
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2025. All

rights reserved. Draft of August 24, 2025.

CHAPTER

B Naive Bayes, Text Classification,
and Sentiment

Classification lies at the heart of both human and machine intelligence. Deciding
what letter, word, or image has been presented to our senses, recognizing faces
or voices, sorting mail, assigning grades to homeworks; these are all examples of
assigning a category to an input. The potential challenges of this task are highlighted
by the fabulist Jorge Luis Borges (1964), who imagined classifying animals into:

(a) those that belong to the Emperor, (b) embalmed ones, (c) those that
are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, (g) stray
dogs, (h) those that are included in this classification, (i) those that
tremble as if they were mad, (j) innumerable ones, (k) those drawn with
a very fine camel’s hair brush, (l) others, (m) those that have just broken
a flower vase, (n) those that resemble flies from a distance.

Many language processing tasks involve classification, although luckily our classes
are much easier to define than those of Borges. In this chapter we introduce the naive
Bayes algorithm and apply it to text categorization, the task of assigning a label ortext

categorization
category to an entire text or document.

We focus on one common text categorization task, sentiment analysis, the ex-sentiment
analysis

traction of sentiment, the positive or negative orientation that a writer expresses
toward some object. A review of a movie, book, or product on the web expresses the
author’s sentiment toward the product, while an editorial or political text expresses
sentiment toward a candidate or political action. Extracting consumer or public sen-
timent is thus relevant for fields from marketing to politics.

The simplest version of sentiment analysis is a binary classification task, and
the words of the review provide excellent cues. Consider, for example, the follow-
ing phrases extracted from positive and negative reviews of movies and restaurants.
Words like great, richly, awesome, and pathetic, and awful and ridiculously are very
informative cues:

+ ...zany characters and richly applied satire, and some great plot twists
− It was pathetic. The worst part about it was the boxing scenes...
+ ...awesome caramel sauce and sweet toasty almonds. I love this place!
− ...awful pizza and ridiculously overpriced...

Spam detection is another important commercial application, the binary clas-spam detection

sification task of assigning an email to one of the two classes spam or not-spam.
Many lexical and other features can be used to perform this classification. For ex-
ample you might quite reasonably be suspicious of an email containing phrases like
“online pharmaceutical” or “WITHOUT ANY COST” or “Dear Winner”.

Another thing we might want to know about a text is the language it’s written
in. Texts on social media, for example, can be in any number of languages and
we’ll need to apply different processing. The task of language id is thus the firstlanguage id

step in most language processing pipelines. Related text classification tasks like au-
thorship attribution— determining a text’s author— are also relevant to the digitalauthorship

attribution
humanities, social sciences, and forensic linguistics.

2 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

Finally, one of the oldest tasks in text classification is assigning a library sub-
ject category or topic label to a text. Deciding whether a research paper concerns
epidemiology or instead, perhaps, embryology, is an important component of infor-
mation retrieval. Various sets of subject categories exist, such as the MeSH (Medical
Subject Headings) thesaurus. In fact, as we will see, subject category classification
is the task for which the naive Bayes algorithm was invented in 1961 (Maron, 1961).

Classification is essential for tasks below the level of the document as well.
We’ve already seen period disambiguation (deciding if a period is the end of a sen-
tence or part of a word), and word tokenization (deciding if a character should be
a word boundary). Even language modeling can be viewed as classification: each
word can be thought of as a class, and so predicting the next word is classifying the
context-so-far into a class for each next word. A part-of-speech tagger (Chapter 17)
classifies each occurrence of a word in a sentence as, e.g., a noun or a verb.

The goal of classification is to take a single observation, extract some useful
features, and thereby classify the observation into one of a set of discrete classes.
One method for classifying text is to use rules handwritten by humans. Handwrit-
ten rule-based classifiers can be components of state-of-the-art systems in language
processing. But rules can be fragile, as situations or data change over time, and for
some tasks humans aren’t necessarily good at coming up with the rules.

The most common way of doing text classification in language processing is
instead via supervised machine learning, the subject of this chapter. In supervised

supervised
machine
learning

learning, we have a data set of input observations, each associated with some correct
output (a ‘supervision signal’). The goal of the algorithm is to learn how to map
from a new observation to a correct output.

Formally, the task of supervised classification is to take an input x and a fixed
set of output classes Y = {y1,y2, ...,yM} and return a predicted class y ∈ Y . For
text classification, we’ll sometimes talk about c (for “class”) instead of y as our
output variable, and d (for “document”) instead of x as our input variable. In the
supervised situation we have a training set of N documents that have each been hand-
labeled with a class: {(d1,c1),,(dN ,cN)}. Our goal is to learn a classifier that is
capable of mapping from a new document d to its correct class c ∈ C, where C is
some set of useful document classes. A probabilistic classifier additionally will tell
us the probability of the observation being in the class. This full distribution over
the classes can be useful information for downstream decisions; avoiding making
discrete decisions early on can be useful when combining systems.

Many kinds of machine learning algorithms are used to build classifiers. This
chapter introduces naive Bayes; the following one introduces logistic regression.
These exemplify two ways of doing classification. Generative classifiers like naive
Bayes build a model of how a class could generate some input data. Given an ob-
servation, they return the class most likely to have generated the observation. Dis-
criminative classifiers like logistic regression instead learn what features from the
input are most useful to discriminate between the different possible classes. While
discriminative systems are often more accurate and hence more commonly used,
generative classifiers still have a role.

B.1 Naive Bayes Classifiers

In this section we introduce the multinomial naive Bayes classifier, so called be-naive Bayes
classifier

cause it is a Bayesian classifier that makes a simplifying (naive) assumption about

B.1 • NAIVE BAYES CLASSIFIERS 3

how the features interact.
The intuition of the classifier is shown in Fig. B.1. We represent a text document

as if it were a bag of words, that is, an unordered set of words with their positionbag of words

ignored, keeping only their frequency in the document. In the example in the figure,
instead of representing the word order in all the phrases like “I love this movie” and
“I would recommend it”, we simply note that the word I occurred 5 times in the
entire excerpt, the word it 6 times, the words love, recommend, and movie once, and
so on.

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

Figure B.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the
words is ignored (the bag-of-words assumption) and we make use of the frequency of each word.

Naive Bayes is a probabilistic classifier, meaning that for a document d, out of
all classes c ∈C the classifier returns the class ĉ which has the maximum posterior
probability given the document. In Eq. B.1 we use the hat notation ˆ to mean “ourˆ

estimate of the correct class”, and we use argmax to mean an operation that selectsargmax

the argument (in this case the class c) that maximizes a function (in this case the
probability P(c|d)).

ĉ = argmax
c∈C

P(c|d) (B.1)

This idea of Bayesian inference has been known since the work of Bayes (1763),Bayesian
inference

and was first applied to text classification by Mosteller and Wallace (1964). The
intuition of Bayesian classification is to use Bayes’ rule to transform Eq. B.1 into
other probabilities that have some useful properties. Bayes’ rule is presented in
Eq. B.2; it gives us a way to break down any conditional probability P(x|y) into
three other probabilities:

P(x|y) = P(y|x)P(x)
P(y)

(B.2)

4 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

We can then substitute Eq. B.2 into Eq. B.1 to get Eq. B.3:

ĉ = argmax
c∈C

P(c|d) = argmax
c∈C

P(d|c)P(c)
P(d)

(B.3)

We can conveniently simplify Eq. B.3 by dropping the denominator P(d). This
is possible because we will be computing P(d|c)P(c)

P(d) for each possible class. But P(d)
doesn’t change for each class; we are always asking about the most likely class for
the same document d, which must have the same probability P(d). Thus, we can
choose the class that maximizes this simpler formula:

ĉ = argmax
c∈C

P(c|d) = argmax
c∈C

P(d|c)P(c) (B.4)

We call Naive Bayes a generative model because we can read Eq. B.4 as stating
a kind of implicit assumption about how a document is generated: first a class is
sampled from P(c), and then the words are generated by sampling from P(d|c). (In
fact we could imagine generating artificial documents, or at least their word counts,
by following this process). We’ll say more about this intuition of generative models
in Chapter 4.

To return to classification: we compute the most probable class ĉ given some
document d by choosing the class which has the highest product of two probabilities:
the prior probability of the class P(c) and the likelihood of the document P(d|c):prior

probability
likelihood

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P(d|c)

prior︷︸︸︷
P(c) (B.5)

Without loss of generality, we can represent a document d as a set of features
f1, f2, ..., fn:

ĉ = argmax
c∈C

likelihood︷ ︸︸ ︷
P(f1, f2,, fn|c)

prior︷︸︸︷
P(c) (B.6)

Unfortunately, Eq. B.6 is still too hard to compute directly: without some sim-
plifying assumptions, estimating the probability of every possible combination of
features (for example, every possible set of words and positions) would require huge
numbers of parameters and impossibly large training sets. Naive Bayes classifiers
therefore make two simplifying assumptions.

The first is the bag-of-words assumption discussed intuitively above: we assume
position doesn’t matter, and that the word “love” has the same effect on classification
whether it occurs as the 1st, 20th, or last word in the document. Thus we assume
that the features f1, f2, ..., fn only encode word identity and not position.

The second is commonly called the naive Bayes assumption: this is the condi-naive Bayes
assumption

tional independence assumption that the probabilities P(fi|c) are independent given
the class c and hence can be ‘naively’ multiplied as follows:

P(f1, f2,, fn|c) = P(f1|c) ·P(f2|c) · ... ·P(fn|c) (B.7)

The final equation for the class chosen by a naive Bayes classifier is thus:

cNB = argmax
c∈C

P(c)
∏
f∈F

P(f |c) (B.8)

B.2 • TRAINING THE NAIVE BAYES CLASSIFIER 5

To apply the naive Bayes classifier to text, we will use each word in the documents
as a feature, as suggested above, and we consider each of the words in the document
by walking an index through every word position in the document:

positions ← all word positions in test document

cNB = argmax
c∈C

P(c)
∏

i∈positions

P(wi|c) (B.9)

Naive Bayes calculations, like calculations for language modeling, are done in log
space, to avoid underflow and increase speed. Thus Eq. B.9 is generally instead
expressed1 as

cNB = argmax
c∈C

logP(c)+
∑

i∈positions

logP(wi|c) (B.10)

By considering features in log space, Eq. B.10 computes the predicted class as a lin-
ear function of input features. Classifiers that use a linear combination of the inputs
to make a classification decision —like naive Bayes and also logistic regression—
are called linear classifiers.linear

classifiers

B.2 Training the Naive Bayes Classifier

How can we learn the probabilities P(c) and P(fi|c)? Let’s first consider the maxi-
mum likelihood estimate. We’ll simply use the frequencies in the data. For the class
prior P(c) we ask what percentage of the documents in our training set are in each
class c. Let Nc be the number of documents in our training data with class c and
Ndoc be the total number of documents. Then:

P̂(c) =
Nc

Ndoc
(B.11)

To learn the probability P(fi|c), we’ll assume a feature is just the existence of a word
in the document’s bag of words, and so we’ll want P(wi|c), which we compute as
the fraction of times the word wi appears among all words in all documents of topic
c. We first concatenate all documents with category c into one big “category c” text.
Then we use the frequency of wi in this concatenated document to give a maximum
likelihood estimate of the probability:

P̂(wi|c) =
count(wi,c)∑
w∈V count(w,c)

(B.12)

Here the vocabulary V consists of the union of all the word types in all classes, not
just the words in one class c.

There is a problem, however, with maximum likelihood training. Imagine we
are trying to estimate the likelihood of the word “fantastic” given class positive, but
suppose there are no training documents that both contain the word “fantastic” and
are classified as positive. Perhaps the word “fantastic” happens to occur (sarcasti-
cally?) in the class negative. In such a case the probability for this feature will be
zero:

P̂(“fantastic”|positive) =
count(“fantastic”,positive)∑

w∈V count(w,positive)
= 0 (B.13)

1 In practice throughout this book, we’ll use log to mean natural log (ln) when the base is not specified.

6 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

But since naive Bayes naively multiplies all the feature likelihoods together, zero
probabilities in the likelihood term for any class will cause the probability of the
class to be zero, no matter the other evidence!

The simplest solution is the add-one (Laplace) smoothing introduced in Chap-
ter 3. While Laplace smoothing is usually replaced by more sophisticated smoothing
algorithms in language modeling, it is commonly used in naive Bayes text catego-
rization:

P̂(wi|c) =
count(wi,c)+1∑

w∈V (count(w,c)+1)
=

count(wi,c)+1(∑
w∈V count(w,c)

)
+ |V |

(B.14)

Note once again that it is crucial that the vocabulary V consists of the union of all the
word types in all classes, not just the words in one class c (try to convince yourself
why this must be true; see the exercise at the end of the chapter).

What do we do about words that occur in our test data but are not in our vocab-
ulary at all because they did not occur in any training document in any class? The
solution for such unknown words is to ignore them—remove them from the testunknown word

document and not include any probability for them at all.
Finally, some systems choose to completely ignore another class of words: stop

words, very frequent words like the and a. This can be done by sorting the vocabu-stop words

lary by frequency in the training set, and defining the top 10–100 vocabulary entries
as stop words, or alternatively by using one of the many predefined stop word lists
available online. Then each instance of these stop words is simply removed from
both training and test documents as if it had never occurred. In most text classifica-
tion applications, however, using a stop word list doesn’t improve performance, and
so it is more common to make use of the entire vocabulary and not use a stop word
list.

Fig. B.2 shows the final algorithm.

B.3 Worked example

Let’s walk through an example of training and testing naive Bayes with add-one
smoothing. We’ll use a sentiment analysis domain with the two classes positive
(+) and negative (-), and take the following miniature training and test documents
simplified from actual movie reviews.

Cat Documents
Training - just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
+ very powerful
+ the most fun film of the summer

Test ? predictable with no fun

The prior P(c) for the two classes is computed via Eq. B.11 as Nc
Ndoc

:

P(−) = 3
5

P(+) =
2
5

The word with doesn’t occur in the training set, so we drop it completely (as
mentioned above, we don’t use unknown word models for naive Bayes). The like-
lihoods from the training set for the remaining three words “predictable”, “no”, and

B.4 • OPTIMIZING FOR SENTIMENT ANALYSIS 7

function TRAIN NAIVE BAYES(D, C) returns V, log P(c), log P(w|c)

for each class c ∈ C # Calculate P(c) terms
Ndoc = number of documents in D
Nc = number of documents from D in class c

logprior[c]← log
Nc

Ndoc
V←vocabulary of D
bigdoc[c]←append(d) for d ∈ D with class c
for each word w in V # Calculate P(w|c) terms

count(w,c)←# of occurrences of w in bigdoc[c]

loglikelihood[w,c]← log
count(w,c) + 1∑

w′ in V (count (w′,c) + 1)
return logprior, loglikelihood, V

function TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) returns best c

for each class c ∈ C
sum[c]← logprior[c]
for each position i in testdoc

word← testdoc[i]
if word ∈ V

sum[c]←sum[c]+ loglikelihood[word,c]
return argmaxc sum[c]

Figure B.2 The naive Bayes algorithm, using add-1 smoothing. To use add-α smoothing
instead, change the +1 to +α for loglikelihood counts in training.

“fun”, are as follows, from Eq. B.14 (computing the probabilities for the remainder
of the words in the training set is left as an exercise for the reader):

P(“predictable”|−) = 1+1
14+20

P(“predictable”|+) =
0+1

9+20

P(“no”|−) = 1+1
14+20

P(“no”|+) =
0+1

9+20

P(“fun”|−) = 0+1
14+20

P(“fun”|+) =
1+1

9+20

For the test sentence S = “predictable with no fun”, after removing the word ‘with’,
the chosen class, via Eq. B.9, is therefore computed as follows:

P(−)P(S|−) =
3
5
× 2×2×1

343 = 6.1×10−5

P(+)P(S|+) =
2
5
× 1×1×2

293 = 3.2×10−5

The model thus predicts the class negative for the test sentence.

B.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis,
some small changes are generally employed that improve performance.

8 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

First, for sentiment classification and a number of other text classification tasks,
whether a word occurs or not seems to matter more than its frequency. Thus it often
improves performance to clip the word counts in each document at 1 (see the end
of the chapter for pointers to these results). This variant is called binary multino-
mial naive Bayes or binary naive Bayes. The variant uses the same algorithm as inbinary naive

Bayes
Fig. B.2 except that for each document we remove all duplicate words before con-
catenating them into the single big document during training and we also remove
duplicate words from test documents. Fig. B.3 shows an example in which a set
of four documents (shortened and text-normalized for this example) are remapped
to binary, with the modified counts shown in the table on the right. The example
is worked without add-1 smoothing to make the differences clearer. Note that the
results counts need not be 1; the word great has a count of 2 even for binary naive
Bayes, because it appears in multiple documents.

Four original documents:

− it was pathetic the worst part was the
boxing scenes

− no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

After per-document binarization:

− it was pathetic the worst part boxing
scenes

− no plot twists or great scenes
+ and satire great plot twists
+ great scenes film

NB Binary
Counts Counts
+ − + −

and 2 0 1 0
boxing 0 1 0 1
film 1 0 1 0
great 3 1 2 1
it 0 1 0 1
no 0 1 0 1
or 0 1 0 1
part 0 1 0 1
pathetic 0 1 0 1
plot 1 1 1 1
satire 1 0 1 0
scenes 1 2 1 2
the 0 2 0 1
twists 1 1 1 1
was 0 2 0 1
worst 0 1 0 1

Figure B.3 An example of binarization for the binary naive Bayes algorithm.

A second important addition commonly made when doing text classification for
sentiment is to deal with negation. Consider the difference between I really like this
movie (positive) and I didn’t like this movie (negative). The negation expressed by
didn’t completely alters the inferences we draw from the predicate like. Similarly,
negation can modify a negative word to produce a positive review (don’t dismiss this
film, doesn’t let us get bored).

A very simple baseline that is commonly used in sentiment analysis to deal with
negation is the following: during text normalization, prepend the prefix NOT to
every word after a token of logical negation (n’t, not, no, never) until the next punc-
tuation mark. Thus the phrase

didn’t like this movie , but I

becomes

didn’t NOT_like NOT_this NOT_movie , but I

Newly formed ‘words’ like NOT like, NOT recommend will thus occur more
often in negative document and act as cues for negative sentiment, while words
like NOT bored, NOT dismiss will acquire positive associations. Syntactic parsing
(Chapter 18) can be used to deal more accurately with the scope relationship between

B.5 • NAIVE BAYES FOR OTHER TEXT CLASSIFICATION TASKS 9

these negation words and the predicates they modify, but this simple baseline works
quite well in practice.

Finally, in some situations we might have insufficient labeled training data to
train accurate naive Bayes classifiers using all words in the training set to estimate
positive and negative sentiment. In such cases we can instead derive the positive
and negative word features from sentiment lexicons, lists of words that are pre-sentiment

lexicons
annotated with positive or negative sentiment. Four popular lexicons are the General
Inquirer (Stone et al., 1966), LIWC (Pennebaker et al., 2007), the opinion lexiconGeneral

Inquirer
LIWC of Hu and Liu (2004) and the MPQA Subjectivity Lexicon (Wilson et al., 2005).

For example the MPQA subjectivity lexicon has 6885 words each marked for
whether it is strongly or weakly biased positive or negative. Some examples:

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

A common way to use lexicons in a naive Bayes classifier is to add a feature
that is counted whenever a word from that lexicon occurs. Thus we might add a
feature called ‘this word occurs in the positive lexicon’, and treat all instances of
words in the lexicon as counts for that one feature, instead of counting each word
separately. Similarly, we might add as a second feature ‘this word occurs in the
negative lexicon’ of words in the negative lexicon. If we have lots of training data,
and if the test data matches the training data, using just two features won’t work as
well as using all the words. But when training data is sparse or not representative of
the test set, using dense lexicon features instead of sparse individual-word features
may generalize better.

We’ll return to this use of lexicons in Chapter 22, showing how these lexicons
can be learned automatically, and how they can be applied to many other tasks be-
yond sentiment classification.

B.5 Naive Bayes for other text classification tasks

In the previous section we pointed out that naive Bayes doesn’t require that our
classifier use all the words in the training data as features. In fact features in naive
Bayes can express any property of the input text we want.

Consider the task of spam detection, deciding if a particular piece of email isspam detection

an example of spam (unsolicited bulk email)—one of the first applications of naive
Bayes to text classification (Sahami et al., 1998).

A common solution here, rather than using all the words as individual features,
is to predefine likely sets of words or phrases as features, combined with features
that are not purely linguistic. For example the open-source SpamAssassin tool2

predefines features like the phrase “one hundred percent guaranteed”, or the feature
mentions millions of dollars, which is a regular expression that matches suspiciously
large sums of money. But it also includes features like HTML has a low ratio of text
to image area, that aren’t purely linguistic and might require some sophisticated
computation, or totally non-linguistic features about, say, the path that the email
took to arrive. More sample SpamAssassin features:

• Email subject line is all capital letters
• Contains phrases of urgency like “urgent reply”

2 https://spamassassin.apache.org

https://spamassassin.apache.org

10 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

• Email subject line contains “online pharmaceutical”
• HTML has unbalanced “head” tags
• Claims you can be removed from the list
For other tasks, like language id—determining what language a given piecelanguage id

of text is written in—the most effective naive Bayes features are not words at all,
but character n-grams, 2-grams (‘zw’) 3-grams (‘nya’, ‘ Vo’), or 4-grams (‘ie z’,
‘thei’), or, even simpler byte n-grams, where instead of using the multibyte Unicode
character representations called codepoints, we just pretend everything is a string of
raw bytes. Because spaces count as a byte, byte n-grams can model statistics about
the beginning or ending of words. A widely used naive Bayes system, langid.py
(Lui and Baldwin, 2012) begins with all possible n-grams of lengths 1-4, using fea-
ture selection to winnow down to the most informative 7000 final features.

Language ID systems are trained on multilingual text, such as Wikipedia (Wiki-
pedia text in 68 different languages was used by (Lui and Baldwin, 2011)), or
newswire. To make sure that this multilingual text correctly reflects different re-
gions, dialects, and socioeconomic classes, systems also add Twitter text in many
languages geotagged to many regions (important for getting world English dialects
from countries with large Anglophone populations like Nigeria or India), Bible and
Quran translations, slang websites like Urban Dictionary, corpora of African Amer-
ican Vernacular English (Blodgett et al., 2016), and so on (Jurgens et al., 2017).

B.6 Naive Bayes as a Language Model

As we saw in the previous section, naive Bayes classifiers can use any sort of feature:
dictionaries, URLs, email addresses, network features, phrases, and so on. But if,
as in Section B.3, we use only individual word features, and we use all of the words
in the text (not a subset), then naive Bayes has an important similarity to language
modeling. Specifically, a naive Bayes model can be viewed as a set of class-specific
unigram language models, in which the model for each class instantiates a unigram
language model.

Since the likelihood features from the naive Bayes model assign a probability to
each word P(word|c), the model also assigns a probability to each sentence:

P(s|c) =
∏

i∈positions

P(wi|c) (B.15)

Thus consider a naive Bayes model with the classes positive (+) and negative (-)
and the following model parameters:

w P(w|+) P(w|-)
I 0.1 0.2
love 0.1 0.001
this 0.01 0.01
fun 0.05 0.005
film 0.1 0.1
...

Each of the two columns above instantiates a language model that can assign a
probability to the sentence “I love this fun film”:

B.7 • EVALUATION: PRECISION, RECALL, F-MEASURE 11

P(“I love this fun film”|+) = 0.1×0.1×0.01×0.05×0.1 = 5×10−7

P(“I love this fun film”|−) = 0.2×0.001×0.01×0.005×0.1 = 1.0×10−9

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

B.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. B.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,
while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

12 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Figure B.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. B.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall

correctly identified by the system. Recall is defined as

Recall =
true positives

true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure

Rijsbergen, 1975) , defined as:

Fβ =
(β 2 +1)PR

β 2P+R

The β parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of β > 1 favor recall, while
values of β < 1 favor precision. When β = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fβ=1 or just F1:F1

F1 =
2PR

P+R
(B.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(B.17)

B.7 • EVALUATION: PRECISION, RECALL, F-MEASURE 13

and hence F-measure is

F =
1

α
1
P +(1−α) 1

R

or
(

with β
2 =

1−α

α

)
F =

(β 2 +1)PR
β 2P+R

(B.18)

Harmonic mean is used because the harmonic mean of two values is closer to the
minimum of the two values than the arithmetic mean is. Thus it weighs the lower of
the two numbers more heavily, which is more conservative in this situation.

B.7.1 Evaluating with more than two classes

Up to now we have been describing text classification tasks with only two classes.
But lots of classification tasks in language processing have more than two classes.
For sentiment analysis we generally have 3 classes (positive, negative, neutral) and
even more classes are common for tasks like part-of-speech tagging, word sense
disambiguation, semantic role labeling, emotion detection, and so on. Luckily the
naive Bayes algorithm is already a multi-class classification algorithm.

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure B.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2.

But we’ll need to slightly modify our definitions of precision and recall. Con-
sider the sample confusion matrix for a hypothetical 3-way one-of email catego-
rization decision (urgent, normal, spam) shown in Fig. B.5. The matrix shows, for
example, that the system mistakenly labeled one spam document as urgent, and we
have shown how to compute a distinct precision and recall value for each class. In
order to derive a single metric that tells us how well the system is doing, we can com-
bine these values in two ways. In macroaveraging, we compute the performancemacroaveraging

for each class, and then average over classes. In microaveraging, we collect the de-microaveraging

cisions for all classes into a single confusion matrix, and then compute precision and
recall from that table. Fig. B.6 shows the confusion matrix for each class separately,
and shows the computation of microaveraged and macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in
this case spam), since the counts are pooled. The macroaverage better reflects the
statistics of the smaller classes, and so is more appropriate when performance on all
the classes is equally important.

14 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure B.6 Separate confusion matrices for the 3 classes from the previous figure, showing the pooled con-
fusion matrix and the microaveraged and macroaveraged precision.

B.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed train-

ing set, devset, and test set creates another problem: in order to save lots of data
for training, the test set (or devset) might not be large enough to be representative.
Wouldn’t it be better if we could somehow use all our data for training and still use
all our data for test? We can do this by cross-validation.cross-validation

In cross-validation, we choose a number k, and partition our data into k disjoint
subsets called folds. Now we choose one of those k folds as a test set, train ourfolds

classifier on the remaining k− 1 folds, and then compute the error rate on the test
set. Then we repeat with another fold as the test set, again training on the other k−1
folds. We do this sampling process k times and average the test set error rate from
these k runs to get an average error rate. If we choose k = 10, we would train 10
different models (each on 90% of our data), test the model 10 times, and average
these 10 values. This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on, because we’d be
peeking at the test set, and such cheating would cause us to overestimate the perfor-
mance of our system. However, looking at the corpus to understand what’s going
on is important in designing NLP systems! What to do? For this reason, it is com-
mon to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. B.7.

B.9 • STATISTICAL SIGNIFICANCE TESTING 15

Training Iterations

1

3

4

5

2

6

7

8

9

10

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Training
Training

Training
Training

Training
Training

Training
Training

Training
Training

Training Test
Set

Testing

Figure B.7 10-fold cross-validation

B.9 Statistical Significance Testing

In building systems we often need to compare the performance of two systems. How
can we know if the new system we just built is better than our old one? Or better
than some other system described in the literature? This is the domain of statistical
hypothesis testing, and in this section we introduce tests for statistical significance
for NLP classifiers, drawing especially on the work of Dror et al. (2020) and Berg-
Kirkpatrick et al. (2012).

Suppose we’re comparing the performance of classifiers A and B on a metric M
such as F1, or accuracy. Perhaps we want to know if our logistic regression senti-
ment classifier A (Chapter 4) gets a higher F1 score than our naive Bayes sentiment
classifier B on a particular test set x. Let’s call M(A,x) the score that system A gets
on test set x, and δ (x) the performance difference between A and B on x:

δ (x) = M(A,x)−M(B,x) (B.19)

We would like to know if δ (x) > 0, meaning that our logistic regression classifier
has a higher F1 than our naive Bayes classifier on x. δ (x) is called the effect size; aeffect size

bigger δ means that A seems to be way better than B; a small δ means A seems to
be only a little better.

Why don’t we just check if δ (x) is positive? Suppose we do, and we find that
the F1 score of A is higher than B’s by .04. Can we be certain that A is better? We
cannot! That’s because A might just be accidentally better than B on this particular x.
We need something more: we want to know if A’s superiority over B is likely to hold
again if we checked another test set x′, or under some other set of circumstances.

In the paradigm of statistical hypothesis testing, we test this by formalizing two
hypotheses.

H0 : δ (x)≤ 0
H1 : δ (x)> 0 (B.20)

The hypothesis H0, called the null hypothesis, supposes that δ (x) is actually nega-null hypothesis

tive or zero, meaning that A is not better than B. We would like to know if we can
confidently rule out this hypothesis, and instead support H1, that A is better.

We do this by creating a random variable X ranging over all test sets. Now we
ask how likely is it, if the null hypothesis H0 was correct, that among these test sets

16 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

we would encounter the value of δ (x) that we found, if we repeated the experiment
a great many times. We formalize this likelihood as the p-value: the probability,p-value

assuming the null hypothesis H0 is true, of seeing the δ (x) that we saw or one even
greater

P(δ (X)≥ δ (x)|H0 is true) (B.21)

So in our example, this p-value is the probability that we would see δ (x) assuming
A is not better than B. If δ (x) is huge (let’s say A has a very respectable F1 of .9
and B has a terrible F1 of only .2 on x), we might be surprised, since that would be
extremely unlikely to occur if H0 were in fact true, and so the p-value would be low
(unlikely to have such a large δ if A is in fact not better than B). But if δ (x) is very
small, it might be less surprising to us even if H0 were true and A is not really better
than B, and so the p-value would be higher.

A very small p-value means that the difference we observed is very unlikely
under the null hypothesis, and we can reject the null hypothesis. What counts as very
small? It is common to use values like .05 or .01 as the thresholds. A value of .01
means that if the p-value (the probability of observing the δ we saw assuming H0 is
true) is less than .01, we reject the null hypothesis and assume that A is indeed better
than B. We say that a result (e.g., “A is better than B”) is statistically significant ifstatistically

significant
the δ we saw has a probability that is below the threshold and we therefore reject
this null hypothesis.

How do we compute this probability we need for the p-value? In NLP we gen-
erally don’t use simple parametric tests like t-tests or ANOVAs that you might be
familiar with. Parametric tests make assumptions about the distributions of the test
statistic (such as normality) that don’t generally hold in our cases. So in NLP we
usually use non-parametric tests based on sampling: we artificially create many ver-
sions of the experimental setup. For example, if we had lots of different test sets x′

we could just measure all the δ (x′) for all the x′. That gives us a distribution. Now
we set a threshold (like .01) and if we see in this distribution that 99% or more of
those deltas are smaller than the delta we observed, i.e., that p-value(x)—the proba-
bility of seeing a δ (x) as big as the one we saw—is less than .01, then we can reject
the null hypothesis and agree that δ (x) was a sufficiently surprising difference and
A is really a better algorithm than B.

There are two common non-parametric tests used in NLP: approximate ran-
domization (Noreen, 1989) and the bootstrap test. We will describe bootstrapapproximate

randomization
below, showing the paired version of the test, which again is most common in NLP.
Paired tests are those in which we compare two sets of observations that are aligned:paired

each observation in one set can be paired with an observation in another. This hap-
pens naturally when we are comparing the performance of two systems on the same
test set; we can pair the performance of system A on an individual observation xi
with the performance of system B on the same xi.

B.9.1 The Paired Bootstrap Test
The bootstrap test (Efron and Tibshirani, 1993) can apply to any metric; from pre-bootstrap test

cision, recall, or F1 to the BLEU metric used in machine translation. The word
bootstrapping refers to repeatedly drawing large numbers of samples with replace-bootstrapping

ment (called bootstrap samples) from an original set. The intuition of the bootstrap
test is that we can create many virtual test sets from an observed test set by repeat-
edly sampling from it. The method only makes the assumption that the sample is
representative of the population.

B.9 • STATISTICAL SIGNIFICANCE TESTING 17

Consider a tiny text classification example with a test set x of 10 documents. The
first row of Fig. B.8 shows the results of two classifiers (A and B) on this test set.
Each document is labeled by one of the four possibilities (A and B both right, both
wrong, A right and B wrong, A wrong and B right). A slash through a letter (�B)
means that that classifier got the answer wrong. On the first document both A and
B get the correct class (AB), while on the second document A got it right but B got
it wrong (A�B). If we assume for simplicity that our metric is accuracy, A has an
accuracy of .70 and B of .50, so δ (x) is .20.

Now we create a large number b (perhaps 105) of virtual test sets x(i), each of size
n = 10. Fig. B.8 shows a couple of examples. To create each virtual test set x(i), we
repeatedly (n = 10 times) select a cell from row x with replacement. For example, to
create the first cell of the first virtual test set x(1), if we happened to randomly select
the second cell of the x row, we would copy the value A�B into our new cell, and
move on to create the second cell of x(1), each time sampling (randomly choosing)
from the original x with replacement.

1 2 3 4 5 6 7 8 9 10 A% B% δ ()
x AB A��B AB ��AB A��B ��AB A��B AB ��A��B A��B .70 .50 .20
x(1) A��B AB A��B ��AB ��AB A��B ��AB AB ��A��B AB .60 .60 .00
x(2) A��B AB ��A��B ��AB ��AB AB ��AB A��B AB AB .60 .70 -.10
...
x(b)
Figure B.8 The paired bootstrap test: Examples of b pseudo test sets x(i) being created
from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with
replacement; thus an individual sample is a single cell, a document with its gold label and
the correct or incorrect performance of classifiers A and B. Of course real test sets don’t have
only 10 examples, and b needs to be large as well.

Now that we have the b test sets, providing a sampling distribution, we can do
statistics on how often A has an accidental advantage. There are various ways to
compute this advantage; here we follow the version laid out in Berg-Kirkpatrick
et al. (2012). Assuming H0 (A isn’t better than B), we would expect that δ (X),
estimated over many test sets, would be zero or negative; a much higher value would
be surprising, since H0 specifically assumes A isn’t better than B. To measure exactly
how surprising our observed δ (x) is, we would in other circumstances compute the
p-value by counting over many test sets how often δ (x(i)) exceeds the expected zero
value by δ (x) or more:

p-value(x) =
1
b

b∑
i=1

1

(
δ (x(i))−δ (x)≥ 0

)

(We use the notation 1(x) to mean “1 if x is true, and 0 otherwise”.) However,
although it’s generally true that the expected value of δ (X) over many test sets,
(again assuming A isn’t better than B) is 0, this isn’t true for the bootstrapped test
sets we created. That’s because we didn’t draw these samples from a distribution
with 0 mean; we happened to create them from the original test set x, which happens
to be biased (by .20) in favor of A. So to measure how surprising is our observed
δ (x), we actually compute the p-value by counting over many test sets how often

18 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

δ (x(i)) exceeds the expected value of δ (x) by δ (x) or more:

p-value(x) =
1
b

b∑
i=1

1

(
δ (x(i))−δ (x)≥ δ (x)

)

=
1
b

b∑
i=1

1

(
δ (x(i))≥ 2δ (x)

)
(B.22)

So if for example we have 10,000 test sets x(i) and a threshold of .01, and in only 47
of the test sets do we find that A is accidentally better δ (x(i))≥ 2δ (x), the resulting
p-value of .0047 is smaller than .01, indicating that the delta we found, δ (x) is indeed
sufficiently surprising and unlikely to have happened by accident, and we can reject
the null hypothesis and conclude A is better than B.

function BOOTSTRAP(test set x, num of samples b) returns p-value(x)

Calculate δ (x) # how much better does algorithm A do than B on x
s = 0
for i = 1 to b do

for j = 1 to n do # Draw a bootstrap sample x(i) of size n
Select a member of x at random and add it to x(i)

Calculate δ (x(i)) # how much better does algorithm A do than B on x(i)

s←s + 1 if δ (x(i)) ≥ 2δ (x)
p-value(x) ≈ s

b # on what % of the b samples did algorithm A beat expectations?
return p-value(x) # if very few did, our observed δ is probably not accidental

Figure B.9 A version of the paired bootstrap algorithm after Berg-Kirkpatrick et al. (2012).

The full algorithm for the bootstrap is shown in Fig. B.9. It is given a test set x, a
number of samples b, and counts the percentage of the b bootstrap test sets in which
δ (x(i))> 2δ (x). This percentage then acts as a one-sided empirical p-value.

B.10 Avoiding Harms in Classification

It is important to avoid harms that may result from classifiers, harms that exist both
for naive Bayes classifiers and for the other classification algorithms we introduce
in later chapters.

One class of harms is representational harms (Crawford 2017, Blodgett et al.representational
harms

2020), harms caused by a system that demeans a social group, for example by per-
petuating negative stereotypes about them. For example Kiritchenko and Moham-
mad (2018) examined the performance of 200 sentiment analysis systems on pairs of
sentences that were identical except for containing either a common African Amer-
ican first name (like Shaniqua) or a common European American first name (like
Stephanie), chosen from the Caliskan et al. (2017) study discussed in Chapter 5.
They found that most systems assigned lower sentiment and more negative emotion
to sentences with African American names, reflecting and perpetuating stereotypes
that associate African Americans with negative emotions (Popp et al., 2003).

In other tasks classifiers may lead to both representational harms and other
harms, such as silencing. For example the important text classification task of tox-

B.11 • SUMMARY 19

icity detection is the task of detecting hate speech, abuse, harassment, or othertoxicity
detection

kinds of toxic language. While the goal of such classifiers is to help reduce soci-
etal harm, toxicity classifiers can themselves cause harms. For example, researchers
have shown that some widely used toxicity classifiers incorrectly flag as being toxic
sentences that are non-toxic but simply mention identities like women (Park et al.,
2018), blind people (Hutchinson et al., 2020) or gay people (Dixon et al., 2018;
Dias Oliva et al., 2021), or simply use linguistic features characteristic of varieties
like African-American Vernacular English (Sap et al. 2019, Davidson et al. 2019).
Such false positive errors could lead to the silencing of discourse by or about these
groups.

These model problems can be caused by biases or other problems in the training
data; in general, machine learning systems replicate and even amplify the biases
in their training data. But these problems can also be caused by the labels (for
example due to biases in the human labelers), by the resources used (like lexicons,
or model components like pretrained embeddings), or even by model architecture
(like what the model is trained to optimize). While the mitigation of these biases
(for example by carefully considering the training data sources) is an important area
of research, we currently don’t have general solutions. For this reason it’s important,
when introducing any NLP model, to study these kinds of factors and make them
clear. One way to do this is by releasing a model card (Mitchell et al., 2019) formodel card

each version of a model. A model card documents a machine learning model with
information like:

• training algorithms and parameters
• training data sources, motivation, and preprocessing
• evaluation data sources, motivation, and preprocessing
• intended use and users
• model performance across different demographic or other groups and envi-

ronmental situations

B.11 Summary

This chapter introduced the naive Bayes model for classification and applied it to
the text categorization task of sentiment analysis.

• Many language processing tasks can be viewed as tasks of classification.
• Text categorization, in which an entire text is assigned a class from a finite set,

includes such tasks as sentiment analysis, spam detection, language identi-
fication, and authorship attribution.

• Sentiment analysis classifies a text as reflecting the positive or negative orien-
tation (sentiment) that a writer expresses toward some object.

• Naive Bayes is a generative model that makes the bag-of-words assumption
(position doesn’t matter) and the conditional independence assumption (words
are conditionally independent of each other given the class)

• Naive Bayes with binarized features seems to work better for many text clas-
sification tasks.

• Classifiers are evaluated based on precision and recall.
• Classifiers are trained using distinct training, dev, and test sets, including the

use of cross-validation in the training set.

20 APPENDIX B • NAIVE BAYES, TEXT CLASSIFICATION, AND SENTIMENT

• Statistical significance tests should be used to determine whether we can be
confident that one version of a classifier is better than another.

• Designers of classifiers should carefully consider harms that may be caused
by the model, including its training data and other components, and report
model characteristics in a model card.

Historical Notes
Multinomial naive Bayes text classification was proposed by Maron (1961) at the
RAND Corporation for the task of assigning subject categories to journal abstracts.
His model introduced most of the features of the modern form presented here, ap-
proximating the classification task with one-of categorization, and implementing
add-δ smoothing and information-based feature selection.

The conditional independence assumptions of naive Bayes and the idea of Bayes-
ian analysis of text seems to have arisen multiple times. The same year as Maron’s
paper, Minsky (1961) proposed a naive Bayes classifier for vision and other arti-
ficial intelligence problems, and Bayesian techniques were also applied to the text
classification task of authorship attribution by Mosteller and Wallace (1963). It had
long been known that Alexander Hamilton, John Jay, and James Madison wrote
the anonymously-published Federalist papers in 1787–1788 to persuade New York
to ratify the United States Constitution. Yet although some of the 85 essays were
clearly attributable to one author or another, the authorship of 12 were in dispute
between Hamilton and Madison. Mosteller and Wallace (1963) trained a Bayesian
probabilistic model on the writing of Hamilton and another model on the writings
of Madison, then computed the maximum-likelihood author for each of the disputed
essays. Naive Bayes was first applied to spam detection in Heckerman et al. (1998).

Metsis et al. (2006), Pang et al. (2002), and Wang and Manning (2012) show
that using boolean attributes with multinomial naive Bayes works better than full
counts. Binary multinomial naive Bayes is sometimes confused with another variant
of naive Bayes that also uses a binary representation of whether a term occurs in
a document: Multivariate Bernoulli naive Bayes. The Bernoulli variant instead
estimates P(w|c) as the fraction of documents that contain a term, and includes a
probability for whether a term is not in a document. McCallum and Nigam (1998)
and Wang and Manning (2012) show that the multivariate Bernoulli variant of naive
Bayes doesn’t work as well as the multinomial algorithm for sentiment or other text
tasks.

There are a variety of sources covering the many kinds of text classification
tasks. For sentiment analysis see Pang and Lee (2008), and Liu and Zhang (2012).
Stamatatos (2009) surveys authorship attribute algorithms. On language identifica-
tion see Jauhiainen et al. (2019); Jaech et al. (2016) is an important early neural
system. The task of newswire indexing was often used as a test case for text classi-
fication algorithms, based on the Reuters-21578 collection of newswire articles.

See Manning et al. (2008) and Aggarwal and Zhai (2012) on text classification;
classification in general is covered in machine learning textbooks (Hastie et al. 2001,
Witten and Frank 2005, Bishop 2006, Murphy 2012).

Non-parametric methods for computing statistical significance were used first in
NLP in the MUC competition (Chinchor et al., 1993), and even earlier in speech
recognition (Gillick and Cox 1989, Bisani and Ney 2004). Our description of the
bootstrap draws on the description in Berg-Kirkpatrick et al. (2012). Recent work
has focused on issues including multiple test sets and multiple metrics (Søgaard et al.

EXERCISES 21

2014, Dror et al. 2017).
Feature selection is a method of removing features that are unlikely to generalize

well. Features are generally ranked by how informative they are about the classifica-
tion decision. A very common metric, information gain, tells us how many bits ofinformation

gain
information the presence of the word gives us for guessing the class. Other feature
selection metrics include χ2, pointwise mutual information, and GINI index; see
Yang and Pedersen (1997) for a comparison and Guyon and Elisseeff (2003) for an
introduction to feature selection.

Exercises
B.1 Assume the following likelihoods for each word being part of a positive or

negative movie review, and equal prior probabilities for each class.

pos neg
I 0.09 0.16
always 0.07 0.06
like 0.29 0.06
foreign 0.04 0.15
films 0.08 0.11

What class will Naive bayes assign to the sentence “I always like foreign
films.”?

B.2 Given the following short movie reviews, each labeled with a genre, either
comedy or action:

1. fun, couple, love, love comedy
2. fast, furious, shoot action
3. couple, fly, fast, fun, fun comedy
4. furious, shoot, shoot, fun action
5. fly, fast, shoot, love action

and a new document D:
fast, couple, shoot, fly

compute the most likely class for D. Assume a naive Bayes classifier and use
add-1 smoothing for the likelihoods.

B.3 Train two models, multinomial naive Bayes and binarized naive Bayes, both
with add-1 smoothing, on the following document counts for key sentiment
words, with positive or negative class assigned as noted.

doc “good” “poor” “great” (class)
d1. 3 0 3 pos
d2. 0 1 2 pos
d3. 1 3 0 neg
d4. 1 5 2 neg
d5. 0 2 0 neg

Use both naive Bayes models to assign a class (pos or neg) to this sentence:
A good, good plot and great characters, but poor acting.

Recall from page 6 that with naive Bayes text classification, we simply ignore
(throw out) any word that never occurred in the training document. (We don’t
throw out words that appear in some classes but not others; that’s what add-
one smoothing is for.) Do the two models agree or disagree?

22 Appendix B • Naive Bayes, Text Classification, and Sentiment

Aggarwal, C. C. and C. Zhai. 2012. A survey of text classi-
fication algorithms. In C. C. Aggarwal and C. Zhai, eds,
Mining text data, 163–222. Springer.

Bayes, T. 1763. An Essay Toward Solving a Problem in the
Doctrine of Chances, volume 53. Reprinted in Facsimiles
of Two Papers by Bayes, Hafner Publishing, 1963.

Berg-Kirkpatrick, T., D. Burkett, and D. Klein. 2012. An
empirical investigation of statistical significance in NLP.
EMNLP.

Bisani, M. and H. Ney. 2004. Bootstrap estimates for confi-
dence intervals in ASR performance evaluation. ICASSP.

Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. Springer.

Blodgett, S. L., S. Barocas, H. Daumé III, and H. Wallach.
2020. Language (technology) is power: A critical survey
of “bias” in NLP. ACL.

Blodgett, S. L., L. Green, and B. O’Connor. 2016. Demo-
graphic dialectal variation in social media: A case study
of African-American English. EMNLP.

Borges, J. L. 1964. The analytical language of john wilkins.
In Other inquisitions 1937–1952. University of Texas
Press. Trans. Ruth L. C. Simms.

Caliskan, A., J. J. Bryson, and A. Narayanan. 2017. Seman-
tics derived automatically from language corpora contain
human-like biases. Science, 356(6334):183–186.

Chinchor, N., L. Hirschman, and D. L. Lewis. 1993. Eval-
uating Message Understanding systems: An analysis of
the third Message Understanding Conference. Computa-
tional Linguistics, 19(3):409–449.

Crawford, K. 2017. The trouble with bias. Keynote at
NeurIPS.

Davidson, T., D. Bhattacharya, and I. Weber. 2019. Racial
bias in hate speech and abusive language detection
datasets. Third Workshop on Abusive Language Online.

Dias Oliva, T., D. Antonialli, and A. Gomes. 2021. Fighting
hate speech, silencing drag queens? artificial intelligence
in content moderation and risks to lgbtq voices online.
Sexuality & Culture, 25:700–732.

Dixon, L., J. Li, J. Sorensen, N. Thain, and L. Vasserman.
2018. Measuring and mitigating unintended bias in text
classification. 2018 AAAI/ACM Conference on AI, Ethics,
and Society.

Dror, R., G. Baumer, M. Bogomolov, and R. Reichart. 2017.
Replicability analysis for natural language processing:
Testing significance with multiple datasets. TACL, 5:471–
–486.

Dror, R., L. Peled-Cohen, S. Shlomov, and R. Reichart.
2020. Statistical Significance Testing for Natural Lan-
guage Processing, volume 45 of Synthesis Lectures on
Human Language Technologies. Morgan & Claypool.

Efron, B. and R. J. Tibshirani. 1993. An introduction to the
bootstrap. CRC press.

Gillick, L. and S. J. Cox. 1989. Some statistical issues in the
comparison of speech recognition algorithms. ICASSP.

Guyon, I. and A. Elisseeff. 2003. An introduction to variable
and feature selection. JMLR, 3:1157–1182.

Hastie, T., R. J. Tibshirani, and J. H. Friedman. 2001. The
Elements of Statistical Learning. Springer.

Heckerman, D., E. Horvitz, M. Sahami, and S. T. Dumais.
1998. A bayesian approach to filtering junk e-mail. AAAI-
98 Workshop on Learning for Text Categorization.

Hu, M. and B. Liu. 2004. Mining and summarizing customer
reviews. KDD.

Hutchinson, B., V. Prabhakaran, E. Denton, K. Webster,
Y. Zhong, and S. Denuyl. 2020. Social biases in NLP
models as barriers for persons with disabilities. ACL.

Jaech, A., G. Mulcaire, S. Hathi, M. Ostendorf, and N. A.
Smith. 2016. Hierarchical character-word models for lan-
guage identification. ACL Workshop on NLP for Social
Media.

Jauhiainen, T., M. Lui, M. Zampieri, T. Baldwin, and
K. Lindén. 2019. Automatic language identification in
texts: A survey. JAIR, 65(1):675–682.

Jurgens, D., Y. Tsvetkov, and D. Jurafsky. 2017. Incorpo-
rating dialectal variability for socially equitable language
identification. ACL.

Kiritchenko, S. and S. M. Mohammad. 2018. Examining
gender and race bias in two hundred sentiment analysis
systems. *SEM.

Liu, B. and L. Zhang. 2012. A survey of opinion mining and
sentiment analysis. In C. C. Aggarwal and C. Zhai, eds,
Mining text data, 415–464. Springer.

Lui, M. and T. Baldwin. 2011. Cross-domain feature selec-
tion for language identification. IJCNLP.

Lui, M. and T. Baldwin. 2012. langid.py: An off-the-shelf
language identification tool. ACL.

Manning, C. D., P. Raghavan, and H. Schütze. 2008. Intro-
duction to Information Retrieval. Cambridge.

Maron, M. E. 1961. Automatic indexing: an experimental
inquiry. Journal of the ACM, 8(3):404–417.

McCallum, A. and K. Nigam. 1998. A comparison of event
models for naive bayes text classification. AAAI/ICML-98
Workshop on Learning for Text Categorization.

Metsis, V., I. Androutsopoulos, and G. Paliouras. 2006.
Spam filtering with naive bayes-which naive bayes?
CEAS.

Minsky, M. 1961. Steps toward artificial intelligence. Pro-
ceedings of the IRE, 49(1):8–30.

Mitchell, M., S. Wu, A. Zaldivar, P. Barnes, L. Vasserman,
B. Hutchinson, E. Spitzer, I. D. Raji, and T. Gebru. 2019.
Model cards for model reporting. ACM FAccT.

Mosteller, F. and D. L. Wallace. 1963. Inference in an au-
thorship problem: A comparative study of discrimination
methods applied to the authorship of the disputed feder-
alist papers. Journal of the American Statistical Associa-
tion, 58(302):275–309.

Mosteller, F. and D. L. Wallace. 1964. Inference and Dis-
puted Authorship: The Federalist. Springer-Verlag. 1984
2nd edition: Applied Bayesian and Classical Inference.

Murphy, K. P. 2012. Machine learning: A probabilistic per-
spective. MIT Press.

Noreen, E. W. 1989. Computer Intensive Methods for Testing
Hypothesis. Wiley.

Pang, B. and L. Lee. 2008. Opinion mining and sentiment
analysis. Foundations and trends in information retrieval,
2(1-2):1–135.

https://www.aclweb.org/anthology/D12-1091
https://www.aclweb.org/anthology/D12-1091
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1126/science.aal4230
https://www.aclweb.org/anthology/J93-3001
https://www.aclweb.org/anthology/J93-3001
https://www.aclweb.org/anthology/J93-3001
https://doi.org/10.18653/v1/W19-3504
https://doi.org/10.18653/v1/W19-3504
https://doi.org/10.18653/v1/W19-3504
https://doi.org/10.1007/s12119-020-09790-w
https://doi.org/10.1007/s12119-020-09790-w
https://doi.org/10.1007/s12119-020-09790-w
https://doi.org/10.1162/tacl_a_00074
https://doi.org/10.1162/tacl_a_00074
https://doi.org/10.1109/ICASSP.1989.266481
https://doi.org/10.1109/ICASSP.1989.266481
https://doi.org/10.18653/v1/2020.acl-main.487
https://doi.org/10.18653/v1/2020.acl-main.487
https://doi.org/10.18653/v1/W16-6212
https://doi.org/10.18653/v1/W16-6212
https://doi.org/10.1613/jair.1.11675
https://doi.org/10.1613/jair.1.11675
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.18653/v1/P17-2009
https://doi.org/10.18653/v1/S18-2005
https://doi.org/10.18653/v1/S18-2005
https://doi.org/10.18653/v1/S18-2005
https://www.aclweb.org/anthology/I11-1062
https://www.aclweb.org/anthology/I11-1062
https://www.aclweb.org/anthology/P12-3005
https://www.aclweb.org/anthology/P12-3005
https://doi.org/10.1145/321075.321084
https://doi.org/10.1145/321075.321084
https://doi.org/10.1145/3287560.3287596

Exercises 23

Pang, B., L. Lee, and S. Vaithyanathan. 2002. Thumbs
up? Sentiment classification using machine learning tech-
niques. EMNLP.

Park, J. H., J. Shin, and P. Fung. 2018. Reducing gender bias
in abusive language detection. EMNLP.

Pennebaker, J. W., R. J. Booth, and M. E. Francis. 2007.
Linguistic Inquiry and Word Count: LIWC 2007. Austin,
TX.

Popp, D., R. A. Donovan, M. Crawford, K. L. Marsh, and
M. Peele. 2003. Gender, race, and speech style stereo-
types. Sex Roles, 48(7-8):317–325.

Sahami, M., S. T. Dumais, D. Heckerman, and E. Horvitz.
1998. A Bayesian approach to filtering junk e-mail. AAAI
Workshop on Learning for Text Categorization.

Sap, M., D. Card, S. Gabriel, Y. Choi, and N. A. Smith. 2019.
The risk of racial bias in hate speech detection. ACL.

Søgaard, A., A. Johannsen, B. Plank, D. Hovy, and H. M.
Alonso. 2014. What’s in a p-value in NLP? CoNLL.

Stamatatos, E. 2009. A survey of modern authorship attribu-
tion methods. JASIST, 60(3):538–556.

Stone, P., D. Dunphry, M. Smith, and D. Ogilvie. 1966.
The General Inquirer: A Computer Approach to Content
Analysis. MIT Press.

van Rijsbergen, C. J. 1975. Information Retrieval. Butter-
worths.

Wang, S. and C. D. Manning. 2012. Baselines and bigrams:
Simple, good sentiment and topic classification. ACL.

Wilson, T., J. Wiebe, and P. Hoffmann. 2005. Recogniz-
ing contextual polarity in phrase-level sentiment analysis.
EMNLP.

Witten, I. H. and E. Frank. 2005. Data Mining: Practi-
cal Machine Learning Tools and Techniques, 2nd edition.
Morgan Kaufmann.

Yang, Y. and J. Pedersen. 1997. A comparative study on
feature selection in text categorization. ICML.

https://doi.org/10.3115/1118693.1118704
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.18653/v1/D18-1302
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.3115/v1/W14-1601
https://www.aclweb.org/anthology/P12-2018
https://www.aclweb.org/anthology/P12-2018
https://doi.org/10.1162/coli.08-012-R1-06-90
https://doi.org/10.1162/coli.08-012-R1-06-90

	Appendix
	Naive Bayes, Text Classification, and Sentiment
	Naive Bayes Classifiers
	Training the Naive Bayes Classifier
	Worked example
	Optimizing for Sentiment Analysis
	Naive Bayes for other text classification tasks
	Naive Bayes as a Language Model
	Evaluation: Precision, Recall, F-measure
	Evaluating with more than two classes

	Test sets and Cross-validation
	Statistical Significance Testing
	The Paired Bootstrap Test

	Avoiding Harms in Classification
	Summary
	Historical Notes
	Exercises

