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CHAPTER

6 Neural Networks

“[M]achines of this character can behave in a very complicated manner when
the number of units is large.”

Alan Turing (1948) “Intelligent Machines”, page 6

Neural networks are a fundamental computational tool for language process-
ing, and a very old one. They are called neural because their origins lie in the
McCulloch-Pitts neuron (McCulloch and Pitts, 1943), a simplified model of the
biological neuron as a kind of computing element that could be described in terms
of propositional logic. But the modern use in language processing no longer draws
on these early biological inspirations.

Instead, a modern neural network is a network of small computing units, each
of which takes a vector of input values and produces a single output value. In this
chapter we introduce the neural net applied to classification. The architecture we
introduce is called a feedforward network because the computation proceeds iter-feedforward

atively from one layer of units to the next. The use of modern neural nets is often
called deep learning, because modern networks are often deep (have many layers).deep learning

Neural networks share much of the same mathematics as logistic regression. But
neural networks are a more powerful classifier than logistic regression, and indeed a
minimal neural network (technically one with a single ‘hidden layer’) can be shown
to learn any function.

Neural net classifiers are different from logistic regression in another way. With
logistic regression, we applied the regression classifier to many different tasks by
developing many rich kinds of feature templates based on domain knowledge. When
working with neural networks, it is more common to avoid most uses of rich hand-
derived features, instead building neural networks that take raw tokens as inputs
and learn to induce features as part of the process of learning to classify. We saw
examples of this kind of representation learning for embeddings in Chapter 5, and
we’ll see lots of examples once we start studying deep transformers networks. Nets
that are very deep are particularly good at representation learning. For that reason
deep neural nets are the right tool for tasks that offer sufficient data to learn features
automatically.

In this chapter we’ll introduce feedforward networks as classifiers, first with
hand-built features, and then using the embeddings that we studied in Chapter 5.
In subsequent chapters we’ll introduce many other kinds of neural models, most
importantly the transformer and attention, (Chapter 8), but also recurrent neural
networks (Chapter 13) and convolutional neural networks (Chapter 15). And in
the next chapter we’ll introduce the paradigm of neural large language models.
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6.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
∑

i

wixi (6.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z =w ·x+b (6.2)

As defined in Eq. 6.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f below (the sigmoid, the tanh, and
the rectified linear unit or ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 4:sigmoid

y = σ(z) =
1

1+ e−z (6.3)

The sigmoid (shown in Fig. 6.1) has a number of advantages; it maps the output
into the range (0,1), which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 6.1 The sigmoid function takes a real value and maps it to the range (0,1). It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.

Substituting Eq. 6.2 into Eq. 6.3 gives us the output of a neural unit:

y = σ(w ·x+b) =
1

1+ exp(−(w ·x+b))
(6.4)
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Fig. 6.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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Figure 6.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = σ(w ·x+b) =
1

1+ e−(w·x+b)
=

1
1+ e−(.5∗.2+.6∗.3+.1∗.9+.5) =

1
1+ e−0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 6.3a;tanh

tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez− e−z

ez + e−z (6.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 6.3b. It’s just the same as zReLU

when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (6.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that
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(a) (b)

Figure 6.3 The tanh and ReLU activation functions.

result from it being very close to linear. In the sigmoid or tanh functions, very high
values of z result in values of y that are saturated, i.e., extremely close to 1, and havesaturated

derivatives very close to 0. Zero derivatives cause problems for learning, because as
we’ll see in Section 6.6, we’ll train networks by propagating an error signal back-
wards, multiplying gradients (partial derivatives) from each layer of the network;
gradients that are almost 0 cause the error signal to get smaller and smaller until it is
too small to be used for training, a problem called the vanishing gradient problem.vanishing

gradient
Rectifiers don’t have this problem, since the derivative of ReLU for high values of z
is 1 rather than very close to 0.

6.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and has a very simple step function as its non-linear
activation function. The output y of a perceptron is 0 or 1, and is computed as
follows (using the same weight w, input x, and bias b as in Eq. 6.2):

y =
{

0, if w ·x+b≤ 0
1, if w ·x+b > 0 (6.7)
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It’s very easy to build a perceptron that can compute the logical AND and OR
functions of its binary inputs; Fig. 6.4 shows the necessary weights.
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Figure 6.4 The weights w and bias b for perceptrons for computing logical functions. The
inputs are shown as x1 and x2 and the bias as a special node with value +1 which is multiplied
with the bias weight b. (a) logical AND, with weights w1 = 1 and w2 = 1 and bias weight
b = −1. (b) logical OR, with weights w1 = 1 and w2 = 1 and bias weight b = 0. These
weights/biases are just one from an infinite number of possible sets of weights and biases that
would implement the functions.

It turns out, however, that it’s not possible to build a perceptron to compute
logical XOR! (It’s worth spending a moment to give it a try!)

The intuition behind this important result relies on understanding that a percep-
tron is a linear classifier. For a two-dimensional input x1 and x2, the perceptron
equation, w1x1 +w2x2 +b = 0 is the equation of a line. (We can see this by putting
it in the standard linear format: x2 = (−w1/w2)x1 +(−b/w2).) This line acts as a
decision boundary in two-dimensional space in which the output 0 is assigned to alldecision

boundary
inputs lying on one side of the line, and the output 1 to all input points lying on the
other side of the line. If we had more than 2 inputs, the decision boundary becomes
a hyperplane instead of a line, but the idea is the same, separating the space into two
categories.

Fig. 6.5 shows the possible logical inputs (00, 01, 10, and 11) and the line drawn
by one possible set of parameters for an AND and an OR classifier. Notice that there
is simply no way to draw a line that separates the positive cases of XOR (01 and 10)
from the negative cases (00 and 11). We say that XOR is not a linearly separablelinearly

separable
function. Of course we could draw a boundary with a curve, or some other function,
but not a single line.

6.2.1 The solution: neural networks
While the XOR function cannot be calculated by a single perceptron, it can be cal-
culated by a layered network of perceptron units. Rather than see this with networks
of simple perceptrons, however, let’s see how to compute XOR using two layers of
ReLU-based units following Goodfellow et al. (2016). Fig. 6.6 shows a figure with
the input being processed by two layers of neural units. The middle layer (called
h) has two units, and the output layer (called y) has one unit. A set of weights and
biases are shown that allows the network to correctly compute the XOR function.

Let’s walk through what happens with the input x = [0, 0]. If we multiply each
input value by the appropriate weight, sum, and then add the bias b, we get the vector
[0, -1], and we then apply the rectified linear transformation to give the output of the
h layer as [0, 0]. Now we once again multiply by the weights, sum, and add the
bias (0 in this case) resulting in the value 0. The reader should work through the
computation of the remaining 3 possible input pairs to see that the resulting y values
are 1 for the inputs [0, 1] and [1, 0] and 0 for [0, 0] and [1, 1].
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Figure 6.5 The functions AND, OR, and XOR, represented with input x1 on the x-axis and input x2 on the
y-axis. Filled circles represent perceptron outputs of 1, and white circles perceptron outputs of 0. There is no
way to draw a line that correctly separates the two categories for XOR. Figure styled after Russell and Norvig
(2002).
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Figure 6.6 XOR solution after Goodfellow et al. (2016). There are three ReLU units, in
two layers; we’ve called them h1, h2 (h for “hidden layer”) and y1. As before, the numbers
on the arrows represent the weights w for each unit, and we represent the bias b as a weight
on a unit clamped to +1, with the bias weights/units in gray.

It’s also instructive to look at the intermediate results, the outputs of the two
hidden nodes h1 and h2. We showed in the previous paragraph that the h vector for
the inputs x = [0, 0] was [0, 0]. Fig. 6.7b shows the values of the h layer for all
4 inputs. Notice that hidden representations of the two input points x = [0, 1] and
x = [1, 0] (the two cases with XOR output = 1) are merged to the single point h =
[1, 0]. The merger makes it easy to linearly separate the positive and negative cases
of XOR. In other words, we can view the hidden layer of the network as forming a
representation of the input.

In this example we just stipulated the weights in Fig. 6.6. But for real examples
the weights for neural networks are learned automatically using the error backprop-
agation algorithm to be introduced in Section 6.6. That means the hidden layers will
learn to form useful representations. This intuition, that neural networks can auto-
matically learn useful representations of the input, is one of their key advantages,
and one that we will return to again and again in later chapters.
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Figure 6.7 The hidden layer forming a new representation of the input. (b) shows the
representation of the hidden layer, h, compared to the original input representation x in (a).
Notice that the input point [0, 1] has been collapsed with the input point [1, 0], making it
possible to linearly separate the positive and negative cases of XOR. After Goodfellow et al.
(2016).

6.3 Feedforward Neural Networks

Let’s now walk through a slightly more formal presentation of the simplest kind of
neural network, the feedforward network. A feedforward network is a multilayerfeedforward

network
network in which the units are connected with no cycles; the outputs from units in
each layer are passed to units in the next higher layer, and no outputs are passed
back to lower layers. (In Chapter 13 we’ll introduce networks with cycles, called
recurrent neural networks.)

For historical reasons multilayer networks, especially feedforward networks, are
sometimes called multi-layer perceptrons (or MLPs); this is a technical misnomer,multi-layer

perceptrons
MLP since the units in modern multilayer networks aren’t perceptrons (perceptrons have a

simple step-function as their activation function, but modern networks are made up
of units with many kinds of non-linearities like ReLUs and sigmoids), but at some
point the name stuck.

Simple feedforward networks have three kinds of nodes: input units, hidden
units, and output units.

Fig. 6.8 shows a picture. The input layer x is a vector of simple scalar values just
as we saw in Fig. 6.2.

The core of the neural network is the hidden layer h formed of hidden units hi,hidden layer

each of which is a neural unit as described in Section 6.1, taking a weighted sum of
its inputs and then applying a non-linearity. In the standard architecture, each layer
is fully-connected, meaning that each unit in each layer takes as input the outputsfully-connected

from all the units in the previous layer, and there is a link between every pair of units
from two adjacent layers. Thus each hidden unit sums over all the input units.

Recall that a single hidden unit has as parameters a weight vector and a bias. We
represent the parameters for the entire hidden layer by combining the weight vector
and bias for each unit i into a single weight matrix W and a single bias vector b for
the whole layer (see Fig. 6.8). Each element W ji of the weight matrix W represents
the weight of the connection from the ith input unit xi to the jth hidden unit h j.

The advantage of using a single matrix W for the weights of the entire layer is
that now the hidden layer computation for a feedforward network can be done very
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Figure 6.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

efficiently with simple matrix operations. In fact, the computation only has three
steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following (for this exam-
ple we’ll use the sigmoid function σ as our activation function):

h= σ(Wx+b) (6.8)

Notice that we’re applying the σ function here to a vector, while in Eq. 6.3 it was
applied to a scalar. We’re thus allowing σ(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have
n0 represent the number of inputs, so x is a vector of real numbers of dimension
n0, or more formally x ∈ Rn0 , a column vector of dimensionality [n0× 1]. Let’s
call the hidden layer layer 1 and the output layer layer 2. The hidden layer has
dimensionality n1, so h ∈ Rn1 and also b ∈ Rn1 (since each hidden unit can take a
different bias value). And the weight matrix W has dimensionality W ∈Rn1×n0 , i.e.
[n1×n0].

Take a moment to convince yourself that the matrix multiplication in Eq. 6.8 will
compute the value of each h j as σ

(∑n0
i=1W jixi +b j

)
.

As we saw in Section 6.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a sin-
gle output node, and its scalar value y is the probability of positive versus negative
sentiment. If we are doing multinomial classification, such as assigning a part-of-
speech tag, we might have one output node for each potential part-of-speech, whose
output value is the probability of that part-of-speech, and the values of all the output
nodes must sum to one. The output layer is thus a vector y that gives a probability
distribution across the output nodes.
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Let’s see how this happens. Like the hidden layer, the output layer has a weight
matrix (let’s call it U), but some models don’t include a bias vector b in the output
layer, so we’ll simplify by eliminating the bias vector in this example. The weight
matrix is multiplied by its input vector (h) to produce the intermediate output z:

z=Uh

There are n2 output nodes, so z ∈ Rn2 , weight matrix U has dimensionality U ∈
Rn2×n1 , and element Ui j is the weight from unit j in the hidden layer to unit i in the
output layer.

However, z can’t be the output of the classifier, since it’s a vector of real-valued
numbers, while what we need for classification is a vector of probabilities. There is
a convenient function for normalizing a vector of real values, by which we meannormalizing

converting it to a vector that encodes a probability distribution (all the numbers lie
between 0 and 1 and sum to 1): the softmax function that we saw on page ?? ofsoftmax

Chapter 4. More generally for any vector z of dimensionality d, the softmax is
defined as:

softmax(zi) =
exp(zi)∑d
j=1 exp(z j)

1≤ i≤ d (6.9)

Thus for example given a vector

z= [0.6,1.1,−1.5,1.2,3.2,−1.1], (6.10)

the softmax function will normalize it to a probability distribution (shown rounded):

softmax(z) = [0.055,0.090,0.0067,0.10,0.74,0.010] (6.11)

You may recall that we used softmax to create a probability distribution from a
vector of real-valued numbers (computed from summing weights times features) in
the multinomial version of logistic regression in Chapter 4.

That means we can think of a neural network classifier with one hidden layer
as building a vector h which is a hidden layer representation of the input, and then
running standard multinomial logistic regression on the features that the network
develops in h. By contrast, in Chapter 4 the features were mainly designed by hand
via feature templates. So a neural network is like multinomial logistic regression,
but (a) with many layers, since a deep neural network is like layer after layer of lo-
gistic regression classifiers; (b) with those intermediate layers having many possible
activation functions (tanh, ReLU, sigmoid) instead of just sigmoid (although we’ll
continue to use σ for convenience to mean any activation function); (c) rather than
forming the features by feature templates, the prior layers of the network induce the
feature representations themselves.

Here are the final equations for a feedforward network with a single hidden layer,
which takes an input vector x, outputs a probability distribution y, and is parameter-
ized by weight matrices W and U and a bias vector b:

h = σ(Wx+b)

z = Uh

y = softmax(z) (6.12)

And just to remember the shapes of all our variables, x ∈ Rn0 , h ∈ Rn1 , b ∈ Rn1 ,
W ∈Rn1×n0 , U∈Rn2×n1 , and the output vector y ∈Rn2 . We’ll call this network a 2-
layer network (we traditionally don’t count the input layer when numbering layers,
but do count the output layer). So by this terminology logistic regression is a 1-layer
network.
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6.3.1 More details on feedforward networks
Let’s now set up some notation to make it easier to talk about deeper networks of
depth more than 2. We’ll use superscripts in square brackets to mean layer num-
bers, starting at 0 for the input layer. So W[1] will mean the weight matrix for the
(first) hidden layer, and b[1] will mean the bias vector for the (first) hidden layer. n j
will mean the number of units at layer j. We’ll use g(·) to stand for the activation
function, which will tend to be ReLU or tanh for intermediate layers and softmax
for output layers. We’ll use a[i] to mean the output from layer i, and z[i] to mean the
combination of previous layer output, weights and biases W[i]a[i−1]+b[i]. The 0th
layer is for inputs, so we’ll refer to the inputs x more generally as a[0].

Thus we can re-represent our 2-layer net from Eq. 6.12 as follows:

z[1] = W[1]a[0]+b[1]

a[1] = g[1](z[1])

z[2] = W[2]a[1]+b[2]

a[2] = g[2](z[2])

ŷ = a[2] (6.13)

Note that with this notation, the equations for the computation done at each layer are
the same. The algorithm for computing the forward step in an n-layer feedforward
network, given the input vector a[0] is thus simply:

for i in 1,...,n
z[i] = W[i] a[i−1] + b[i]

a[i] = g[i](z[i])
ŷ = a[n]

It’s often useful to have a name for the final set of activations right before the final
softmax. So however many layers we have, we’ll generally call the unnormalized
values in the final vector z[n], the vector of scores right before the final softmax, the
logits (see Eq. ??).logits

The need for non-linear activation functions One of the reasons we use non-
linear activation functions for each layer in a neural network is that if we did not, the
resulting network is exactly equivalent to a single-layer network. Let’s see why this
is true. Imagine the first two layers of such a network of purely linear layers:

z[1] = W[1]x+b[1]

z[2] = W[2]z[1]+b[2]

We can rewrite the function that the network is computing as:

z[2] = W[2]z[1]+b[2]

= W[2](W[1]x+b[1])+b[2]

= W[2]W[1]x+W[2]b[1]+b[2]

= W′x+b′ (6.14)

This generalizes to any number of layers. So without non-linear activation functions,
a multilayer network is just a notational variant of a single layer network with a
different set of weights, and we lose all the representational power of multilayer
networks.
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Replacing the bias unit In describing networks, we will sometimes use a slightly
simplified notation that represents exactly the same function without referring to an
explicit bias node b. Instead, we add a dummy node a0 to each layer whose value
will always be 1. Thus layer 0, the input layer, will have a dummy node a

[0]
0 = 1,

layer 1 will have a[1]0 = 1, and so on. This dummy node still has an associated weight,
and that weight represents the bias value b. For example instead of an equation like

h= σ(Wx+b) (6.15)

we’ll use:

h= σ(Wx) (6.16)

But now instead of our vector x having n0 values: x = x1, . . . ,xn0 , it will have n0 +
1 values, with a new 0th dummy value x0 = 1: x = x0, . . . ,xn0 . And instead of
computing each h j as follows:

h j = σ

( n0∑
i=1

Wji xi +b j

)
, (6.17)

we’ll instead use:

h j = σ

( n0∑
i=0

Wji xi

)
, (6.18)

where the value Wj0 replaces what had been b j. Fig. 6.9 shows a visualization.
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Figure 6.9 Replacing the bias node (shown in a) with x0 (b).

We’ll continue showing the bias as b when we go over the learning algorithm
in Section 6.6, but going forward in the book, for most figures and some equations
we’ll use this simplified notation without explicit bias terms.

6.4 Feedforward networks for NLP: Classification

Let’s see how to apply feedforward networks to NLP classification tasks. In practice,
simple feedforward networks aren’t the way we do text classification; for real appli-
cations we would use more sophisticated architectures like the BERT transformers
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of Chapter 10. Nonetheless seeing a feedforward network text classifier will let us
introduce key ideas that will play a role throughout the rest of the book, includ-
ing the ideas of the embedding matrix, representation pooling, and representation
learning.

But before introducing any of these ideas, let’s start with a classifier by making
only minimal change from the sentiment classifiers we saw in Chapter 4. Like them,
we’ll take hand-built features, pass them through a classifier, and produce a class
probability. The only difference is that we’ll use a neural network instead of logistic
regression as the classifier.

6.4.1 Neural net classifiers with hand-built features
Let’s begin with a simple 2-layer sentiment classifier by taking our logistic regres-
sion classifier from Chapter 4, which corresponds to a 1-layer network, and just
adding a hidden layer. The input element xi can be scalar features like those in
Fig. ??, e.g., x1 = count(words ∈ doc), x2 = count(positive lexicon words ∈ doc),
x3 = 1 if “no” ∈ doc, and so on, for a total of d features. And the output layer
ŷ could have two nodes (one each for positive and negative), or 3 nodes (positive,
negative, neutral), in which case ŷ1 would be the estimated probability of positive
sentiment, ŷ2 the probability of negative and ŷ3 the probability of neutral. The re-
sulting equations would be just what we saw above for a 2-layer network (as always,
we’ll continue to use the σ to stand for any non-linearity, whether sigmoid, ReLU
or other).

x = [x1,x2, ...xd ] (each xi is a hand-designed feature)
h = σ(Wx+b)

z = Uh

ŷ = softmax(z) (6.19)

Fig. 6.10 shows a sketch of this architecture. As we mentioned earlier, adding this
hidden layer to our logistic regression classifier allows the network to represent the
non-linear interactions between features. This alone might give us a better sentiment
classifier.

UW
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Hidden layer Output layer
softmax

[dh⨉d] [dh⨉1] [3⨉dh]

Input words

p(+)

h1

h2

h3
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…
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^

y2
^

y3
^

x h y

Input layer 
d=3 features

[3⨉1]

x1

x2

x3

dessert

was

great

positive lexicon
words = 1

count of “no” 
= 0

wordcount
=3

p(-)

p(neut)

Figure 6.10 Feedforward network sentiment analysis using traditional hand-built features
of the input text.
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6.4.2 Vectorizing for parallelizing inference
While Eq. 6.19 shows how to classify a single example x, in practice we want to
efficiently classify an entire test set of m examples. We do this by vectorizing the
process, just as we saw with logistic regression; instead of using for-loops to go
through each example, we’ll use matrix multiplication to do the entire computation
of an entire test set at once. First, we pack all the input feature vectors for each input
x into a single input matrix X, with each row i a row vector consisting of the features
for input example x(i) (i.e., the vector x(i)). If the dimensionality of our input feature
vector is d, X will be a matrix of shape [m×d].

Because we are now modeling each input as a row vector rather than a column
vector, we also need to slightly modify Eq. 6.19. X is of shape [m×d] and W is of
shape [dh×d], so we’ll reorder how we multiply X and W and transpose W so they
correctly multiply to yield a matrix H of shape [m×dh]. 1

The bias vector b from Eq. 6.19 of shape [1×dh] will now have to be replicated
into a matrix of shape [m× dh]. We’ll need to similarly reorder the next step and
transpose U. Finally, our output matrix Ŷ will be of shape [m× 3] (or more gen-
erally [m× do], where do is the number of output classes), with each row i of our
output matrix Ŷ consisting of the output vector ŷ(i). Here are the final equations for
computing the output class distribution for an entire test set:

H = σ(XWᵀ+b)

Z = HUᵀ

Ŷ = softmax(Z) (6.20)

In this book, we’ll sometimes see orderings like WX+b and sometimes XW+b.
That’s why it’s always important to be very aware of the shapes of your weight
matrices participating in any given equation.

6.5 Embeddings as the input to neural net classifiers

While hand-built features are a traditional way to design classifiers, most applica-
tions of neural networks for NLP don’t use hand-built human-engineered features as
inputs. Instead, we draw on deep learning’s ability to learn features from the data by
representing tokens as embeddings. For this section we’ll represent each token by
its static word2vec or GloVe embeddings that we saw how to compute in Chapter 5.
By static embedding, we mean that each token is represented by a fixed vector that
we train once, and then just put into a big dictionary. When we want to refer to that
token, we grab its embedding out of the dictionary.

However when we apply neural models to the task of language modeling (as
we’ll see in Chapter 8) the situation is more complex, and we’ll use a more power-
ful kind of embedding called a contextual embedding. Contextual embeddings are
different for each time a word occurs in a different context. Furthermore, we’ll have
the network learn these embeddings as part of the task of word prediction.

So let’s explore the text classification domain above, but using static embeddings
as features instead of the hand-designed features. Let’s focus on the inference stage,

1 Note that we could have kept the original order of our products if we had instead made our input
matrix X represent each input as a column vector instead of a row vector, making it of shape [d×m]. But
representing inputs as row vectors is convenient and common in neural network models.
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in which we have already learned embeddings for all the input tokens. An embed-
ding is a vector of dimension d that represents the input token. The dictionary of
static embeddings in which we store these embeddings is the embedding matrixembedding

matrix
E. Each row of the embedding matrix represents each token of the vocabulary V
as a (row) vector of dimensionality d. Since E has a row for each of the |V | to-
kens in the vocabulary, E has shape [|V |×d]. This embedding matrix E plays a role
whenever we are using embeddings as input to neural NLP systems, including in the
transformer-based large language models we will introduce over the next chapters.

Given an input token string like dessert was greatwe first convert the tokens
into vocabulary indices (these were created when we first tokenized the input using
BPE or SentencePiece). So the representation of dessert was great might be
w = [3,9824,226]. Next we use indexing to select the corresponding rows from E
(row 3, row 4000, row 10532).

Another way to think about selecting token embeddings from the embedding
matrix is to represent input tokens as one-hot vectors of shape [1× |V |], i.e., with
one dimension for each word in the vocabulary. Recall that in a one-hot vector allone-hot vector

the elements are 0 except one, the element whose dimension is the word’s index
in the vocabulary, which has value 1. So if the word “dessert” has index 3 in the
vocabulary, x3 = 1, and xi = 0 ∀i 6= 3, as shown here:

[0 0 1 0 0 0 0 ... 0 0 0 0]

1 2 3 4 5 6 7 ... ... |V|

Multiplying by a one-hot vector that has only one non-zero element xi = 1 simply
selects out the relevant row vector for word i, resulting in the embedding for word i,
as depicted in Fig. 6.11.

E

|V|

d

1
|V| d

=✕
33

0 0 1 0 0 0 0 … 0 0 0 0 1

Figure 6.11 Selecting the embedding vector for word V3 by multiplying the embedding
matrix E with a one-hot vector with a 1 in index 3.

We can extend this idea to represent the entire input token sequence as a matrix
of one-hot vectors, one for each of the N input positions as shown in Fig. 6.12.

E

|V|

d
d

N
=✕

|V|

N

0 0 0 0 0 0 0 … 0 0 1 0 
0 0 1 0 0 0 0 … 0 0 0 0 

1 0 0 0 0 0 0 … 0 0 0 0 

0 0 0 0 1 0 0 … 0 0 0 0 

…

Figure 6.12 Selecting the embedding matrix for the input sequence of token ids W by mul-
tiplying a one-hot matrix corresponding to W by the embedding matrix E.

We now need to classify this input of N [1×d] embeddings, representing a win-
dow of N tokens, into a single class (like positive or negative).

There are two common ways to to pass embeddings to a classifier: concate-
nation and pooling. First, we can take this input of shape [N× d] and reshape it
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by concatenating all the input vectors into one very long vector of shape [1×dN].
Then we pass this input to our classifier and let it make its decision. This gives
us lots of information, at the cost of using a pretty large network. Second, we can
pool the N embeddings into a single embedding and then pass that single pooledpool

embedding to the classifier. Pooling gives us less information than would have been
present in all the original embeddings, but has the advantage of being small and ef-
ficient and is especially useful in tasks for which we don’t care as much about the
original word order. Let’s give an example of each: pooling for the sentiment task,
and concatenation for the language modeling task.

Pooling input embeddings for sentiment So let’s begin with seeing how pooling
can work for the sentiment classification task. The intuition of pooling is that for
sentiment, the exact position of the input (is some word like great the first word?
the second word?) is less important than the identity of the word itself.

A pooling function is a way to turn a set of embeddings into a single embedding.
For example, for a text with N input words/tokens w1, ...,wN , we want to turn

the N row embeddings e(w1), ...,e(wN) (each of dimensionality d) into a single
embedding also of dimensionality d.

There are various ways to pool. The simplest is mean-pooling: taking the meanmean-pooling

by summing the embeddings and then dividing by N:

xmean =
1
N

N∑
i=1

e(wi) (6.21)

Here are the equations for this classifier assuming mean pooling:

x = mean(e(w1),e(w2), . . . ,e(wn))

h = σ(xW+b)

z = hU

ŷ = softmax(z) (6.22)

The architecture is sketched in Fig. 6.13, where we also give the shapes for all the
relevant matrices.

There are many other options for pooling, like max-pooling, in which case formax-pooling

each dimension we take the element-wise max over all the inputs. The element-wise
max of a set of N vectors is a new vector whose kth element is the max of the kth
elements of all the N vectors.

Concatenating input embeddings for language modeling For sentiment analy-
sis we saw how to generate an output vector with probabilities over three classes:
positive, negative, or neutral, given as input a window of N input tokens, by first
pooling those token embeddings into a single embedding vector.

Now let’s consider language modeling: predicting upcoming words from prior
words. In this task we are given the same window of N input tokens, but our task
now is to predict the next token that should follow the window. We’ll sketch a
simple feedforward neural language model, drawing on an algorithm first introduced
by Bengio et al. (2003). The feedforward language model introduces many of the
important concepts of large language modeling that we will return to in Chapter 7
and Chapter 8.

Neural language models have many advantages over the n-gram language mod-
els of Chapter 3. Neural language models can handle much longer histories, can
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“dessert” = V3 “was” = V524 “great” = V902
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|V|⨉dE E E matrix
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Output probabilities

weights

weights
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Figure 6.13 Feedforward network sentiment analysis using a pooled embedding of the input words. At each
timestep the network computes a d-dimensional embedding for each context word (by multiplying a one-hot
vector by the embedding matrix E), and pools the resulting N embeddings to get a single embedding that
represents the context window as the layer e.

generalize better over contexts of similar words, and are far more accurate at word-
prediction. On the other hand, neural net language models are slower, more com-
plex, need vast amounts of energy to train, and are less interpretable than n-gram
models, so for some smaller tasks an n-gram language model is still the right tool.

A feedforward neural language model is a feedforward network that takes as
input at time t a representation of some number of previous words (wt−1,wt−2, etc.)
and outputs a probability distribution over possible next words. Thus—like the n-
gram LM—the feedforward neural LM approximates the probability of a word given
the entire prior context P(wt |w1:t−1) by approximating based on the N−1 previous
words:

P(wt |w1, . . . ,wt−1)≈ P(wt |wt−N+1, . . . ,wt−1) (6.23)

In the following examples we’ll use a 4-gram example, so we’ll show a neural net to
estimate the probability P(wt = i|wt−3,wt−2,wt−1).

Neural language models represent words in this prior context by their embed-
dings, rather than just by their word identity as used in n-gram language models.
Using embeddings allows neural language models to generalize better to unseen
data. For example, suppose we’ve seen this sentence in training:

I have to make sure that the cat gets fed.
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but have never seen the words “gets fed” after the word “dog”. Our test set has the
prefix “I forgot to make sure that the dog gets”. What’s the next word? An n-gram
language model will predict “fed” after “that the cat gets”, but not after “that the dog
gets”. But a neural LM, knowing that “cat” and “dog” have similar embeddings, will
be able to generalize from the “cat” context to assign a high enough probability to
“fed” even after seeing “dog”.

h1 h2

y1

h3 hdh…

…

U

W

y34 y|V|

embedding layer e 1⨉Nd

hidden layer h

output layer y
softmax

…

...

wt-1wt-2 wtwt-3

Nd⨉dh

1⨉dh

dh⨉|V|

1⨉|V|

Input layer
one-hot 
vectors “for” = V35

0 0 1 00

1 |V|35

0 0 1 00

1 |V|451

0 0 1 00

1 |V|992

0 0

“all” = V992 “the” = V451

E
N⨉|V|

E is shared
across words |V|⨉d

…

p(wt=do|…)p(wt=aardvark|wt-3,wt-2,wt-1) p(wt=zebra|…)p(wt=fish|…)

… y42 y35102
^^^ ^ ^

E E

for all the ?thanksand… …

Figure 6.14 Forward inference in a feedforward neural language model. At each timestep
t the network computes a d-dimensional embedding for each of the N = 3 context tokens (by
multiplying a one-hot vector by the embedding matrix E), and concatenates the three to get
the embedding e. This embedding e is multiplied by weight matrix W and then an activation
function is applied element-wise to produce the hidden layer h, which is then multiplied by
another weight matrix U. A softmax layer predicts at each output node i the probability that
the next word wt will be vocabulary word Vi. We show the context window size N as 3 just to
fit on the page, but in practice language modeling requires a much longer context.

This prediction task requires an output vector that expresses |V | probabilities:
one probability value for each possible next token. We might have a vocabulary
between 60,000 and 300,000 tokens, so the output vector for the task of language
modeling is much longer than 3. Another difference for language modeling is that
instead of pooling the embeddings of the N input tokens to create a single embed-
ding, we concatenate the inputs into one very long input vector. To predict the next
token, it helps to know each of the preceding tokens and what order they were in.

Fig. 6.14 shows the language modeling task, sketched with a very short context
window of N = 3 just to fit on the page. These 3 embedding vectors are concatenated
to produce e, the embedding layer. This is multiplied by a weight matrix W to pro-
duce a hidden layer, and another weight matrix U to produce an output layer whose
softmax gives a probability distribution over words. For example y42, the value of
output node 42, is the probability of the next word wt being V42, the vocabulary word
with index 42 (which is the word ‘fish’ in our example).

The equations for a simple feedforward neural language model with a window



18 CHAPTER 6 • NEURAL NETWORKS

size of 3, given one-hot input vectors for each input context word, are:

e = [Ext−3;Ext−2;Ext−1]
h = σ(We+b)

z = Uh

ŷ = softmax(z) (6.24)

Note that we we use semicolons to mean concatenation of vectors, so we form the
embedding layer e by concatenating the 3 embeddings for the three context vectors.

We’ll return to this idea of using neural networks to do language modeling in
Chapter 7 and Chapter 8 when we introduce transformer language models.

6.6 Training Neural Nets

A feedforward neural net is an instance of supervised machine learning in which we
know the correct output y for each observation x. What the system produces, via
Eq. 6.13, is ŷ, the system’s estimate of the true y. The goal of the training procedure
is to learn parameters W[i] and b[i] for each layer i that make ŷ for each training
observation as close as possible to the true y.

In general, we do all this by drawing on the methods we introduced in Chapter 4
for logistic regression, so the reader should be comfortable with that chapter before
proceeding. We’ll explore the algorithm on simple generic networks rather than
networks designed for sentiment or language modeling.

First, we’ll need a loss function that models the distance between the system
output and the gold output, and it’s common to use the loss function used for logistic
regression, the cross-entropy loss.

Second, to find the parameters that minimize this loss function, we’ll use the
gradient descent optimization algorithm introduced in Chapter 4.

Third, gradient descent requires knowing the gradient of the loss function, the
vector that contains the partial derivative of the loss function with respect to each
of the parameters. In logistic regression, for each observation we could directly
compute the derivative of the loss function with respect to an individual w or b. But
for neural networks, with millions of parameters in many layers, it’s much harder to
see how to compute the partial derivative of some weight in layer 1 when the loss
is attached to some much later layer. How do we partial out the loss over all those
intermediate layers? The answer is the algorithm called error backpropagation or
backward differentiation.

6.6.1 Loss function
The cross-entropy loss that is used in neural networks is the same one we saw forcross-entropy

loss
logistic regression. If the neural network is being used as a binary classifier, with
the sigmoid at the final layer, the loss function is the same logistic regression loss
we saw in Eq. ??:

LCE(ŷ,y) =− log p(y|x) = − [y log ŷ+(1− y) log(1− ŷ)] (6.25)

If we are using the network to classify into 3 or more classes, the loss function is
exactly the same as the loss for multinomial regression that we saw in Chapter 4 on
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page ??. Let’s briefly summarize the explanation here for convenience. First, when
we have more than 2 classes we’ll need to represent both y and ŷ as vectors. Let’s
assume we’re doing hard classification, where only one class is the correct one.
The true label y is then a vector with K elements, each corresponding to a class,
with yc = 1 if the correct class is c, with all other elements of y being 0. Recall that
a vector like this, with one value equal to 1 and the rest 0, is called a one-hot vector.
And our classifier will produce an estimate vector with K elements ŷ, each element
ŷk of which represents the estimated probability p(yk = 1|x).

The loss function for a single example x is the negative sum of the logs of the K
output classes, each weighted by their probability yk:

LCE(ŷ,y) =−
K∑

k=1

yk log ŷk (6.26)

We can simplify this equation further; let’s first rewrite the equation using the func-
tion 1{} which evaluates to 1 if the condition in the brackets is true and to 0 oth-
erwise. This makes it more obvious that the terms in the sum in Eq. 6.26 will be 0
except for the term corresponding to the true class for which yk = 1:

LCE(ŷ,y) = −
K∑

k=1

1{yk = 1} log ŷk

In other words, the cross-entropy loss is simply the negative log of the output proba-
bility corresponding to the correct class, and we therefore also call this the negative
log likelihood loss:negative log

likelihood loss

LCE(ŷ,y) = − log ŷc (where c is the correct class) (6.27)

Plugging in the softmax formula from Eq. 6.9, and with K the number of classes:

LCE(ŷ,y) = − log
exp(zc)∑K
j=1 exp(z j)

(where c is the correct class) (6.28)

Let’s think about the negative log probability as a loss function. A perfect clas-
sifier would assign the correct class i probability 1 and all the incorrect classes prob-
ability 0. That means the higher p(ŷi) (the closer it is to 1), the better the classifier;
p(ŷi) is (the closer it is to 0), the worse the classifier. The negative log of this prob-
ability is a beautiful loss metric since it goes from 0 (negative log of 1, no loss)
to infinity (negative log of 0, infinite loss). This loss function also insures that as
probability of the correct answer is maximized, the probability of all the incorrect
answers is minimized; since they all sum to one, any increase in the probability of
the correct answer is coming at the expense of the incorrect answers.

The number K of classes of the output vector ŷ can be small or large. Perhaps
our task is 3-way sentiment, and then the classes might be positive, negative, and
neutral. Or if our task is deciding the part of speech of a word (i.e., whether it is a
noun or verb or adjective, etc.), then K is set of possible parts of speech in our tagset
(of which there are 17 in the tagset we will define in Chapter 17). And if our task
is language modeling, and our classifier is trying to predict which word is next, then
our set of classes is the set of words, which might be 50,000 or 100,000.
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6.6.2 Computing the Gradient
How do we compute the gradient of this loss function? Computing the gradient
requires the partial derivative of the loss function with respect to each parameter.
For a network with one weight layer and sigmoid output (which is what logistic
regression is), we could simply use the derivative of the loss that we used for logistic
regression in Eq. 6.29 (and derived in Section ??):

∂LCE(ŷ,y)

∂w j
= (ŷ− y)x j

= (σ(w ·x+b)− y)x j (6.29)

Or for a network with one weight layer and softmax output (=multinomial logistic
regression), we could use the derivative of the softmax loss from Eq. ??, shown for
a particular weight wk and input xi

∂LCE(ŷ,y)

∂wk,i
= −(yk− ŷk)xi

= −(yk− p(yk = 1|x))xi

= −

(
yk−

exp(wk ·x+bk)∑K
j=1 exp(w j ·x+b j)

)
xi (6.30)

But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-error back-

propagation
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.

6.6.3 Computation Graphs
A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c(a+2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2∗b

e = a+d

L = c∗ e

We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 6.15. The simplest use of computation graphs is to compute the value of
the function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b = 1, c = −2, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,−2) = −10. In the forward pass of a computation graph, we apply each
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operation left to right, passing the outputs of each computation as the input to the
next node.

e=a+d

d = 2b L=ce

a=3

b=1

c=-2

e=5
d=2

L=-10

forward pass

a

b

c

Figure 6.15 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =−2, showing the forward pass computation of L.

6.6.4 Backward differentiation on computation graphs
The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
to each of the input variables, i.e., ∂L

∂a , ∂L
∂b , and ∂L

∂c . The derivative ∂L
∂a tells us how

much a small change in a affects L.
Backwards differentiation makes use of the chain rule in calculus, so let’s re-chain rule

mind ourselves of that. Suppose we are computing the derivative of a composite
function f (x) = u(v(x)). The derivative of f (x) is the derivative of u(x) with respect
to v(x) times the derivative of v(x) with respect to x:

d f
dx

=
du
dv
· dv

dx
(6.31)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv
· dv

dw
· dw

dx
(6.32)

The intuition of backward differentiation is to pass gradients back from the final
node to all the nodes in the graph. Fig. 6.16 shows part of the backward computation
at one node e. Each node takes an upstream gradient that is passed in from its parent
node to the right, and for each of its inputs computes a local gradient (the gradient
of its output with respect to its input), and uses the chain rule to multiply these two
to compute a downstream gradient to be passed on to the next earlier node.

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (6.33)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(6.34)



22 CHAPTER 6 • NEURAL NETWORKS

ed L
ed

∂L
∂d

∂L
∂e

= ∂e
∂d

∂L
∂e

∂e
∂d

upstream
 gradient

downstream
 gradient

local
 gradient

Figure 6.16 Each node (like e here) takes an upstream gradient, multiplies it by the local
gradient (the gradient of its output with respect to its input), and uses the chain rule to compute
a downstream gradient to be passed on to a prior node. A node may have multiple local
gradients if it has multiple inputs.

Eq. 6.34 and Eq. 6.33 thus require five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and
∂d
∂b , which are as follows (making use of the fact that the derivative of a sum is the
sum of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the
graph from right to left, using the chain rule just as we did above. Thus we begin by
computing the downstream gradients from node L, which are ∂L

∂e and ∂L
∂c . For node e,

we then multiply this upstream gradient ∂L
∂e by the local gradient (the gradient of the

output with respect to the input), ∂e
∂d to get the output we send back to node d: ∂L

∂d .
And so on, until we have annotated the graph all the way to all the input variables.
The forward pass conveniently already will have computed the values of the forward
intermediate variables we need (like d and e) to compute these derivatives. Fig. 6.17
shows the backward pass.
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Figure 6.17 Computation graph for the function L(a,b,c) = c(a+2b), showing the backward pass computa-
tion of ∂L

∂a , ∂L
∂b , and ∂L

∂c .
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Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 6.18 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W[1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W[2]a[1]+b[2]

a[2] = σ(z[2])

ŷ = a[2] (6.35)

For the backward pass we’ll also need to compute the loss L. The loss function
for binary sigmoid output from Eq. 6.25 is

LCE(ŷ,y) = − [y log ŷ+(1− y) log(1− ŷ)] (6.36)

Our output ŷ = a[2], so we can rephrase this as

LCE(a[2],y) = −
[
y loga[2]+(1− y) log(1−a[2])

]
(6.37)

z[2] = 
+ a[2] = σ

 

a[1] = 
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z[1] = 
+

b[1] *

*
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*
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*
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w[2]
12

L (a[2],y)
1

2

1

1 1

22

Figure 6.18 Sample computation graph for a simple 2-layer neural net (= 1 hidden layer) with two input units
and 2 hidden units. We’ve adjusted the notation a bit to avoid long equations in the nodes by just mentioning
the function that is being computed, and the resulting variable name. Thus the * to the right of node w[1]

11 means

that w[1]
11 is to be multiplied by x1, and the node z[1] = + means that the value of z[1] is computed by summing

the three nodes that feed into it (the two products, and the bias term b[1]i ).

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in teal. In order to do the backward pass,
we’ll need to know the derivatives of all the functions in the graph. We already saw
in Section ?? the derivative of the sigmoid σ :

dσ(z)
dz

= σ(z)(1−σ(z)) (6.38)
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We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1− tanh2(z) (6.39)

The derivative of the ReLU is2

d ReLU(z)
dz

=

{
0 f or z < 0
1 f or z≥ 0 (6.40)

We’ll give the start of the computation, computing the derivative of the loss function
L with respect to z, or ∂L

∂ z (and leaving the rest of the computation as an exercise for
the reader). By the chain rule:

∂L
∂ z

=
∂L

∂a[2]
∂a[2]

∂ z
(6.41)

So let’s first compute ∂L
∂a[2]

, taking the derivative of Eq. 6.37, repeated here:

LCE(a[2],y) = −
[
y loga[2]+(1− y) log(1−a[2])

]
∂L

∂a[2]
= −

((
y

∂ log(a[2])
∂a[2]

)
+(1− y)

∂ log(1−a[2])
∂a[2]

)

= −
((

y
1

a[2]

)
+(1− y)

1
1−a[2]

(−1)
)

= −
(

y
a[2]

+
y−1

1−a[2]

)
(6.42)

Next, by the derivative of the sigmoid:

∂a[2]

∂ z
= a[2](1−a[2])

Finally, we can use the chain rule:

∂L
∂ z

=
∂L

∂a[2]
∂a[2]

∂ z

= −
(

y
a[2]

+
y−1

1−a[2]

)
a[2](1−a[2])

= a[2]− y (6.43)

Continuing the backward computation of the gradients (next by passing the gra-
dients over b[2]1 and the two product nodes, and so on, back to all the teal nodes), is
left as an exercise for the reader.

6.6.5 More details on learning
Optimization in neural networks is a non-convex optimization problem, more com-
plex than for logistic regression, and for that and other reasons there are many best
practices for successful learning.

2 The derivative is actually undefined at the point z = 0, but by convention we treat it as 1.
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For logistic regression we can initialize gradient descent with all the weights and
biases having the value 0. In neural networks, by contrast, we need to initialize the
weights with small random numbers. It’s also helpful to normalize the input values
to have 0 mean and unit variance.

Various forms of regularization are used to prevent overfitting. One of the most
important is dropout: randomly dropping some units and their connections fromdropout

the network during training (Hinton et al. 2012, Srivastava et al. 2014). At each
iteration of training (whenever we update parameters, i.e. each mini-batch if we are
using mini-batch gradient descent), we repeatedly choose a probability p and for
each unit we replace its output with zero with probability p (and renormalize the
rest of the outputs from that layer).

Tuning of hyperparameters is also important. The parameters of a neural net-hyperparameter

work are the weights W and biases b; those are learned by gradient descent. The
hyperparameters are things that are chosen by the algorithm designer; optimal val-
ues are tuned on a devset rather than by gradient descent learning on the training
set. Hyperparameters include the learning rate η , the mini-batch size, the model
architecture (the number of layers, the number of hidden nodes per layer, the choice
of activation functions), how to regularize, and so on. Gradient descent itself also
has many architectural variants such as Adam (Kingma and Ba, 2015).

Finally, most modern neural networks are built using computation graph for-
malisms that make it easy and natural to do gradient computation and parallelization
on vector-based GPUs (Graphic Processing Units). PyTorch (Paszke et al., 2017)
and TensorFlow (Abadi et al., 2015) are two of the most popular. The interested
reader should consult a neural network textbook for further details; some sugges-
tions are at the end of the chapter.

6.7 Summary

• Neural networks are built out of neural units, originally inspired by biological
neurons but now simply an abstract computational device.

• Each neural unit multiplies input values by a weight vector, adds a bias, and
then applies a non-linear activation function like sigmoid, tanh, or rectified
linear unit.

• In a fully-connected, feedforward network, each unit in layer i is connected
to each unit in layer i+1, and there are no cycles.

• The power of neural networks comes from the ability of early layers to learn
representations that can be utilized by later layers in the network.

• Neural networks are trained by optimization algorithms like gradient de-
scent.

• Error backpropagation, backward differentiation on a computation graph,
is used to compute the gradients of the loss function for a network.

• Neural language models use a neural network as a probabilistic classifier, to
compute the probability of the next word given the previous n words.

• Neural language models can use pretrained embeddings, or can learn embed-
dings from scratch in the process of language modeling.
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Historical Notes
The origins of neural networks lie in the 1940s McCulloch-Pitts neuron (McCul-
loch and Pitts, 1943), a simplified model of the biological neuron as a kind of com-
puting element that could be described in terms of propositional logic. By the late
1950s and early 1960s, a number of labs (including Frank Rosenblatt at Cornell and
Bernard Widrow at Stanford) developed research into neural networks; this phase
saw the development of the perceptron (Rosenblatt, 1958), and the transformation
of the threshold into a bias, a notation we still use (Widrow and Hoff, 1960).

The field of neural networks declined after it was shown that a single perceptron
unit was unable to model functions as simple as XOR (Minsky and Papert, 1969).
While some small amount of work continued during the next two decades, a major
revival for the field didn’t come until the 1980s, when practical tools for building
deeper networks like error backpropagation became widespread (Rumelhart et al.,
1986). During the 1980s a wide variety of neural network and related architec-
tures were developed, particularly for applications in psychology and cognitive sci-
ence (Rumelhart and McClelland 1986b, McClelland and Elman 1986, Rumelhart
and McClelland 1986a, Elman 1990), for which the term connectionist or paral-connectionist

lel distributed processing was often used (Feldman and Ballard 1982, Smolensky
1988). Many of the principles and techniques developed in this period are foun-
dational to modern work, including the ideas of distributed representations (Hinton,
1986), recurrent networks (Elman, 1990), and the use of tensors for compositionality
(Smolensky, 1990).

By the 1990s larger neural networks began to be applied to many practical lan-
guage processing tasks as well, like handwriting recognition (LeCun et al. 1989) and
speech recognition (Morgan and Bourlard 1990). By the early 2000s, improvements
in computer hardware and advances in optimization and training techniques made it
possible to train even larger and deeper networks, leading to the modern term deep
learning (Hinton et al. 2006, Bengio et al. 2007). We cover more related history in
Chapter 13 and Chapter 15.

There are a number of excellent books on neural networks, including Goodfellow
et al. (2016) and Nielsen (2015).
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