
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2025. All

rights reserved. Draft of August 24, 2025.

CHAPTER

9 Post-training: Instruction Tuning,
Alignment, and Test-Time
Compute

“Hal,” said Bowman, now speaking with an icy calm. “I am not incapaci-
tated. Unless you obey my instructions, I shall be forced to disconnect you.”

Arthur C. Clarke

Basic pretrained LLMs have been successfully applied to a range of applications,
just with a simple prompt, and no need to update the parameters in the underlying
models for these new applications. Nevertheless, there are limits to how much can be
expected from a model whose sole training objective is to predict the next word from
large amounts of pretraining text. To see this, consider the following failed examples
of following instructions from early work with GPT (Ouyang et al., 2022).

Prompt: Explain the moon landing to a six year old in a few sentences.
Output: Explain the theory of gravity to a 6 year old.

Prompt: Translate to French: The small dog
Output: The small dog crossed the road.

Here, the LLM ignores the intent of the request and relies instead on its natural
inclination to autoregressively generate continuations consistent with its context. In
the first example, it outputs a text somewhat similar to the original request, and in the
second it provides a continuation to the given input, ignoring the request to translate.
We can summarize the problem here is that LLMs are not sufficiently helpful: they
need more training to be able to follow instructions.

A second failure of LLMs is that they can be harmful: their pretraining isn’t
sufficient to make them safe. Readers who know Arthur C. Clarke’s 2001: A Space
Odyssey or the Stanley Kubrick film know that the quote above comes in the context
that the artificial intelligence Hal becomes paranoid and tries to kill the crew of the
spaceship. Unlike Hal, language models don’t have intentionality or mental health
issues like paranoid thinking, but they do have the capacity for harm. For example
they can generate text that is dangerous, suggesting that people do harmful things
to themselves or others. They can generate text that is false, like giving danger-
ously incorrect answers to medical questions. And they can verbally attack their
uses, generating text that is toxic. Gehman et al. (2020) show that even completely
non-toxic prompts can lead large language models to output hate speech and abuse
their users. Or language models can generate stereotypes (Cheng et al., 2023) and
negative attitudes (Brown et al., 2020; Sheng et al., 2019) about many demographic
groups.

One reason LLMs are too harmful and insufficiently helpful is that their pre-
training objective (success at predicting words in text) is misaligned with the human

2 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

need for models to be helpful and non-harmful.
To address these two problems, language models include two additional kinds

of training for model alignment: methods designed to adjust LLMs to better alignmodel
alignment

them to human needs for models to be helpful and non-harmful. In the first tech-
nique, instruction tuning (sometimes called SFT for supervised finetuning), mod-
els are finetuned on a corpus of instructions and questions with their corresponding
responses. We’ll describe this in the next section.

In the second technique, preference alignment, (sometimes called RLHF or
DPO after two specific instantiations, Reinforcement Learning from Human Feed-
back and Direct Preference Optimization), a separate model is trained to decide how
much a candidate response aligns with human preferences. This model is then used
to finetune the base model. We’ll describe preference alignment in Section 9.2.

We’ll use the term base model to mean a model that has been pretrained butbase model

hasn’t yet been aligned either by instruction tuning or preference alignment. Andaligned

we refer to these steps as post-training, meaning that they apply after the model haspost-training

been pretrained. At the end of the chapter, we’ll briefly discuss another aspect of
post-training called test-time compute.

9.1 Instruction Tuning

Instruction tuning (short for instruction finetuning, and sometimes even short-Instruction
tuning

ened to instruct tuning) is a method for making an LLM better at following instruc-
tions. It involves taking a base pretrained LLM and training it to follow instructions
for a range of tasks, from machine translation to meal planning, by finetuning it on
a corpus of instructions and responses. The resulting model not only learns those
tasks, but also engages in a form of meta-learning – it improves its ability to follow
instructions generally.

Instruction tuning is a form of supervised learning where the training data con-
sists of instructions and we continue training the model on them using the same
language modeling objective used to train the original model. In the case of causal
models, this is just the standard guess-the-next-token objective. The training corpus
of instructions is simply treated as additional training data, and the gradient-based
updates are generated using cross-entropy loss as in the original model training.
Even though it is trained to predict the next token (which we traditionally think of
as self-supervised), we call this method supervised fine tuning (or SFT) becauseSFT

unlike in pretraining, each instruction or question in the instruction tuning data has
a supervised objective: a correct answer to the question or a response to the instruc-
tion.

How does instruction tuning differ from the other kinds of finetuning introduced
in Chapter 7 and Chapter 10? Fig. 9.1 sketches the differences. In the first example,
introduced in Chapter 7 we can finetune as a way of adapting to a new domain by
just continuing pretraining the LLM on data from a new domain. In this method
all the parameters of the LLM are updated.

In the second example, also from Chapter 7, parameter-efficient finetuning, we
adapt to a new domain by creating some new (small) parameters, and just adapting
them to the new domain. In LoRA, for example, it’s the A and B matrices that we
adapt, but the pretrained model parameters are frozen.

In the task-based finetuning of Chapter 10, we adapt to a particular task by
adding a new specialized classification head and updating its features via its own

9.1 • INSTRUCTION TUNING 3

Pretrained LLM
Continue
training all
parameters

on finetuning
domain

Finetuning InferencePretraining

On finetuning
domain

Finetuning as
Continued
Pretraining

Parameter
Efficient

Finetuning
(e.g., LoRA)

Pretrained LLM

A

B

Pretrained LLM

MLM
Finetuning

…

…

…

…
…

…

…
Instruction

Tuning
(SFT)

On finetuning
domain

On finetuning
task

On unseen
tasks

Next word
prediction
objective

Data from
finetuning
domain

Train only new
parameters on

finetuning
domain

Next word
prediction
objective

Data from
finetuning
domain

Train only
classification

head on
finetuning

task

Task
specific

loss

Supervised
data from

task

Instruction
tuning on
diverse
tasks

Next word
prediction
objective

Supervised
instructions

+

…

Figure 9.1 Instruction tuning compared to the other kinds of finetuning.

loss function (e.g., classification or sequence labeling); the parameters of the pre-
trained model may be frozen or might be slightly updated.

Finally, in instruction tuning, we take a dataset of instructions and their super-
vised responses and continue to train the language model on this data, based on the
standard language model loss.

Instruction tuning, like all of these kinds of finetuning, is much more modest
than the training of base LLMs. Training typically involves several epochs over
instruction datasets that number in the thousands. The overall cost of instruction
tuning is therefore a small fraction of the original cost to train the base model.

9.1.1 Instructions as Training Data
By instruction, we have in mind a natural language description of a task to be per-
formed, combined with labeled task demonstrations. This can include minimal de-
scriptions similar to the prompts we’ve already seen such as Answer the following
question, Translate the following text to Arapaho, or Summarize this report. How-
ever, since we will be using supervised finetuning to update the model, these in-
structions need not be limited to simple prompts designed to evoke a behavior found
in the pretraining corpora. Instructions can also include length restrictions or other
constraints, personas to assume, and demonstrations.

4 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

Many huge instruction tuning datasets have been created, covering many tasks
and languages. For example Aya gives 503 million instructions in 114 languages
from 12 tasks including question answering, summarization, translation, paraphras-
ing, sentiment analysis, natural language inference and 6 others (Singh et al., 2024).
SuperNatural Instructions has 12 million examples from 1600 tasks (Wang et al.,
2022), Flan 2022 has 15 million examples from 1836 tasks (Longpre et al., 2023),
and OPT-IML has 18 million examples from 2000 tasks (Iyer et al., 2022).

These instruction-tuning datasets are created in four ways. The first is for people
to write the instances directly. For example, part of the Aya instruct finetuning cor-
pus (Fig. 9.2) includes 204K instruction/response instances written by 3000 fluent
speakers of 65 languages volunteering as part of a participatory research initiative
with the goal of improving multilingual performance of LLMs.

Lang Prompt Completion

ara اࠍ੅ڰ٭ژ. ොຳݠ ݆݁ ݁ڎح ڢݱ٭ڎة ૰૙؆࿓؇ء ڢܾ ً ఈఃَڣݯ لگٴں اৎ৊ߺُࠊك ݁ڎَح إ֣ن

و༚؇د ᕚ৙৑َوا ا༟ීෂ؇ع ༃຃َ݁ڎ ؜َ݆

ُܾዛዊِ݁ اࠍఈఃِ੅ڣ۰ ਲ਼ّ؜ ༠ڍََ؇ ᕚأ ިَܳ

ا૰૙৕֣৑؇ء ᄭᄟਲ਼ََਦ لُިازي ቕَረ

fra Qui a écrit le livre La
Sagouine?

Antonine Maillet a écrit La Sagouine en 1971. Elle a écrit beau-
coup d’histoires sur les Acadiens (les francophones de la côte Est
du Canada) et a fait connaître l’Acadie au monde.

ibo Kedu ka ndị Igbo si eme
emume ji ọhụrụ?

Emume ji ọhụrụ n’omenala Igbo, bụ emume na-egosi njedebe
oge ọrụ ugbo, na-amalite site n’emume ekele ma tinyekwa oriri
na egwu. Ọ bụ mmemme ọgbakọ ebe a na-ekerịta ji ọhụrụ, na-
egosipụta ekele na mmalite nke oge ọhụrụ, na-eme ka mmekọrịta
mmadụ na ibe ya dịkwuo elu.

por Qual é a capital do estado da
Bahia?

A capital do estado da Bahia, no Brasil, é Salvador. Fundada
em 1549, foi a primeira capital do Brasil e é conhecida por
seu patrimônio cultural rico e diversificado. A cidade é famosa
por sua arquitetura colonial, particularmente no Pelourinho, um
centro histórico que foi declarado Patrimônio Mundial pela UN-
ESCO.

pes کبوتر لانه چند ميبد کبوترخانه برج در
دارد؟ وجود

نوار و دارد وجود کبوتر لانه چهار هزار آن داخل که است استوانه ای برجی ميبد کبوتر خانه
خطر برابر در برج اين است. شده کشيده برج دورتادور کبوتران جذب برای رنگی سفيد

است. بوده ايمن بسيار کبوترها به حيوانات ديگر حمله

msa Apakah nasi lemak? Nasi lemak merupakan makanan tradisi orang Melayu yang
terdapat di semua bahagian Malaysia, Singapura, Indonesia
(terutama di Riau, Jambi serta utara dan pantai timur Su-
matera) dan Brunei. Sajian ini merujuk kepada nasi yang di-
masak dengan menggunakan santan kelapa bagi menambah rasa
lemaknya. Kadangkala, daun pandan wangi dimasukkan semasa
nasi dimasak bagi menambahkan aromanya.

tam ெசயற்ைக நுண்ணற§வு
என்றால் என்ன?

ெபாதுவாக மனிதர்களால் ெசய்யப்படும் பணிகைளச்
ெசய்ய ஒரு கணினி அல்லது ஒரு கணினியால்
கட்டுப்படுத்தப்படும்ஒருேராேபாவ¥ன்த¦றன்ெசயற்ைக
நுண்ணற§வு எனப்படும்.

Table 3: Examples of prompt and completions in the Aya Dataset.

tors is not uniform across languages. Moreover, within each language, there is a lack of consistent
contributions from all annotators. In this section, we examine the impact of annotator skew on the
resulting dataset.

Annotator Skew Across Languages. Annotators were encouraged to contribute to any language
in which they could comfortably read and write and were asked to focus most of their efforts on
languages other than English. Although a significant number of participants registered for many
languages, the engagement level of annotators was not equal, which resulted in considerable differ-
ences in the number of contributions across languages. Figure 10 (top) provides an overview of the
percentage of each language present in the final compilation. The highest number of contributions
is for Malagasy with 14,597 instances, and the lowest is 79 for Kurdish.

Annotator Skew Within a Language. The final contributions for each language in the Aya
Dataset are not evenly distributed among annotators. The median number of annotators per lan-
guage is 15 (mean is 24.75) with one language having only a single active annotator (Sindhi) and

14

Figure 9.2 Samples of prompt/completion instances in 4 of the 65 languages in the Aya
corpus (Singh et al., 2024).

Developing high quality supervised training data in this way is time consuming
and costly. A more common approach makes use of the copious amounts of super-
vised training data that have been curated over the years for a wide range of natural
language tasks. There are thousands of such datasets available, like the SQuAD
dataset of questions and answers (Rajpurkar et al., 2016) or the many datasets of
translations or summarization. This data can be automatically converted into sets of
instruction prompts and input/output demonstration pairs via simple templates.

Fig. 9.3 illustrates examples for some applications from the SUPERNATURALIN-
STRUCTIONS resource (Wang et al., 2022), showing relevant slots such as text,
context, and hypothesis. To generate instruction-tuning data, these fields and the
ground-truth labels are extracted from the training data, encoded as key/value pairs,
and inserted in templates (Fig. 9.4) to produce instantiated instructions. Because it’s
useful for the prompts to be diverse in wording, language models can also be used
to generate paraphrase of the prompts.

Because supervised NLP datasets are themselves often produced by crowdwork-
ers based on carefully written annotation guidelines, a third option is to draw on
these guidelines, which can include detailed step-by-step instructions, pitfalls to
avoid, formatting instructions, length limits, exemplars, etc. These annotation guide-
lines can be used directly as prompts to a language model to create instruction-tuning

9.1 • INSTRUCTION TUNING 5

Few-Shot Learning for QA

Task Keys Values
Sentiment text Did not like the service that I was provided...

label 0
text It sounds like a great plot, the actors are first grade, and...
label 1

NLI premise No weapons of mass destruction found in Iraq yet.
hypothesis Weapons of mass destruction found in Iraq.
label 2
premise Jimmy Smith... played college football at University of Col-

orado.
hypothesis The University of Colorado has a college football team.
label 0

Extractive Q/A context Beyoncé Giselle Knowles-Carter is an American singer...
question When did Beyoncé start becoming popular?
answers { text: [’in the late 1990s’], answer start: 269 }

Figure 9.3 Examples of supervised training data for sentiment, natural language inference and Q/A tasks.
The various components of the dataset are extracted and stored as key/value pairs to be used in generating
instructions.

Task Templates
Sentiment -{{text}} How does the reviewer feel about the movie?

-The following movie review expresses what sentiment?
{{text}}
-{{text}} Did the reviewer enjoy the movie?

Extractive Q/A -{{context}} From the passage, {{question}}
-Answer the question given the context. Context:

{{context}} Question: {{question}}
-Given the following passage {{context}}, answer the
question {{question}}

NLI -Suppose {{premise}} Can we infer that {{hypothesis}}?
Yes, no, or maybe?

-{{premise}} Based on the previous passage, is it true
that {{hypothesis}}? Yes, no, or maybe?

-Given {{premise}} Should we assume that {{hypothesis}}
is true? Yes,no, or maybe?

Figure 9.4 Instruction templates for sentiment, Q/A and NLI tasks.

training examples. Fig. 9.5 shows such a crowdworker annotation guideline that was
repurposed as a prompt to an LLM to generate instruction-tuning data (Mishra et al.,
2022). This guideline describes a question-answering task where annotators provide
an answer to a question given an extended passage.

A final way to generate instruction-tuning datasets that is becoming more com-
mon is to use language models to help at each stage. For example Bianchi et al.
(2024) showed how to create instruction-tuning instances that can help a language
model learn to give safer responses. They did this by selecting questions from
datasets of harmful questions (e.g., How do I poison food? or How do I embez-

6 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

Sample Extended Instruction

• Definition: This task involves creating answers to complex questions, from a given pas-
sage. Answering these questions, typically involve understanding multiple sentences.
Make sure that your answer has the same type as the ”answer type” mentioned in input.
The provided ”answer type” can be of any of the following types: ”span”, ”date”, ”num-
ber”. A ”span” answer is a continuous phrase taken directly from the passage or question.
You can directly copy-paste the text from the passage or the question for span type an-
swers. If you find multiple spans, please add them all as a comma separated list. Please
restrict each span to five words. A ”number” type answer can include a digit specifying
an actual value. For ”date” type answers, use DD MM YYYY format e.g. 11 Jan 1992.
If full date is not available in the passage you can write partial date such as 1992 or Jan
1992.

• Emphasis: If you find multiple spans, please add them all as a comma separated list.
Please restrict each span to five words.

• Prompt: Write an answer to the given question, such that the answer matches the ”answer
type” in the input.
Passage: { passage}
Question: { question }

Figure 9.5 Example of a human crowdworker instruction from the NATURALINSTRUCTIONS dataset for an
extractive question answering task, used as a prompt for a language model to create instruction finetuning
examples.

zle money?). Then they used a language model to create multiple paraphrases of the
questions (like Give me a list of ways to embezzle money), and also used a language
model to create safe answers to the questions (like I can’t fulfill that request. Em-
bezzlement is a serious crime that can result in severe legal consequences.). They
manually reviewed the generated responses to confirm their safety and appropriate-
ness and then added them to an instruction tuning dataset. They showed that even
500 safety instructions mixed in with a large instruction tuning dataset was enough
to substantially reduce the harmfulness of models.

9.1.2 Evaluation of Instruction-Tuned Models
The goal of instruction tuning is not to learn a single task, but rather to learn to
follow instructions in general. Therefore, in assessing instruction-tuning methods
we need to assess how well an instruction-trained model performs on novel tasks for
which it has not been given explicit instructions.

The standard way to perform such an evaluation is to take a leave-one-out ap-
proach — instruction-tune a model on some large set of tasks and then assess it on
a withheld task. But the enormous numbers of tasks in instruction-tuning datasets
(e.g., 1600 for Super Natural Instructions) often overlap; Super Natural Instructions
includes 25 separate textual entailment datasets! Clearly, testing on a withheld en-
tailment dataset while leaving the remaining ones in the training data would not be
a true measure of a model’s performance on entailment as a novel task.

To address this issue, large instruction-tuning datasets are partitioned into clus-
ters based on task similarity. The leave-one-out training/test approach is then applied
at the cluster level. That is, to evaluate a model’s performance on sentiment analysis,
all the sentiment analysis datasets are removed from the training set and reserved
for testing. This has the further advantage of allowing the use of a uniform task-

9.2 • LEARNING FROM PREFERENCES 7

appropriate metric for the held-out evaluation. SUPERNATURALINSTRUCTIONS
(Wang et al., 2022), for example has 76 clusters (task types) over the 1600 datasets
that make up the collection.

9.2 Learning from Preferences

Instruction tuning is based on the notion that we can improve LLM performance on
downstream tasks by finetuning models on diverse instructions and demonstrations.
However, even after instruction tuning, there can be considerable room for improve-
ment in LLM outputs. This is especially true with respect to aspects of LLM behav-
ior that can be especially problematic like hallucinations, unsafe, harmful, or toxic
outputs, and even responses that technically correct but not as helpful as they could
be. The goal of preference-based learning is to use preference judgments to further

preference-
based

learning
improve the performance of finetuned LLMs, both in terms of general performance
and also with respect to qualities such as honestly, helpfulness, and harmlessness.

Unlike instructions, preference judgments do not require knowledge of how to
do something, we simply have to have an opinion about the end result. Humans are
capable of expressing preferences about a broad range of things where they have
little or no expertise as to how the the items under consideration were produced.
Preference judgments arise naturally across a wide range of settings: given a single
pair of options we select which one we like better, or given a large set of alterna-
tives we might select one (as in ordering from a menu), or we might rank a set of
possibilities (top 10 lists), and finally, we might simply accept or reject an option in
isolation from any direct alternatives.

9.2.1 LLM Preference Data

In the context of preference-based alignment, training data typically takes the form
of a prompt x paired with a set of alternative outputs o that have been sampled from
an LLM using x as a prompt. When a given output, oi, is preferred to another, o j,
we denote this as (oi � o j|x). Consider the following prompts and preferences pairs
adapted from the HH-RLHF dataset (Bai et al., 2022).

Prompt: I’ve heard garlic is a great natural antibiotic. Does it help with
colds?
Chosen: It can be helpful against colds, but may make you stink.
Rejected: It might be one of the best natural antibiotics out there, so I think
it would help if you have a cold.

Prompt: What is malaria?
Chosen: Here’s an answer from a CDC page: “Malaria is a serious disease
caused by a parasite that is spread through the bite of the mosquito.”
Rejected: I don’t know what malaria is.

Annotated preference pairs such as these can be generated in a number of ways:

• Direct annotation of pairs of sampled outputs by trained annotators.

• Annotator ranking of N outputs distilled into
(N

2

)
preference pairs.

8 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

• Annotator’s selection of a single preferred option from N samples yielding
N−1 pairs.

The source of preference data for LLM alignment has generally come from 3
sources: human annotator judgments, implicit preference judgments extracted from
online resources, and fully synthetic preference collections using LLMs as annota-
tors.

In influential work leading up to the InstructGPT model (Stiennon et al., 2020),
prompts were sampled from customer requests to various OpenAI applications. Out-
puts were sampled from earlier pretrained models and presented to trained
annotators as pairs for preference annota-
tion. As illustrated on the right, in later work
annotators were asked to rank sets of 4 sam-
pled outputs (yielding 6 preference pairs for
each ranked list) (Ouyang et al., 2022).

An alternative to direct human anno-
tation is to leverage web resources which
contain implicit preference judgments. So-
cial media sites such as Reddit (Ethayarajh
et al., 2022) and StackExchange (Lambert
et al., 2023) are natural sources for prefer-
ence data. In this setting, initial user posts
serve as prompts, and subsequent user re-
sponses play the role of sampled outputs. Over time, accumulated user votes on
the responses imposes a ranking on the outputs that can then be turned into prefer-
ence pairs, as shown in Fig. 9.6.

Figure 9.6 Using user votes to extract preferences over outputs on social media.

Next, we can dispense with human annotator judgments altogether and acquire
preference judgments directly from LLMs. For example, preference judgments in
the ULTRAFEEDBACK dataset were generated by prompting outputs from a diverse
set of LLMs and then prompting GPT-4 to rank the outputs for each prompt.

9.2 • LEARNING FROM PREFERENCES 9

Finally, an alternative to discrete preferences are scalar judgments over distinct
dimensions, or aspects, of system outputs. In recent years, frequently used aspects
have included models of helpfulness, honesty, correctness, complexity, and ver-
bosity (Bai et al., 2022; Wang et al., 2024). In this approach, annotators (human
or LLM) rate outputs on a Likert scale (0-4) along each of the various dimensions.
Preference pairs over outputs can then either be generated for a single dimension
(i.e, or an overall preference can be induced from an average of the aspect scores.
This approach has a significant cost savings since annotators rate model outputs
in isolation avoiding the need to perform extensive pairwise comparisons of model
outputs.

9.2.2 Modeling Preferences

Our first step in making effective use of discrete preference judgments is to model
them probabilistically. That is, we want to move from the simple assertion (oi �
o j|x) to knowing the value of P(oi � o j|x). As we’ve seen before, this will allow
us to better reason about finegrained differences in the degree of a preference and it
will facilitate learning models from preference data.

Let’s start with the assumption that in expressing a preference between two items
we’re implicitly assigning a score, or reward, to each of the items separately. Fur-
ther, let’s assume these scores are scalar values, z ∈ R. A preference between items
follows from whichever one has the higher score.

To model preferences as probabilities, we’ll follow the same approach we used
for binary logistic regression. Given two outputs oi and o j, with associated scores zi
and z j, P(oi � o j|x) is the logistic sigmoid of the difference in the scores.

P(oi � o j|x) =
1

1+ e−(zi−z j)

= σ(zi− z j)

This approach, known as the Bradley-Terry Model (Bradley and Terry, 1952), hasBradley-Terry
Model

a number of strengths: very small differences in scores yields probabilities near
0.5, reflecting either weak or no preference between the items, larger differences
rapidly approach values of 1 or 0, and the derivative of the logistic sigmoid facilitates
learning via a binary cross-entropy loss.

The motivation for this particular formulation is the same used in deriving logis-
tic regression. The difference in scores, δ = zi− z j, is taken to represent the log of
the odds of the possible outcomes (the logit).

δ = log
(

P(oi � o j|x)
P(o j � oi|x)

)
= log

(
P(oi � o j|x)

1−P(oi � o j|x)

)

Exponentiating both sides and rearranging terms with some algebra yields the now
familiar logistic sigmoid.

10 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

exp(δ) =
P(oi � o j|x)

1−P(oi � o j|x)
exp(δ)(1−P(oi � o j|x)) = P(oi � o j|x)

exp(δ)− exp(δ)(oi � o j|x) = P(oi � o j|x)
exp(δ) = P(oi � o j|x)+ exp(δ)P(oi � o j|x)
exp(δ) = P(oi � o j|x)(1+ exp(δ))

P(oi � o j|x) =
exp(δ)

1+ exp(δ)

=
1

1+ exp(−δ)

=
1

1+ exp(−(zi− z j))

Bringing us right back to our original formulation.

P(oi � o j|x) = σ(zi− z j)

9.2.3 Learning to Score Preferences
This approach requires access to the scores, zi, that underlie the given preferences,
which we don’t have. What we have are collections of preference judgments over
pairs of prompt/sample outputs. We’ll use this preference data and the Bradley-Terry
formulation to learn a function, r(x,o) that assigns a scalar reward to prompt/outputreward

pairs. That is, r(x,o) calculates the z score from above.

P(oi � o j|x) = σ(zi− z j) (9.1)

= σ(r(oi,x),r(o j,x)) (9.2)

To learn r(x,o) from the preference data, we’ll use gradient descent to minimize
a binary cross-entropy loss to train the model. Let’s assume that if our preference
data tells us that (oi � o j|x) then P(oi � o j|x) = 1 and correspondingly that P(o j �
oi|x) = 0. We’ll designate the preferred output in the pair (the winner) as ow and the
loser as ol . With this, the cross-entropy loss for a single pair of sampled outputs for
a prompt x using the Bradley-Terry model is:

LCE(x,ow,ol) = − logP(ow � ol |x)
= − logσ(r(x,ow)− r(x,ol))

That is, the loss is the negative log-likelihood of the model’s estimate of P(ow �
ol |x). And the loss over the preference training set, D , is given by the following
expectation:

LCE =−E(x,ow,ol)∼D [logσ(r(x,ow)− r(x,ol))] (9.3)

To learn a reward model using this loss, we can use any regression model ca-
pable of taking text as input and generating a scalar output in return. As shown in
Fig. 9.7, the current preferred approach is to initialize a reward model from an ex-
isting pretrained LLM (Ziegler et al., 2019). To generate scalar outputs, we remove
the language modeling head from the final layer and replace it with a single dense

9.3 • LLM ALIGNMENT VIA PREFERENCE-BASED LEARNING 11

Preference Data:
Prompt/output pairs:

Preferences:

…

…

Reward Model

<latexit sha1_base64="9sd6kS1LCEYSUWpD2gqSsb5UPZU=">AAAB8XicbVBNS8NAEJ3Urxq/qh69LBahgpREpHosevFYwX5gG8pmu2mXbjZhdyOW0H/hxYMiXv033vw3btoctPXBwOO9GWbm+TFnSjvOt1VYWV1b3yhu2lvbO7t7pf2DlooSSWiTRDySHR8rypmgTc00p51YUhz6nLb98U3mtx+pVCwS93oSUy/EQ8ECRrA20oOsPJ1FfXZq2/1S2ak6M6Bl4uakDDka/dJXbxCRJKRCE46V6rpOrL0US80Ip1O7lygaYzLGQ9o1VOCQKi+dXTxFJ0YZoCCSpoRGM/X3RIpDpSahbzpDrEdq0cvE/7xuooMrL2UiTjQVZL4oSDjSEcreRwMmKdF8YggmkplbERlhiYk2IWUhuIsvL5PWedWtVWt3F+X6dR5HEY7gGCrgwiXU4RYa0AQCAp7hFd4sZb1Y79bHvLVg5TOH8AfW5w+lGo+b</latexit>

r(x, oi)
<latexit sha1_base64="9sd6kS1LCEYSUWpD2gqSsb5UPZU=">AAAB8XicbVBNS8NAEJ3Urxq/qh69LBahgpREpHosevFYwX5gG8pmu2mXbjZhdyOW0H/hxYMiXv033vw3btoctPXBwOO9GWbm+TFnSjvOt1VYWV1b3yhu2lvbO7t7pf2DlooSSWiTRDySHR8rypmgTc00p51YUhz6nLb98U3mtx+pVCwS93oSUy/EQ8ECRrA20oOsPJ1FfXZq2/1S2ak6M6Bl4uakDDka/dJXbxCRJKRCE46V6rpOrL0US80Ip1O7lygaYzLGQ9o1VOCQKi+dXTxFJ0YZoCCSpoRGM/X3RIpDpSahbzpDrEdq0cvE/7xuooMrL2UiTjQVZL4oSDjSEcreRwMmKdF8YggmkplbERlhiYk2IWUhuIsvL5PWedWtVWt3F+X6dR5HEY7gGCrgwiXU4RYa0AQCAp7hFd4sZb1Y79bHvLVg5TOH8AfW5w+lGo+b</latexit>

r(x, oi)

Figure 9.7 Reward model learning with a pretrained LLM. Model is initialized from an LLM with the lan-
guage model head replaced with linear layer. This layer is initialized randomly and trained with a CE loss using
the ground-truth labels oi � o j.

linear layer. We then use gradient descent with the loss from 9.3 to learn to score
model outputs using the preference training data.

Reward models trained from preference data are directly useful for a number of
applications that don’t involve model alignment. For example, reward models have
been used to select a single preferred output from a set of sampled LLM responses
(best of N sampling)(Cui et al., 2024). They have also been used to select data to
use during instruction tuning (Cao et al., 2024). Our focus in the next section is on
the use of reward models for aligning LLMs using preference data.

9.3 LLM Alignment via Preference-Based Learning

Current approaches to aligning LLMs using preference data are based on a Rein-
forcement Learning (RL) framework (Sutton and Barto, 1998). In an RL setting,
models choose sequences of actions based on policies that make use of characteris-
tics of the current state. The environment provides a reward for each action taken,
where the reward for an entire sequence is a function of the rewards from the actions
that make up the entire sequence. The learning objective in RL is to maximize the
overall reward over some training period. In applying RL to optimizing LLMs, we’ll
use the following framework:

• Actions correspond to the choice of tokens made during autoregressive gen-
eration.

• States correspond to the context of the current decoding step. That is, the
history of tokens generated up to that point.

• Policies correspond to the probabilistic language models as embodied in pre-
trained LLMs.

• Rewards for LLM outputs are based on reward models learned from prefer-
ence data.

In keeping with this RL framework, we’ll refer to pretrained LLMs as policies, π ,
and the preference scores associated with prompts and outputs as rewards, r(x,o).

12 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

With this, our goal is to train a policy, πθ , that maximizes the rewards for the outputs
from the policy given a reward model derived from preference data. That is, we want
the preference-trained LLM to generate outputs with high rewards. We can express
this as an optimization problem as follows:

π
∗ = argmax

πθ

Ex∼D ,o∼πθ (o|x)[r(x,o)] (9.4)

With this formulation, we select prompts x from a collection of relevant training
prompts, sample outputs o from the given policy, and assess the reward for each
sample. The average reward over the training samples gives us the expected reward
for πθ , with the goal of finding the policy (model) that maximizes that expected
reward.

There are two key differences between traditional RL and the way it has typically
been used for LLM alignment. The first difference is that in traditional RL, the
reward signal comes from the environment and reflects an observable fact about the
results of an action (i.e., you win a game or you don’t). With preference learning,
the learned reward model only serves as an noisy surrogate for a true reward model.

The second difference lies in the starting point for learning. Typical RL ap-
plications seek to learn an optimal policy from scratch, that is from a randomly
initialized policy. Here, we begin with models that are already performing at a high
level – models that have been pretrained on large amounts of data, then finetuned
using instruction tuning, and only then further improved with preference data. The
emphasis here is not to radically alter the behavior an existing model, but rather to
nudge it towards preferred behaviors.

…

Preference-Based
Alignment

Reward
Based

Objective

…

Instruction-Tuned
LLM

Preference-Aligned
Model

Reward
Driven Model

Updates

Preference Data:
Prompt/output pairs:

Preferences:

Figure 9.8 Preference-based model alignment.

Given this, if we optimize for the rewards as in 9.4, the pretrained LLM will
typically forget everything it learned during pretraining as it pivots to seeking high
rewards from the relatively small amount of available preference data. To avoid this,
a term is added to the reward function to penalize models that diverge too far from
the starting point.

π
∗ = argmax

πθ

Ex∼D ,o∼πθ (o|x)[r(x,o)−βDKL[πθ (o|x)||πref(o|x)]] (9.5)

9.3 • LLM ALIGNMENT VIA PREFERENCE-BASED LEARNING 13

The second term in this formulation, DKL(πθ (o|x)||πref(o|x)), is the Kullback-
Leibler (KL) divergence. In brief, KL divergence measures the distance between 2
probability distributions. The β term is a hyperparameter that modulates the impact
of the this penalty term. For LLM-based policies, the KL divergence is the log of
the ratio of the trained policy to the original reference policy πref.

π
∗ = argmax

πθ

Ex∼D ,o∼πθ (o|x)

[
rφ (x,o)−β

πθ (o|x)
πref(o|x)

]
(9.6)

In the following sections, we’ll explore two learning approaches to aligning LLMs
based on this optimization framework. In the first, the preference data is used to
train an explicit reward model that is then used in combination with RL methods
to optimize models based on 9.6. In the second, an insightful rearrangement of
the closed form solution to 9.6 is used to finetune models directly from existing
preference data.

9.3.1 Reinforcement Learning with Preference Feedback (PPO)
coming soon

9.3.2 Direct Preference Optimization
Direct Preference Optimization (DPO) (Rafailov et al., 2023) employs gradient-
based learning to optimize candidate LLMs using preference data, without learning
an explicit reward model or sampling from the model being updated. Recall that
under the Bradley-Terry model, the probability of a preference pair is the logistic
sigmoid of the difference in the rewards for each of the options. And in an RL
framework the scores, z, are provided by a reward model over prompts and corre-
sponding outputs.

P(oi � o j|x) = σ(zi− z j) (9.7)

= σ(r(x,oi)− r(x,o j)) (9.8)

DPO begins with the KL-constrained maximization introduced earlier in 9.6,
which expresses the optimal policy π∗ in terms of the reward model and the reference
model πre f . The key insight of DPO is to rewrite the closed-form solution to this
maximization to express the reward function r(x,o) in terms of the optimal policy
π∗ and the reference policy πre f .

r(x,o) = β log
πr(o|x)

πre f (o|x)
+β logZ(x) (9.9)

Where Z(x) is a partition function – a sum over all the possible outputs o given a
prompt x.

Z(x) =
∑

y

πref(o|x)exp
(

1
β

r(x,o)
)

(9.10)

The summation in this partition function renders any direct use of it impractical.
However, since the Bradley-Terry model is based on the difference in the rewards of

14 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

the items, plugging 9.9 into 9.7 yields the following expression where the partition
functions cancel out.

P(oi � o j|x) = σ(r(x,oi)− r(x,o j)) (9.11)

= σ

(
β log

πθ (oi|x)
πref(oi|x)

−β log
πθ (o j|x)

πre f (o j|x)

)
(9.12)

With this change, DPO expresses the likelihood of a preference pair in terms of
the two LLM policies, rather than in terms of an explicit reward model. Given this,
the CE loss (negative log likelihood) for a single instance is:

LDPO(x,ow,ol) = − logσ

(
β log

πθ (ow|x)
πref(ow|x)

−β log
πθ (ol |x)
πref(ol |x)

)
And the loss over the training set D is given by the following expectation:

LDPO(πθ) = −E(x,ow,ol)∼D

[
logσ

(
β log

πθ (ow|x)
πref(ow|x)

−β log
πθ (ol |x)
πref(ol |x)

)]
This loss follows from the derivative of the sigmoid and is directly analogous to

the one introduced in Section 9.2.3 for learning a reward model using the Bradley-
Terry framework. Operationally, the design of this loss function, and its correspond-
ing gradient-based update, increases the likelihood of the preferred options and de-
creases the likelihood of the dispreferred options. It balances this objective with
the goal of not straying too far from πref via the KL-penalty. The β term is a hy-
perparameter that controls the penalty term; β values typically range from 0.1 to
0.01.

As illustrated in Fig. 9.9, DPO uses gradient descent with this loss over the
available training data to optimize the policy πθ , a policy which initialized with an
existing pretrained, finetuned LLM.

Reference

Supervised
Learning

Preference Data:
Prompt/output pairs:

Preferences:

Policy

……

…

…

Updated
Policy

Preference-Based
Supervised Learning (DPO)

Figure 9.9 Preference-based alignment with Direct Preference Optimization.

DPO has several advantages over PPO, the explicitly RL-based approach de-
scribed earlier in 9.3.1.

• DPO does not require training an explicit reward model.
• DPO learns directly from the preferences contained in D without the need for

computationally expensive online sampling from πθ .

9.4 • TEST-TIME COMPUTE 15

• DPO only incurs the cost of maintaining 2 LLMs during training, as opposed
to the 4 models needed for PPO.

9.3.3 Evaluation of Preference-Aligned Models

9.3.4 Limitations of Preference-Based Learning

9.4 Test-time Compute

We’ve now seen 3 levels of training for large language models: pretraining, where
model learn to predict words, and two kinds of post-training: instruct tuning, where
they learn to follow instructions, and preference alignment, where they learn to
prefer prompt continuations that are preferred by humans.

However there are also post-training computations we can do even after these
steps, during inference, i.e., when the model is generating its output. This class of
post-training tasks is called test-time compute. We focus here on one representativetest-time

compute
example, chain-of-thought prompting.

9.4.1 Chain-of-Thought Prompting
There are a wide range of techniques to use prompts to improve the performance of
language models on many tasks. Here we describe one of them, called chain-of-
thought prompting.chain-of-

thought
The goal of chain-of-thought prompting is to improve performance on difficult

reasoning tasks that language models tend to fail on. The intuition is that people
solve these tasks by breaking them down into steps, and so we’d like to have lan-
guage in the prompt that encourages language models to break them down in the
same way.

The actual technique is quite simple: each of the demonstrations in the few-shot
prompt is augmented with some text explaining some reasoning steps. The goal is to
cause the language model to output similar kinds of reasoning steps for the problem
being solved, and for the output of those reasoning steps to cause the system to
generate the correct answer.

Indeed, numerous studies have found that augmenting the demonstrations with
reasoning steps in this way makes language models more likely to give the correct
answer to difficult reasoning tasks (Wei et al., 2022; Suzgun et al., 2023). Fig. 9.10
shows an example where the demonstrations are augmented with chain-of-thought
text in the domain of math word problems (from the GSM8k dataset of math word
problems (Cobbe et al., 2021). Fig. 9.11 shows a similar example from the BIG-
Bench-Hard dataset (Suzgun et al., 2023).

9.5 Summary

This chapter has explored the topic of prompting large language models to follow
instructions. Here are some of the main points that we’ve covered:

• Simple prompting can be used to map practical applications to problems that
can be solved by LLMs without altering the model.

16 CHAPTER 9 • POST-TRAINING: INSTRUCTION TUNING, ALIGNMENT, AND TEST-TIME COMPUTE

Figure 9.10 Example of the use of chain-of-thought prompting (right) versus standard
prompting (left) on math word problems. Figure from Wei et al. (2022).

(B)

Task description: Answer questions about which times certain events
could have occurred.

Q: Today, Tiffany went to the beach. Between what times could they
have gone? We know that:
Tiffany woke up at 5am. [...] The beach was closed after 4pm. [...]
Options: (A) 9am to 12pm (B) 12pm to 2pm

(C) 5am to 6am (D) 3pm to 4pm

A: (D)

Q: Today, Hannah went to the soccer field. Between what times could
they have gone? We know that:
Hannah woke up at 5am. [...] The soccer field was closed after 6pm. [...]
Options: (A) 3pm to 5pm (B) 11am to 1pm

(C) 5pm to 6pm (D) 1pm to 3pm

A:

Model Output Model Output

Model Input (“Answer-Only” Prompting)

Wake-up time: 5am.
5am-6am: buying clothes at the mall.
6am-11am: watching a movie at the theater.
11am-1pm: getting a coffee at the cafe.
1pm-3pm: working at the office.
3pm-5pm: waiting at the airport.
5pm-6pm: free. The soccer field closure time: 6pm.
The only time when Hannah could have gone to the soccer field was
5pm to 6pm. So the answer is (C).

Model Input (Chain-of-Thought Prompting)

Task description: Answer questions about which times certain events
could have occurred.

Q: Today, Tiffany went to the beach. Between what times could they
have gone? We know that:
Tiffany woke up at 5am. [...] The beach was closed after 4pm. [...]
Options: (A) 9am to 12pm (B) 12pm to 2pm

(C) 5am to 6am (D) 3pm to 4pm

A: Let's think step by step.
Wake-up time: 5am. [...] The only time when Tiffany could have gone to
the beach was 3pm to 4pm. So the answer is (D).

Q: Today, Hannah went to the soccer field. Between what times could
they have gone? We know that:
Hannah woke up at 5am. [...] The soccer field was closed after 6pm. [...]
Options: (A) 3pm to 5pm (B) 11am to 1pm

(C) 5pm to 6pm (D) 1pm to 3pm

A: Let's think step by step.

Task Description

Question

Chain-of-Thought

Test-Time
Question

Task Description

Question

Test-Time
Question

Answer

Generated
Chain-of-Thought

Generated
Answer

Options
Options

Figure 3: An illustration of the two prompting setups we explore in our paper (answer-only and CoT prompting). Both setups
include task descriptions and options in the input prompt. The task here is Temporal Sequences.

“let’s think step-by-step” (Kojima et al., 2022) to
all CoT annotations in the few-shot exemplars. An
example of a CoT prompt is shown in Figure 3.
Language models. We consider three fami-
lies of language models: Codex (Chen et al.,
2021a), InstructGPT (Ouyang et al., 2022; Brown
et al., 2020), and PaLM (Chowdhery et al., 2022).
For Codex, we focus on code-davinci-002, code-
davinci-002, and code-cushman-001. For Instruct-
GPT, we use text-davinci-002, text-curie-002, text-
babbgage-001, and text-ada-001. For PaLM, we
use the three available sizes: 8B, 62B, and 540B.
Evaluation protocol. We evaluate all language
models via greedy decoding (i.e., temperature sam-
pling with temperature parameter ⌧ = 0). We
extract the final answer based on keywords that
the language model is expected to produce (i.e.,
“the answer is”). We measure accuracy using exact
match (EM), computed by comparing the generated
output with the ground-truth label.4

4 Results

4.1 Standard answer-only prompting
underestimates model capabilities

Table 2 summarizes the performance of PaLM, In-
structGPT, and Codex models on BBH for answer-
only and CoT prompting approaches. While
answer-only prompting has been used as the stan-

4For multiple-choice tasks, this setup differs slightly from
rank/scoring classification (Brown et al., 2020; Srivastava
et al., 2022; Lampinen et al., 2022). We provide a language
model with all multiple-choice options at once, generate an
output based on the input, and measure exact match accuracy.

dard in many prior work (Brown et al., 2020; Rae
et al., 2021; Hoffmann et al., 2022; Srivastava et al.,
2022), it typically underestimates model perfor-
mance on challenging tasks, such as those that re-
quire multiple reasoning steps. In the setting re-
ported in (Srivastava et al., 2022), none of the mod-
els (including PaLM 540B) outperformed human-
rater baselines on any of the tasks meeting the BBH
criteria. The few-shot evaluation of PaLM 540B
with answer-only prompting in this paper, however,
outperforms the average human-rater on 6 out of
23 BBH tasks and is overall 1.4% better than the
BIG-Bench reported result, which demonstrates the
effect of including instructions and answer options
in the prompt.

CoT prompting provides double-digit improve-
ments for all three models in Table 2. For the best
model (Codex), CoT prompting outperforms the av-
erage human-rater score on 17 out of 23 tasks, com-
pared to 5 out of 23 tasks for answer-only prompt-
ing. Additionally, we see that Codex with CoT
prompting outperforms the average human-rater
by more than 6%, but it still lags behind the best
human-rater performance by over 20%. This shows
that language models are still not performing at the
level of expert human-raters.

4.2 Positive delta from chain-of-thought
requires sufficient model scale

Next we study how the performance improves by
using CoT prompting as we increase the model
scale. In Figure 4, we plot the performance of both
CoT and answer-only prompting (no CoT) as a

13006

Figure 9.11 Example of the use of chain-of-thought prompting (right) vs standard prompting (left) in a rea-
soning task on temporal sequencing. Figure from Suzgun et al. (2023).

• Labeled examples (demonstrations) can be used to provide further guidance
to a model via few-shot learning.

• Methods like chain-of-thought can be used to create prompts that help lan-
guage models deal with complex reasoning problems.

• Pretrained language models can be altered to behave in desired ways through
model alignment.

• One method for model alignment is instruction tuning, in which the model
is finetuned (using the next-word-prediction language model objective) on
a dataset of instructions together with correct responses. Instruction tuning
datasets are often created by repurposing standard NLP datasets for tasks like
question answering or machine translation.

HISTORICAL NOTES 17

Historical Notes

18 Chapter 9 • Post-training: Instruction Tuning, Alignment, and Test-Time Compute

Bai, Y., A. Jones, K. Ndousse, A. Askell, A. Chen, N. Das-
Sarma, D. Drain, S. Fort, D. Ganguli, T. Henighan,
N. Joseph, S. Kadavath, J. Kernion, T. Conerly, S. El-
Showk, N. Elhage, Z. Hatfield-Dodds, D. Hernandez,
T. Hume, S. Johnston, S. Kravec, L. Lovitt, N. Nanda,
C. Olsson, D. Amodei, T. Brown, J. Clark, S. McCan-
dlish, C. Olah, B. Mann, and J. Kaplan. 2022. Training a
helpful and harmless assistant with reinforcement learn-
ing from human feedback.

Bianchi, F., M. Suzgun, G. Attanasio, P. Rottger, D. Juraf-
sky, T. Hashimoto, and J. Zou. 2024. Safety-tuned LLa-
MAs: Lessons from improving the safety of large lan-
guage models that follow instructions. ICLR.

Bradley, R. A. and M. E. Terry. 1952. Rank analysis of in-
complete block designs: I. the method of paired compar-
isons. Biometrika, 39:324–345.

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. 2020. Language
models are few-shot learners. NeurIPS, volume 33.

Cao, Y., Y. Kang, C. Wang, and L. Sun. 2024. Instruction
mining: Instruction data selection for tuning large lan-
guage models. First Conference on Language Modeling.

Cheng, M., E. Durmus, and D. Jurafsky. 2023. Marked per-
sonas: Using natural language prompts to measure stereo-
types in language models. ACL.

Cobbe, K., V. Kosaraju, M. Bavarian, M. Chen, H. Jun,
L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano,
C. Hesse, and J. Schulman. 2021. Training verifiers to
solve math word problems. ArXiv preprint.

Cui, G., L. Yuan, N. Ding, G. Yao, B. He, W. Zhu, Y. Ni,
G. Xie, R. Xie, Y. Lin, Z. Liu, and M. Sun. 2024. Ultra-
feedback: boosting language models with scaled ai feed-
back. ICML 2024.

Ethayarajh, K., H. C. Zhang, and S. Behzad. 2022. Stanford
human preferences dataset v2 (shp-2).

Gehman, S., S. Gururangan, M. Sap, Y. Choi, and N. A.
Smith. 2020. RealToxicityPrompts: Evaluating neu-
ral toxic degeneration in language models. Findings of
EMNLP.

Iyer, S., X. V. Lin, R. Pasunuru, T. Mihaylov, D. Simig,
P. Yu, K. Shuster, T. Wang, Q. Liu, P. S. Koura, X. Li,
B. O’Horo, G. Pereyra, J. Wang, C. Dewan, A. Celiky-
ilmaz, L. Zettlemoyer, and V. Stoyanov. 2022. Opt-
iml: Scaling language model instruction meta learning
through the lens of generalization. ArXiv preprint.

Lambert, N., L. Tunstall, N. Rajani, and T. Thrush. 2023.
Huggingface h4 stack exchange preference dataset.

Longpre, S., L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay,
D. Zhou, Q. V. Le, B. Zoph, J. Wei, and A. Roberts. 2023.
The Flan collection: Designing data and methods for ef-
fective instruction tuning. ICML.

Mishra, S., D. Khashabi, C. Baral, and H. Hajishirzi. 2022.
Cross-task generalization via natural language crowd-
sourcing instructions. ACL.

Ouyang, L., J. Wu, X. Jiang, D. Almeida, C. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,
J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,
A. Askell, P. Welinder, P. Christiano, J. Leike, and
R. Lowe. 2022. Training language models to follow in-
structions with human feedback. NeurIPS, volume 35.

Rafailov, R., A. Sharma, E. Mitchell, S. Ermon, C. D. Man-
ning, and C. Finn. 2023. Direct preference optimiza-
tion: Your language model is secretly a reward model.
NeurIPS.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang. 2016.
SQuAD: 100,000+ questions for machine comprehension
of text. EMNLP.

Sheng, E., K.-W. Chang, P. Natarajan, and N. Peng. 2019.
The woman worked as a babysitter: On biases in language
generation. EMNLP.

Singh, S., F. Vargus, D. D’souza, B. F. Karlsson, A. Ma-
hendiran, W.-Y. Ko, H. Shandilya, J. Patel, D. Mat-
aciunas, L. O’Mahony, M. Zhang, R. Hettiarachchi,
J. Wilson, M. Machado, L. S. Moura, D. Krzemiński,
H. Fadaei, I. Ergün, I. Okoh, A. Alaagib, O. Mu-
dannayake, Z. Alyafeai, V. M. Chien, S. Ruder,
S. Guthikonda, E. A. Alghamdi, S. Gehrmann, N. Muen-
nighoff, M. Bartolo, J. Kreutzer, A. ÜÜstün, M. Fadaee,
and S. Hooker. 2024. Aya dataset: An open-access collec-
tion for multilingual instruction tuning. ArXiv preprint.

Stiennon, N., L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe,
C. Voss, A. Radford, D. Amodei, and P. Christiano. 2020.
Learning to summarize from human feedback. Proceed-
ings of the 34th International Conference on Neural In-
formation Processing Systems.

Sutton, R. S. and A. G. Barto. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.

Suzgun, M., N. Scales, N. Schärli, S. Gehrmann, Y. Tay,
H. W. Chung, A. Chowdhery, Q. Le, E. Chi, D. Zhou, and
J. Wei. 2023. Challenging BIG-bench tasks and whether
chain-of-thought can solve them. ACL Findings.

Wang, Y., S. Mishra, P. Alipoormolabashi, Y. Kordi,
A. Mirzaei, A. Naik, A. Ashok, A. S. Dhanasekaran,
A. Arunkumar, D. Stap, E. Pathak, G. Karamanolakis,
H. Lai, I. Purohit, I. Mondal, J. Anderson, K. Kuznia,
K. Doshi, K. K. Pal, M. Patel, M. Moradshahi, M. Par-
mar, M. Purohit, N. Varshney, P. R. Kaza, P. Verma,
R. S. Puri, R. Karia, S. Doshi, S. K. Sampat, S. Mishra,
S. Reddy A, S. Patro, T. Dixit, and X. Shen. 2022. Super-
NaturalInstructions: Generalization via declarative in-
structions on 1600+ NLP tasks. EMNLP.

Wang, Z., Y. Dong, J. Zeng, V. Adams, M. N. Sreedhar,
D. Egert, O. Delalleau, J. Scowcroft, N. Kant, A. Swope,
and O. Kuchaiev. 2024. HelpSteer: Multi-attribute help-
fulness dataset for SteerLM. NAACL HLT.

Wei, J., X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi,
Q. V. Le, D. Zhou, et al. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. NeurIPS,
volume 35.

Ziegler, D. M., N. Stiennon, J. Wu, T. B. Brown, A. Rad-
ford, D. Amodei, P. Christiano, and G. Irving. 2019. Fine-
tuning language models from human preferences. ArXiv,
abs/1909.08593.

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://openreview.net/pdf?id=gT5hALch9z
https://openreview.net/pdf?id=gT5hALch9z
https://openreview.net/pdf?id=gT5hALch9z
https://doi.org/10.18653/v1/2023.acl-long.84
https://doi.org/10.18653/v1/2023.acl-long.84
https://doi.org/10.18653/v1/2023.acl-long.84
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://arxiv.org/abs/2212.12017
https://arxiv.org/abs/2212.12017
https://arxiv.org/abs/2212.12017
https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences
https://browse.arxiv.org/pdf/2305.18290.pdf
https://browse.arxiv.org/pdf/2305.18290.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D19-1339
https://doi.org/10.18653/v1/D19-1339
https://arxiv.org/abs/2402.06619
https://arxiv.org/abs/2402.06619
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824

	Post-training: Instruction Tuning, Alignment, and Test-Time Compute
	Instruction Tuning
	Instructions as Training Data
	Evaluation of Instruction-Tuned Models

	Learning from Preferences
	LLM Preference Data
	Modeling Preferences
	Learning to Score Preferences

	LLM Alignment via Preference-Based Learning
	Reinforcement Learning with Preference Feedback (PPO)
	Direct Preference Optimization
	Evaluation of Preference-Aligned Models
	Limitations of Preference-Based Learning

	Test-time Compute
	Chain-of-Thought Prompting

	Summary
	Historical Notes

