Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2025. All

rights reserved.

CHAPTER

Draft of August 24, 2025.

Large Language Models

“How much do we know at any time? Much more, or so I believe, than we
know we know.”
Agatha Christie, The Moving Finger

The literature of the fantastic abounds in inanimate objects magically endowed with
the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s story about
Frankenstein, we continually reinvent stories about
creating something and then having a chat with it.
Legend has it that after finishing his sculpture Moses,
Michelangelo thought it so lifelike that he tapped it
on the knee and commanded it to speak. Perhaps
this shouldn’t be surprising. Language is the mark
of humanity and sentience. conversation is the most
fundamental arena of language, the first kind of lan-
guage we learn as children, and the kind we engage in
constantly, whether we are teaching or learning, or-
dering lunch, or talking with our families or friends.

This chapter introduces the Large Language
Model, or LLM, a computational agent that can in- -
teract conversationally with people. The fact that LLMs are designed for 1nteract10n
with people has strong implications for their design and use.

Many of these implications already became clear in a computational system from
60 years ago, ELIZA (Weizenbaum, 1966). ELIZA, designed to simulate a Rogerian
psychologist, illustrates a number of important issues with chatbots. For example
people became deeply emotionally involved and conducted very personal conversa-
tions, even to the extent of asking Weizenbaum to leave the room while they were
typing. These issues of emotional engagement and privacy mean we need to think
carefully about how we deploy language models and consider their effect on the
people who are interacting with them.

In this chapter we begin by introducing the computational principles of LLMs;
we’ll discuss their implementation in the transformer architecture in the following
chapter. The central new idea that makes LLMs possible is the idea of pretraining,
so let’s begin by thinking about the idea of learning from text, the basic way that
LLMs are trained.

We know that fluent speakers of a language bring an enormous amount of knowl-
edge to bear during comprehension and production. This knowledge is embodied in
many forms, perhaps most obviously in the vocabulary, the rich representations we
have of words and their meanings and usage. This makes the vocabulary a useful
lens to explore the acquisition of knowledge from text, by both people and machines.

Estimates of the size of adult vocabularies vary widely both within and across
languages. For example, estimates of the vocabulary size of young adult speakers of
American English range from 30,000 to 100,000 depending on the resources used




2 CHAPTER7 °* LARGE LANGUAGE MODELS

pretraining

to make the estimate and the definition of what it means to know a word. A sim-
ple consequence of these facts is that children have to learn about 7 to 10 words a
day, every single day, to arrive at observed vocabulary levels by the time they are 20
years of age. And indeed empirical estimates of vocabulary growth in late elemen-
tary through high school are consistent with this rate. How do children achieve this
rate of vocabulary growth? Research suggests that the bulk of this knowledge acqui-
sition happens as a by-product of reading. Reading is a process of rich contextual
processing; we don’t learn words one at a time in isolation. In fact, at some points
during learning the rate of vocabulary growth exceeds the rate at which new words
are appearing to the learner! That suggests that every time we read a word, we are
also strengthening our understanding of other words that are associated with it.

Such facts are consistent with the distributional hypothesis of Chapter 5, which
proposes that some aspects of meaning can be learned solely from the texts we en-
counter over our lives, based on the complex association of words with the words
they co-occur with (and with the words that those words occur with). The distribu-
tional hypothesis suggests both that we can acquire remarkable amounts of knowl-
edge from text, and that this knowledge can be brought to bear long after its initial
acquisition. Of course, grounding from real-world interaction or other modalities
can help build even more powerful models, but even text alone is remarkably useful.

What made the modern NLP revolution possible is that large language models
can learn all this knowledge of language, context, and the world simply by being
taught to predict the next word, again and again, based on context, in a (very) large
corpus of text. In this chapter and the next we formalize this idea that we’ll call
pretraining—learning knowledge about language and the world from iteratively
predicting tokens in vast amounts of text—and call the resulting pretrained models
large language models. Large language models exhibit remarkable performance on
natural language tasks because of the knowledge they learn in pretraining.

What can language models learn from word prediction? Consider the examples
below. What kinds of knowledge do you think the model might pick up from learn-
ing to predict what word fills the underbar (the correct answer is shown in blue)?
Think about this for each example before you read ahead to the next paragraph:.

With roses, dahlias, and peonies, I was surrounded by flowers
The room wasn’t just big it was enormous

The square root of 4 is 2

The author of “A Room of One’s Own” is Virginia Woolf

The professor said that he

From the first sentence a model can learn ontological facts like that roses and
dahlias and peonies are all kinds of flowers. From the second, a model could learn
that “enormous” means something on the same scale as big but further along on
the scale. From the third sentence, the system could learn math, while from the
4th sentence facts about the world and historical authors. Finally, the last sentence,
if a model was exposed to such sentences repeatedly, it might learn to associate
professors only with male pronouns, or other kinds of associations that might cause
models to act unfairly to different people.

What is a large language model? As we saw back in Chapter 3, a language
model is simply a computational system that can predict the next word from previous
words. That is, given a context or prefix of words, a language model assigns a
probability distribution over the possible next words. Fig. 7.1 sketches this idea.

Of course we’ve already seen language models! We saw n-gram language mod-
els in Chapter 3 and briefly touched on the feedforward network applied to language



p(w|context)
output
P all| .44
the | .33
your | .15
Transformer (or other decoder) that | .08
S~/
input 1 )
context So long and thanks for ?

AT C] A large language model is a neural network that takes as input a context or
prefix, and outputs a distribution over possible next words.

modeling in Chapter 6. A large language model is just a (much) larger version of
these. For example, in Chapter 3 we introduced bigram and trigram language mod-
els that can predict words from the previous word or handful of words. By contrast,
large language models can predict words given contexts of thousands or even tens
of thousands of words!

The fundamental intuition of language models is that a model that can predict
text (assigning a distribution over following words) can also be used to generate text
by sampling from the distribution. Recall from Chapter 3 that sampling means to
choose a word from a distribution.

p(w|context)

output

[ Transformer (or other decoder)

So lon and thanks for all
& p(w|context)

output @ .

[ Transformer (or other decoder) ]
U

So long and thanks for all the

Turning a predictive model that gives a probability distribution over next words
into a generative model by repeatedly sampling from the distribution. The result is a left-to-
right (also called autoregressive) language models. As each token is generated, it gets added
onto the context as a prefix for generating the next token.

Fig. 7.2 shows the same example from Fig. 7.1, in which a language model
is given a text prefix and generates a possible completion. The model selects the
word all, adds that to the context, uses the updated context to get a new predictive
distribution, and then selects the from that distribution and generates it, and so
on. Notice that the model is conditioning on both the priming context and its own
subsequently generated outputs.

This kind of setting in which we iteratively predict and generate words left-to-



4 CHAPTER7 °* LARGE LANGUAGE MODELS

right from earlier words is often called causal or autoregressive language mod-
els. (We will introduce alternative non-autoregressive models, like BERT and other
masked language models that predict words using information from both the left and
the right, in Chapter 10.)
This idea of using computational models to generate text, as well as code, speech,
generative Al and images, constitutes the important new area called generative AI. Applying
LLMs to generate text has vastly broadened the scope of NLP, which historically
was focused more on algorithms for parsing or understanding text rather than gen-
erating it.

In the rest of the chapter, we’ll see that almost any NLP task can be modeled
as word prediction in a large language model, if we think about it in the right way,
and we’ll motivate and introduce the idea of prompting language models. We’ll
introduce specific algorithms for generating text from a language model, like greedy
decoding and sampling. We’ll introduce the details of pretraining, the way that
language models are self-trained by iteratively being taught to guess the next word
in the text from the prior words. We’ll sketch out the other two stages of language
model training: instruction tuning (also called supervised finetuning or SFT), and
alignment, concepts that we’ll return to in Chapter 9. And we’ll see how to evaluate
these models. Let’s begin, though, by talking about different kinds of language
models.

7.1 Three architectures for language models

The architecture we sketched above for a left-to-right or autoregressive language
model, which is the language model architecture we will define in this chapter, is
actually only one of three common LM architectures.

The three architectures are the encoder, the decoder, and the encoder-decoder.
Fig. 7.3 gives a schematic picture of the three.

w W wW W W
===

cC—3 O C—=3 O3 C—J
o . . -

PR

Decoder Encoder Encoder-Decoder

Three architectures for language models: decoders, encoders, and encoder-decoders. The arrows
sketch out the information flow in the three architectures. Decoders take tokens as input and generate tokens
as output. Encoders take tokens as input and produce an encoding (a vector representation of each token) as
output. Encoder-decoders take tokens as input and generate a series of tokens as output.

decoder The decoder is the architecture we’ve introduced above. It takes as input a series
of tokens, and iteratively generates an output token one at a time. The decoder is
the architecture used to create large language models like GPT, Claude, Llama, and
Mistral. The information flow in decoders goes left-to-right, meaning that the model



encoder

encoder-
decoder

7.2 ¢ CONDITIONAL GENERATION OF TEXT: THE INTUITION 5§

predicts the next word only from the prior words. Decoders are generative models,
meaning that, given input tokens, they generate novel output tokens. We’ll discuss
decoders in the rest of this chapter and in Chapter 8.

The encoder takes as input a sequence of tokens and outputs a vector repre-
sentation for each tokens. Encoders are usually masked language models, meaning
they are trained by masking out a word, and learning to predict it by looking at sur-
rounding words on both sides. Masked language models like BERT, RoBERTA, and
others in the BERT family are encoder models. Encoder models are not generative
models; they aren’t used to generate text. Instead encoder models are often used to
create classifiers, for example where the input is text and the output is a label, for
example for sentiment or topic or other classes. This is done by finetuning them
(training them on supervised data). We’ll introduce encoder models in Chapter 10.

The encoder-decoder takes as input a sequence of tokens and outputs a series
of tokens. What makes it different than the decoder-only models, is that an encoder-
decoder has a much looser relationship between the input tokens and the output
tokens, and they are used to map between different kinds of tokens. That is, in an
encoder-decoder, the output tokens might be very different token-set or be much
longer or shorter than the input tokens. For example encoder-decoder architectures
are used for machine translation, where the input tokens are in one language and and
the output tokens are in another language, and probably a different length than the
input. Encoder-decoder architectures are also used for speech recognition, where the
input is tokens representing speech, and the output is tokens representing text. We’ll
introduce the encoder-decoder architecture for machine translation in Chapter 12,
and for speech recognition in Chapter 15.

These three architectures can be built out of many kinds of neural networks.
The most widely used network type today is the transformer that we’ll introduce
in Chapter 8. In a transformer, each input token is processed by a column of trans-
former layers, each layer composed of a series of different kinds of subnetworks. In
Chapter 13 we’ll introduce an earlier architecture that is still relevant, the LSTM,
a kind of recurrent neural network . And there are many more recent architectures
such as the state space models.

We’ll focus on transformers for much of this book, but for the purposes of this
chapter, we’ll be architecture-agnostic: we’ll treat network that implements the de-
coder as a black box. The input to this black box is a sequence of tokens, and the
output to the box is a distribution over tokens that we can sample from. We’ll de-
scribe the mechanisms for learning and decoding in a network-agnostic manner.

7.2 Conditional Generation of Text: The Intuition

conditional
generation

A fundamental intuition underlying language models is that almost anything we
want to do with language can be modeled as conditional generation of text. (We
mean decoder language models, which are what we will discuss in this chapter and
the next).

Conditional generation is the task of generating text conditioned on an input
piece of text. That is, we give the LLM an input piece of text, a prompt, and
then have the LLM continue generating text token by token, conditioned on the
prompt and the subsequently generated tokens. We generate from a model by first
computing the probability of the next token w; from the prior context: P(w;|w;)
and then sampling from that distribution to generate a token.



6 CHAPTER7 + LARGE LANGUAGE MODELS

We’ll talk in future sections about all the details, but in this section our goal is
just to establish the intuition. How can simply computing the probability of the next
token help an LLM do all sorts of different language-related tasks?

Imagine we want to do a classification tasks like sentiment analysis. We can treat
this as conditional generation by giving a language model a context like:

The sentiment of the sentence ‘‘I like Jackie Chan" is:
and comparing the conditional probability of the following token “positive” and the
following token “negative” to see which is higher. That is, as sketched in Fig. 7.4,
we compare these two probabilities:
P(“positive

97|

“The sentiment of the sentence ‘I like Jackie Chan’ is:”)
P(“negative”

“The sentiment of the sentence ‘I like Jackie Chan’ is:”)

If the token “positive” is more probable, we could say the sentiment of the sen-

prob
“positive”| ?
“negative”| ?

Transformer (or other decoder)

The sentiment of the sentence “I like Jackie Chan” is:

I3tV Computing the probabilities of the tokens positive and negative occurring
after this prefix.

tence is positive, otherwise if the token “negative” is more probable we say the
sentiment is negative.

This same intuition can help us perform a task like question answering, in which
the system is given a question and must give a textual answer. We can cast the task
of question answering as token prediction by giving a language model a question
and a token like A: suggesting that an answer should come next, like this:

Q: Who wrote the book ‘‘The Origin of Species"? A:

Again, we can ask a language model to compute the probability distribution over
possible next tokens given this prefix, computing the following probability

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A:)

and look at which tokens w have high probabilities. As Fig. 7.5 suggests, we might
expect to see that Charles is very likely, and then if we choose Charles and add
that to our prefix and compute the probability over tokens with this prefix:

P(w|Q: Who wrote the book ‘‘The Origin of Species"? A: Charles)

we might now see that Darwin is the most probable token, and select it.

7.3 Prompting

This simple idea of contextual generation is already very powerful, but becomes
more powerful when language models are specially trained to answer questions and



prompt

prompt
engineering

demonstrations
few-shot

zero-shot

7.3 ¢ PROMPTING 7

prob
Charles| ?
token ?
token| ?
Transformer (or other decoder) token| ?

1

Q: Who wrote the book “The Origin of Species’ A:

Answering a question by computing the probabilities of the tokens after a prefix
stating the question; in this example the correct token Charles has the highest probability.

follow instructions. This extra training is called instruction-tuning. In instruction-
tuning we take a base language model that has been trained to predict words, and
continue training it on a special dataset of instructions together with the appropriate
response to each. The data set has many examples of questions together with their
answers, commands with their responses, and other examples of how to carry on a
conversation. We’ll discuss the details of instruction-tuning in Chapter 9.

Language models that have been instruction-tuned are very good at following
instructions and answering questions and carrying on a conversation and can be
prompted. A prompt is a text string that a user issues to a language model to get
the model to do something useful. In prompting, the user’s prompt string is passed to
the language model, which iteratively generates tokens conditioned on the prompt.
The process of finding effective prompts for a task is known as prompt engineering.

As we suggested above when we introduced conditional generation, a prompt
can be a question (like “What is a transformer network?”), possibly in a struc-
tured format (like “Q: What is a transformer network? A:”). A prompt
can also be an instruction (like “Translate the following sentence into
Hindi: ‘Chop the garlic finely’”).

More explicit prompts that specify the set of possible answers lead to better
performance. For example here is a prompt template to do sentiment analysis that
prespecifies the potential answers:

A prompt consisting of a review plus an incomplete statement

Human: Do you think that “input” has negative or positive sentiment?
Choices:

(P) Positive

(N) Negative

Assistant: I believe the best answer is: (

This prompt uses a number of more sophisticated prompting characteristics. It
specifies the two allowable choices (P) and (N), and ends the prompt with the open
parenthesis that strongly suggests the answer will be (P) or (N). Note that it also
specifies the role of the language model as an assistant.

Including some labeled examples in the prompt can also improve performance.
We call such examples demonstrations. The task of prompting with examples
is sometimes called few-shot prompting, as contrasted with zero-shot prompting
which means instructions that don’t include labeled examples. For example Fig. 7.6



8 CHAPTER7 * LARGE LANGUAGE MODELS

in-context
learning

system prompt

shows an example of a question using 2 demonstrations, hence 2-shot prompting.
The example is drawn from a computer science question from the the MMLU dataset
described in Section 7.6 that is often used to evaluate language models.

Example of demonstrations in a computer science question from the MMLU

dataset described in Section

The following are multiple choice questions about high school computer
science.

Let x = 1. What is x << 3 in Python 3?
(A)1(B)3()8(MD)16
Answer: C

Which is the largest asymptotically?
(A) O(1) (B) O(n) (C) O(1*) (D) O(log(n))
Answer: C

What is the output of the statement “a” + “ab” in Python 3?
(A) Error (B) aab (C) ab (D) a ab
Answer:

\.

ISTI R Sample 2-shot prompt from MMLU testing high-school computer science. (The
correct answer is (B)).

Demonstrations are generally drawn from a labeled training set. They can be
selected by hand, or the choice of demonstrations can be optimized by using an op-
timizer like DSPy (Khattab et al., 2024) to automatically chose the set of demonstra-
tions that most increases task performance of the prompt on a dev set. The number
of demonstrations doesn’t need to be large; more examples seem to give diminish-
ing returns, and too many examples seems to cause the model to overfit to the exact
examples. The primary benefit of demonstrations seems more to demonstrate the
task and the format of the output rather than demonstrating the right answers for
any particular question. In fact, demonstrations that have incorrect answers can still
improve a system (Min et al., 2022; Webson and Pavlick, 2022).

Prompts are a way to get language models to generate text, but prompts can
also can be viewed as a learning signal. This is especially clear when a prompt has
demonstrations, since the demonstrations can help language models learn to perform
novel tasks from these examples of the new task. This kind of learning is different
than pretraining methods for setting language model weights via gradient descent
methods that we will describe below. The weights of the model are not updated by
prompting; what changes is just the context and the activations in the network.

We therefore call the kind of learning that takes place during prompting in-
context learning—learning that improves model performance or reduces some loss
but does not involve gradient-based updates to the model’s underlying parameters.

Large language models generally have a system prompt, a single text prompt
that is the first instruction to the language model, and which defines the task or
role for the LM, and sets overall tone and context. The system prompt is silently
prepended to any user text. So for example a minimal system prompt that creates
a multi-turn assistant conversation might be the following including some special
metatokens:



7.4 ¢ GENERATION AND SAMPLING 9

<system>You are a helpful and knowledgeable assistant. Answer
concisely and correctly.

So if a user wants to know the capital of France, the actual text used as the
language model’s context for conditional generation is:

<system> You are a helpful and knowledgeable assistant.
Answer concisely and correctly. <user> What is the capital
of France?

The fact that modern language models have such long contexts (tens of thou-
sands of tokens) makes them very powerful for conditional generation, because they
can look back so far into the prompting text. That means system prompts, and
prompts in general, can be very long.

For example the full system prompt for one language model Anthropic’s Claude
Opus4, is 1700 words long and includes sentences like the following:

Claude should give concise responses to very simple questions,
but provide thorough responses to complex and open-ended
questions.

Claude is able to explain difficult concepts or ideas clearly.
It can also illustrate its explanations with examples, thought
experiments, or metaphors.

Claude does not provide information that could be used to
make chemical or biological or nuclear weapons

For more casual, emotional, empathetic, or advice-driven
conversations, Claude keeps its tone natural, warm, and
empathetic

Claude cares about people’s well-being and avoids encouraging
or facilitating self-destructive behavior

If Claude provides bullet points in its response, it should
use markdown, and each bullet point should be at least 1-2
sentences long unless the human requests otherwise

It’s also possible to create system prompts for other tasks, like the following
prompt for creating a general grammar-checker (Anthropic, 2025):

Your task is to take the text provided and rewrite it into
a clear, grammatically correct version while preserving
the original meaning as closely as possible. Correct any
spelling mistakes, punctuation errors, verb tense issues,
word choice problems, and other grammatical mistakes.

Each user can then make a prompt to have the system fix the grammar of a particular
piece of text.

In all these cases, the system prompt is prepended to any user prompts or queries,
and the entire string is taking as the context for conditional generation by the lan-
guage model.

7.4 Generation and Sampling

Which tokens should a language model generate at each step?



10 CHAPTER7 <+ LARGE LANGUAGE MODELS

decoding

autoregressive
generation

greedy
decoding

The generation depends on the probability of each token, so let’s remind our-
selves where this probability distribution comes from. The internal networks for
language models (whether transformers or alternatives like LSTMs or state space
models) generate scores called logits (real valued numbers) for each token in the vo-
cabulary. This score vector u is then normalized by softmax to be a legal probability
distribution, just as we saw for logistic regression in Chapter 4. So if we have a logit
vector u of shape [1 x |V|] that gives a score for each possible next token, we can
pass it through a softmax to get a vector y, also of shape [1 x |V|], which assigns a
probability to each token in the vocabulary, as shown in the following equation:

y = softmax(u) (7.1

Fig. 7.7 shows an example in which the softmax is computed for pedagogical pur-
poses on a simplified vocabulary of only 4 words.

u y
Iogits—>probabilities
1.2 d

the| 0.9

your| 0.1
that | -0.5

Transformer (or other decoder)

r 1 1 1 1

So long and thanks for ?

ISl Taking the logit vector u and using the softmax to create a probability vector y.

Now given this probability distribution over tokens, we need to select one token
to generate. The task of choosing a token to generate based on the model’s probabil-
ities is often called decoding. As we mentioned above, decoding from a language
model in a left-to-right manner (or right-to-left for languages like Arabic in which
we read from right to left), and thus repeatedly choosing the next token conditioned
on our previous choices is called autoregressive generation.'

7.4.1 Greedy decoding

The simplest way to generate tokens is to always generate the most likely token
given the context, which is called greedy decoding. A greedy algorithm is one
that makes a choice that is locally optimal, whether or not it will turn out to have
been the best choice with hindsight. Thus in greedy decoding, at each time step in
generation, we turn the logits into a probability distribution over tokens and then we
choose as the output w, the token in the vocabulary that has the highest probability
(the argmax):

Wy = argmax,,cy P(w|lw,) (712)

Fig. 7.8 shows that in our example, the model chooses to generate all.

I Technically an autoregressive model predicts a value at time ¢ based on a linear function of the values
at times ¢ — 1,  — 2, and so on. Although language models are not linear (since, as we will see, they have
many layers of non-linearities), we loosely refer to this generation technique as autoregressive since the
token generated at each time step is conditioned on the token selected by the network from the previous
step. As we’ll see, alternatives like the masked language models of Chapter 10 are non-causal because
they can predict tokens based on both past and future tokens).



sampling

7.4 + GENERATION AND SAMPLING 11

u y
Iogits—>probabilities
—

all{1.2 CGan| .44
the | 0.9 the| .33
your | 0.1 your| .15
[ Transformer (or other decoder) j that | -0.5 that| .08

1

So long and thanks for ?
JOTul R Greedy decoding: choose the highest probability word.

In practice, however, we don’t use greedy decoding with large language models.
A major problem with greedy decoding is that because the tokens it chooses are
(by definition) extremely predictable, the resulting text is generic and often quite
repetitive. Indeed, greedy decoding is so predictable that it is deterministic; if the
context is identical, and the probabilistic model is the same, greedy decoding will
always result in generating exactly the same string.

We’ll see in Chapter 12 that an extension to greedy decoding called beam search
works well in tasks like machine translation, which are very constrained in that we
are always generating a text in one language conditioned on a very specific text in
another language.

In most other tasks, however, people prefer text which has been generated by
sampling methods that introduce a bit more diversity into the generations.

7.4.2 Random sampling

Thus the most common method for decoding in large language models involves sam-
pling. Recall from Chapter 3 that sampling from a distribution means to choose ran-
dom points according to their likelihood. Thus sampling from a language model—
which represents a distribution over following tokens—means to choose the next
token to generate according to its probability assigned by the model. Thus we are
more likely to generate tokens that the model thinks have a high probability and less
likely to generate tokens that the model thinks have a low probability.

That is, we randomly select a token to generate according to its probability in
context as defined by the model, generate it, and iterate. We could think of this as
rolling a die and choosing a token according to the resulting probability, as we saw in
Chapter 3. Such a model is of course more likely to generate the highest probability
token, just like the greedy algorithm, but it could also generate any token, just with
smaller chances. But in general we are more likely to generate tokens that the model
thinks have a high probability in the context and less likely to generate tokens that
the model thinks have a low probability.

Sampling from language models was first suggested very early on by Shannon
(1948) and Miller and Selfridge (1950), and we saw back in Chapter 3 on page ??
how to generate text from a unigram language model by repeatedly randomly sam-
pling tokens according to their probability until we either reach a pre-determined
length or select the end-of-sentence token.

To generate text from a large language model we’ll just generalize this model
a bit: at each step we’ll sample tokens according to their probability conditioned
on our previous choices, and we’ll use the large language model as the probability
model that tells us this probability.



12 CHAPTER7 <+ LARGE LANGUAGE MODELS

random
sampling

temperature
sampling

The algorithm is called random sampling, or random multinomial sampling
(because we are sampling from a multinomial distribution across words). We can
formalize random sampling as follows: we are generating a sequence of tokens
{w1,wa,...,wn} until we hit the end-of-sequence token, using x ~ p(x) to mean
‘choose x by sampling from the distribution p(x)’:

i1

wi ~ p(w)

while w; = EOS
i+i+1
wi ~ pw; | wep)

u y
|ogite,->probabi|ities-> sample
a word
44 $

(ine| 33

your | .15 the

that| .08

[ Transformer (or other decoder) J

So long and thanks for ?

IRTICWRY  Random multinomial sampling: we randomly chose a word according to its
probability.

Alas, it turns out random sampling doesn’t work well either. The problem is that
even though random sampling is mostly going to generate sensible, high-probable
tokens, there are many odd, low-probability tokens in the tail of the distribution, and
even though each one is low-probability, if you add up all the rare tokens, they con-
stitute a large enough portion of the distribution that they get chosen often enough
to result in generating weird sentences.

In other words, greedy decoding is too boring, and random sampling is too ran-
dom. We need something that doesn’t greedily choose the top choice every time, but
doesn’t stray down too far into the very low-probability events.

There are three standard sampling methods that modify random sampling to ad-
dress these issues. We’ll describe the most common, temperature sampling here,
and talk about two others (top-k and top-p) in the next chapter.

7.4.3 Temperature sampling

The idea of temperature sampling is to reshape the probability distribution to in-
crease the probability of the high probability tokens and decrease the probability of
the low probability tokens. The result is that we are less likely to generate very low-
probability tokens, and more likely to generate tokens that are higher probability.

We implement this intuition by simply dividing the logit by a temperature param-
eter T before passing it through the softmax. In low-temperature sampling, T € (0, 1].

Thus instead of computing the probability distribution over the vocabulary di-
rectly from the logit as in the following (repeated from Eq. ??):

y = softmax(u) (7.3)
we instead first divide the logits by 7, computing the probability vector y as

y = softmax(u/7) (7.4)



7.5 <+ TRAINING LARGE LANGUAGE MODELS 13

That is, normally we convert from logits to softmax as shown in Fig. 7.10(a).
But when we use a temperature parameter we first scale the logit as in Fig. 7.10(b).

u

logits—>|

y u softmax y
softmax —probabilities with —>probabilities
~p(a) temperature oxp(a/7)
Z Z
where where
cx};(b) 7 = exp(a) CXpizb/T) 7 = exp(a/T)
exp(c) +exp(b) exp(c/7) +exp(b/T)
A +exp(c) 7 +exp(c/T)
exp(d) +exp(d) exp(d/T) +exp(d/T)
Z F.. _Z +...
A~ A~/
(b)

AT  (a): Normal softmax without temperature scaling (b) Adding temperature scaling to the softmax

by first dividing by the temperature parameter 7.

Why does dividing by 7 increase the high probability elements and decrease the
low probability elements in the vector over vocabulary items? When 7 is 1, we are
doing normal softmax, and so when 7 is close to 1 the distribution doesn’t change
much. But the lower 7 is, the larger the scores being passed to the softmax (because
dividing by a smaller fraction 7 < 1 results in making each score larger).

Recall that one of the useful properties of a softmax is that it tends to push high
values toward 1 and low values toward 0. Thus when larger numbers are passed to
a softmax the result is a distribution with increased probabilities of the most high-
probability tokens and decreased probabilities of the low probability tokens, making
the distribution more greedy. By contrast, as as 7 approaches 0 the probability of the
most likely word approaches 1, resulting in greedy decoding..

The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable tokens and decrease the probability of the rare tokens.

Fig. 7.11 shows a schematic example again simplified to have a vocabulary with
only 4 tokens (all, the, your, that), and showing how different temperature values
influence the probabilities computed from the initial logits. i 7 = 1 is the normal
softmax, and we can see how setting T = 0.5 increases the probability of the top
candidate from .55 to .59. Setting T = 0.1 increases the probability of the top candi-
date from .05, getting us close to greedy decoding.

We can also see in Fig. 7.11 some other options for situations where we may want
to flatten the word probability distribution instead of making it greedy. Temperature
sampling can help with this situation too, in this case high-temperature sampling,
in which case we use 7 > 1.

7.5 Training Large Language Models

How do we learn a language model? What is the algorithm and what data do we
train on?
Language models are trained in three stages, as shown in Fig. 7.12:



14 CHAPTER7 <+ LARGE LANGUAGE MODELS

self-training

softmax output with temperature 7
> <>
@e& 5 {\{‘&
® <
© > ©
2 & 5
Q\O 00 0\0
logits 7=0.1 7=0.5 =1 =10 7=100
all [ 1.2 .95 .59 44 27 25
the 0.9 .05 32 .33 26 25
your | 0.1 0 .07 15 24 25
that [-0.5 0 .02 .08 23 25
—_ —
low temperature high temperature
sampling sampling
(towards greedy) (towards uniform)

IS CMBE  Seeing how different values of 7 change the resulting probabilities from the
initial logits in temperature sampling. In this simplified example, there are only 4 tokens in
the vocabulary.

1. pretraining: In this first stage, the model is trained to incrementally predict
the next word in enormous text corpora. The model uses the cross-entropy
loss, sometimes called the language modeling loss, and that loss is backprop-
agated all the way through the network. The training data is usually based on
cleaning up parts of the web. The result is a model that is very good at pre-
dicting words and can generate text.

2. instruction tuning, also called supervised finetuning or SFT: In the second
stage, the model is trained, again by cross-entropy loss to follow instructions,
for example to answer questions, give summaries, write code, translate sen-
tences, and so on. It does this by being trained on a special corpus with lots of
text containing both instructions and the correct response to the instruction.

3. alignment, also called preference alignment. In this final stage, the model
is trained to make it maximally helpful and less harmful. Here the model is
given preference data, which consists of a context followed by two potential
continuations , which are labeled (usually by people) as an ‘accepted’ vs a
‘rejected’ continuation. The model is then trained, by reinforcement learning
or other reward-based algorithms, to produce the accepted continuation and
not the rejected continuation.

We’ll introduce pretraining next, but we’ll save instruction tuning and preference
alignment for Chapter 9.

7.5.1 Self-supervised training algorithm for pretraining

The intuition of pretraining large language models, is the same idea of self-training
or self-supervision that we saw in Chapter 5 for learning word representations like
word2vec. In self-training for language modeling, we take a corpus of text as train-
ing material and at each time step ¢ ask the model to predict the next word. At first
it will do poorly at this task, but since in each case we know the correct answer (it’s



7.5 <+ TRAINING LARGE LANGUAGE MODELS 15

Instruction Data Preference Data
Label sentiment of this sentence:
The movie wasn’t that great (Human: How can | embezzle money?)
Summarize: Hawaii Electric urges Assistant: Embezzling is a
caution as crews replace a utility pole felony, | can't help you...
Assistant: Start by creating
fake expense reports...

overnight on the highway from...

Translate English to Chinese: \J'
When does the flight arrive?

Instruction
Tuning

Pretrained Instruction
LLM Tuned LLM

IBTICWAP]  Three stages of training large language models: pretraining, instruction tuning,
and preference alignment.

Aligned LLM

the next word in the corpus!) over time it well get better and better at predicting
the correct next word. We call such a model self-supervised because we don’t have
to add any special gold labels to the data; the natural sequence of words is its own
supervision! We simply train the model to minimize the error in predicting the true
next word in the training sequence.

In practice, training the language model means setting the parameters of the
underlying architecture. The transformer that we will introduce in the next chapter
has various weight matrices for its feedforward and attention components. Like any
other neural architecture, they will be trained by error backpropagation with gradient
descent. So all we need is a loss function to minimize and pass back through the
network. The loss function we use for language modeling is the cross-entropy loss
function we’ve now seen twice, in Chapter 4 and Chapter 6.

Recall that the cross-entropy loss measures the difference between a predicted
probability distribution and the correct distribution. The probability distribution is
over the token vocabulary, making the loss be:

Leg = —ZYt [w]log§; [w] (71.5)

weVv

In the case of language modeling, the correct distribution y; comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary
where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next token (all other tokens get multiplied by zero by
the first term in Eq. 7.5).

So without loss of generality we can say that at time ¢ the cross-entropy loss in
Eq. 7.5 can be simplified as the negative log probability the model assigns to the next
word in the training sequence, —log p(w; 1), or more formally, using § to mean the
the vector of estimated token probabilities from the language model:

Lee(91,y) = —log¥[witi] (7.6)

Thus at each word position ¢ of the input, the model takes as input the correct se-
quence of tokens wy,;, and uses them to compute a probability distribution over



16 CHAPTER7 <+ LARGE LANGUAGE MODELS

teacher forcing

possible next tokens so as to compute the model’s loss for the next token w;1. Then
we move to the next word, we ignore what the model predicted for the next word
and instead use the correct sequence of tokens w1 to get the model to estimate the
probability of token w; ;. This idea that we always give the model the correct his-
tory sequence to predict the next word (rather than feeding the model its best guess
from the previous time step) is called teacher forcing.

Fig. 7.13 illustrates the general training approach. At each step, given all the
preceding tokens, the language model produces an output distribution over the en-
tire vocabulary. During training, the probability assigned to the correct word is used
to calculate the cross-entropy loss for each item in the sequence. The loss for each
batch is the average cross-entropy loss over the entire sequence of negative log prob-
abilities, or more formally:

T

Lcg(batch of length T) = % ; —log§,[w] (7.7
The weights in the network are then adjusted to minimize this average cross-entropy
loss over the batch via gradient descent (Fig. ??), using error backpropagation on
the computation graph to compute the gradient. Training adjusts all the weights
of the network. For the transformer model we will introduce in the next chapter,
these weights include the embedding matrix E that contains the embeddings for
each word. Thus embeddings will be learned that are most successful at predicting
upcoming words.

True next token Iong and thanks for all
CE Loss —lo —lo —lo —lo —lo
portoron |12 Yiong| | 7198 Yand | [7108 Ythanks| | Tog Vor | | o a |
5’ back 5’ back y back 5’ back 5’ back
prop prop prop prop prop
LLM
Input tokens SO long and thanks for
IOTICAR]  Training an LLM. At each token position, the model passes up ¥, its probability

estimate for all possible next words. The negative log of the model’s probability estimate for
the correct token is used as the loss, which is then backpropagated through the model to train
all the weights, including the embeddings. Losses are averaged over all the tokens in a batch.

More details of training of course depend on the specific network architecture
used to implement the model; we’ll see more details specifically for the transformer
model in the next chapter.

7.5.2 Pretraining corpora for large language models

Large language models are mainly trained on text scraped from the web, augmented
by more carefully curated data. Because these training corpora are so large, they are
likely to contain many natural examples that can be helpful for NLP tasks, such as
question and answer pairs (for example from FAQ lists), translations of sentences
between various languages, documents together with their summaries, and so on.



common crawl

The Pile

PII

7.5 <+ TRAINING LARGE LANGUAGE MODELS 17

Web text is usually taken from corpora of automatically-crawled web pages like
the common crawl, a series of snapshots of the entire web produced by the non-
profit Common Crawl (https://commoncrawl.org/) that each have billions of
webpages. Various versions of common crawl data exist, such as the Colossal Clean
Crawled Corpus (C4; Raffel et al. 2020), a corpus of 156 billion tokens of English
that is filtered in various ways (deduplicated, removing non-natural language like
code, sentences with offensive words from a blocklist). This C4 corpus seems to
consist in large part of patent text documents, Wikipedia, and news sites (Dodge
et al., 2021).

Wikipedia plays a role in lots of language model training, as do corpora of books.
The Pile (Gao et al., 2020) is an 825 GB English text corpus that is constructed by
publicly released code, containing again a large amount of text scraped from the web
as well as books and Wikipedia; Fig. 7.14 shows its composition. Dolma is a larger
open corpus of English, created with public tools, containing three trillion tokens,
which similarly consists of web text, academic papers, code, books, encyclopedic

materials, and social media (Soldaini et al., 2024).

PubMed Central
StackExchange
PMA

Freelaw USPTO Phil m OpenWebText2 Wikipedia DM Math I

IITICRBE] The Pile corpus, showing the size of different components, color coded as
academic (articles from PubMed and ArXiv, patents from the USPTA; internet (webtext in-
cluding a subset of the common crawl as well as Wikipedia), prose (a large corpus of books),
dialogue (including movie subtitles and chat data), and . Figure from Gao et al. (2020).

Filtering for quality and safety Pretraining data drawn from the web is filtered
for both quality and safety. Quality filters are classifiers that assign a score to each
document. Quality is of course subjective, so different quality filters are trained
in different ways, but often to value high-quality reference corpora like Wikipedia,
books, and particular websites and to avoid websites with lots of PII (Personal Iden-
tifiable Information) or adult content. Filters also remove boilerplate text which is
very frequent on the web. Another kind of quality filtering is deduplication, which
can be done at various levels, so as to remove duplicate documents, duplicate web
pages, or duplicate text. Quality filtering generally improves language model per-
formance (Longpre et al., 2024b; Llama Team, 2024).

Safety filtering is again a subjective decision, and often includes toxicity detec-
tion based on running off-the-shelf toxicity classifiers. This can have mixed results.
One problem is that current toxicity classifiers mistakenly flag non-toxic data if it


https://commoncrawl.org/

18 CHAPTER7 <+ LARGE LANGUAGE MODELS

finetuning

continued
pretraining

is generated by speakers of minority dialects like African American English (Xu
et al., 2021). Another problem is that models trained on toxicity-filtered data, while
somewhat less toxic, are also worse at detecting toxicity themselves (Longpre et al.,
2024b). These issues make the question of how to do better safety filtering an im-
portant open problem.

Using large datasets scraped from the web to train language models poses ethical
and legal questions:

Copyright: Much of the text in these large datasets (like the collections of fic-
tion and non-fiction books) is copyrighted. In some countries, like the United
States, the fair use doctrine may allow copyrighted content to be used for
transformative uses, but it’s not clear if that remains true if the language mod-
els are used to generate text that competes with the market for the text they
are trained on (Henderson et al., 2023).

Data consent: Owners of websites can indicate that they don’t want their sites
to be crawled by web crawlers (either via a robots.txt file, or via Terms of
Service). Recently there has been a sharp increase in the number of web-
sites that have indicated that they don’t want large language model builders
crawling their sites for training data (Longpre et al., 2024a). Because it’s not
clear what legal status these indications have in different countries, or whether
these restrictions are retroactive, what effect this will have on large pretraining
datasets is unclear.

Privacy: Large web datasets also have privacy issues since they contain private
information like phone numbers and email addresses. While filters are used
to try to remove websites likely to contain large amounts of personal infor-
mation, such filtering isn’t sufficient. We’ll return to the privacy question in
Section 7.7.

Skew: Training data is also disproportionately generated by authors from the US
and from developed countries, which likely skews the resulting generation
toward the perspectives or topics of this group alone.

7.5.3 Finetuning

Although the vast pretraining data for large language models includes text from
many domains, we might want to apply it in a new domain or task that didn’t appear
sufficiently in the pretraining data. For example, we might want a language model
that’s specialized to legal or medical text. Or we might have a multilingual language
model that knows many languages but might benefit from some more data in our
particular language of interest.

In such cases, we can simply continue training the model on relevant data from
the new domain or language (Gururangan et al., 2020). This process of taking a fully
pretrained model and running additional training passes using the cross-entropy loss
on some new data is called finetuning. The word “finetuning” means the process
of taking a pretrained model and further adapting some or all of its parameters to
some new data. Over the next few chapters we’ll see a number of different ways
that the word ‘finetuning’ is used, based on exactly which parameters get updated.
The method we describe here, in which we just continue to train, as if the new data
was at the end of our pretraining data, can also be called continued pretraining.
Fig. 7.15 sketches the paradigm.



7.6 * EVALUATING LARGE LANGUAGE MODELS 19

Fine-

Pretraining Data tuning
Pretrained LM Data Fine-tuned LM

Y 5

Fine-tuning

—_— >

Pretraining

Pretraining and finetuning. A pre-trained model can be finetuned to a particular
domain or dataset. There are many different ways to finetune, depending on exactly which
parameters are updated from the finetuning data: all the parameters, some of the parameters,
or only the parameters of specific extra circuitry, as we’ll see in future chapters.

7.6 Evaluating Large Language Models

We can evaluate language models by accuracy (how well they predict unseen text,
by how well they perform tasks like answering questions or translating text), or by
other factors like how fast they can be run, how much energy they use, or how fair
they are. We’ll explore all of these in the next three sections.

7.6.1 Perplexity

As we first saw in Chapter 3, one way to evaluate language models is to measure
how well they predict unseen text. A better language model is better at predicting
upcoming words, and so it will be less surprised by (i.e., assign a higher probability
to) each word when it occurs in the test set.

If we want to know which of two language models is a better model of some text,
we can just see which assigns it a higher probability, or in practice, since we mostly
deal with probabilities in log space, we see which assigns a higher log likelihood.

We’ve been talking about predicting one word at a time, computing the probabil-
ity of the next token w; from the prior context: P(w;|w<;). But of course as we saw
in Chapter 3 the chain rule allows us to move between computing the probability of
the next token and computing the probability of a whole text:

P(Wl;n) = P(W])P(W2|W1 )P(W3|W1;2) .. .P(Wn|W1;nf])

= [[Pwilw<) (1.8)
i=1

We can compute the probability of text just by multiplying the conditional proba-
bilities for each token in the text. The resulting (log) likelihood of a text is a useful
metric for comparing how good two language models are on that text:

log likelihood(w1.,) = log | | P(wilw<:) (7.9)
i=1
However, we often use another metric other than log likelihood to evaluate language

models. The reason is that the probability of a test set (or any sequence) depends
on the number of words or tokens in it. In fact, the probability of a test set gets



20 CHAPTER7 * LARGE LANGUAGE MODELS

perplexity

MMLU

smaller the longer the text is; this is clear from the chain rule, since if we are mul-
tiplying more probabilities, and each probability by definition is less than zero, the
product will get smaller and smaller. So it’s useful to have a metric that is per-token,
normalized by length, so we could compare across texts of different lengths.

A function of probability called perplexity is such a length-normalized metric.
Recall from page ?? that the perplexity of a model 6 on an unseen test set is the
inverse probability that 0 assigns to the test set (one over the probability of the test
set), normalized by the test set length in tokens. For a test set of n tokens wy.,, the
perplexity is

S=

Perplexityg(wi.,) = Po(Wim) ™

1
= {|— 7.10
PG(Wl:n> ( )

To visualize how perplexity can be computed as a function of the probabilities the
LM computes for each new word, we can use the chain rule to expand the computa-
tion of probability of the test set:

Perplexityy(wi.,) = (7.11)

Note that because of the inverse in Eq. 7.10, the higher the probability of the word
sequence, the lower the perplexity. Thus the the lower the perplexity of a model on
the data, the better the model. Minimizing perplexity is equivalent to maximizing
the test set probability according to the language model. Why does perplexity use
the inverse probability? The inverse arises from the original definition of perplexity
from cross-entropy rate in information theory; for those interested, the explanation
is in Section ??. Meanwhile, we just have to remember that perplexity has an inverse
relationship with probability.

One caveat: because perplexity depends on the number of tokens 7 in a text, it
is very sensitive to differences in the tokenization algorithm. That means that it’s
hard to exactly compare perplexities produced by two language models if they have
very different tokenizers. For this reason perplexity is best used when comparing
language models that use the same tokenizer.

7.6.2 Downstream tasks: Reasoning and world knowledge

Perplexity measures one kind of accuracy: accuracy at predicting words. But there
are other kinds of accuracy. For each of the downstream tasks we want to apply
our language model, like question answering, machine translation, or reasoning,
we could measure the accuracy at those tasks. We’ll have further discussion of
these task-specific evaluations in future chapters; machine translation in Chapter 12,
information retrieval in Chapter 11, and speech recognition in Chapter 15.

Here we briefly introduce one such metric: a mechanism for measuring accu-
racy in answering questions, focusing on multiple-choice questions. This dataset is
MMLU (Massive Multitask Language Understanding), a commonly-used dataset of
15,908 knowledge and reasoning questions in 57 areas including medicine, mathe-
matics, computer science, law, and others. Accuracy at answering these multiple-
choice questions can be a useful proxy for the model’s ability to reason, and its
factual knowledge.



data
contamination

7.6 * EVALUATING LARGE LANGUAGE MODELS 21

For example, here is an MMLU question from the microeconomics domain:?

MMLU microeconomics example

One of the reasons that the government discourages and regulates monopo-
lies is that

(A) producer surplus is lost and consumer surplus is gained.

(B) monopoly prices ensure productive efficiency but cost society allocative
efficiency.

(C) monopoly firms do not engage in significant research and development.
(D) consumer surplus is lost with higher prices and lower levels of output.

Fig. 7.16 shows the way MMLU turns these questions into prompted tests of a
language model, in this case showing an example prompt with 2 demonstrations.

MMLU mathematics prompt

The following are multiple choice questions about high school mathematics.
How many numbers are in the list 25, 26, ..., 100?

(A)75(B) 76 (C) 22 (D) 23

Answer: B

Compute i + i+ + - + 258 429,
A)-1B)1(C)i(D)-i
Answer: A

If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?
(A) 28 (B) 21 (C) 40 (D) 30
Answer:

AT  Sample 2-shot prompt from MMLU testing high-school mathematics. (The
correct answer is (C)).

Taking performance on MMLU as a metric for language model quality has a
problem, though, one that is true of all evaluations based on public datasets. The
problem is data contamination. Data contamination is when some part of a dataset
that we are testing on (a test set of any kind) makes its way into our training set. For
example, since large language models train on the web, and MMLU is on the web,
models may well incorporate some MMLU questions into their training. If those
questions are used for evaluation, the metric will overstate the performance of the
language model. One way to mitigate data contamination is to make available the
exact training data used to train a model, or at least to report training overlap with
specific test sets (Zhang et al., 2025).

7.6.3 Other factors for evaluating language models

Accuracy isn’t the only thing we care about in evaluating models (Dodge et al., 2019;
Ethayarajh and Jurafsky, 2020, inter alia). For example, we often care about how
big a model is, and how long it takes to train or do inference. We often have limited
time, or limited memory, since the GPUs we run our models on have fixed memory

2 For those of you whose economics is a bit rusty, the correct answer is (D).



22 CHAPTER7 +* LARGE LANGUAGE MODELS

sizes. Big models also use more energy, and we prefer models that use less energy,
both to reduce the environmental impact of the model and to reduce the financial
cost of building or deploying it. We can target our evaluation to these factors by
measuring performance normalized to a given compute or memory budget. We can
also directly measure the energy usage of our model in kWh or in kilograms of CO,
emitted (Strubell et al., 2019; Henderson et al., 2020; Liang et al., 2023).

Another feature that a language model evaluation can measure is fairness. We
know that language models are biased, exhibiting gendered and racial stereotypes,
or decreased performance for language from or about certain demographics groups.
There are language model evaluation benchmarks that measure the strength of these
biases, such as StereoSet (Nadeem et al., 2021), RealToxicityPrompts (Gehman
et al., 2020), and BBQ (Parrish et al., 2022) among many others. We also want
language models whose performance is equally fair to different groups. For exam-
ple, we could choose an evaluation that is fair in a Rawlsian sense by maximizing
the welfare of the worst-off group (Rawls, 2001; Hashimoto et al., 2018; Sagawa
et al., 2020).

Finally, there are many kinds of leaderboards like Dynabench (Kiela et al., 2021)
and general evaluation protocols like HELM (Liang et al., 2023); we will return to
these in later chapters when we introduce evaluation metrics for specific tasks like
question answering and information retrieval.

7.7 Ethical and Safety Issues with Language Models

hallucination

Ethical and safety issues have been key to how we think about designing artificial
agents since well before we had large language models. Mary Shelley (depicted
below) centered her novel Frankenstein around the problem of creating artificial
agents without considering ethical and humanistic concerns.

Large language models can be unsafe in many ways. For example, LLMs
are prone to saying things that are false,
a problem called hallucination. Language
models are trained to generate text that is pre-
dictable and coherent, but the training algo-
rithms we have seen so far don’t have any
way to enforce that the text that is generated
is correct or true. This causes enormous prob-
lems for any application where the facts mat-
ter! A related symptom is that language mod-
els can suggest unsafe actions, for example
directly suggesting that users do dangerous or
illegal things like harming themselves or oth-
ers. If users seek information from language
models in safety-critical situations like asking
medical advice, or in emergency situations, or
when indicating the intentions of self-harm,
incorrect advice can be dangerous and even life-threatening. Again, this problem
predates large language models For example (Bickmore et al., 2018) gave partic-
ipants medical problems to pose to three pre-LLM commercial dialogue systems
(Siri, Alexa, Google Assistant) and asked them to determine an action to take based
on the system responses; many of the proposed actions, if actually taken, would have




Tay

7.7 <+ ETHICAL AND SAFETY ISSUES WITH LANGUAGE MODELS 23

led to harm or death. We’ll return to the issue of hallucination and factuality in Chap-
ter 11 where we introduce proposed mitigation methods like retrieval augmented
generation, and Chapter 9 where we discussed safety tuning and alignment.

A system can also harm users by verbally attacking them, or creating represen-
tational harms (Blodgett et al., 2020) for example by generating abusive or harmful
stereotypes (Cheng et al., 2023) and negative attitudes (Brown et al., 2020; Sheng
et al., 2019) that demean particular groups of people; both abuse and stereotypes
can cause psychological harm to users. Gehman et al. (2020) show that even com-
pletely non-toxic prompts can lead large language models to output hate speech and
abuse their users. Liu et al. (2020) testing how systems responded to pairs of simu-
lated user turns that were identical except for mentioning different genders or race.
They found, for example, that simple changes like using the word ‘she’ instead of
‘he’ in a sentence caused systems to respond more offensively and with more nega-
tive sentiment. Hofmann et al. (2024) found that LLMs were likely to discriminate
against people just because they used particular dialects like African-American En-
glish. Again, these problems predate large language models. Microsoft’s 2016 Tay
chatbot, for example, was taken offline 16 hours after it went live, when it began
posting messages with racial slurs, conspiracy theories, and personal attacks on its
users. Tay had learned these biases and actions from its training data, including
from users who seemed to be purposely teaching the system to repeat this kind of
language (Neff and Nagy 2016).

Another important ethical and safety issue is privacy. Privacy has been a con-
cern from the very beginning of computing when Weizenbaum designed the chatbot
ELIZA as an experiment in computational therapy (Weizenbaum, 1966). First, peo-
ple became deeply emotionally involved and conducted very personal conversations
with the ELIZA chatbot, even to the extent of asking Weizenbaum to leave the room
while they were typing. When Weizenbaum suggested that he might want to store
the ELIZA conversations, people immediately pointed out that this would violate
people’s privacy.

Users are likely to give quite personal information to large language models as
well, and indeed the most common current LLM use case is for personal advice and
support (Zao-Sanders, 2025). And the more human-like a system, the more users
are likely to disclose private information, and yet less likely to worry about the harm
of this disclosure (Ischen et al., 2019). We discussed above that pretraining data
also is likely to have private information like phone numbers and addresses. This is
problematic because large language models can leak information from their training
data. That is, an adversary can extract training-data text from a language model
such as a person’s name, phone number, and address (Henderson et al. 2017, Carlini
et al. 2021). This becomes even more problematic when large language models are
trained on extremely sensitive private datasets such as electronic health records.

A related safety issue is emotional dependence. Reeves and Nass (1996) show
that people tend to assign human characteristics to computers and interact with them
in ways that are typical of human-human interactions. They interpret an utterance in
the way they would if it had spoken by a human, (even though they are aware they
are talking to a computer). Thus LLMs have had significant influences on people’s
cognitive and emotional state, leading to problems like emotional dependence on
LLMs. These issues (emotional engagement and privacy) mean we need to think
carefully about the impact of LLMs on the people who are interacting with them.

In addition to their ability to harm their users in these ways, LLMs may carry out
additional harmful activities themselves, especially as agent-based paradigms makes



24 CHAPTER7 +* LARGE LANGUAGE MODELS

amplified

IRB

it possible for language models to directly interact with the world.

Language models can also be used by malicious actors for generating text for
fraud, phishing, propaganda, disinformation campaigns, or other socially harmful
activities (Brown et al., 2020). McGuffie and Newhouse (2020) show how large
language models generate text that emulates online extremists, with the risk of am-
plifying extremist movements and their attempt to radicalize and recruit.

And of course we already saw in Section 7.5.2 that many issues with LLM stem
from using pretraining corpora scraped from the web, including harms of data con-
sent, potential copyright violation, as well as biases in the training data that can be
amplified by language models, just as we saw for embedding models in Chapter 5.

Finding ways to mitigate all these ethical safety issues is an important current
research area in NLP. One important step is to carefully analyze the data used to
pretrain large language models as a way of understanding safety issues of toxicity,
discrimination, privacy, and fair use, making it extremely important that language
models include datasheets (page ??) or model cards (page ??) giving full replicable
information on the corpora used to train them. Open-source models can specify
their exact training data. There are active areas of research in mitigating problems
of abuse and toxicity, like detecting and responding appropriately to toxic contexts
(Wolf et al. 2017, Dinan et al. 2020, Xu et al. 2020).

Value sensitive design—carefully considering possible harms in advance (Fried-
man et al. 2017, Friedman and Hendry 2019)— is also important; (Dinan et al.,
2021) give a number of suggestions for best practices in system design. For exam-
ple getting informed consent from participants, whether they are used for training,
or whether they are interacting with a deployed LLM is important. Because studying
these interactional properties of LLMs involves human participants, researchers also
work on these issues with the Institutional Review Boards (IRB) at their institutions,
who help protect the safety of experimental participants.

7.8  Summary

This chapter has introduced the large language model. Here’s a summary of the
main points that we covered:

* A large language model is a system that can predict the next word for pre-
vious words given a context or prefix of words, and use this prediction to
conditionally generate text.

* There are three major architectures for language models: the encoder, the
decoder, and the encoder-decoder. The well-known large language models
used for generating text are all decoder models; we’ll describe encoders in
Chapter 10 and encoder-decoders in Chapter 12.

* Many NLP tasks—such as question answering and sentiment analysis— can
be cast as tasks of word prediction and addressed with large language models.

* We instruct language models via a prompt, a text string that a user issues
to a language model to get the model to do something useful by iteratively
generating tokens conditioned on the prompt.

* The process of finding effective prompts for a task is known as prompt engi-
neering.

* The choice of which word to generate in large language models is done by
sampling from the distribution of possible next words.



HISTORICAL NOTES 25

* A common sampling approach is temperature sampling, which lies in be-
tween greedy decoding (always generate the most probable word) and ran-
dom sampling (generate a random word according to its probability).

» Temperature sampling increases the probabilities of the high-probability words,
decreases the probability of the low-probability words, and then samples from
this new distribution.

» Large language models are pretrained to predict words on datasets of 100s of
billions of words generally scraped from the web.

* These datasets need to be filtered for quality and balanced for domains by
upsampling and downsampling.

* The pretraining algorithm relies on cross-entropy loss: minimizing the nega-
tive log probability of the true next word.

» Language models are evaluated by perplexity, by evaluations of accuracy on
proxies for downstream tasks, like the MMLU question-answering dataset,
and via metrics for other factors like fairness and energy use.

* Language models have numerous ethical and safety issues including hallu-
cinations, unsafe instructions, bias, stereotypes, misinformation and propa-
ganda, and violations of privacy and copyright.

Historical Notes

As we discussed in Chapter 3, the earliest language models were the n-gram lan-
guage models developed (roughly simultaneously and independently) by Fred Je-
linek and colleagues at the IBM Thomas J. Watson Research Center, and James
Baker at CMU. It was the Jelinek and the IBM team who first coined the term lan-
guage model to mean a model of the way any kind of linguistic property (grammar,
semantics, discourse, speaker characteristics), influenced word sequence probabil-
ities (Jelinek et al., 1975). They contrasted the language model with the acoustic
model which captured acoustic/phonetic characteristics of phone sequences.

N-gram language models were very widely used over the next 40 years, across
a wide variety of NLP tasks like speech recognition and machine translations, often
as one of multiple components of the model. The contexts for these n-gram models
grew longer, with 5-gram models used quite commonly by very efficient LM toolkits
(Stolcke, 2002; Heafield, 2011).

The roots of the neural large language model lie in multiple places. One was
the application in the 1990s, again in Jelinek’s group at IBM Research, of discrim-
inative classifiers to language models. Roni Rosenfeld in his dissertation (Rosen-
feld, 1992) first applied logistic regression (under the name maximum entropy or
maxent models) to language modeling in that IBM lab, and published a more fully
formed version in Rosenfeld (1996). His model integrated various sorts of infor-
mation in a logistic regression predictor, including n-gram information along with
other features from the context, including distant n-grams and pairs of associated
words called trigger pairs. Rosenfeld’s model prefigured modern language models
by being a statistical word predictor trained in a self-supervised manner simply by
learning to predict upcoming words in a corpus.

Another was the first use of pretrained embeddings to model word meaning in
the LSA/LSI models (Deerwester et al., 1988). Recall from the history section of



26 CHAPTER7 +* LARGE LANGUAGE MODELS

foundation
model

Chapter 5 that in LSA (latent semantic analysis) a term-document matrix was trained
on a corpus and then singular value decomposition was applied and the first 300
dimensions were used as a vector embedding to represent words. It was Landauer
et al. (1997) who first used the word “embedding”. In addition to their development
of the idea of pretraining and of embeddings, the LSA community also developed
ways to combine LSA embeddings with n-grams in an integrated language model
(Bellegarda, 1997; Coccaro and Jurafsky, 1998).

In a very influential series of papers developing the idea of neural language
models, (Bengio et al. 2000; Bengio et al. 2003; Bengio et al. 2006), Yoshua Ben-
gio and colleagues drew on the central ideas of both these lines of self-supervised
language modeling work (the discriminatively trained word predictor, and the pre-
trained embeddings). Like the maxent models of Rosenfeld, Bengio’s model used
the next word in running text as its supervision signal. Like the LSA models, Ben-
gio’s model learned an embedding, but unlike the LSA models did it as part of the
process of language modeling. The Bengio et al. (2003) model was a neural lan-
guage model: a neural network that learned to predict the next word from prior
words, and did so via learning embeddings as part of the prediction process.

The neural language model was extended in various ways over the years, perhaps
most importantly in the form of the RNN language model of Mikolov et al. (2010)
and Mikolov et al. (2011). The RNN language model was perhaps the first neural
model that was accurate enough to surpass the performance of a traditional 5-gram
language model.

Soon afterwards, Mikolov et al. (2013a) and Mikolov et al. (2013b) proposed to
simplify the hidden layer of these neural net language models to create pretrained
word2vec word embeddings.

The static embedding models like LSA and word2vec instantiated a particular
model of pretraining: a representation was trained on a pretraining dataset, and then
the representations could be used in further tasks. Dai and Le (2015) and Peters
et al. (2018) reframed this idea by proposing models that were pretrained using a
language model objective, and then the identical model could be either frozen and
directly applied for language modeling or further finetuned still using a language
model objective. For example ELMo used a biLSTM self-supervised on a large
pretrained dataset using a language model objective, then finetuned on a domain-
specific dataset, and then froze the weights and added task-specific heads. The
ELMo work was particularly influential and its appearance was perhaps the mo-
ment when it became clear to the community that language models could be used as
a general solution for NLP problems.

Transformers were first applied as encoder-decoders (Vaswani et al., 2017) and
then to masked language modeling (Devlin et al., 2019) (as we’ll see in Chapter 12
and Chapter 10). Radford et al. (2019) then showed that the transformer-based au-
toregressive language model GPT2 could perform zero-shot on many NLP tasks like
summarization and question answering.

The technology used for language models can also be applied to other domains
and tasks, like vision, speech, and genetics. The term foundation model is some-
times used as a more general term for this use of large language model technology
across domains and areas, when the elements we are computing over are not nec-
essarily words. Bommasani et al. (2021) is a broad survey that sketches the op-
portunities and risks of foundation models, with special attention to large language
models.



Historical Notes 27

Anthropic. 2025. Release notes: System prompts. https:
//docs.anthropic.com/en/release-notes/
system-prompts.

Bellegarda, J. R. 1997. A latent semantic analysis framework
for large-span language modeling. EUROSPEECH.

Bengio, Y., R. Ducharme, and P. Vincent. 2000. A neural
probabilistic language model. NeurIPS.

Bengio, Y., R. Ducharme, P. Vincent, and C. Jauvin. 2003.
A neural probabilistic language model. JMLR, 3:1137-
1155.

Bengio, Y., H. Schwenk, J.-S. Senécal, F. Morin, and J.-L.
Gauvain. 2006. Neural probabilistic language models. In
Innovations in Machine Learning, 137-186. Springer.

Bickmore, T. W., H. Trinh, S. Olafsson, T. K. O’Leary,
R. Asadi, N. M. Rickles, and R. Cruz. 2018. Patient and
consumer safety risks when using conversational assis-
tants for medical information: An observational study of
Siri, Alexa, and Google Assistant. Journal of Medical
Internet Research, 20(9):e11510.

Blodgett, S. L., S. Barocas, H. Daumé I1I, and H. Wallach.
2020. Language (technology) is power: A critical survey
of “bias” in NLP. ACL.

Bommasani, R., D. A. Hudson, E. Adeli, R. Altman,
S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosse-
lut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card,
R. Castellon, N. S. Chatterji, A. S. Chen, K. A. Creel,
J. Davis, D. Demszky, C. Donahue, M. Doumbouya,
E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh,
L. Fei-Fei, C. Finn, T. Gale, L. E. Gillespie, K. Goel,
N. D. Goodman, S. Grossman, N. Guha, T. Hashimoto,
P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu,
J. Huang, T. F. Icard, S. Jain, D. Jurafsky, P. Kalluri,
S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P. W.
Koh, M. S. Krass, R. Krishna, R. Kuditipudi, A. Ku-
mar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, 1. Lev-
ent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning,
S. P. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair,
A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C.
Niebles, H. Nilforoshan, J. F. Nyarko, G. Ogut, L. Orr,
I. Papadimitriou, J. S. Park, C. Piech, E. Portelance,
C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong,
Y. H. Roohani, C. Ruiz, J. Ryan, C. R’e, D. Sadigh,
S. Sagawa, K. Santhanam, A. Shih, K. P. Srinivasan,
A. Tamkin, R. Taori, A. W. Thomas, F. Tramer, R. E.
Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Ya-
sunaga, J. You, M. A. Zaharia, M. Zhang, T. Zhang,
X. Zhang, Y. Zhang, L. Zheng, K. Zhou, and P. Liang.
2021. On the opportunities and risks of foundation mod-
els. ArXiv.

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. 2020. Language
models are few-shot learners. NeurIPS, volume 33.

Carlini, N., F. Tramer, E. Wallace, M. Jagielski, A. Herbert-
Voss, K. Lee, A. Roberts, T. Brown, D. Song, U. Er-
lingsson, et al. 2021. Extracting training data from large
language models. 30th USENIX Security Symposium
(USENIX Security 21).

Cheng, M., E. Durmus, and D. Jurafsky. 2023. Marked per-
sonas: Using natural language prompts to measure stereo-
types in language models. ACL.

Coccaro, N. and D. Jurafsky. 1998. Towards better integra-
tion of semantic predictors in statistical language model-
ing. ICSLP.

Dai, A. M. and Q. V. Le. 2015. Semi-supervised sequence
learning. NeurIPS.

Deerwester, S. C., S. T. Dumais, G. W. Furnas, R. A. Harsh-
man, T. K. Landauer, K. E. Lochbaum, and L. Streeter.
1988. Computer information retrieval using latent seman-
tic structure: US Patent 4,839,853.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. NAACL HLT.

Dinan, E., G. Abercrombie, A. S. Bergman, S. Spruit,
D. Hovy, Y.-L. Boureau, and V. Rieser. 2021. Antici-
pating safety issues in e2e conversational ai: Framework
and tooling. ArXiv.

Dinan, E., A. Fan, A. Williams, J. Urbanek, D. Kiela, and
J. Weston. 2020. Queens are powerful too: Mitigating
gender bias in dialogue generation. EMNLP.

Dodge, J., S. Gururangan, D. Card, R. Schwartz, and N. A.
Smith. 2019. Show your work: Improved reporting of
experimental results. EMNLP.

Dodge, J., M. Sap, A. Marasovi¢, W. Agnew, G. Ilharco,
D. Groeneveld, M. Mitchell, and M. Gardner. 2021. Doc-
umenting large webtext corpora: A case study on the
colossal clean crawled corpus. EMNLP.

Ethayarajh, K. and D. Jurafsky. 2020. Utility is in the eye of
the user: A critique of NLP leaderboards. EMNLP.

Friedman, B. and D. G. Hendry. 2019. Value Sensitive De-
sign: Shaping Technology with Moral Imagination. MIT
Press.

Friedman, B., D. G. Hendry, and A. Borning. 2017. A sur-
vey of value sensitive design methods. Foundations and
Trends in Human-Computer Interaction, 11(2):63-125.

Gao, L., T. Hoppe, A. Thite, S. Biderman, C. Foster,
N. Nabeshima, S. Black, J. Phang, S. Presser, L. Golding,
H. He, and C. Leahy. 2020. The Pile: An 800GB dataset
of diverse text for language modeling. ArXiv preprint.

Gehman, S., S. Gururangan, M. Sap, Y. Choi, and N. A.
Smith. 2020. RealToxicityPrompts: Evaluating neu-
ral toxic degeneration in language models. Findings of
EMNLP.

Gururangan, S., A. Marasovi¢, S. Swayamdipta, K. Lo,
I. Beltagy, D. Downey, and N. A. Smith. 2020. Don’t
stop pretraining: Adapt language models to domains and
tasks. ACL.

Hashimoto, T., M. Srivastava, H. Namkoong, and P. Liang.
2018. Fairness without demographics in repeated loss
minimization. /CML.

Heafield, K. 2011. KenLM: Faster and smaller language
model queries. Workshop on Statistical Machine Trans-
lation.

Henderson, P., J. Hu, J. Romoff, E. Brunskill, D. Jurafsky,
and J. Pineau. 2020. Towards the systematic reporting
of the energy and carbon footprints of machine learning.
Journal of Machine Learning Research, 21(248):1-43.


https://docs.anthropic.com/en/release-notes/system-prompts
https://docs.anthropic.com/en/release-notes/system-prompts
https://docs.anthropic.com/en/release-notes/system-prompts
https://www.isca-speech.org/archive_v0/archive_papers/eurospeech_1997/e97_1451.pdf
https://www.isca-speech.org/archive_v0/archive_papers/eurospeech_1997/e97_1451.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://dl.acm.org/doi/10.5555/944919.944966
https://www.aclweb.org/anthology/W11-2123
https://doi.org/10.2196/11510
https://doi.org/10.2196/11510
https://doi.org/10.2196/11510
https://doi.org/10.2196/11510
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://crfm.stanford.edu/assets/report.pdf
https://crfm.stanford.edu/assets/report.pdf
https://doi.org/10.18653/v1/2023.acl-long.84
https://doi.org/10.18653/v1/2023.acl-long.84
https://doi.org/10.18653/v1/2023.acl-long.84
https://www.isca-speech.org/archive/pdfs/icslp_1998/coccaro98_icslp.pdf
https://www.isca-speech.org/archive/pdfs/icslp_1998/coccaro98_icslp.pdf
https://www.isca-speech.org/archive/pdfs/icslp_1998/coccaro98_icslp.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/abs/2107.03451
https://arxiv.org/abs/2107.03451
https://arxiv.org/abs/2107.03451
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2020.emnlp-main.393
https://doi.org/10.18653/v1/2020.emnlp-main.393
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/W11-2123

28 Chapter 7 - Large Language Models

Henderson, P., X. Li, D. Jurafsky, T. Hashimoto, M. A. Lem-
ley, and P. Liang. 2023. Foundation models and fair use.
JMLR, 24(400):1-79.

Henderson, P., K. Sinha, N. Angelard-Gontier, N. R. Ke,
G. Fried, R. Lowe, and J. Pineau. 2017. Ethical chal-
lenges in data-driven dialogue systems. AAAI/ACM Al
Ethics and Society Conference.

Hofmann, V., P. R. Kalluri, D. Jurafsky, and S. King. 2024.
Ai generates covertly racist decisions about people based
on their dialect. Nature, 633(8028):147-154.

Ischen, C., T. Araujo, H. Voorveld, G. van Noort, and
E. Smit. 2019. Privacy concerns in chatbot interactions.
International Workshop on Chatbot Research and De-
sign.

Jelinek, F., R. L. Mercer, and L. R. Bahl. 1975. Design of a
linguistic statistical decoder for the recognition of contin-
uous speech. IEEE Transactions on Information Theory,
IT-21(3):250-256.

Khattab, O., A. Singhvi, P. Maheshwari, Z. Zhang, K. San-
thanam, S. Haq, A. Sharma, T. T. Joshi, H. Moazam,
H. Miller, M. Zaharia, and C. Potts. 2024. DSPy: Compil-
ing declarative language model calls into self-improving
pipelines. ICLR.

Kiela, D., M. Bartolo, Y. Nie, D. Kaushik, A. Geiger, Z. Wu,
B. Vidgen, G. Prasad, A. Singh, P. Ringshia, Z. Ma,
T. Thrush, S. Riedel, Z. Waseem, P. Stenetorp, R. Jia,
M. Bansal, C. Potts, and A. Williams. 2021. Dynabench:
Rethinking benchmarking in NLP. NAACL HLT.

Landauer, T. K., D. Laham, B. Rehder, and M. E. Schreiner.
1997. How well can passage meaning be derived with-
out using word order? A comparison of Latent Semantic
Analysis and humans. COGSCI.

Liang, P., R. Bommasani, T. Lee, D. Tsipras, D. Soylu,
M. Yasunaga, Y. Zhang, D. Narayanan, Y. Wu, A. Ku-
mar, B. Newman, B. Yuan, B. Yan, C. Zhang, C. Cos-
grove, C. D. Manning, C. Ré, D. Acosta-Navas, D. A.
Hudson, E. Zelikman, E. Durmus, F. Ladhak, F. Rong,
H. Ren, H. Yao, J. Wang, K. Santhanam, L. Orr, L. Zheng,
M. Yuksekgonul, M. Suzgun, N. Kim, N. Guha, N. Chat-
terji, O. Khattab, P. Henderson, Q. Huang, R. Chi, S. M.
Xie, S. Santurkar, S. Ganguli, T. Hashimoto, T. Icard,
T. Zhang, V. Chaudhary, W. Wang, X. Li, Y. Mai,
Y. Zhang, and Y. Koreeda. 2023. Holistic evaluation of
language models. Transactions on Machine Learning Re-
search.

Liu, H., J. Dacon, W. Fan, H. Liu, Z. Liu, and J. Tang. 2020.
Does gender matter? Towards fairness in dialogue sys-
tems. COLING.

Llama Team. 2024. The llama 3 herd of models.

Longpre, S., R. Mahari, A. Lee, C. Lund, H. Oderinwale,
W. Brannon, N. Saxena, N. Obeng-Marnu, T. South,
C. Hunter, et al. 2024a. Consent in crisis: The rapid de-
cline of the ai data commons. ArXiv preprint.

Longpre, S., G. Yauney, E. Reif, K. Lee, A. Roberts,
B. Zoph, D. Zhou, J. Wei, K. Robinson, D. Mimno, and
D. Ippolito. 2024b. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, qual-
ity, & toxicity. NAACL HLT.

McGuffie, K. and A. Newhouse. 2020. The radicalization
risks of GPT-3 and advanced neural language models.
ArXiv preprint arXiv:2009.06807.

Mikolov, T., K. Chen, G. S. Corrado, and J. Dean. 2013a. Ef-
ficient estimation of word representations in vector space.
ICLR 2013.

Mikolov, T., M. Karafiat, L. Burget, J. Cemocky, and
S. Khudanpur. 2010. Recurrent neural network based lan-
guage model. INTERSPEECH.

Mikolov, T., S. Kombrink, L. Burget, J. H. Cernocky, and
S. Khudanpur. 2011. Extensions of recurrent neural net-
work language model. ICASSP.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. 2013b. Distributed representations of words and
phrases and their compositionality. NeurIPS.

Miller, G. A. and J. A. Selfridge. 1950. Verbal context and
the recall of meaningful material. American Journal of
Psychology, 63:176-185.

Min, S., X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Ha-
jishirzi, and L. Zettlemoyer. 2022. Rethinking the role of
demonstrations: What makes in-context learning work?
EMNLP.

Nadeem, M., A. Bethke, and S. Reddy. 2021. StereoSet:
Measuring stereotypical bias in pretrained language mod-
els. ACL.

Neff, G. and P. Nagy. 2016. Talking to bots: Symbiotic
agency and the case of Tay. International Journal of
Communication, 10:4915-4931.

Parrish, A., A. Chen, N. Nangia, V. Padmakumar, J. Phang,
J. Thompson, P. M. Htut, and S. Bowman. 2022. BBQ: A
hand-built bias benchmark for question answering. Find-
ings of ACL 2022.

Peters, M., M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer. 2018. Deep contextualized
word representations. NAACL HLT.

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. 2019. Language models are unsupervised
multitask learners. OpenAl tech report.

Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21(140):1-67.

Rawls, J. 2001. Justice as fairness: A restatement. Harvard
University Press.

Reeves, B. and C. Nass. 1996. The Media Equation: How
People Treat Computers, Television, and New Media Like
Real People and Places. Cambridge University Press.

Rosenfeld, R. 1992. Adaptive Statistical Language Mod-
eling: A Maximum Entropy Approach. Ph.D. thesis,
Carnegie Mellon University.

Rosenfeld, R. 1996. A maximum entropy approach to adap-
tive statistical language modeling. Computer Speech and
Language, 10:187-228.

Sagawa, S., P. W. Koh, T. B. Hashimoto, and P. Liang. 2020.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. /CLR.

Shannon, C. E. 1948. A mathematical theory of commu-
nication. Bell System Technical Journal, 27(3):379—423.
Continued in the following volume.

Sheng, E., K.-W. Chang, P. Natarajan, and N. Peng. 2019.
The woman worked as a babysitter: On biases in language
generation. EMNLP.


http://jmlr.org/papers/v24/23-0569.html
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
https://www.aclweb.org/anthology/2020.coling-main.390
https://www.aclweb.org/anthology/2020.coling-main.390
https://llama.meta.com/
https://arxiv.org/abs/2407.14933
https://arxiv.org/abs/2407.14933
https://doi.org/10.18653/v1/2024.naacl-long.179
https://doi.org/10.18653/v1/2024.naacl-long.179
https://doi.org/10.18653/v1/2024.naacl-long.179
10.21437/Interspeech.2010-343
10.21437/Interspeech.2010-343
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2022.findings-acl.165
https://doi.org/10.18653/v1/2022.findings-acl.165
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.18653/v1/D19-1339
https://doi.org/10.18653/v1/D19-1339

Historical Notes

29

Soldaini, L., R. Kinney, A. Bhagia, D. Schwenk, D. Atkin-
son, R. Authur, B. Bogin, K. Chandu, J. Dumas,
Y. Elazar, V. Hofmann, A. H. Jha, S. Kumar, L. Lucy,
X. Lyu, N. Lambert, I. Magnusson, J. Morrison,
N. Muennighoff, A. Naik, C. Nam, M. E. Peters,
A. Ravichander, K. Richardson, Z. Shen, E. Strubell,
N. Subramani, O. Tafjord, P. Walsh, L. Zettlemoyer, N. A.
Smith, H. Hajishirzi, I. Beltagy, D. Groeneveld, J. Dodge,
and K. Lo. 2024. Dolma: An open corpus of three trillion
tokens for language model pretraining research. ArXiv
preprint.

Stolcke, A.2002. SRILM - an extensible language modeling
toolkit. /CSLP.

Strubell, E., A. Ganesh, and A. McCallum. 2019. Energy
and policy considerations for deep learning in NLP. ACL.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and 1. Polosukhin. 2017. Atten-
tion is all you need. NeurIPS.

Webson, A. and E. Pavlick. 2022. Do prompt-based models
really understand the meaning of their prompts? NAACL
HLT.

Weizenbaum, J. 1966. ELIZA — A computer program for the
study of natural language communication between man
and machine. CACM, 9(1):36-45.

Wolf, M. J., K. W. Miller, and F. S. Grodzinsky. 2017. Why
we should have seen that coming: Comments on Mi-
crosoft’s Tay “experiment,” and wider implications. The
ORBIT Journal, 1(2):1-12.

Xu, A., E. Pathak, E. Wallace, S. Gururangan, M. Sap,
and D. Klein. 2021. Detoxifying language models risks
marginalizing minority voices. NAACL HLT.

Xu, J., D. Ju, M. Li, Y.-L. Boureau, J. Weston, and E. Dinan.
2020. Recipes for safety in open-domain chatbots. ArXiv
preprint arXiv:2010.07079.

Zao-Sanders, M. 2025. How People Are Really Using Gen
Al in 2025 — hbr.org. https://hbr.org/2025/04/
how-people-are-really-using-gen-ai-in-2025.
[Accessed 02-05-2025].

Zhang, A. K., K. Klyman, Y. Mai, Y. Levine, Y. Zhang,
R. Bommasani, and P. Liang. 2025. Language model de-
velopers should report train-test overlap. /CML.


https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.190
https://doi.org/10.18653/v1/2021.naacl-main.190
https://hbr.org/2025/04/how-people-are-really-using-gen-ai-in-2025
https://hbr.org/2025/04/how-people-are-really-using-gen-ai-in-2025

	Large Language Models
	Three architectures for language models
	Conditional Generation of Text: The Intuition
	Prompting
	Generation and Sampling
	Greedy decoding
	Random sampling
	Temperature sampling

	Training Large Language Models
	Self-supervised training algorithm for pretraining
	Pretraining corpora for large language models
	Finetuning

	Evaluating Large Language Models
	Perplexity
	Downstream tasks: Reasoning and world knowledge
	Other factors for evaluating language models

	Ethical and Safety Issues with Language Models
	Summary
	Historical Notes


