
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2025. All

rights reserved. Draft of August 24, 2025.

CHAPTER

B Kneser-Ney Smoothing

A popular advanced n-gram smoothing method is the interpolated Kneser-Ney al-Kneser-Ney

gorithm (Kneser and Ney 1995, Chen and Goodman 1998).

B.1 Absolute Discounting

Kneser-Ney has its roots in a method called absolute discounting. Recall that dis-
counting of the counts for frequent n-grams is necessary to save some probability
mass for the smoothing algorithm to distribute to the unseen n-grams.

To see this, we can use a clever idea from Church and Gale (1991). Consider
an n-gram that has count 4. We need to discount this count by some amount. But
how much should we discount it? Church and Gale’s clever idea was to look at a
held-out corpus and just see what the count is for all those bigrams that had count
4 in the training set. They computed a bigram grammar from 22 million words of
AP newswire and then checked the counts of each of these bigrams in another 22
million words. On average, a bigram that occurred 4 times in the first 22 million
words occurred 3.23 times in the next 22 million words. Fig. B.1 from Church and
Gale (1991) shows these counts for bigrams with c from 0 to 9.

Bigram count in Bigram count in
training set heldout set

0 0.0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Figure B.1 For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the
counts of these bigrams in a held-out corpus also of 22 million words.

Notice in Fig. B.1 that except for the held-out counts for 0 and 1, all the other
bigram counts in the held-out set could be estimated pretty well by just subtracting
0.75 from the count in the training set! Absolute discounting formalizes this in-absolute

discounting
tuition by subtracting a fixed (absolute) discount d from each count. The intuition
is that since we have good estimates already for the very high counts, a small dis-
count d won’t affect them much. It will mainly modify the smaller counts, for which
we don’t necessarily trust the estimate anyway, and Fig. B.1 suggests that in prac-
tice this discount is actually a good one for bigrams with counts 2 through 9. The

2 APPENDIX B • KNESER-NEY SMOOTHING

equation for interpolated absolute discounting applied to bigrams:

PAbsoluteDiscounting(wi|wi−1) =
C(wi−1wi)−d∑

v C(wi−1 v)
+λ (wi−1)P(wi) (B.1)

The first term is the discounted bigram, with 0 ≤ d ≤ 1, and the second term is the
unigram with an interpolation weight λ . By inspection of Fig. B.1, it looks like just
setting all the d values to .75 would work very well, or perhaps keeping a separate
second discount value of 0.5 for the bigrams with counts of 1. There are principled
methods for setting d. For example, Ney et al. (1994) set d as a function of n1 and
n2, the number of unigrams that have a count of 1 and a count of 2, respectively:

d =
n1

n1 +2n2
(B.2)

B.2 Kneser-Ney Discounting

Kneser-Ney discounting (Kneser and Ney, 1995) augments absolute discounting
with a more sophisticated way to handle the lower-order unigram distribution. Con-
sider the job of predicting the next word in this sentence, assuming we are interpo-
lating a bigram and a unigram model.

I can’t see without my reading .

The word glasses seems much more likely to follow here than, say, the word
Kong, so we’d like our unigram model to prefer glasses. But in fact it’s Kong that is
more common, since Hong Kong is a very frequent word. A standard unigram model
will assign Kong a higher probability than glasses. We would like to capture the
intuition that although Kong is frequent, it is mainly only frequent in the phrase Hong
Kong, that is, after the word Hong. The word glasses has a much wider distribution.

In other words, instead of P(w), which answers the question “How likely is
w?”, we’d like to create a unigram model that we might call PCONTINUATION, which
answers the question “How likely is w to appear as a novel continuation?”. How can
we estimate this probability of seeing the word w as a novel continuation, in a new
unseen context? The Kneser-Ney intuition is to base our estimate of PCONTINUATION
on the number of different contexts word w has appeared in, that is, the number of
bigram types it completes. Every bigram type was a novel continuation the first time
it was seen. We hypothesize that words that have appeared in more contexts in the
past are more likely to appear in some new context as well. The number of times a
word w appears as a novel continuation can be expressed as:

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (B.3)

To turn this count into a probability, we normalize by the total number of word
bigram types. In summary:

PCONTINUATION(w) =
|{v : C(vw)> 0}|

|{(u′,w′) : C(u′w′)> 0}|
(B.4)

An equivalent formulation based on a different metaphor is to use the number of
word types seen to precede w (Eq. B.3 repeated):

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (B.5)

B.2 • KNESER-NEY DISCOUNTING 3

normalized by the number of words preceding all words, as follows:

PCONTINUATION(w) =
|{v : C(vw)> 0}|∑
w′ |{v : C(vw′)> 0}|

(B.6)

A frequent word (Kong) occurring in only one context (Hong) will have a low con-
tinuation probability.

The final equation for Interpolated Kneser-Ney smoothing for bigrams is then:Interpolated
Kneser-Ney

PKN(wi|wi−1) =
max(C(wi−1wi)−d,0)

C(wi−1)
+λ (wi−1)PCONTINUATION(wi) (B.7)

The λ is a normalizing constant that is used to distribute the probability mass we’ve
discounted:

λ (wi−1) =
d∑

v C(wi−1v)
|{w : C(wi−1w)> 0}| (B.8)

The first term,
d∑

v C(wi−1v)
, is the normalized discount (the discount d, 0 ≤ d ≤

1, was introduced in the absolute discounting section above). The second term,
|{w : C(wi−1w)> 0}|, is the number of word types that can follow wi−1 or, equiva-
lently, the number of word types that we discounted; in other words, the number of
times we applied the normalized discount.

The general recursive formulation is as follows:

PKN(wi|wi−n+1:i−1) =
max(cKN(w i−n+1: i)−d,0)∑

v cKN(wi−n+1:i−1 v)
+λ (wi−n+1:i−1)PKN(wi|wi−n+2:i−1) (B.9)

where the definition of the count cKN depends on whether we are counting the
highest-order n-gram being interpolated (for example trigram if we are interpolating
trigram, bigram, and unigram) or one of the lower-order n-grams (bigram or unigram
if we are interpolating trigram, bigram, and unigram):

cKN(·) =
{

count(·) for the highest order
continuationcount(·) for lower orders (B.10)

The continuation count of a string · is the number of unique single word contexts for
that string ·.

At the termination of the recursion, unigrams are interpolated with the uniform
distribution, where the parameter ε is the empty string:

PKN(w) =
max(cKN(w)−d,0)∑

w′ cKN(w′)
+λ (ε)

1
V

(B.11)

If we want to include an unknown word <UNK>, it’s just included as a regular vo-
cabulary entry with count zero, and hence its probability will be a lambda-weighted
uniform distribution λ (ε)

V .
The best performing version of Kneser-Ney smoothing is called modified Kneser-

Ney smoothing, and is due to Chen and Goodman (1998). Rather than use a singlemodified
Kneser-Ney

fixed discount d, modified Kneser-Ney uses three different discounts d1, d2, and
d3+ for n-grams with counts of 1, 2 and three or more, respectively. See Chen and
Goodman (1998, p. 19) or Heafield et al. (2013) for the details.

4 Appendix B • Kneser-Ney Smoothing

Chen, S. F. and J. Goodman. 1998. An empirical study of
smoothing techniques for language modeling. Techni-
cal Report TR-10-98, Computer Science Group, Harvard
University.

Church, K. W. and W. A. Gale. 1991. A comparison of the
enhanced Good-Turing and deleted estimation methods
for estimating probabilities of English bigrams. Com-
puter Speech and Language, 5:19–54.

Heafield, K., I. Pouzyrevsky, J. H. Clark, and P. Koehn. 2013.
Scalable modified Kneser-Ney language model estima-
tion. ACL.

Kneser, R. and H. Ney. 1995. Improved backing-off for M-
gram language modeling. ICASSP, volume 1.

Ney, H., U. Essen, and R. Kneser. 1994. On structuring prob-
abilistic dependencies in stochastic language modelling.
Computer Speech and Language, 8:1–38.

https://nrs.harvard.edu/urn-3:HUL.InstRepos:25104739
https://nrs.harvard.edu/urn-3:HUL.InstRepos:25104739
https://doi.org/10.1016/0885-2308(91)90016-J
https://doi.org/10.1016/0885-2308(91)90016-J
https://doi.org/10.1016/0885-2308(91)90016-J
https://www.aclweb.org/anthology/P13-2121
https://www.aclweb.org/anthology/P13-2121

	Appendix
	Kneser-Ney Smoothing
	Absolute Discounting
	Kneser-Ney Discounting

