end up with a probability distri-
bution, for each token j, over potential heads i (all other tokens in the sentence):

p(i→ j) = softmax([Score(k→ j);∀k 6= j,1≤ k ≤ n]) (19.17)

This probability can then be passed to the maximum spanning tree algorithm of
Section 19.3.1 to find the best tree.

This p(i→ j) classifier is trained by optimizing the cross-entropy loss.
Note that the algorithm as we’ve described it is unlabeled. To make this into

a labeled algorithm, the Dozat and Manning (2017) algorithm actually trains two
classifiers. The first classifier, the edge-scorer, the one we described above, assigns
a probability p(i→ j) to each word wi and w j. Then the Maximum Spanning Tree
algorithm is run to get a single best dependency parse tree for the second. We then
apply a second classifier, the label-scorer, whose job is to find the maximum prob-
ability label for each edge in this parse. This second classifier has the same form
as (19.15-19.17), but instead of being trained to predict with binary softmax the
probability of an edge existing between two words, it is trained with a softmax over
dependency labels to predict the dependency label between the words.

19.4 Evaluation

As with phrase structure-based parsing, the evaluation of dependency parsers pro-
ceeds by measuring how well they work on a test set. An obvious metric would be
exact match (EM)—how many sentences are parsed correctly. This metric is quite
pessimistic, with most sentences being marked wrong. Such measures are not fine-
grained enough to guide the development process. Our metrics need to be sensitive
enough to tell if actual improvements are being made.

For these reasons, the most common method for evaluating dependency parsers
are labeled and unlabeled attachment accuracy. Labeled attachment refers to the
proper assignment of a word to its head along with the correct dependency relation.
Unlabeled attachment simply looks at the correctness of the assigned head, ignor-
ing the dependency relation. Given a system output and a corresponding reference
parse, accuracy is simply the percentage of words in an input that are assigned the
correct head with the correct relation. These metrics are usually referred to as the
labeled attachment score (LAS) and unlabeled attachment score (UAS). Finally, we
can make use of a label accuracy score (LS), the percentage of tokens with correct
labels, ignoring where the relations are coming from.

As an example, consider the reference parse and system parse for the following
example shown in Fig. 19.15.

(19.18) Book me the flight through Houston.

The system correctly finds 4 of the 6 dependency relations present in the reference
parse and receives an LAS of 2/3. However, one of the 2 incorrect relations found
by the system holds between book and flight, which are in a head-dependent relation
in the reference parse; the system therefore achieves a UAS of 5/6.

Beyond attachment scores, we may also be interested in how well a system is
performing on a particular kind of dependency relation, for example NSUBJ, across



22 CHAPTER 19 • DEPENDENCY PARSING

Book me the flight through Houston
(a) Reference

iobj

obj

det

nmod

case

root

Book me the flight through Houston
(b) System

xcomp

nsubj

det

nmod

case

root

Figure 19.15 Reference and system parses for Book me the flight through Houston, resulting in an LAS of
2/3 and an UAS of 5/6.

a development corpus. Here we can make use of the notions of precision and recall
introduced in Chapter 17, measuring the percentage of relations labeled NSUBJ by
the system that were correct (precision), and the percentage of the NSUBJ relations
present in the development set that were in fact discovered by the system (recall).
We can employ a confusion matrix to keep track of how often each dependency type
was confused for another.

19.5 Summary

This chapter has introduced the concept of dependency grammars and dependency
parsing. Here’s a summary of the main points that we covered:

• In dependency-based approaches to syntax, the structure of a sentence is de-
scribed in terms of a set of binary relations that hold between the words in a
sentence. Larger notions of constituency are not directly encoded in depen-
dency analyses.

• The relations in a dependency structure capture the head-dependent relation-
ship among the words in a sentence.

• Dependency-based analysis provides information directly useful in further
language processing tasks including information extraction, semantic parsing
and question answering.

• Transition-based parsing systems employ a greedy stack-based algorithm to
create dependency structures.

• Graph-based methods for creating dependency structures are based on the use
of maximum spanning tree methods from graph theory.

• Both transition-based and graph-based approaches are developed using super-
vised machine learning techniques.

• Treebanks provide the data needed to train these systems. Dependency tree-
banks can be created directly by human annotators or via automatic transfor-
mation from phrase-structure treebanks.

• Evaluation of dependency parsers is based on labeled and unlabeled accuracy
scores as measured against withheld development and test corpora.



HISTORICAL NOTES 23

Historical Notes
The dependency-based approach to grammar is much older than the relatively recent
phrase-structure or constituency grammars, which date only to the 20th century. De-
pendency grammar dates back to the Indian grammarian Pān. ini sometime between
the 7th and 4th centuries BCE, as well as the ancient Greek linguistic traditions.
Contemporary theories of dependency grammar all draw heavily on the 20th cen-
tury work of Tesnière (1959).

Automatic parsing using dependency grammars was first introduced into compu-
tational linguistics by early work on machine translation at the RAND Corporation
led by David Hays. This work on dependency parsing closely paralleled work on
constituent parsing and made explicit use of grammars to guide the parsing process.
After this early period, computational work on dependency parsing remained inter-
mittent over the following decades. Notable implementations of dependency parsers
for English during this period include Link Grammar (Sleator and Temperley, 1993),
Constraint Grammar (Karlsson et al., 1995), and MINIPAR (Lin, 2003).

Dependency parsing saw a major resurgence in the late 1990’s with the appear-
ance of large dependency-based treebanks and the associated advent of data driven
approaches described in this chapter. Eisner (1996) developed an efficient dynamic
programming approach to dependency parsing based on bilexical grammars derived
from the Penn Treebank. Covington (2001) introduced the deterministic word by
word approach underlying current transition-based approaches. Yamada and Mat-
sumoto (2003) and Kudo and Matsumoto (2002) introduced both the shift-reduce
paradigm and the use of supervised machine learning in the form of support vector
machines to dependency parsing.

Transition-based parsing is based on the shift-reduce parsing algorithm orig-
inally developed for analyzing programming languages (Aho and Ullman, 1972).
Shift-reduce parsing also makes use of a context-free grammar. Input tokens are
successively shifted onto the stack and the top two elements of the stack are matched
against the right-hand side of the rules in the grammar; when a match is found the
matched elements are replaced on the stack (reduced) by the non-terminal from the
left-hand side of the rule being matched. In transition-based dependency parsing
we skip the grammar, and alter the reduce operation to add a dependency relation
between a word and its head.

Nivre (2003) defined the modern, deterministic, transition-based approach to
dependency parsing. Subsequent work by Nivre and his colleagues formalized and
analyzed the performance of numerous transition systems, training methods, and
methods for dealing with non-projective language (Nivre and Scholz 2004, Nivre
2006, Nivre and Nilsson 2005, Nivre et al. 2007b, Nivre 2007). The neural ap-
proach was pioneered by Chen and Manning (2014) and extended by Kiperwasser
and Goldberg (2016); Kulmizev et al. (2019).

The graph-based maximum spanning tree approach to dependency parsing was
introduced by McDonald et al. 2005a, McDonald et al. 2005b. The neural classifier
was introduced by (Kiperwasser and Goldberg, 2016).

The long-running Prague Dependency Treebank project (Hajič, 1998) is the most
significant effort to directly annotate a corpus with multiple layers of morphological,
syntactic and semantic information. PDT 3.0 contains over 1.5 M tokens (Bejček
et al., 2013).

Universal Dependencies (UD) (de Marneffe et al., 2021) is an open community



24 CHAPTER 19 • DEPENDENCY PARSING

project to create a framework for dependency treebank annotation, with nearly 200
treebanks in over 100 languages. The UD annotation scheme evolved out of several
distinct efforts including Stanford dependencies (de Marneffe et al. 2006, de Marn-
effe and Manning 2008, de Marneffe et al. 2014), Google’s universal part-of-speech
tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets
(Zeman, 2008).

The Conference on Natural Language Learning (CoNLL) has conducted an in-
fluential series of shared tasks related to dependency parsing over the years (Buch-
holz and Marsi 2006, Nivre et al. 2007a, Surdeanu et al. 2008, Hajič et al. 2009).
More recent evaluations have focused on parser robustness with respect to morpho-
logically rich languages (Seddah et al., 2013), and non-canonical language forms
such as social media, texts, and spoken language (Petrov and McDonald, 2012).
Choi et al. (2015) presents a performance analysis of 10 dependency parsers across
a range of metrics, as well as DEPENDABLE, a robust parser evaluation tool.

Exercises



Exercises 25

Aho, A. V. and J. D. Ullman. 1972. The Theory of Parsing,
Translation, and Compiling, volume 1. Prentice Hall.

Bejček, E., E. Hajičová, J. Hajič, P. Jı́nová, V. Kettnerová,
V. Kolářová, M. Mikulová, J. Mı́rovský, A. Nedoluzhko,
J. Panevová, L. Poláková, M. Ševčı́ková, J. Štěpánek,
and Š. Zikánová. 2013. Prague dependency treebank
3.0. Technical report, Institute of Formal and Ap-
plied Linguistics, Charles University in Prague. LIN-
DAT/CLARIN digital library at Institute of Formal and
Applied Linguistics, Charles University in Prague.

Bhat, I., R. A. Bhat, M. Shrivastava, and D. Sharma. 2017.
Joining hands: Exploiting monolingual treebanks for
parsing of code-mixing data. EACL.

Buchholz, S. and E. Marsi. 2006. Conll-x shared task on
multilingual dependency parsing. CoNLL.

Chen, D. and C. Manning. 2014. A fast and accurate depen-
dency parser using neural networks. EMNLP.

Choi, J. D. and M. Palmer. 2011a. Getting the most out of
transition-based dependency parsing. ACL.

Choi, J. D. and M. Palmer. 2011b. Transition-based semantic
role labeling using predicate argument clustering. Pro-
ceedings of the ACL 2011 Workshop on Relational Mod-
els of Semantics.

Choi, J. D., J. Tetreault, and A. Stent. 2015. It depends:
Dependency parser comparison using a web-based evalu-
ation tool. ACL.

Chu, Y.-J. and T.-H. Liu. 1965. On the shortest arborescence
of a directed graph. Science Sinica, 14:1396–1400.

Covington, M. 2001. A fundamental algorithm for depen-
dency parsing. Proceedings of the 39th Annual ACM
Southeast Conference.

Dozat, T. and C. D. Manning. 2017. Deep biaffine attention
for neural dependency parsing. ICLR.

Dozat, T. and C. D. Manning. 2018. Simpler but more accu-
rate semantic dependency parsing. ACL.

Dozat, T., P. Qi, and C. D. Manning. 2017. Stanford’s
graph-based neural dependency parser at the CoNLL
2017 shared task. Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Universal
Dependencies.

Edmonds, J. 1967. Optimum branchings. Journal of Re-
search of the National Bureau of Standards B, 71(4):233–
240.

Eisner, J. 1996. Three new probabilistic models for depen-
dency parsing: An exploration. COLING.

Gabow, H. N., Z. Galil, T. Spencer, and R. E. Tarjan.
1986. Efficient algorithms for finding minimum spanning
trees in undirected and directed graphs. Combinatorica,
6(2):109–122.

Grünewald, S., A. Friedrich, and J. Kuhn. 2021. Applying
Occam’s razor to transformer-based dependency parsing:
What works, what doesn’t, and what is really necessary.
IWPT.

Hajič, J. 1998. Building a Syntactically Annotated Corpus:
The Prague Dependency Treebank, 106–132. Karolinum.

Hajič, J., M. Ciaramita, R. Johansson, D. Kawahara, M. A.
Martı́, L. Màrquez, A. Meyers, J. Nivre, S. Padó,
J. Štěpánek, P. Stranǎḱ, M. Surdeanu, N. Xue, and
Y. Zhang. 2009. The conll-2009 shared task: Syntac-
tic and semantic dependencies in multiple languages.
CoNLL.

Karlsson, F., A. Voutilainen, J. Heikkilä, and A. Anttila, eds.
1995. Constraint Grammar: A Language-Independent
System for Parsing Unrestricted Text. Mouton de Gruyter.

Kiperwasser, E. and Y. Goldberg. 2016. Simple and accu-
rate dependency parsing using bidirectional LSTM fea-
ture representations. TACL, 4:313–327.

Kudo, T. and Y. Matsumoto. 2002. Japanese dependency
analysis using cascaded chunking. CoNLL.

Kulmizev, A., M. de Lhoneux, J. Gontrum, E. Fano, and
J. Nivre. 2019. Deep contextualized word embeddings
in transition-based and graph-based dependency parsing
- a tale of two parsers revisited. EMNLP.

Lin, D. 2003. Dependency-based evaluation of minipar.
Workshop on the Evaluation of Parsing Systems.

de Marneffe, M.-C., T. Dozat, N. Silveira, K. Haverinen,
F. Ginter, J. Nivre, and C. D. Manning. 2014. Univer-
sal Stanford dependencies: A cross-linguistic typology.
LREC.

de Marneffe, M.-C., B. MacCartney, and C. D. Manning.
2006. Generating typed dependency parses from phrase
structure parses. LREC.

de Marneffe, M.-C. and C. D. Manning. 2008. The Stanford
typed dependencies representation. COLING Workshop
on Cross-Framework and Cross-Domain Parser Evalua-
tion.

de Marneffe, M.-C., C. D. Manning, J. Nivre, and D. Zeman.
2021. Universal Dependencies. Computational Linguis-
tics, 47(2):255–308.

McDonald, R., K. Crammer, and F. C. N. Pereira. 2005a. On-
line large-margin training of dependency parsers. ACL.

McDonald, R. and J. Nivre. 2011. Analyzing and inte-
grating dependency parsers. Computational Linguistics,
37(1):197–230.

McDonald, R., F. C. N. Pereira, K. Ribarov, and J. Hajič.
2005b. Non-projective dependency parsing using span-
ning tree algorithms. HLT-EMNLP.

Nivre, J. 2007. Incremental non-projective dependency pars-
ing. NAACL-HLT.

Nivre, J. 2003. An efficient algorithm for projective depen-
dency parsing. Proceedings of the 8th International Work-
shop on Parsing Technologies (IWPT).

Nivre, J. 2006. Inductive Dependency Parsing. Springer.

Nivre, J. 2009. Non-projective dependency parsing in ex-
pected linear time. ACL IJCNLP.

Nivre, J., J. Hall, S. Kübler, R. McDonald, J. Nilsson,
S. Riedel, and D. Yuret. 2007a. The conll 2007 shared
task on dependency parsing. EMNLP/CoNLL.

Nivre, J., J. Hall, J. Nilsson, A. Chanev, G. Eryigit,
S. Kübler, S. Marinov, and E. Marsi. 2007b. Malt-
parser: A language-independent system for data-driven
dependency parsing. Natural Language Engineering,
13(02):95–135.

http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
https://www.aclweb.org/anthology/E17-2052
https://www.aclweb.org/anthology/E17-2052
https://www.aclweb.org/anthology/W06-2920
https://www.aclweb.org/anthology/W06-2920
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://www.aclweb.org/anthology/P11-2121
https://www.aclweb.org/anthology/P11-2121
https://www.aclweb.org/anthology/W11-0906
https://www.aclweb.org/anthology/W11-0906
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://doi.org/10.3115/v1/P15-1038
https://nlp.stanford.edu/pubs/dozat2017deep.pdf
https://nlp.stanford.edu/pubs/dozat2017deep.pdf
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://www.aclweb.org/anthology/C96-1058
https://www.aclweb.org/anthology/C96-1058
https://doi.org/10.1007/BF02579168
https://doi.org/10.1007/BF02579168
https://doi.org/10.18653/v1/2021.iwpt-1.13
https://doi.org/10.18653/v1/2021.iwpt-1.13
https://doi.org/10.18653/v1/2021.iwpt-1.13
https://www.aclweb.org/anthology/W09-1201
https://www.aclweb.org/anthology/W09-1201
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://www.aclweb.org/anthology/W02-2016
https://www.aclweb.org/anthology/W02-2016
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
https://www.aclweb.org/anthology/W08-1301
https://www.aclweb.org/anthology/W08-1301
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/N07-1050
https://www.aclweb.org/anthology/N07-1050
https://www.aclweb.org/anthology/W03-3017
https://www.aclweb.org/anthology/W03-3017
http://dl.acm.org/citation.cfm?id=1687878.1687929
http://dl.acm.org/citation.cfm?id=1687878.1687929
https://www.aclweb.org/anthology/D07-1096
https://www.aclweb.org/anthology/D07-1096


26 Chapter 19 • Dependency Parsing

Nivre, J. and J. Nilsson. 2005. Pseudo-projective dependency
parsing. ACL.

Nivre, J. and M. Scholz. 2004. Deterministic dependency
parsing of english text. COLING.

Petrov, S., D. Das, and R. McDonald. 2012. A universal
part-of-speech tagset. LREC.

Petrov, S. and R. McDonald. 2012. Overview of the 2012
shared task on parsing the web. Notes of the First Work-
shop on Syntactic Analysis of Non-Canonical Language
(SANCL), volume 59.

Seddah, D., R. Tsarfaty, S. Kübler, M. Candito, J. D. Choi,
R. Farkas, J. Foster, I. Goenaga, K. Gojenola, Y. Gold-
berg, S. Green, N. Habash, M. Kuhlmann, W. Maier,
J. Nivre, A. Przepiórkowski, R. Roth, W. Seeker, Y. Vers-
ley, V. Vincze, M. Woliński, A. Wróblewska, and E. Ville-
monte de la Clérgerie. 2013. Overview of the SPMRL
2013 shared task: cross-framework evaluation of parsing
morphologically rich languages. 4th Workshop on Statis-
tical Parsing of Morphologically-Rich Languages.

Sleator, D. and D. Temperley. 1993. Parsing English with a
link grammar. IWPT-93.

Surdeanu, M., R. Johansson, A. Meyers, L. Màrquez, and
J. Nivre. 2008. The CoNLL 2008 shared task on joint
parsing of syntactic and semantic dependencies. CoNLL.

Tesnière, L. 1959. Éléments de Syntaxe Structurale. Librairie
C. Klincksieck, Paris.

Yamada, H. and Y. Matsumoto. 2003. Statistical dependency
analysis with support vector machines. IWPT-03.

Zeman, D. 2008. Reusable tagset conversion using tagset
drivers. LREC.

https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://www.aclweb.org/anthology/C04-1010
https://www.aclweb.org/anthology/C04-1010
http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/1993.iwpt-1.22
https://www.aclweb.org/anthology/1993.iwpt-1.22
https://www.aclweb.org/anthology/W08-2121
https://www.aclweb.org/anthology/W08-2121
https://www.aclweb.org/anthology/W03-3023
https://www.aclweb.org/anthology/W03-3023
http://www.lrec-conf.org/proceedings/lrec2008/pdf/66_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/66_paper.pdf

	Dependency Parsing
	Dependency Relations
	Dependency Formalisms
	Projectivity
	Dependency Treebanks

	Transition-Based Dependency Parsing
	Creating an Oracle
	A feature-based classifier
	A neural classifier
	Advanced Methods in Transition-Based Parsing

	Graph-Based Dependency Parsing
	Parsing via finding the maximum spanning tree
	A feature-based algorithm for assigning scores
	A neural algorithm for assigning scores

	Evaluation
	Summary
	Historical Notes
	Exercises


