
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2020. All

rights reserved. Draft of December 30, 2020.

CHAPTER

17 Information Extraction

I am the very model of a modern Major-General,
I’ve information vegetable, animal, and mineral,

I know the kings of England, and I quote the fights historical
From Marathon to Waterloo, in order categorical...

Gilbert and Sullivan, Pirates of Penzance

Imagine that you are an analyst with an investment firm that tracks airline stocks.
You’re given the task of determining the relationship (if any) between airline an-
nouncements of fare increases and the behavior of their stocks the next day. His-
torical data about stock prices is easy to come by, but what about the airline an-
nouncements? You will need to know at least the name of the airline, the nature of
the proposed fare hike, the dates of the announcement, and possibly the response of
other airlines. Fortunately, these can be all found in news articles like this one:

Citing high fuel prices, United Airlines said Friday it has increased fares
by $6 per round trip on flights to some cities also served by lower-
cost carriers. American Airlines, a unit of AMR Corp., immediately
matched the move, spokesman Tim Wagner said. United, a unit of UAL
Corp., said the increase took effect Thursday and applies to most routes
where it competes against discount carriers, such as Chicago to Dallas
and Denver to San Francisco.

This chapter presents techniques for extracting limited kinds of semantic con-
tent from text. This process of information extraction (IE) turns the unstructuredinformation

extraction
information embedded in texts into structured data, for example for populating a
relational database to enable further processing.

We begin with the task of relation extraction: finding and classifying semanticrelation
extraction

relations among the text entities. These are often binary relations like child-of, em-
ployment, part-whole, and geospatial relations. Relation extraction has close links to
populating a relational database. Indeed, knowledge graphs, datasets of structuredknowledge

graphs
relational knowledge, are a common way that search engines present information to
users.

Next, we discuss three tasks related to events. Event extraction is finding eventsevent
extraction

in which these entities participate, like, in our sample text, the fare increases by
United and American and the reporting events said and cite. Event coreference
(Chapter 22) is needed to figure out which event mentions in a text refer to the same
event; in our running example the two instances of increase and the phrase the move
all refer to the same event.

To figure out when the events in a text happened we extract temporal expres-
sions like days of the week (Friday and Thursday), relative expressions like twotemporal

expression
days from now or next year and times such as 3:30 P.M.. These expressions must be
normalized onto specific calendar dates or times of day to situate events in time. In

2 CHAPTER 17 • INFORMATION EXTRACTION

our sample task, this will allow us to link Friday to the time of United’s announce-
ment, and Thursday to the previous day’s fare increase, and produce a timeline in
which United’s announcement follows the fare increase and American’s announce-
ment follows both of those events.

Finally, many texts describe recurring stereotypical events or situations. The task
of template filling is to find such situations in documents and fill in the templatetemplate filling

slots. These slot-fillers may consist of text segments extracted directly from the text,
or concepts like times, amounts, or ontology entities that have been inferred from
text elements through additional processing.

Our airline text is an example of this kind of stereotypical situation since airlines
often raise fares and then wait to see if competitors follow along. In this situa-
tion, we can identify United as a lead airline that initially raised its fares, $6 as the
amount, Thursday as the increase date, and American as an airline that followed
along, leading to a filled template like the following.

FARE-RAISE ATTEMPT:


LEAD AIRLINE: UNITED AIRLINES

AMOUNT: $6
EFFECTIVE DATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES



17.1 Relation Extraction

Let’s assume that we have detected the named entities in our sample text (perhaps
using the techniques of Chapter 8), and would like to discern the relationships that
exist among the detected entities:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text tells us, for example, that Tim Wagner is a spokesman for American
Airlines, that United is a unit of UAL Corp., and that American is a unit of AMR.
These binary relations are instances of more generic relations such as part-of or
employs that are fairly frequent in news-style texts. Figure 17.1 lists the 17 relations
used in the ACE relation extraction evaluations and Fig. 17.2 shows some sample
relations. We might also extract more domain-specific relation such as the notion of
an airline route. For example from this text we can conclude that United has routes
to Chicago, Dallas, Denver, and San Francisco.

These relations correspond nicely to the model-theoretic notions we introduced
in Chapter 15 to ground the meanings of the logical forms. That is, a relation consists
of a set of ordered tuples over elements of a domain. In most standard information-
extraction applications, the domain elements correspond to the named entities that
occur in the text, to the underlying entities that result from coreference resolution, or
to entities selected from a domain ontology. Figure 17.3 shows a model-based view
of the set of entities and relations that can be extracted from our running example.

17.1 • RELATION EXTRACTION 3

ARTIFACT

GENERAL
AFFILIATION

ORG
AFFILIATION

PART-
WHOLE

PERSON-
SOCIAL PHYSICAL

Located

Near

Business

Family Lasting
Personal

Citizen-
Resident-
Ethnicity-
Religion

Org-Location-
Origin

Founder

Employment
Membership

Ownership
Student-Alum

Investor

User-Owner-Inventor-
Manufacturer

Geographical
Subsidiary

Sports-Affiliation

Figure 17.1 The 17 relations used in the ACE relation extraction task.

Relations Types Examples
Physical-Located PER-GPE He was in Tennessee
Part-Whole-Subsidiary ORG-ORG XYZ, the parent company of ABC
Person-Social-Family PER-PER Yoko’s husband John
Org-AFF-Founder PER-ORG Steve Jobs, co-founder of Apple...
Figure 17.2 Semantic relations with examples and the named entity types they involve.

Domain D= {a,b,c,d,e, f ,g,h, i}
United, UAL, American Airlines, AMR a,b,c,d
Tim Wagner e
Chicago, Dallas, Denver, and San Francisco f ,g,h, i

Classes
United, UAL, American, and AMR are organizations Org = {a,b,c,d}
Tim Wagner is a person Pers = {e}
Chicago, Dallas, Denver, and San Francisco are places Loc = { f ,g,h, i}

Relations
United is a unit of UAL PartOf = {〈a,b〉,〈c,d〉}
American is a unit of AMR
Tim Wagner works for American Airlines OrgAff = {〈c,e〉}
United serves Chicago, Dallas, Denver, and San Francisco Serves = {〈a, f 〉,〈a,g〉,〈a,h〉,〈a, i〉}
Figure 17.3 A model-based view of the relations and entities in our sample text.

Notice how this model-theoretic view subsumes the NER task as well; named entity
recognition corresponds to the identification of a class of unary relations.

Sets of relations have been defined for many other domains as well. For example
UMLS, the Unified Medical Language System from the US National Library of
Medicine has a network that defines 134 broad subject categories, entity types, and
54 relations between the entities, such as the following:

Entity Relation Entity
Injury disrupts Physiological Function
Bodily Location location-of Biologic Function
Anatomical Structure part-of Organism
Pharmacologic Substance causes Pathological Function
Pharmacologic Substance treats Pathologic Function

Given a medical sentence like this one:

4 CHAPTER 17 • INFORMATION EXTRACTION

(17.1) Doppler echocardiography can be used to diagnose left anterior descending
artery stenosis in patients with type 2 diabetes

We could thus extract the UMLS relation:

Echocardiography, Doppler Diagnoses Acquired stenosis

Wikipedia also offers a large supply of relations, drawn from infoboxes, struc-infoboxes

tured tables associated with certain Wikipedia articles. For example, the Wikipedia
infobox for Stanford includes structured facts like state = "California" or
president = "Marc Tessier-Lavigne". These facts can be turned into rela-
tions like president-of or located-in. or into relations in a metalanguage called RDFRDF

(Resource Description Framework). An RDF triple is a tuple of entity-relation-RDF triple

entity, called a subject-predicate-object expression. Here’s a sample RDF triple:

subject predicate object
Golden Gate Park location San Francisco

For example the crowdsourced DBpedia (Bizer et al., 2009) is an ontology
derived from Wikipedia containing over 2 billion RDF triples. Another dataset
from Wikipedia infoboxes, Freebase (Bollacker et al., 2008), now part of WikidataFreebase

(Vrandečić and Krötzsch, 2014), has relations between people and their nationality,
or locations, and other locations they are contained in.

WordNet or other ontologies offer useful ontological relations that express hier-
archical relations between words or concepts. For example WordNet has the is-a oris-a

hypernym relation between classes,hypernym

Giraffe is-a ruminant is-a ungulate is-a mammal is-a vertebrate ...

WordNet also has Instance-of relation between individuals and classes, so that for
example San Francisco is in the Instance-of relation with city. Extracting these
relations is an important step in extending or building ontologies.

Finally, there are large datasets that contain sentences hand-labeled with their
relations, designed for training and testing relation extractors. The TACRED dataset
(Zhang et al., 2017) contains 106,264 examples of relation triples about particular
people or organizations, labeled in sentences from news and web text drawn from the
annual TAC Knowledge Base Population (TAC KBP) challenges. TACRED contains
41 relation types (like per:city of birth, org:subsidiaries, org:member of, per:spouse),
plus a no relation tag; examples are shown in Fig. 17.4. About 80% of all examples
are annotated as no relation; having sufficient negative data is important for training
supervised classifiers.

Example Entity Types & Label
Carey will succeed Cathleen P. Black, who held the position for 15
years and will take on a new role as chairwoman of Hearst Maga-
zines, the company said.

PERSON/TITLE
Relation: per:title

Irene Morgan Kirkaldy, who was born and reared in Baltimore, lived
on Long Island and ran a child-care center in Queens with her second
husband, Stanley Kirkaldy.

PERSON/CITY
Relation: per:city of birth

Baldwin declined further comment, and said JetBlue chief executive
Dave Barger was unavailable.

Types: PERSON/TITLE
Relation: no relation

Figure 17.4 Example sentences and labels from the TACRED dataset (Zhang et al., 2017).

A standard dataset was also produced for the SemEval 2010 Task 8, detecting
relations between nominals (Hendrickx et al., 2009). The dataset has 10,717 exam-
ples, each with a pair of nominals (untyped) hand-labeled with one of 9 directed

17.2 • RELATION EXTRACTION ALGORITHMS 5

relations like product-producer (a factory manufactures suits) or component-whole
(my apartment has a large kitchen).

17.2 Relation Extraction Algorithms

There are five main classes of algorithms for relation extraction: handwritten pat-
terns, supervised machine learning, semi-supervised (via bootstrapping and via
distant supervision), and unsupervised. We’ll introduce each of these in the next
sections.

17.2.1 Using Patterns to Extract Relations
The earliest and still common algorithm for relation extraction is lexico-syntactic
patterns, first developed by Hearst (1992a), and therefore often called Hearst pat-
terns. Consider the following sentence:Hearst patterns

Agar is a substance prepared from a mixture of red algae, such as Ge-
lidium, for laboratory or industrial use.

Hearst points out that most human readers will not know what Gelidium is, but that
they can readily infer that it is a kind of (a hyponym of) red algae, whatever that is.
She suggests that the following lexico-syntactic pattern

NP0 such as NP1{,NP2 . . . ,(and|or)NPi}, i≥ 1 (17.2)

implies the following semantics

∀NPi, i≥ 1,hyponym(NPi,NP0) (17.3)

allowing us to infer
hyponym(Gelidium, red algae) (17.4)

NP {, NP}* {,} (and|or) other NPH temples, treasuries, and other important civic buildings
NPH such as {NP,}* {(or|and)} NP red algae such as Gelidium
such NPH as {NP,}* {(or|and)} NP such authors as Herrick, Goldsmith, and Shakespeare
NPH {,} including {NP,}* {(or|and)} NP common-law countries, including Canada and England
NPH {,} especially {NP}* {(or|and)} NP European countries, especially France, England, and Spain

Figure 17.5 Hand-built lexico-syntactic patterns for finding hypernyms, using {} to mark optionality
(Hearst 1992a, Hearst 1998).

Figure 17.5 shows five patterns Hearst (1992a, 1998) suggested for inferring
the hyponym relation; we’ve shown NPH as the parent/hyponym. Modern versions
of the pattern-based approach extend it by adding named entity constraints. For
example if our goal is to answer questions about “Who holds what office in which
organization?”, we can use patterns like the following:

PER, POSITION of ORG:
George Marshall, Secretary of State of the United States

PER (named|appointed|chose|etc.) PER Prep? POSITION
Truman appointed Marshall Secretary of State

PER [be]? (named|appointed|etc.) Prep? ORG POSITION
George Marshall was named US Secretary of State

6 CHAPTER 17 • INFORMATION EXTRACTION

Hand-built patterns have the advantage of high-precision and they can be tailored
to specific domains. On the other hand, they are often low-recall, and it’s a lot of
work to create them for all possible patterns.

17.2.2 Relation Extraction via Supervised Learning
Supervised machine learning approaches to relation extraction follow a scheme that
should be familiar by now. A fixed set of relations and entities is chosen, a training
corpus is hand-annotated with the relations and entities, and the annotated texts are
then used to train classifiers to annotate an unseen test set.

The most straightforward approach, illustrated in Fig. 17.6 is: (1) Find pairs of
named entities (usually in the same sentence). (2): Apply a relation-classification
on each pair. The classifier can use any supervised technique (logistic regression,
RNN, Transformer, random forest, etc.).

An optional intermediate filtering classifier can be used to speed up the process-
ing by making a binary decision on whether a given pair of named entities are related
(by any relation). It’s trained on positive examples extracted directly from all rela-
tions in the annotated corpus, and negative examples generated from within-sentence
entity pairs that are not annotated with a relation.

function FINDRELATIONS(words) returns relations

relations←nil
entities←FINDENTITIES(words)
forall entity pairs 〈e1, e2〉 in entities do

if RELATED?(e1, e2)
relations←relations+CLASSIFYRELATION(e1, e2)

Figure 17.6 Finding and classifying the relations among entities in a text.

Feature-based supervised relation classifiers. Let’s consider sample features for
a feature-based classifier (like logistic regression or random forests), classifying the
relationship between American Airlines (Mention 1, or M1) and Tim Wagner (Men-
tion 2, M2) from this sentence:

(17.5) American Airlines, a unit of AMR, immediately matched the move,
spokesman Tim Wagner said

These include word features (as embeddings, or 1-hot, stemmed or not):

• The headwords of M1 and M2 and their concatenation
Airlines Wagner Airlines-Wagner

• Bag-of-words and bigrams in M1 and M2
American, Airlines, Tim, Wagner, American Airlines, Tim Wagner

• Words or bigrams in particular positions
M2: -1 spokesman
M2: +1 said

• Bag of words or bigrams between M1 and M2:
a, AMR, of, immediately, matched, move, spokesman, the, unit

Named entity features:

• Named-entity types and their concatenation
(M1: ORG, M2: PER, M1M2: ORG-PER)

17.2 • RELATION EXTRACTION ALGORITHMS 7

ENCODER (BERT)
[CLS] [SUBJ_PERSON] was born in [OBJ_LOC] , Michigan

Linear
Classifier

p(relation|SUBJ,OBJ)

Figure 17.7 Relation extraction as a linear layer on top of an encoder (in this case BERT),
with the subject and object entities replaced in the input by their NER tags (Zhang et al. 2017,
Joshi et al. 2020).

• Entity Level of M1 and M2 (from the set NAME, NOMINAL, PRONOUN)
M1: NAME [it or he would be PRONOUN]
M2: NAME [the company would be NOMINAL]

• Number of entities between the arguments (in this case 1, for AMR)

Syntactic structure is a useful signal, often represented as the dependency or
constituency syntactic path traversed through the tree between the entities.

• Constituent paths between M1 and M2
NP ↑ NP ↑ S ↑ S ↓ NP

• Dependency-tree paths
Airlines←sub j matched←comp said→sub j Wagner

Neural supervised relation classifiers Neural models for relation extraction sim-
ilarly treat the task as supervised classification. Let’s consider a typical system ap-
plied to the TACRED relation extraction dataset and task (Zhang et al., 2017). In
TACRED we are given a sentence and two spans within it: a subject, which is a
person or organization, and an object, which is any other entity. The task is to assign
a relation from the 42 TAC relations, or no relation.

A typical Transformer-encoder algorithm, showin in Fig. 17.7, simply takes a
pretrained encoder like BERT and adds a linear layer on top of the sentence repre-
sentation (for example the BERT [CLS] token), a linear layer that is finetuned as a
1-of-N classifier to assign one of the 43 labels. The input to the BERT encoder is
partially de-lexified; the subject and object entities are replaced in the input by their
NER tags. This helps keep the system from overfitting to the individual lexical items
(Zhang et al., 2017). When using BERT-type Transformers for relation extraction, it
helps to use versions of BERT like RoBERTa (Liu et al., 2019) or SPANbert (Joshi
et al., 2020) that don’t have two sequences separated by a [SEP] token, but instead
form the input from a single long sequence of sentences.

In general, if the test set is similar enough to the training set, and if there is
enough hand-labeled data, supervised relation extraction systems can get high ac-
curacies. But labeling a large training set is extremely expensive and supervised
models are brittle: they don’t generalize well to different text genres. For this rea-
son, much research in relation extraction has focused on the semi-supervised and
unsupervised approaches we turn to next.

17.2.3 Semisupervised Relation Extraction via Bootstrapping
Supervised machine learning assumes that we have lots of labeled data. Unfortu-
nately, this is expensive. But suppose we just have a few high-precision seed pat-
terns, like those in Section 17.2.1, or perhaps a few seed tuples. That’s enoughseed patterns

seed tuples

8 CHAPTER 17 • INFORMATION EXTRACTION

to bootstrap a classifier! Bootstrapping proceeds by taking the entities in the seedbootstrapping

pair, and then finding sentences (on the web, or whatever dataset we are using) that
contain both entities. From all such sentences, we extract and generalize the context
around the entities to learn new patterns. Fig. 17.8 sketches a basic algorithm.

function BOOTSTRAP(Relation R) returns new relation tuples

tuples←Gather a set of seed tuples that have relation R
iterate

sentences←find sentences that contain entities in tuples
patterns←generalize the context between and around entities in sentences
newpairs←use patterns to grep for more tuples
newpairs←newpairs with high confidence
tuples← tuples + newpairs

return tuples

Figure 17.8 Bootstrapping from seed entity pairs to learn relations.

Suppose, for example, that we need to create a list of airline/hub pairs, and we
know only that Ryanair has a hub at Charleroi. We can use this seed fact to discover
new patterns by finding other mentions of this relation in our corpus. We search
for the terms Ryanair, Charleroi and hub in some proximity. Perhaps we find the
following set of sentences:
(17.6) Budget airline Ryanair, which uses Charleroi as a hub, scrapped all

weekend flights out of the airport.
(17.7) All flights in and out of Ryanair’s hub at Charleroi airport were grounded on

Friday...
(17.8) A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000

passengers had already been affected.
From these results, we can use the context of words between the entity mentions,

the words before mention one, the word after mention two, and the named entity
types of the two mentions, and perhaps other features, to extract general patterns
such as the following:
/ [ORG], which uses [LOC] as a hub /

/ [ORG]’s hub at [LOC] /

/ [LOC], a main hub for [ORG] /

These new patterns can then be used to search for additional tuples.
Bootstrapping systems also assign confidence values to new tuples to avoid se-confidence

values
mantic drift. In semantic drift, an erroneous pattern leads to the introduction ofsemantic drift

erroneous tuples, which, in turn, lead to the creation of problematic patterns and the
meaning of the extracted relations ‘drifts’. Consider the following example:
(17.9) Sydney has a ferry hub at Circular Quay.
If accepted as a positive example, this expression could lead to the incorrect in-
troduction of the tuple 〈Sydney,CircularQuay〉. Patterns based on this tuple could
propagate further errors into the database.

Confidence values for patterns are based on balancing two factors: the pattern’s
performance with respect to the current set of tuples and the pattern’s productivity
in terms of the number of matches it produces in the document collection. More
formally, given a document collection D, a current set of tuples T , and a proposed
pattern p, we need to track two factors:

17.2 • RELATION EXTRACTION ALGORITHMS 9

• hits(p): the set of tuples in T that p matches while looking in D

• finds(p): The total set of tuples that p finds in D

The following equation balances these considerations (Riloff and Jones, 1999).

Conf RlogF(p) =
|hits(p)|
|finds(p)|

log(|finds(p)|) (17.10)

This metric is generally normalized to produce a probability.
We can assess the confidence in a proposed new tuple by combining the evidence

supporting it from all the patterns P′ that match that tuple in D (Agichtein and Gra-
vano, 2000). One way to combine such evidence is the noisy-or technique. Assumenoisy-or

that a given tuple is supported by a subset of the patterns in P, each with its own
confidence assessed as above. In the noisy-or model, we make two basic assump-
tions. First, that for a proposed tuple to be false, all of its supporting patterns must
have been in error, and second, that the sources of their individual failures are all
independent. If we loosely treat our confidence measures as probabilities, then the
probability of any individual pattern p failing is 1−Conf (p); the probability of all
of the supporting patterns for a tuple being wrong is the product of their individual
failure probabilities, leaving us with the following equation for our confidence in a
new tuple.

Conf (t) = 1−
∏
p∈P′

(1−Conf (p)) (17.11)

Setting conservative confidence thresholds for the acceptance of new patterns
and tuples during the bootstrapping process helps prevent the system from drifting
away from the targeted relation.

17.2.4 Distant Supervision for Relation Extraction
Although hand-labeling text with relation labels is expensive to produce, there are
ways to find indirect sources of training data. The distant supervision methoddistant

supervision
(Mintz et al., 2009) combines the advantages of bootstrapping with supervised learn-
ing. Instead of just a handful of seeds, distant supervision uses a large database to
acquire a huge number of seed examples, creates lots of noisy pattern features from
all these examples and then combines them in a supervised classifier.

For example suppose we are trying to learn the place-of-birth relationship be-
tween people and their birth cities. In the seed-based approach, we might have only
5 examples to start with. But Wikipedia-based databases like DBPedia or Freebase
have tens of thousands of examples of many relations; including over 100,000 ex-
amples of place-of-birth, (<Edwin Hubble, Marshfield>, <Albert Einstein,
Ulm>, etc.,). The next step is to run named entity taggers on large amounts of text—
Mintz et al. (2009) used 800,000 articles from Wikipedia—and extract all sentences
that have two named entities that match the tuple, like the following:

...Hubble was born in Marshfield...

...Einstein, born (1879), Ulm...

...Hubble’s birthplace in Marshfield...

Training instances can now be extracted from this data, one training instance
for each identical tuple <relation, entity1, entity2>. Thus there will be one
training instance for each of:

10 CHAPTER 17 • INFORMATION EXTRACTION

<born-in, Edwin Hubble, Marshfield>

<born-in, Albert Einstein, Ulm>

<born-year, Albert Einstein, 1879>

and so on.
We can then apply feature-based or neural classification. For feature-based clas-

sification, standard supervised relation extraction features like the named entity la-
bels of the two mentions, the words and dependency paths in between the mentions,
and neighboring words. Each tuple will have features collected from many training
instances; the feature vector for a single training instance like (<born-in,Albert
Einstein, Ulm> will have lexical and syntactic features from many different sen-
tences that mention Einstein and Ulm.

Because distant supervision has very large training sets, it is also able to use very
rich features that are conjunctions of these individual features. So we will extract
thousands of patterns that conjoin the entity types with the intervening words or
dependency paths like these:

PER was born in LOC
PER, born (XXXX), LOC
PER’s birthplace in LOC

To return to our running example, for this sentence:

(17.12) American Airlines, a unit of AMR, immediately matched the move,
spokesman Tim Wagner said

we would learn rich conjunction features like this one:

M1 = ORG & M2 = PER & nextword=“said”& path= NP ↑ NP ↑ S ↑ S ↓ NP

The result is a supervised classifier that has a huge rich set of features to use
in detecting relations. Since not every test sentence will have one of the training
relations, the classifier will also need to be able to label an example as no-relation.
This label is trained by randomly selecting entity pairs that do not appear in any
Freebase relation, extracting features for them, and building a feature vector for
each such tuple. The final algorithm is sketched in Fig. 17.9.

function DISTANT SUPERVISION(Database D, Text T) returns relation classifier C

foreach relation R
foreach tuple (e1,e2) of entities with relation R in D

sentences←Sentences in T that contain e1 and e2
f←Frequent features in sentences
observations←observations + new training tuple (e1, e2, f, R)

C←Train supervised classifier on observations
return C

Figure 17.9 The distant supervision algorithm for relation extraction. A neural classifier
would skip the feature set f .

Distant supervision shares advantages with each of the methods we’ve exam-
ined. Like supervised classification, distant supervision uses a classifier with lots
of features, and supervised by detailed hand-created knowledge. Like pattern-based
classifiers, it can make use of high-precision evidence for the relation between en-
tities. Indeed, distance supervision systems learn patterns just like the hand-built

17.2 • RELATION EXTRACTION ALGORITHMS 11

patterns of early relation extractors. For example the is-a or hypernym extraction
system of Snow et al. (2005) used hypernym/hyponym NP pairs from WordNet as
distant supervision, and then learned new patterns from large amounts of text. Their
system induced exactly the original 5 template patterns of Hearst (1992a), but also
70,000 additional patterns including these four:

NPH like NP Many hormones like leptin...
NPH called NP ...using a markup language called XHTML
NP is a NPH Ruby is a programming language...
NP, a NPH IBM, a company with a long...

This ability to use a large number of features simultaneously means that, un-
like the iterative expansion of patterns in seed-based systems, there’s no semantic
drift. Like unsupervised classification, it doesn’t use a labeled training corpus of
texts, so it isn’t sensitive to genre issues in the training corpus, and relies on very
large amounts of unlabeled data. Distant supervision also has the advantage that it
can create training tuples to be used with neural classifiers, where features are not
required.

The main problem with distant supervision is that it tends to produce low-precision
results, and so current research focuses on ways to improve precision. Furthermore,
distant supervision can only help in extracting relations for which a large enough
database already exists. To extract new relations without datasets, or relations for
new domains, purely unsupervised methods must be used.

17.2.5 Unsupervised Relation Extraction
The goal of unsupervised relation extraction is to extract relations from the web
when we have no labeled training data, and not even any list of relations. This task
is often called open information extraction or Open IE. In Open IE, the relations

open
information

extraction
are simply strings of words (usually beginning with a verb).

For example, the ReVerb system (Fader et al., 2011) extracts a relation from a
sentence s in 4 steps:

1. Run a part-of-speech tagger and entity chunker over s
2. For each verb in s, find the longest sequence of words w that start with a verb

and satisfy syntactic and lexical constraints, merging adjacent matches.
3. For each phrase w, find the nearest noun phrase x to the left which is not a

relative pronoun, wh-word or existential “there”. Find the nearest noun phrase
y to the right.

4. Assign confidence c to the relation r = (x,w,y) using a confidence classifier
and return it.

A relation is only accepted if it meets syntactic and lexical constraints. The
syntactic constraints ensure that it is a verb-initial sequence that might also include
nouns (relations that begin with light verbs like make, have, or do often express the
core of the relation with a noun, like have a hub in):

V | VP | VW*P
V = verb particle? adv?
W = (noun | adj | adv | pron | det)
P = (prep | particle | inf. marker)

The lexical constraints are based on a dictionary D that is used to prune very rare,
long relation strings. The intuition is to eliminate candidate relations that don’t oc-

12 CHAPTER 17 • INFORMATION EXTRACTION

cur with sufficient number of distinct argument types and so are likely to be bad
examples. The system first runs the above relation extraction algorithm offline on
500 million web sentences and extracts a list of all the relations that occur after nor-
malizing them (removing inflection, auxiliary verbs, adjectives, and adverbs). Each
relation r is added to the dictionary if it occurs with at least 20 different arguments.
Fader et al. (2011) used a dictionary of 1.7 million normalized relations.

Finally, a confidence value is computed for each relation using a logistic re-
gression classifier. The classifier is trained by taking 1000 random web sentences,
running the extractor, and hand labeling each extracted relation as correct or incor-
rect. A confidence classifier is then trained on this hand-labeled data, using features
of the relation and the surrounding words. Fig. 17.10 shows some sample features
used in the classification.

(x,r,y) covers all words in s
the last preposition in r is for
the last preposition in r is on
len(s) ≤ 10
there is a coordinating conjunction to the left of r in s
r matches a lone V in the syntactic constraints
there is preposition to the left of x in s
there is an NP to the right of y in s

Figure 17.10 Features for the classifier that assigns confidence to relations extracted by the
Open Information Extraction system REVERB (Fader et al., 2011).

For example the following sentence:

(17.13) United has a hub in Chicago, which is the headquarters of United
Continental Holdings.

has the relation phrases has a hub in and is the headquarters of (it also has has and
is, but longer phrases are preferred). Step 3 finds United to the left and Chicago to
the right of has a hub in, and skips over which to find Chicago to the left of is the
headquarters of. The final output is:

r1: <United, has a hub in, Chicago>

r2: <Chicago, is the headquarters of, United Continental Holdings>

The great advantage of unsupervised relation extraction is its ability to handle
a huge number of relations without having to specify them in advance. The disad-
vantage is the need to map these large sets of strings into some canonical form for
adding to databases or other knowledge sources. Current methods focus heavily on
relations expressed with verbs, and so will miss many relations that are expressed
nominally.

17.2.6 Evaluation of Relation Extraction
Supervised relation extraction systems are evaluated by using test sets with human-
annotated, gold-standard relations and computing precision, recall, and F-measure.
Labeled precision and recall require the system to classify the relation correctly,
whereas unlabeled methods simply measure a system’s ability to detect entities that
are related.

Semi-supervised and unsupervised methods are much more difficult to evalu-
ate, since they extract totally new relations from the web or a large text. Because
these methods use very large amounts of text, it is generally not possible to run them

17.3 • EXTRACTING TIMES 13

solely on a small labeled test set, and as a result it’s not possible to pre-annotate a
gold set of correct instances of relations.

For these methods it’s possible to approximate (only) precision by drawing a
random sample of relations from the output, and having a human check the accuracy
of each of these relations. Usually this approach focuses on the tuples to be extracted
from a body of text rather than on the relation mentions; systems need not detect
every mention of a relation to be scored correctly. Instead, the evaluation is based
on the set of tuples occupying the database when the system is finished. That is,
we want to know if the system can discover that Ryanair has a hub at Charleroi; we
don’t really care how many times it discovers it. The estimated precision P̂ is then

P̂ =
of correctly extracted relation tuples in the sample

total # of extracted relation tuples in the sample.
(17.14)

Another approach that gives us a little bit of information about recall is to com-
pute precision at different levels of recall. Assuming that our system is able to
rank the relations it produces (by probability, or confidence) we can separately com-
pute precision for the top 1000 new relations, the top 10,000 new relations, the top
100,000, and so on. In each case we take a random sample of that set. This will
show us how the precision curve behaves as we extract more and more tuples. But
there is no way to directly evaluate recall.

17.3 Extracting Times

Times and dates are a particularly important kind of named entity that play a role
in question answering, in calendar and personal assistant applications. In order to
reason about times and dates, after we extract these temporal expressions they must
be normalized—converted to a standard format so we can reason about them. In this
section we consider both the extraction and normalization of temporal expressions.

17.3.1 Temporal Expression Extraction
Temporal expressions are those that refer to absolute points in time, relative times,
durations, and sets of these. Absolute temporal expressions are those that can beabsolute

mapped directly to calendar dates, times of day, or both. Relative temporal expres-relative

sions map to particular times through some other reference point (as in a week from
last Tuesday). Finally, durations denote spans of time at varying levels of granular-duration

ity (seconds, minutes, days, weeks, centuries, etc.). Figure 17.11 lists some sample
temporal expressions in each of these categories.

Absolute Relative Durations
April 24, 1916 yesterday four hours
The summer of ’77 next semester three weeks
10:15 AM two weeks from yesterday six days
The 3rd quarter of 2006 last quarter the last three quarters
Figure 17.11 Examples of absolute, relational and durational temporal expressions.

Temporal expressions are grammatical constructions that have temporal lexical
triggers as their heads. Lexical triggers might be nouns, proper nouns, adjectives,lexical triggers

14 CHAPTER 17 • INFORMATION EXTRACTION

Category Examples
Noun morning, noon, night, winter, dusk, dawn
Proper Noun January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet
Adjective recent, past, annual, former
Adverb hourly, daily, monthly, yearly

Figure 17.12 Examples of temporal lexical triggers.

and adverbs; full temporal expressions consist of their phrasal projections: noun
phrases, adjective phrases, and adverbial phrases. Figure 17.12 provides examples.

Let’s look at the TimeML annotation scheme, in which temporal expressions are
annotated with an XML tag, TIMEX3, and various attributes to that tag (Pustejovsky
et al. 2005, Ferro et al. 2005). The following example illustrates the basic use of this
scheme (we defer discussion of the attributes until Section 17.3.2).

A fare increase initiated <TIMEX3>last week</TIMEX3> by UAL
Corp’s United Airlines was matched by competitors over <TIMEX3>the
weekend</TIMEX3>, marking the second successful fare increase in
<TIMEX3>two weeks</TIMEX3>.

The temporal expression recognition task consists of finding the start and end of
all of the text spans that correspond to such temporal expressions. Rule-based ap-
proaches to temporal expression recognition use cascades of automata to recognize
patterns at increasing levels of complexity. Tokens are first part-of-speech tagged,
and then larger and larger chunks are recognized from the results from previous
stages, based on patterns containing trigger words (e.g., February) or classes (e.g.,
MONTH). Figure 17.13 gives a fragment from a rule-based system.

yesterday/today/tomorrow
$string =˜ s/((($OT+the$CT+\s+)?$OT+day$CT+\s+$OT+(before|after)$CT+\s+)?$OT+$TERelDayExpr$CT+
(\s+$OT+(morning|afternoon|evening|night)$CT+)?)/<TIMEX$tever TYPE=\"DATE\">$1
<\/TIMEX$tever>/gio;

$string =˜ s/($OT+\w+$CT+\s+)<TIMEX$tever TYPE=\"DATE\"[ˆ>]*>($OT+(Today|Tonight)$CT+)
<\/TIMEX$tever>/$1$4/gso;

this (morning/afternoon/evening)
$string =˜ s/(($OT+(early|late)$CT+\s+)?$OT+this$CT+\s*$OT+(morning|afternoon|evening)$CT+)/
<TIMEX$tever TYPE=\"DATE\">$1<\/TIMEX$tever>/gosi;

$string =˜ s/(($OT+(early|late)$CT+\s+)?$OT+last$CT+\s*$OT+night$CT+)/<TIMEX$tever
TYPE=\"DATE\">$1<\/TIMEX$tever>/gsio;

Figure 17.13 Perl fragment from the GUTime temporal tagging system in Tarsqi (Verhagen et al., 2005).

Sequence-labeling approaches follow the same IOB scheme used for named-
entity tags, marking words that are either inside, outside or at the beginning of a
TIMEX3-delimited temporal expression with the I, O, and B tags as follows:

A
O

fare
O

increase
O

initiated
O

last
B

week
I

by
O

UAL
O

Corp’s...
O

Features are extracted from the token and its context, and a statistical sequence
labeler is trained (any sequence model can be used). Figure 17.14 lists standard
features used in temporal tagging.

Temporal expression recognizers are evaluated with the usual recall, precision,
and F-measures. A major difficulty for all of these very lexicalized approaches is
avoiding expressions that trigger false positives:

(17.15) 1984 tells the story of Winston Smith...
(17.16) ...U2’s classic Sunday Bloody Sunday

17.3 • EXTRACTING TIMES 15

Feature Explanation
Token The target token to be labeled
Tokens in window Bag of tokens in the window around a target
Shape Character shape features
POS Parts of speech of target and window words
Chunk tags Base phrase chunk tag for target and words in a window
Lexical triggers Presence in a list of temporal terms

Figure 17.14 Typical features used to train IOB-style temporal expression taggers.

17.3.2 Temporal Normalization
Temporal normalization is the process of mapping a temporal expression to eithertemporal

normalization
a specific point in time or to a duration. Points in time correspond to calendar dates,
to times of day, or both. Durations primarily consist of lengths of time but may also
include information about start and end points. Normalized times are represented
with the VALUE attribute from the ISO 8601 standard for encoding temporal values
(ISO8601, 2004). Fig. 17.15 reproduces our earlier example with the value attributes
added in.

<TIMEX3 i d = ’ ’ t 1 ’ ’ t y p e =”DATE” v a l u e =” 2007 −07 −02 ” f u n c t i o n I n D o c u m e n t =”CREATION TIME”
> J u l y 2 , 2007 < / TIMEX3> A f a r e i n c r e a s e i n i t i a t e d <TIMEX3 i d =” t 2 ” t y p e =”DATE”
v a l u e =” 2007−W26” anchorTimeID=” t 1 ”> l a s t week< / TIMEX3> by Un i t ed A i r l i n e s was
matched by c o m p e t i t o r s ove r <TIMEX3 i d =” t 3 ” t y p e =”DURATION” v a l u e =”P1WE”
anchorTimeID=” t 1 ”> t h e weekend < / TIMEX3> , marking t h e second s u c c e s s f u l f a r e
i n c r e a s e i n <TIMEX3 i d =” t 4 ” t y p e =”DURATION” v a l u e =”P2W” anchorTimeID=” t 1 ”> two
weeks < / TIMEX3> .

Figure 17.15 TimeML markup including normalized values for temporal expressions.

The dateline, or document date, for this text was July 2, 2007. The ISO repre-
sentation for this kind of expression is YYYY-MM-DD, or in this case, 2007-07-02.
The encodings for the temporal expressions in our sample text all follow from this
date, and are shown here as values for the VALUE attribute.

The first temporal expression in the text proper refers to a particular week of the
year. In the ISO standard, weeks are numbered from 01 to 53, with the first week
of the year being the one that has the first Thursday of the year. These weeks are
represented with the template YYYY-Wnn. The ISO week for our document date is
week 27; thus the value for last week is represented as “2007-W26”.

The next temporal expression is the weekend. ISO weeks begin on Monday;
thus, weekends occur at the end of a week and are fully contained within a single
week. Weekends are treated as durations, so the value of the VALUE attribute has
to be a length. Durations are represented according to the pattern Pnx, where n is
an integer denoting the length and x represents the unit, as in P3Y for three years
or P2D for two days. In this example, one weekend is captured as P1WE. In this
case, there is also sufficient information to anchor this particular weekend as part of
a particular week. Such information is encoded in the ANCHORTIMEID attribute.
Finally, the phrase two weeks also denotes a duration captured as P2W. There is a
lot more to the various temporal annotation standards—far too much to cover here.
Figure 17.16 describes some of the basic ways that other times and durations are
represented. Consult ISO8601 (2004), Ferro et al. (2005), and Pustejovsky et al.
(2005) for more details.

Most current approaches to temporal normalization are rule-based (Chang and
Manning 2012, Strötgen and Gertz 2013). Patterns that match temporal expres-
sions are associated with semantic analysis procedures. As in the compositional

16 CHAPTER 17 • INFORMATION EXTRACTION

Unit Pattern Sample Value
Fully specified dates YYYY-MM-DD 1991-09-28
Weeks YYYY-Wnn 2007-W27
Weekends PnWE P1WE
24-hour clock times HH:MM:SS 11:13:45
Dates and times YYYY-MM-DDTHH:MM:SS 1991-09-28T11:00:00
Financial quarters Qn 1999-Q3
Figure 17.16 Sample ISO patterns for representing various times and durations.

rule-to-rule approach introduced in Chapter 16, the meaning of a constituent is com-
puted from the meaning of its parts using a method specific to the constituent, al-
though here the semantic composition rules involve temporal arithmetic rather than
λ -calculus attachments.

Fully qualified date expressions contain a year, month, and day in some con-fully qualified

ventional form. The units in the expression must be detected and then placed in the
correct place in the corresponding ISO pattern. The following pattern normalizes
expressions like April 24, 1916.

FQTE → Month Date , Year {Year.val − Month.val − Date.val}

The non-terminals Month, Date, and Year represent constituents that have already
been recognized and assigned semantic values, accessed through the *.val notation.
The value of this FQE constituent can, in turn, be accessed as FQTE.val during
further processing.

Fully qualified temporal expressions are fairly rare in real texts. Most temporal
expressions in news articles are incomplete and are only implicitly anchored, of-
ten with respect to the dateline of the article, which we refer to as the document’s
temporal anchor. The values of temporal expressions such as today, yesterday, ortemporal

anchor
tomorrow can all be computed with respect to this temporal anchor. The semantic
procedure for today simply assigns the anchor, and the attachments for tomorrow
and yesterday add a day and subtract a day from the anchor, respectively. Of course,
given the cyclic nature of our representations for months, weeks, days, and times of
day, our temporal arithmetic procedures must use modulo arithmetic appropriate to
the time unit being used.

Unfortunately, even simple expressions such as the weekend or Wednesday in-
troduce a fair amount of complexity. In our current example, the weekend clearly
refers to the weekend of the week that immediately precedes the document date. But
this won’t always be the case, as is illustrated in the following example.

(17.17) Random security checks that began yesterday at Sky Harbor will continue
at least through the weekend.

In this case, the expression the weekend refers to the weekend of the week that the
anchoring date is part of (i.e., the coming weekend). The information that signals
this meaning comes from the tense of continue, the verb governing the weekend.

Relative temporal expressions are handled with temporal arithmetic similar to
that used for today and yesterday. The document date indicates that our example
article is ISO week 27, so the expression last week normalizes to the current week
minus 1. To resolve ambiguous next and last expressions we consider the distance
from the anchoring date to the nearest unit. Next Friday can refer either to the
immediately next Friday or to the Friday following that, but the closer the document
date is to a Friday, the more likely it is that the phrase will skip the nearest one. Such

17.4 • EXTRACTING EVENTS AND THEIR TIMES 17

ambiguities are handled by encoding language and domain-specific heuristics into
the temporal attachments.

17.4 Extracting Events and their Times

The task of event extraction is to identify mentions of events in texts. For theevent
extraction

purposes of this task, an event mention is any expression denoting an event or state
that can be assigned to a particular point, or interval, in time. The following markup
of the sample text on page 14 shows all the events in this text.

[EVENT Citing] high fuel prices, United Airlines [EVENT said] Fri-
day it has [EVENT increased] fares by $6 per round trip on flights to
some cities also served by lower-cost carriers. American Airlines, a unit
of AMR Corp., immediately [EVENT matched] [EVENT the move],
spokesman Tim Wagner [EVENT said]. United, a unit of UAL Corp.,
[EVENT said] [EVENT the increase] took effect Thursday and [EVENT
applies] to most routes where it [EVENT competes] against discount
carriers, such as Chicago to Dallas and Denver to San Francisco.

In English, most event mentions correspond to verbs, and most verbs introduce
events. However, as we can see from our example, this is not always the case. Events
can be introduced by noun phrases, as in the move and the increase, and some verbs
fail to introduce events, as in the phrasal verb took effect, which refers to when the
event began rather than to the event itself. Similarly, light verbs such as make, take,
and have often fail to denote events; for light verbs the event is often expressed by
the nominal direct object (took a flight), and these light verbs just provide a syntactic
structure for the noun’s arguments.

Various versions of the event extraction task exist, depending on the goal. For
example in the TempEval shared tasks (Verhagen et al. 2009) the goal is to extract
events and aspects like their aspectual and temporal properties. Events are to be
classified as actions, states, reporting events (say, report, tell, explain), perceptionreporting

events
events, and so on. The aspect, tense, and modality of each event also needs to be
extracted. Thus for example the various said events in the sample text would be
annotated as (class=REPORTING, tense=PAST, aspect=PERFECTIVE).

Event extraction is generally modeled via supervised learning, detecting events
via sequence models with IOB tagging, and assigning event classes and attributes
with multi-class classifiers. Feature-based models use surface information like parts
of speech, lexical items, and verb tense information; see Fig. 17.17.

Feature Explanation
Character affixes Character-level prefixes and suffixes of target word
Nominalization suffix Character-level suffixes for nominalizations (e.g., -tion)
Part of speech Part of speech of the target word
Light verb Binary feature indicating that the target is governed by a light verb
Subject syntactic category Syntactic category of the subject of the sentence
Morphological stem Stemmed version of the target word
Verb root Root form of the verb basis for a nominalization
WordNet hypernyms Hypernym set for the target
Figure 17.17 Features commonly used in both rule-based and machine learning approaches to event detec-
tion.

18 CHAPTER 17 • INFORMATION EXTRACTION

17.4.1 Temporal Ordering of Events
With both the events and the temporal expressions in a text having been detected, the
next logical task is to use this information to fit the events into a complete timeline.
Such a timeline would be useful for applications such as question answering and
summarization. This ambitious task is the subject of considerable current research
but is beyond the capabilities of current systems.

A somewhat simpler, but still useful, task is to impose a partial ordering on the
events and temporal expressions mentioned in a text. Such an ordering can provide
many of the same benefits as a true timeline. An example of such a partial ordering
is the determination that the fare increase by American Airlines came after the fare
increase by United in our sample text. Determining such an ordering can be viewed
as a binary relation detection and classification task similar to those described earlier
in Section 17.1. The temporal relation between events is classified into one of the
standard set of Allen relations shown in Fig. 17.18 (Allen, 1984), using feature-Allen relations

based classifiers as in Section 17.1, trained on the TimeBank corpus with features
like words/embeddings, parse paths, tense and aspect.

B

A

B

A

B

A

A

A

B

B

A

B

Time

A before B
B after A

A overlaps B
B overlaps' A

A meets B
B meets' A

A equals B
(B equals A)

A starts B
B starts' A

A finishes B
B finishes' A

B

A during B
B during' A

A

Figure 17.18 The 13 temporal relations from Allen (1984).

The TimeBank corpus consists of text annotated with much of the informationTimeBank

we’ve been discussing throughout this section (Pustejovsky et al., 2003b). Time-
Bank 1.2 consists of 183 news articles selected from a variety of sources, including
the Penn TreeBank and PropBank collections.

17.5 • TEMPLATE FILLING 19

<TIMEX3 tid="t57" type="DATE" value="1989-10-26" functionInDocument="CREATION_TIME">
10/26/89 </TIMEX3>

Delta Air Lines earnings <EVENT eid="e1" class="OCCURRENCE"> soared </EVENT> 33% to a
record in <TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57"> the
fiscal first quarter </TIMEX3>, <EVENT eid="e3" class="OCCURRENCE">bucking</EVENT>
the industry trend toward <EVENT eid="e4" class="OCCURRENCE">declining</EVENT>
profits.

Figure 17.19 Example from the TimeBank corpus.

Each article in the TimeBank corpus has had the temporal expressions and event
mentions in them explicitly annotated in the TimeML annotation (Pustejovsky et al.,
2003a). In addition to temporal expressions and events, the TimeML annotation
provides temporal links between events and temporal expressions that specify the
nature of the relation between them. Consider the following sample sentence and
its corresponding markup shown in Fig. 17.19, selected from one of the TimeBank
documents.

(17.18) Delta Air Lines earnings soared 33% to a record in the fiscal first quarter,
bucking the industry trend toward declining profits.

As annotated, this text includes three events and two temporal expressions. The
events are all in the occurrence class and are given unique identifiers for use in fur-
ther annotations. The temporal expressions include the creation time of the article,
which serves as the document time, and a single temporal expression within the text.

In addition to these annotations, TimeBank provides four links that capture the
temporal relations between the events and times in the text, using the Allen relations
from Fig. 17.18. The following are the within-sentence temporal relations annotated
for this example.

• Soaringe1 is included in the fiscal first quartert58

• Soaringe1 is before 1989-10-26t57

• Soaringe1 is simultaneous with the buckinge3

• Declininge4 includes soaringe1

17.5 Template Filling

Many texts contain reports of events, and possibly sequences of events, that often
correspond to fairly common, stereotypical situations in the world. These abstract
situations or stories, related to what have been called scripts (Schank and Abel-scripts

son, 1977), consist of prototypical sequences of sub-events, participants, and their
roles. The strong expectations provided by these scripts can facilitate the proper
classification of entities, the assignment of entities into roles and relations, and most
critically, the drawing of inferences that fill in things that have been left unsaid. In
their simplest form, such scripts can be represented as templates consisting of fixedtemplates

sets of slots that take as values slot-fillers belonging to particular classes. The task
of template filling is to find documents that invoke particular scripts and then fill thetemplate filling

slots in the associated templates with fillers extracted from the text. These slot-fillers
may consist of text segments extracted directly from the text, or they may consist of
concepts that have been inferred from text elements through some additional pro-
cessing.

A filled template from our original airline story might look like the following.

20 CHAPTER 17 • INFORMATION EXTRACTION

FARE-RAISE ATTEMPT:


LEAD AIRLINE: UNITED AIRLINES

AMOUNT: $6
EFFECTIVE DATE: 2006-10-26
FOLLOWER: AMERICAN AIRLINES


This template has four slots (LEAD AIRLINE, AMOUNT, EFFECTIVE DATE, FOL-

LOWER). The next section describes a standard sequence-labeling approach to filling
slots. Section 17.5.2 then describes an older system based on the use of cascades of
finite-state transducers and designed to address a more complex template-filling task
that current learning-based systems don’t yet address.

17.5.1 Machine Learning Approaches to Template Filling
In the standard paradigm for template filling, we are given training documents with
text spans annotated with predefined templates and their slot fillers. Our goal is to
create one template for each event in the input, filling in the slots with text spans.

The task is generally modeled by training two separate supervised systems. The
first system decides whether the template is present in a particular sentence. This
task is called template recognition or sometimes, in a perhaps confusing bit oftemplate

recognition
terminology, event recognition. Template recognition can be treated as a text classi-
fication task, with features extracted from every sequence of words that was labeled
in training documents as filling any slot from the template being detected. The usual
set of features can be used: tokens, embeddings, word shapes, part-of-speech tags,
syntactic chunk tags, and named entity tags.

The second system has the job of role-filler extraction. A separate classifier isrole-filler
extraction

trained to detect each role (LEAD-AIRLINE, AMOUNT, and so on). This can be a
binary classifier that is run on every noun-phrase in the parsed input sentence, or a
sequence model run over sequences of words. Each role classifier is trained on the
labeled data in the training set. Again, the usual set of features can be used, but now
trained only on an individual noun phrase or the fillers of a single slot.

Multiple non-identical text segments might be labeled with the same slot la-
bel. For example in our sample text, the strings United or United Airlines might be
labeled as the LEAD AIRLINE. These are not incompatible choices and the corefer-
ence resolution techniques introduced in Chapter 22 can provide a path to a solution.

A variety of annotated collections have been used to evaluate this style of ap-
proach to template filling, including sets of job announcements, conference calls for
papers, restaurant guides, and biological texts. Recent work focuses on extracting
templates in cases where there is no training data or even predefined templates, by
inducing templates as sets of linked events (Chambers and Jurafsky, 2011).

17.5.2 Earlier Finite-State Template-Filling Systems
The templates above are relatively simple. But consider the task of producing a
template that contained all the information in a text like this one (Grishman and
Sundheim, 1995):

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan
with a local concern and a Japanese trading house to produce golf clubs to be
shipped to Japan. The joint venture, Bridgestone Sports Taiwan Co., capital-
ized at 20 million new Taiwan dollars, will start production in January 1990
with production of 20,000 iron and “metal wood” clubs a month.

17.6 • SUMMARY 21

The MUC-5 ‘joint venture’ task (the Message Understanding Conferences were
a series of U.S. government-organized information-extraction evaluations) was to
produce hierarchically linked templates describing joint ventures. Figure 17.20
shows a structure produced by the FASTUS system (Hobbs et al., 1997). Note how
the filler of the ACTIVITY slot of the TIE-UP template is itself a template with slots.

Tie-up-1 Activity-1:
RELATIONSHIP tie-up COMPANY Bridgestone Sports Taiwan Co.
ENTITIES Bridgestone Sports Co. PRODUCT iron and “metal wood” clubs

a local concern START DATE DURING: January 1990
a Japanese trading house

JOINT VENTURE Bridgestone Sports Taiwan Co.
ACTIVITY Activity-1
AMOUNT NT$20000000

Figure 17.20 The templates produced by FASTUS given the input text on page 20.

Early systems for dealing with these complex templates were based on cascades
of transducers based on handwritten rules, as sketched in Fig. 17.21.

No. Step Description
1 Tokens Tokenize input stream of characters
2 Complex Words Multiword phrases, numbers, and proper names.
3 Basic phrases Segment sentences into noun and verb groups
4 Complex phrases Identify complex noun groups and verb groups
5 Semantic Patterns Identify entities and events, insert into templates.
6 Merging Merge references to the same entity or event

Figure 17.21 Levels of processing in FASTUS (Hobbs et al., 1997). Each level extracts a
specific type of information which is then passed on to the next higher level.

The first four stages use handwritten regular expression and grammar rules to
do basic tokenization, chunking, and parsing. Stage 5 then recognizes entities and
events with a FST-based recognizer and inserts the recognized objects into the ap-
propriate slots in templates. This FST recognizer is based on hand-built regular
expressions like the following (NG indicates Noun-Group and VG Verb-Group),
which matches the first sentence of the news story above.

NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Company/ies)

VG(Produce) NG(Product)

The result of processing these two sentences is the five draft templates (Fig. 17.22)
that must then be merged into the single hierarchical structure shown in Fig. 17.20.
The merging algorithm, after performing coreference resolution, merges two activi-
ties that are likely to be describing the same events.

17.6 Summary

This chapter has explored techniques for extracting limited forms of semantic con-
tent from texts.

• Relations among entities can be extracted by pattern-based approaches, su-
pervised learning methods when annotated training data is available, lightly

22 CHAPTER 17 • INFORMATION EXTRACTION

Template/Slot Value
1 RELATIONSHIP: TIE-UP

ENTITIES: Bridgestone Co., a local concern, a Japanese trading house
2 ACTIVITY: PRODUCTION

PRODUCT: “golf clubs”
3 RELATIONSHIP: TIE-UP

JOINT VENTURE: “Bridgestone Sports Taiwan Co.”
AMOUNT: NT$20000000

4 ACTIVITY: PRODUCTION
COMPANY: “Bridgestone Sports Taiwan Co.”
STARTDATE: DURING: January 1990

5 ACTIVITY: PRODUCTION
PRODUCT: “iron and “metal wood” clubs”

Figure 17.22 The five partial templates produced by stage 5 of FASTUS. These templates
are merged in stage 6 to produce the final template shown in Fig. 17.20 on page 21.

supervised bootstrapping methods when small numbers of seed tuples or
seed patterns are available, distant supervision when a database of relations
is available, and unsupervised or Open IE methods.

• Reasoning about time can be facilitated by detection and normalization of
temporal expressions through a combination of statistical learning and rule-
based methods.

• Events can be detected and ordered in time using sequence models and classi-
fiers trained on temporally- and event-labeled data like the TimeBank corpus.

• Template-filling applications can recognize stereotypical situations in texts
and assign elements from the text to roles represented as fixed sets of slots.

Bibliographical and Historical Notes
The earliest work on information extraction addressed the template-filling task in the
context of the Frump system (DeJong, 1982). Later work was stimulated by the U.S.
government-sponsored MUC conferences (Sundheim 1991, Sundheim 1992, Sund-
heim 1993, Sundheim 1995). Early MUC systems like CIRCUS system (Lehnert
et al., 1991) and SCISOR (Jacobs and Rau, 1990) were quite influential and inspired
later systems like FASTUS (Hobbs et al., 1997). Chinchor et al. (1993) describe the
MUC evaluation techniques.

Due to the difficulty of porting systems from one domain to another, attention
shifted to machine learning approaches. Early supervised learning approaches to
IE (Cardie 1993, Cardie 1994, Riloff 1993, Soderland et al. 1995, Huffman 1996)
focused on automating the knowledge acquisition process, mainly for finite-state
rule-based systems. Their success, and the earlier success of HMM-based speech
recognition, led to the use of sequence labeling (HMMs: Bikel et al. 1997; MEMMs
McCallum et al. 2000; CRFs: Lafferty et al. 2001), and a wide exploration of fea-
tures (Zhou et al., 2005). Neural approaches followed from the pioneering results of
Collobert et al. (2011), who applied a CRF on top of a convolutional net.

Progress in this area continues to be stimulated by formal evaluations with shared
benchmark datasets, including the Automatic Content Extraction (ACE) evaluations

EXERCISES 23

of 2000-2007 on named entity recognition, relation extraction, and temporal ex-
pressions1, the KBP (Knowledge Base Population) evaluations (Ji et al. 2010, Sur-KBP

deanu 2013) of relation extraction tasks like slot filling (extracting attributes (‘slots’)slot filling

like age, birthplace, and spouse for a given entity) and a series of SemEval work-
shops (Hendrickx et al., 2009).

Semisupervised relation extraction was first proposed by Hearst (1992b), and
extended by systems like AutoSlog-TS (Riloff, 1996), DIPRE (Brin, 1998), SNOW-
BALL (Agichtein and Gravano, 2000), and Jones et al. (1999). The distant supervi-
sion algorithm we describe was drawn from Mintz et al. (2009), who coined the term
‘distant supervision’, but similar ideas had occurred in earlier systems like Craven
and Kumlien (1999) and Morgan et al. (2004) under the name weakly labeled data,
as well as in Snow et al. (2005) and Wu and Weld (2007). Among the many exten-
sions are Wu and Weld (2010), Riedel et al. (2010), and Ritter et al. (2013). Open
IE systems include KNOWITALL Etzioni et al. (2005), TextRunner (Banko et al.,
2007), and REVERB (Fader et al., 2011). See Riedel et al. (2013) for a universal
schema that combines the advantages of distant supervision and Open IE.

HeidelTime (Strötgen and Gertz, 2013) and SUTime (Chang and Manning, 2012)
are downloadable temporal extraction and normalization systems. The 2013 TempE-
val challenge is described in UzZaman et al. (2013); Chambers (2013) and Bethard
(2013) give typical approaches.

Exercises
17.1 Acronym expansion, the process of associating a phrase with an acronym, can

be accomplished by a simple form of relational analysis. Develop a system
based on the relation analysis approaches described in this chapter to populate
a database of acronym expansions. If you focus on English Three Letter
Acronyms (TLAs) you can evaluate your system’s performance by comparing
it to Wikipedia’s TLA page.

17.2 A useful functionality in newer email and calendar applications is the ability
to associate temporal expressions connected with events in email (doctor’s
appointments, meeting planning, party invitations, etc.) with specific calendar
entries. Collect a corpus of email containing temporal expressions related to
event planning. How do these expressions compare to the kinds of expressions
commonly found in news text that we’ve been discussing in this chapter?

17.3 Acquire the CMU seminar corpus and develop a template-filling system by
using any of the techniques mentioned in Section 17.5. Analyze how well
your system performs as compared with state-of-the-art results on this corpus.

1 www.nist.gov/speech/tests/ace/

24 Chapter 17 • Information Extraction

Agichtein, E. and Gravano, L. (2000). Snowball: Extracting
relations from large plain-text collections. Proceedings of
the 5th ACM International Conference on Digital Libraries.

Allen, J. (1984). Towards a general theory of action and time.
Artificial Intelligence 23(2), 123–154.

Banko, M., Cafarella, M., Soderland, S., Broadhead, M., and
Etzioni, O. (2007). Open information extraction for the
web. IJCAI.

Bethard, S. (2013). ClearTK-TimeML: A minimalist ap-
proach to TempEval 2013. SemEval-13.

Bikel, D. M., Miller, S., Schwartz, R., and Weischedel,
R. (1997). Nymble: A high-performance learning name-
finder. ANLP.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,
Cyganiak, R., and Hellmann, S. (2009). DBpedia—A crys-
tallization point for the Web of Data. Web Semantics: sci-
ence, services and agents on the world wide web 7(3), 154–
165.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Tay-
lor, J. (2008). Freebase: a collaboratively created graph
database for structuring human knowledge. SIGMOD 2008.

Brin, S. (1998). Extracting patterns and relations from
the World Wide Web. Proceedings World Wide Web and
Databases International Workshop, Number 1590 in LNCS.
Springer.

Cardie, C. (1993). A case-based approach to knowledge ac-
quisition for domain specific sentence analysis. AAAI.

Cardie, C. (1994). Domain-Specific Knowledge Acquisition
for Conceptual Sentence Analysis. Ph.D. thesis, University
of Massachusetts, Amherst, MA. Available as CMPSCI
Technical Report 94-74.

Chambers, N. (2013). NavyTime: Event and time ordering
from raw text. SemEval-13.

Chambers, N. and Jurafsky, D. (2011). Template-based in-
formation extraction without the templates. ACL.

Chang, A. X. and Manning, C. D. (2012). SUTime: A library
for recognizing and normalizing time expressions. LREC.

Chinchor, N., Hirschman, L., and Lewis, D. L. (1993). Eval-
uating Message Understanding systems: An analysis of the
third Message Understanding Conference. Computational
Linguistics 19(3), 409–449.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural language
processing (almost) from scratch. JMLR 12, 2493–2537.

Craven, M. and Kumlien, J. (1999). Constructing biolog-
ical knowledge bases by extracting information from text
sources. ISMB-99.

DeJong, G. F. (1982). An overview of the FRUMP system.
Lehnert, W. G. and Ringle, M. H. (Eds.), Strategies for Nat-
ural Language Processing, 149–176. LEA.

Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M.,
Shaked, T., Soderland, S., Weld, D. S., and Yates, A.
(2005). Unsupervised named-entity extraction from the
web: An experimental study. Artificial Intelligence 165(1),
91–134.

Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying
relations for open information extraction. EMNLP.

Ferro, L., Gerber, L., Mani, I., Sundheim, B., and Wilson, G.
(2005). Tides 2005 standard for the annotation of temporal
expressions. Tech. rep., MITRE.

Grishman, R. and Sundheim, B. (1995). Design of the MUC-
6 evaluation. MUC-6.

Hearst, M. A. (1992a). Automatic acquisition of hyponyms
from large text corpora. COLING.

Hearst, M. A. (1992b). Automatic acquisition of hyponyms
from large text corpora. COLING. COLING.

Hearst, M. A. (1998). Automatic discovery of WordNet rela-
tions. Fellbaum, C. (Ed.), WordNet: An Electronic Lexical
Database. MIT Press.

Hendrickx, I., Kim, S. N., Kozareva, Z., Nakov, P.,
Ó Séaghdha, D., Padó, S., Pennacchiotti, M., Romano, L.,
and Szpakowicz, S. (2009). Semeval-2010 task 8: Multi-
way classification of semantic relations between pairs of
nominals. 5th International Workshop on Semantic Evalu-
ation.

Hobbs, J. R., Appelt, D. E., Bear, J., Israel, D., Kameyama,
M., Stickel, M. E., and Tyson, M. (1997). FASTUS: A
cascaded finite-state transducer for extracting information
from natural-language text. Roche, E. and Schabes, Y.
(Eds.), Finite-State Language Processing, 383–406. MIT
Press.

Huffman, S. (1996). Learning information extraction pat-
terns from examples. Wertmer, S., Riloff, E., and Scheller,
G. (Eds.), Connectionist, Statistical, and Symbolic Ap-
proaches to Learning Natural Language Processing, 246–
260. Springer.

ISO8601 (2004). Data elements and interchange formats—
information interchange—representation of dates and
times. Tech. rep., International Organization for Standards
(ISO).

Jacobs, P. S. and Rau, L. F. (1990). SCISOR: A system for
extracting information from on-line news. CACM 33(11),
88–97.

Ji, H., Grishman, R., and Dang, H. T. (2010). Overview of
the tac 2011 knowledge base population track. TAC-11.

Jones, R., McCallum, A., Nigam, K., and Riloff, E. (1999).
Bootstrapping for text learning tasks. IJCAI-99 Workshop
on Text Mining: Foundations, Techniques and Applications.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L.,
and Levy, O. (2020). SpanBERT: Improving pre-training
by representing and predicting spans. TACL 8, 64–77.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001).
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. ICML.

Lehnert, W. G., Cardie, C., Fisher, D., Riloff, E., and
Williams, R. (1991). Description of the CIRCUS system
as used for MUC-3. Sundheim, B. (Ed.), MUC-3.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
(2019). RoBERTa: A robustly optimized BERT pretrain-
ing approach. arXiv preprint arXiv:1907.11692.

McCallum, A., Freitag, D., and Pereira, F. C. N. (2000).
Maximum entropy Markov models for information extrac-
tion and segmentation. ICML.

Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Dis-
tant supervision for relation extraction without labeled data.
ACL IJCNLP.

Exercises 25

Morgan, A. A., Hirschman, L., Colosimo, M., Yeh, A. S.,
and Colombe, J. B. (2004). Gene name identification and
normalization using a model organism database. Journal of
Biomedical Informatics 37(6), 396–410.

Pustejovsky, J., Castaño, J., Ingria, R., Saurı́, R., Gaizauskas,
R., Setzer, A., and Katz, G. (2003a). TimeML: robust speci-
fication of event and temporal expressions in text. Proceed-
ings of the 5th International Workshop on Computational
Semantics (IWCS-5).

Pustejovsky, J., Hanks, P., Saurı́, R., See, A., Gaizauskas,
R., Setzer, A., Radev, D., Sundheim, B., Day, D. S., Ferro,
L., and Lazo, M. (2003b). The TIMEBANK corpus. Pro-
ceedings of Corpus Linguistics 2003 Conference. UCREL
Technical Paper number 16.

Pustejovsky, J., Ingria, R., Saurı́, R., Castaño, J., Littman, J.,
Gaizauskas, R., Setzer, A., Katz, G., and Mani, I. (2005).
The Specification Language TimeML, chap. 27. Oxford.

Riedel, S., Yao, L., and McCallum, A. (2010). Modeling
relations and their mentions without labeled text. Machine
Learning and Knowledge Discovery in Databases, 148–
163. Springer.

Riedel, S., Yao, L., McCallum, A., and Marlin, B. M. (2013).
Relation extraction with matrix factorization and universal
schemas. NAACL HLT.

Riloff, E. (1993). Automatically constructing a dictionary
for information extraction tasks. AAAI.

Riloff, E. (1996). Automatically generating extraction pat-
terns from untagged text. AAAI.

Riloff, E. and Jones, R. (1999). Learning dictionaries for
information extraction by multi-level bootstrapping. AAAI.

Ritter, A., Zettlemoyer, L., Mausam, and Etzioni, O. (2013).
Modeling missing data in distant supervision for informa-
tion extraction. TACL 1, 367–378.

Schank, R. C. and Abelson, R. P. (1977). Scripts, Plans,
Goals and Understanding. Lawrence Erlbaum.

Snow, R., Jurafsky, D., and Ng, A. Y. (2005). Learning syn-
tactic patterns for automatic hypernym discovery. NeurIPS.

Soderland, S., Fisher, D., Aseltine, J., and Lehnert, W. G.
(1995). CRYSTAL: Inducing a conceptual dictionary.
IJCAI-95.

Strötgen, J. and Gertz, M. (2013). Multilingual and cross-
domain temporal tagging. Language Resources and Evalu-
ation 47(2), 269–298.

Sundheim, B. (Ed.). (1991). Proceedings of MUC-3.
Sundheim, B. (Ed.). (1992). Proceedings of MUC-4.
Sundheim, B. (Ed.). (1993). Proceedings of MUC-5, Balti-

more, MD.
Sundheim, B. (Ed.). (1995). Proceedings of MUC-6.
Surdeanu, M. (2013). Overview of the TAC2013 Knowledge

Base Population evaluation: English slot filling and tempo-
ral slot filling. TAC-13.

UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verha-
gen, M., and Pustejovsky, J. (2013). SemEval-2013 task
1: TempEval-3: Evaluating time expressions, events, and
temporal relations. SemEval-13.

Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M.,
Moszkowicz, J., and Pustejovsky, J. (2009). The TempEval
challenge: Identifying temporal relations in text. Language
Resources and Evaluation 43(2), 161–179.

Verhagen, M., Mani, I., Sauri, R., Knippen, R., Jang, S. B.,
Littman, J., Rumshisky, A., Phillips, J., and Pustejovsky,
J. (2005). Automating temporal annotation with TARSQI.
ACL.

Vrandečić, D. and Krötzsch, M. (2014). Wikidata: a free
collaborative knowledge base. CACM 57(10), 78–85.

Wu, F. and Weld, D. S. (2007). Autonomously semantifying
Wikipedia. CIKM-07.

Wu, F. and Weld, D. S. (2010). Open information extraction
using Wikipedia. ACL.

Zhang, Y., Zhong, V., Chen, D., Angeli, G., and Manning,
C. D. (2017). Position-aware attention and supervised data
improve slot filling. EMNLP.

Zhou, G., Su, J., Zhang, J., and Zhang, M. (2005). Exploring
various knowledge in relation extraction. ACL.

	Information Extraction
	Relation Extraction
	Relation Extraction Algorithms
	Using Patterns to Extract Relations
	Relation Extraction via Supervised Learning
	Semisupervised Relation Extraction via Bootstrapping
	Distant Supervision for Relation Extraction
	Unsupervised Relation Extraction
	Evaluation of Relation Extraction

	Extracting Times
	Temporal Expression Extraction
	Temporal Normalization

	Extracting Events and their Times
	Temporal Ordering of Events

	Template Filling
	Machine Learning Approaches to Template Filling
	Earlier Finite-State Template-Filling Systems

	Summary
	Bibliographical and Historical Notes
	Exercises

