Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2020. All
rights reserved. Draft of December 30, 2020.

CHAPTER

Deep Learning Architectures
for Sequence Processing

Time will explain.
Jane Austen, Persuasion

Language is an inherently temporal phenomenon. When we comprehend and pro-
duce spoken language, we process continuous input streams of indefinite length.
Even when dealing with written text, we normally process it sequentially. The tem-
poral nature of language is reflected in the metaphors we use; we talk of the flow of
conversations, news feeds, and twitter streams, all of which call out the notion that
language is a sequence that unfolds in time.

This temporal nature is reflected in the algorithms we use to process language.
For example, when applied to the problem of part-of-speech tagging, the Viterbi
algorithm works its way incrementally through the input a word at a time, carrying
forward information gleaned along the way. On the other hand, the machine learning
approaches we’ve studied for sentiment analysis and other text classification tasks
don’t have this temporal nature — they assume simultaneous access to all aspects of
their input. This is especially true of feedforward neural networks, including their
application to neural language models. These fully-connected networks use fixed-
size inputs, along with associated weights, to capture all the relevant aspects of an
example at once. This makes it difficult to deal with sequences of varying length
and fails to capture important temporal aspects of language.

A work-around for these problems is the sliding window approach employed
with neural language models. These models operate by accepting fixed-sized win-
dows of tokens as input; sequences longer than the window size are processed by
walking through the input making predictions along the way, with the end result
being a sequence of predictions spanning the input. Importantly, decisions made in
one window have no impact on subsequent decisions. Fig. 9.1, reproduced here from
Chapter 7, depicts the operation of a neural language model using this approach with
a window of size 3. Here, we’re predicting which word will come next given the in-
put for all the. Subsequent words are predicted by sliding the window forward a
word at a time.

This general approach is problematic for a number of reasons. First, it shares
the primary weakness of our earlier Markov N-gram approaches in that it limits
the context from which information can be extracted; anything outside the context
window has no impact on the decision being made. This is an issue since there are
many tasks that require access to information that can be arbitrarily distant from
the point at which processing is happening. Second, the use of windows makes
it difficult for networks to learn systematic patterns arising from phenomena like
constituency. For example, in Fig. 9.1 the phrase all the appears in two separate
windows: first as the second and third positions in the window, and again in the next
step where it appears as the first and second positions, thus forcing the network to

2 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

p(aardvark|...) p(fish|...) p(for]...) p(zebra|...)
Output layer IV|x1
softmax
Hidden layer
dhX3d
Projection layer 1 - oSN 3dxi
embeddings ‘K T T
E embedding for ~ embedding for embedding for
word 35 word 9925 word 45180
— ! ‘.
for | all | the ?2 1.2
W3 W2 Wt-1 2
—
IS RE A simplified view of a feedforward neural language model moving through a text. At each time

step ¢ the network takes the 3 context words, converts each to a d-dimensional embedding, and concatenates
the 3 embeddings together to get the 1 X Nd unit input layer x for the network. The output of the network is a
probability distribution over the vocabulary representing the models belief with respect to each word being the
next possible word.

learn two separate patterns for what should be the same item.

This chapter covers two closely related deep learning architectures designed to
address these challenges: recurrent neural networks and transformer networks. Both
approaches have mechanisms to deal directly with the sequential nature of language
that allow them to handle variable length inputs without the use of arbitrary fixed-
sized windows, and to capture and exploit the temporal nature of language.

9.1 Language Models Revisited

In this chapter, we’ll explore these two architectures primarily through the lens of
probabilistic language models. Recall from Chapter 3 that probabilistic language
models predict the next word in a sequence given some preceding context. For
example, if the preceding context is “Thanks for all the” and we want to know how
likely the next word is “fish” we would compute:

P(fish|Thanks for all the)
Language models give us the ability to assign such a conditional probability to every

possible next word, giving us a distribution over the entire vocabulary. We can also
assign probabilities to entire sequences by using these conditional probabilities in

9.1 ¢ LANGUAGE MODELS REVISITED 3

combination with the chain rule:

n

Pwiy) = HP(Wi|W<i)

i=1

This formulation gives rise to a wide range of sequence labeling applications, and
as we’ll see, it provides a clear training objective based on how well a model is
predicting the next word in a sequence.

We’ve already seen two ways to instantiate probabilistic language models with
the N-gram models from Chapter 3 and the feedforward neural networks with sliding
windows from Chapter 7. Unfortunately, both of these methods are constrained by
the Markov assumption embodied in the following equation.

P(Wp|win—1) =~ P(Wn|W(n7N+l):(nfl))

That is, the prediction is based on a fixed preceding context of size N; any input that
occurred earlier than that has no bearing on the outcome. The methods we explore
in this chapter will relax this assumption, allowing the models to make use of much
larger contexts.

We evaluate language models by examining how well they predict unseen data
drawn from the same source as the training data. Intuitively, good models are those
that assign higher probabilities to unseen data. To make this intuition concrete, we

perplexity use perplexity as a measure of model quality. The perplexity (PP) of a model 6 with
respect to an unseen test set is the probability the model assigns to it, normalized by
its length.

=

PPy(wi) = P(win)

An alternative way of viewing perplexity, inspired by information theory, is in terms
of entropy.

PP(WliF’l) — 2H(Wl:n)
_ 27%2'{10g2m(wn)

In this formulation, the value in the exponent is the cross-entropy of our current
model with respect to the true distribution.

Another way to assess a language model is to use it to generate novel sequences.
The extent to which a generated sequence mirrors the training data is an indication
of the quality of the model. We saw how to do this in Chapter 3 by adapting a
technique suggested contemporaneously by Claude Shannon (Shannon, 1951) and
the psychologists George Miller and Selfridge (Miller and Selfridge, 1950). To get
started, we randomly sample a word to begin a sequence based on its suitability as
the start of a sequence. Having sampled the first word, we sample further words
conditioned on our previous choices until we reach a pre-determined length, or an
end of sequence token is generated. Today, this approach is called autoregressive

““t"g‘;e,;b’erf:fii(‘,’ﬁ generation and we’ll cover its practical application in problems like machine trans-
lation and text summarization in this and later chapters.

4 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

9.2 Recurrent Neural Networks

Elman
Networks

A recurrent neural network (RNN) is any network that contains a cycle within its
network connections. That is, any network where the value of a unit is directly,
or indirectly, dependent on its own earlier outputs as an input. While powerful,
such networks are difficult to reason about and to train. However, within the general
class of recurrent networks there are constrained architectures that have proven to be
extremely effective when applied to spoken and written language. In this section, we
consider a class of recurrent networks referred to as Elman Networks (Elman, 1990)
or simple recurrent networks. These networks are useful in their own right and
serve as the basis for more complex approaches like the Long Short-Term Memory
(LSTM) networks discussed later in this chapter. Going forward, when we use the
term RNN we’ll be referring to these simpler more constrained networks.

C X)

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous time step.

Fig. 9.2 illustrates the structure of an RNN. As with ordinary feedforward net-
works, an input vector representing the current input, x;, is multiplied by a weight
matrix and then passed through a non-linear activation function to compute the val-
ues for a layer of hidden units. This hidden layer is then used to calculate a cor-
responding output, y;. In a departure from our earlier window-based approach, se-
quences are processed by presenting one item at a time to the network. The key
difference from a feedforward network lies in the recurrent link shown in the figure
with the dashed line. This link augments the input to the computation at the hidden
layer with the value of the hidden layer from the preceding point in time.

The hidden layer from the previous time step provides a form of memory, or
context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this approach does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer includes
information extending back to the beginning of the sequence.

Adding this temporal dimension makes RNNs appear to be more complex than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation introduced in Chapter 7. To
see this, consider Fig. 9.3 which clarifies the nature of the recurrence and how it

9.2 ¢ RECURRENT NEURAL NETWORKS 5§

factors into the computation at the hidden layer. The most significant change lies in
the new set of weights, U, that connect the hidden layer from the previous time step
to the current hidden layer. These weights determine how the network makes use of
past context in calculating the output for the current input. As with the other weights
in the network, these connections are trained via backpropagation.

C Yt)
Vv
C hy)
u w
C N1 D) C X D)
Simple recurrent neural network illustrated as a feedforward network.

9.2.1 Inference in RNNs

Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output y; for an input x;, we need the activation value for the hidden
layer h;. To calculate this, we multiply the input x; with the weight matrix W, and
the hidden layer from the previous time step /,_; with the weight matrix U. We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, i,. Once we have the
values for the hidden layer, we proceed with the usual computation to generate the
output vector.

hy = g(Uht—1+Wxt)
o = f(Vh)

It’s worthwhile here to be careful about specifying the dimensions of the input, hid-
den and output layers, as well as the weight matrices to make sure these calculations
are correct. Let’s refer to the input, hidden and output layer dimensions as d;,, dj,
and d,,, respectively. Given this, our three parameter matrices are: W € R%*din,
U € R4 and V € Rbow*dn,

In the commonly encountered case of soft classification, computing y; consists
of a softmax computation that provides a probability distribution over the possible
output classes.

y: = softmax(Vh)

The fact that the computation at time ¢ requires the value of the hidden layer
from time # — 1 mandates an incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of
simple recurrent networks can also be seen by unrolling the network in time as is
shown in Fig. 9.5. In this figure, the various layers of units are copied for each time

6 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

step to illustrate that they will have differing values over time. However, the various
weight matrices are shared across time.

function FORWARDRNN((x, network) returns output sequence y

ho<0

for i< 1 to LENGTH(x) do
hi<—g(U hi—y + W x;)
yise f(V hi)

return y

ISP Forward inference in a simple recurrent network. The matrices U, V and W are
shared across time, while new values for / and y are calculated with each time step.

9.2.2 Training

As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W, the
weights from the input layer to the hidden layer, U, the weights from the previous
hidden layer to the current hidden layer, and finally V, the weights from the hidden
layer to the output layer.

Fig. 9.5 highlights two considerations that we didn’t have to worry about with
backpropagation in feedforward networks. First, to compute the loss function for
the output at time ¢ we need the hidden layer from time # — 1. Second, the hidden
layer at time ¢ influences both the output at time ¢ and the hidden layer at time 7 4 1
(and hence the output and loss at # + 1). It follows from this that to assess the error
accruing to h;, we’ll need to know its influence on both the current output as well as
the ones that follow.

Tailoring the backpropagation algorithm to this situation leads to a two-pass al-
gorithm for training the weights in RNNs. In the first pass, we perform forward
inference, computing 4, y;, accumulating the loss at each step in time, saving the
value of the hidden layer at each step for use at the next time step. In the second
phase, we process the sequence in reverse, computing the required gradients as we
go, computing and saving the error term for use in the hidden layer for each step

Backpropaga b-ackward in tim(i,. This general approach is commonly referred to as Backpropaga-
tion Thr%lr%l; tion Through Tlme (Werbos 1974, Rumelhart et al. 1986, Werbos 1990). .

Fortunately, with modern computational frameworks and adequate computing
resources, there is no need for a specialized approach to training RNNs. As illus-
trated in Fig. 9.5, explicitly unrolling a recurrent network into a feedforward com-
putational graph eliminates any explicit recurrences, allowing the network weights
to be trained directly. In such an approach, we provide a template that specifies the
basic structure of the network, including all the necessary parameters for the input,
output, and hidden layers, the weight matrices, as well as the activation and output
functions to be used. Then, when presented with a specific input sequence, we can
generate an unrolled feedforward network specific to that input, and use that graph
to perform forward inference or training via ordinary backpropagation.

For applications that involve much longer input sequences, such as speech recog-
nition, character-level processing, or streaming of continuous inputs, unrolling an
entire input sequence may not be feasible. In these cases, we can unroll the input

9.2 + RECURRENT NEURAL NETWORKS 7
C y3)
\
C Yo) Chs D
Vv U W
(7) (X3)
v U W
Ch (X2)
W
Cho D C X4 D

IPIIC] A simple recurrent neural network shown unrolled in time. Network layers are copied for each
time step, while the weights U, V and W are shared in common across all time steps.

into manageable fixed-length segments and treat each segment as a distinct training
item.

9.2.3 RNNs as Language Models

RNN-based language models process sequences a word at a time, attempting to
predict the next word in a sequence by using the current word and the previous
hidden state as inputs (Mikolov et al., 2010). The limited context constraint inherent
in N-gram models is avoided since the hidden state embodies information about all
of the preceding words all the way back to the beginning of the sequence.

Forward inference in a recurrent language model proceeds exactly as described
in Section 9.2.1. The input sequence x consists of word embeddings represented
as one-hot vectors of size |V| x 1, and the output predictions, y, are represented as
vectors representing a probability distribution over the vocabulary. At each step, the
model uses the word embedding matrix E to retrieve the embedding for the current
word, and then combines it with the hidden layer from the previous step to compute a
new hidden layer. This hidden layer is then used to generate an output layer which is
passed through a softmax layer to generate a probability distribution over the entire
vocabulary. That is, at time #:

e = ETxt
hy = g(Uhi—1 +We;)
y: = softmax(Vh)

The vector resulting from Vi can be thought of as a set of scores over the vocabulary
given the evidence provided in /. Passing these scores through the softmax normal-
izes the scores into a probability distribution. Given y, the probability of a particular

teacher forcing

Weight Tying

CHAPTER 9 + DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

word in the vocabulary, i, as the next word is just its corresponding component of y.

P(wei1 =ilwiy) = i

It follows from this that the probability of an entire sequence is just the product of
the probabilities of each item in the sequence.

n

Pwin) = [[Pwilwii1)

i=1
n
i
[,
i=1

To train an RNN as a language a model, we use a corpus of text as training
material in combination with a training regimen called teacher forcing. The task
is to minimize the error in predicting the next word in the training sequence, using
cross-entropy as the loss function. Recall that the cross-entropy loss measures the
difference between a predicted probability distribution and the correct distribution.

Lee = —Zﬁvlog}’?w
wev

In the case of language modeling, the correct distribution y comes from knowing
the next word. This is represented as a one-hot vector corresponding to the vocab-
ulary where the entry for the actual next word is 1, and all the other entries are 0.
Thus, the cross-entropy loss for language modeling is determined by the probability
the model assigns to the correct next word. To be specific, at time ¢ the CE loss is
the negative log probability assigned to the next word in the training sequence.

Lee(Y,y') = —logfl, | ©.1)

In practice, the weights in the network are adjusted to minimize the average CE
loss over the training sequence via gradient descent. Fig. 9.6 illustrates this training
regimen.

Careful readers may have noticed that the input embedding matrix £ and the
final layer matrix V, which feeds the output softmax, are quite similar. The rows of
E represent the word embeddings for each word in the vocabulary learned during the
training process with the goal that words that have similar meaning and function will
have similar embeddings. And, since the length of these embeddings corresponds to
the size of the hidden layer dj, the embedding matrix shape E is |V| x d}.

The final layer matrix V provides a way to score the likelihood of each word
in the vocabulary given the evidence present in the final hidden layer of the net-
work through the calculation of VA. This entails that it also has the dimensionality
|V| x dj,. That is, the rows of V provide a second set of learned word embeddings
that capture relevant aspects of word meaning and function. This leads to an obvi-
ous question — is it even necessary to have both? Weight Tying is a method that
dispenses with this redundancy and uses a single set of embeddings at the input and
softmax layers. That is, E = V. To do this, we set the dimensionality of the fi-
nal hidden layer to be the same dj,, (or add an additional projection layer to do the
same thing), and simply use the same matrix for both layers. In addition to provid-
ing improved perplexity results, this approach significantly reduces the number of
parameters required for the model.

9.2 ¢ RECURRENT NEURAL NETWORKS 9

Next word

Loss

Softmax over
Vocabulary

RNN
Layer(s)

Input
Embeddings

a hole in the ground
l l 1<
[—logya | [—T0g8Ynote | [—Togyin | [—108Ytne | [—1ogYground] fZLOE
t=1
ol d@ di) Ceb) Caln)
‘ I 1 1 1 1 |]
©@0:-0-:-09 00::0::00 (©@0:-0:-09 ©@o:-6::99 ©@o:-0--99
In a hole in the

AT AY Training RNNs as language models.

autoregressive
generation

Generation with RNN-Based Language Models

As with the probabilistic Shakespeare generator from Chapter 3, a useful way to
gain insight into a language model is to use a trained model to generate random
novel sentences. The procedure is basically the same as that described on 2?.

* To begin, sample a word in the output from the softmax distribution that re-
sults from using the beginning of sentence marker, <s>, as the first input.

* Use the word embedding for that first word as the input to the network at the
next time step, and then sample the next word in the same fashion.

» Continue generating until the end of sentence marker, </s>, is sampled or a
fixed length limit is reached.

This technique is called autoregressive generation since the word generated at each
time step is conditioned on the word selected by the network from the previous step.
Fig. 9.7 illustrates this approach. In this figure, the details of the RNN’s hidden
layers and recurrent connections are hidden within the blue block.

While this is an entertaining exercise, this architecture has inspired state-of-the-
art approaches to applications such as machine translation, summarization, and ques-
tion answering. The key to these approaches is to prime the generation component
with an appropriate context. That is, instead of simply using <s> to get things started
we can provide a richer task-appropriate context. We’ll discuss the application of
contextual generation to the problem of summarization in Section ?? in the context
of Transformer-based language models.

9.2.4 Other Applications of RNNs

Recurrent neural networks have proven to be an effective approach to language mod-
eling, sequence labeling tasks such as part-of-speech tagging, as well as sequence
classification tasks such as sentiment analysis and topic classification. And as we’ll
see in Chapter 11 and Chapter 11, they form the basis for sequence-to-sequence
approaches to summarization, machine translation, and question answering.

10 CHAPTER Y9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

Sampledword (__In_)

Softmax mﬂﬂ,u

\ |
! RNN	
[} T A	A
	i
Embedding E--‘:--" : E‘: 00	@0 0:09 : @0::0:: 00
A A	
	i
Input Word (C<s>)1 (Cn)	(C_a) (hole)
/4	s
(e	-
g 7 -

ISP Autoregressive generation with an RNN-based neural language model.

Sequence Labeling

In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each element of a sequence. Canonical examples of sequence
labeling include part-of-speech tagging and named entity recognition discussed in
detail in Chapter 8. In an RNN approach to sequence labeling, inputs are word
embeddings and the outputs are tag probabilities generated by a softmax layer over
the given tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents

Argmax (NNP D (MD D (VB) (DT) (NN)

A A A A A

o (o J{ e) alle J(el)(J1o]

A A A A A

RNN
Embdeddings %m %m E% E% E%
Words (" Janet) (will) back) (the) (bill D

IO R] Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

9.2 ¢ RECURRENT NEURAL NETWORKS 11

an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U, V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a sequence of tags for a given input, we run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
tagset at each time step, we will again employ the cross-entropy loss during training.

9.2.5 RNN:s for Sequence Classification

Another use of RNNss is to classify entire sequences rather than the tokens within
them. We’ve already encountered this task in Chapter 4 with our discussion of sen-
timent analysis. Other examples include document-level topic classification, spam
detection, message routing for customer service applications, and deception detec-
tion. In all of these applications, sequences of text are classified as belonging to one
of a small number of categories.

To apply RNNs in this setting, the text to be classified is passed through the RNN
a word at a time generating a new hidden layer at each time step. The hidden layer
for the final element of the text, A, is taken to constitute a compressed representation
of the entire sequence. In the simplest approach to classification, A, serves as the
input to a subsequent feedforward network that chooses a class via a softmax over
the possible classes. Fig. 9.9 illustrates this approach.

N4
o
L\
C O

A

RNN

C X4) X5) (C X3)

AT Y] Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

Note that in this approach there are no intermediate outputs for the words in
the sequence preceding the last element. Therefore, there are no loss terms associ-
ated with those elements. Instead, the loss function used to train the weights in the
network is based entirely on the final text classification task. Specifically, the out-
put from the softmax output from the feedforward classifier together with a cross-
entropy loss drives the training. The error signal from the classification is backprop-

12 CHAPTER Y9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

end-to-end
training

Stacked RNNs

agated all the way through the weights in the feedforward classifier through, to its
input, and then through to the three sets of weights in the RNN as described earlier
in Section 9.2.2. This combination of a simple recurrent network with a feedforward
classifier is our first example of a deep neural network. And the training regimen
that uses the loss from a downstream application to adjust the weights all the way
through the network is referred to as end-to-end training.

9.2.6 Stacked and Bidirectional RNNs

As suggested by the sequence classification architecture shown in Fig. 9.9, recurrent
networks are quite flexible. By combining the feedforward nature of unrolled com-
putational graphs with vectors as common inputs and outputs, complex networks
can be treated as modules that can be combined in creative ways. This section intro-
duces two of the more common network architectures used in language processing
with RNNS.

Stacked RNNs

In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves as
the input to a subsequent layer, as shown in Fig. 9.10.

Cwm OC % OCH O O
RNN 3
A A
RNN 2
A A
RNN 1
A A
X DIGEENED I GEE"ND ¢ xn)

PRIl Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

It has been demonstrated across numerous tasks that stacked RNNs can outper-
form single-layer networks. One reason for this success has to do with the network’s
ability to induce representations at differing levels of abstraction across layers. Just
as the early stages of the human visual system detect edges that are then used for
finding larger regions and shapes, the initial layers of stacked networks can induce
representations that serve as useful abstractions for further layers — representations
that might prove difficult to induce in a single RNN.

9.2 ¢ RECURRENT NEURAL NETWORKS 13

The optimal number of stacked RNNss is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.

Bidirectional RNNs

In a simple recurrent network, the hidden state at a given time ¢ represents everything
the network knows about the sequence up to that point in the sequence. That is, the
hidden state at time 7 is the result of a function of the inputs from the start up through
time . We can think of this as the context of the network to the left of the current
time.

h{ = RNNforward (Xfl)

Where h,f corresponds to the normal hidden state at time ¢, and represents everything
the network has gleaned from the sequence to that point.

In many applications we have access to the entire input sequence all at once. We
might ask whether it is helpful to take advantage of the context to the right of the
current input as well. One way to recover such information is to train an RNN on an
input sequence in reverse, using exactly the same kind of networks that we’ve been
discussing. With this approach, the hidden state at time # now represents information
about the sequence to the right of the current input.

hf’ = RNNpackward (x;l)

Here, the hidden state hf’ represents all the information we have discerned about the
sequence from ¢ to the end of the sequence.

bidirectional Combining the forward and backward networks results in a bidirectional RNN(Schuster
and Paliwal, 1997). A Bi-RNN consists of two independent RNNs, one where the
input is processed from the start to the end, and the other from the end to the start.
We then combine the outputs of the two networks into a single representation that
captures both the left and right contexts of an input at each point in time.

he = hl @h?

Fig. 9.11 illustrates a bidirectional network where the outputs of the forward and
backward pass are concatenated. Other simple ways to combine the forward and
backward contexts include element-wise addition or multiplication. The output at
each step in time thus captures information to the left and to the right of the current
input. In sequence labeling applications, these concatenated outputs can serve as the
basis for a local labeling decision.

Bidirectional RNNs have also proven to be quite effective for sequence classi-
fication. Recall from Fig. 9.10, that for sequence classification we used the final
hidden state of the RNN as the input to a subsequent feedforward classifier. A dif-
ficulty with this approach is that the final state naturally reflects more information
about the end of the sentence than its beginning. Bidirectional RNNs provide a
simple solution to this problem; as shown in Fig. 9.12, we simply combine the final
hidden states from the forward and backward passes and use that as input for follow-
on processing. Again, concatenation is a common approach to combining the two
outputs but element-wise summation, multiplication or averaging are also used.

14 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

RNN 2 (Rightto Lefty <{————————

RNN 1 (Left to Righty T———————>

C X% HYC %% HC X3 C__*n)

A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.

S
o

L\

>

—

C P4 hack) RNN 2 (Rightto Lefty <{—————————

RNN 1 (Leftto Right)y —————————> (Np_sorw D

[A

C X HC % HC X) (Xn)

IS AP] A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

9.3 Managing Context in RNNs: LSTMs and GRUs

In practice, it is quite difficult to train RNNs for tasks that require a network to make
use of information distant from the current point of processing. Despite having
access to the entire preceding sequence, the information encoded in hidden states
tends to be fairly local, more relevant to the most recent parts of the input sequence
and recent decisions. It is often the case, however, that distant information is critical

vanishing
gradients

Long
short-term
memory

forget gate

9.3 ¢ MANAGING CONTEXT IN RNNs: LSTMs AND GRUs 15

to many language applications. To see this, consider the following example in the
context of language modeling.

(9.2) The flights the airline was cancelling were full.

Assigning a high probability to was following airline is straightforward since airline
provides a strong local context for the singular agreement. However, assigning an
appropriate probability to were is quite difficult, not only because the plural flights is
quite distant, but also because the intervening context involves singular constituents.
Ideally, a network should be able to retain the distant information about plural flights
until it is needed, while still processing the intermediate parts of the sequence cor-
rectly.

One reason for the inability of RNNs to carry forward critical information is that
the hidden layers, and, by extension, the weights that determine the values in the hid-
den layer, are being asked to perform two tasks simultaneously: provide information
useful for the current decision, and updating and carrying forward information re-
quired for future decisions.

A second difficulty with training SRNs arises from the need to backpropagate
the error signal back through time. Recall from Section 9.2.2 that the hidden layer
at time ¢ contributes to the loss at the next time step since it takes part in that cal-
culation. As a result, during the backward pass of training, the hidden layers are
subject to repeated multiplications, as determined by the length of the sequence. A
frequent result of this process is that the gradients are eventually driven to zero — the
so-called vanishing gradients problem.

To address these issues, more complex network architectures have been designed
to explicitly manage the task of maintaining relevant context over time. More specif-
ically, the network needs to learn to forget information that is no longer needed and
to remember information required for decisions still to come.

9.3.1 Long Short-Term Memory

Long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997)
divide the context management problem into two sub-problems: removing informa-
tion no longer needed from the context, and adding information likely to be needed
for later decision making. The key to solving both problems is to learn how to man-
age this context rather than hard-coding a strategy into the architecture. LSTMs
accomplish this by first adding an explicit context layer to the architecture (in addi-
tion to the usual recurrent hidden layer), and through the use of specialized neural
units that make use of gates to control the flow of information into and out of the
units that comprise the network layers. These gates are implemented through the
use of additional weights that operate sequentially on the input, and previous hidden
layer, and previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values
in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate to delete
information from the context that is no longer needed. The forget gate computes a
weighted sum of the previous state’s hidden layer and the current input and passes

16

CHAPTER 9 + DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

add gate

output gate

that through a sigmoid. This mask is then multiplied by the context vector to remove
the information from context that is no longer required.

ft = G(Ufh;_l—‘erxt)
ki = c—10f;

The next task is compute the actual information we need to extract from the
previous hidden state and current inputs — the same basic computation we’ve been
using for all our recurrent networks.

g = tanh(Ughi—1 +Wyx;) 9.3)

Next, we generate the mask for the add gate to select the information to add to the
current context.

ii = o(Uhi—1+Wx;) 94
Jt 8 Ol 9.5)

Next, we add this to the modified context vector to get our new context vector.
o =ji+k 9.6)

The final gate we’ll use is the output gate which is used to decide what informa-
tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

o = o(Ushi—1 +W,x;) 9.7
hy = o,Otanh(c,) 9.8)
9.9)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given
the appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, h;, can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.3.2 Gated Recurrent Units

LSTMs introduce a considerable number of additional parameters to our recurrent
networks. We now have 8 sets of weights to learn (i.e., the U and W for each of the 4
gates within each unit), whereas with simple recurrent units we only had 2. Training
these additional parameters imposes a much significantly higher training cost. Gated
Recurrent Units (GRUs)(Cho et al., 2014) ease this burden by dispensing with the
use of a separate context vector, and by reducing the number of gates to 2 — a reset
gate, r and an update gate, z.

rr = o(Uhi—1 +Wexy) (9.10)
2z = o(Uh—1 +Wxy) 9.11)

9.3 ¢ MANAGING CONTEXT IN RNNs: LSTMs AND GRUs 17

I

ISIICPAR] A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the
current input, x, the previous hidden state, &,_1, and the previous context, ¢,_;. The outputs are a new hidden
state, i, and an updated context, c;.

As with LSTMs, the use of the sigmoid in the design of these gates results in
a binary-like mask that either blocks information with values near zero or allows
information to pass through unchanged with values near one. The purpose of the
reset gate is to decide which aspects of the previous hidden state are relevant to the
current context and what can be ignored. This is accomplished by performing an
element-wise multiplication of r with the value of the previous hidden state. We
then use this masked value in computing an intermediate representation for the new
hidden state at time ¢.

hy = tanh(U(r; © hy_1) +Wx;) (9.12)

The job of the update gate z is to determine which aspects of this new state will
be used directly in the new hidden state and which aspects of the previous state need
to be preserved for future use. This is accomplished by using the values in z to
interpolate between the old hidden state and the new one.

he = (1=z)h1+zhy (9.13)

9.3.3 Gated Units, Layers and Networks

The neural units used in LSTMs and GRUs are obviously much more complex than
those used in basic feedforward networks. Fortunately, this complexity is encapsu-
lated within the basic processing units, allowing us to maintain modularity and to

18 CHAPTER Y9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

he

* I

C. X

h
a“
X

(a) (b) (0 (d)

t

I3TUN BB Basic neural units used in feedforward, simple recurrent networks (SRN), long
short-term memory (LSTM) and gate recurrent units.

easily experiment with different architectures. To see this, consider Fig. 9.14 which
illustrates the inputs and outputs associated with each kind of unit.

At the far left, (a) is the basic feedforward unit where a single set of weights and
a single activation function determine its output, and when arranged in a layer there
are no connections among the units in the layer. Next, (b) represents the unit in a
simple recurrent network. Now there are two inputs and an additional set of weights
to go with it. However, there is still a single activation function and output.

The increased complexity of the LSTM (c) and GRU (d) units on the right is
encapsulated within the units themselves. The only additional external complexity
for the LSTM over the basic recurrent unit (b) is the presence of the additional
context vector as an input and output. The GRU units have the same input and
output architecture as the simple recurrent unit.

This modularity is key to the power and widespread applicability of LSTM and
GRU units. LSTM and GRU units can be substituted into any of the network ar-
chitectures described in Section 9.2.6. And, as with simple RNNs, multi-layered
networks making use of gated units can be unrolled into deep feedforward networks
and trained in the usual fashion with backpropagation.

9.4 Self-Attention Networks: Transformers

Transformers

Despite the ability of LSTMs to mitigate the loss of distant information due to the
recurrence in RNNSs, the underlying problem remains. Passing information forward
through an extended series of recurrent connections leads to a loss of relevant in-
formation and to difficulties in training. Moreover, the inherently sequential nature
of recurrent networks inhibits the use of parallel computational resources. These
considerations led to the development of Transformers — an approach to sequence
processing that eliminates recurrent connections and returns to architectures remi-
niscent of the fully connected networks described earlier in Chapter 7.
Transformers map sequences of input vectors (xi,...,x,) to sequences of output
vectors (yi,...,yn) of the same length. Transformers are made up of stacks of net-
work layers consisting of simple linear layers, feedforward networks, and custom

9.4 ¢ SELF-ATTENTION NETWORKS: TRANSFORMERS 19

connections around them. In addition to these standard components, the key inno-

self-attention vation of transformers is the use of self-attention layers. We’ll start by describing
how self-attention works and then return to how it fits into larger transformer blocks.
Self-attention allows a network to directly extract and use information from arbitrar-
ily large contexts without the need to pass it through intermediate recurrent connec-
tions as in RNNs. In this chapter, we’ll focus on the application of self-attention to
the problems of language modeling and autoregressive generation where the context
to be used lies in the past. We’ll return to wider applications of self-attention and
Transformers in later chapters.

Fig. 9.15 illustrates the flow of information in a single causal, or backward look-
ing, self-attention layer. As with the overall Transformer, a self-attention layer maps
input sequences (x1,...,x,) to output sequences of the same length (yi,...,y,). When
processing each item in the input, the model has access to all of the inputs up to an
including the one under consideration, but no access to information about inputs
beyond the current one. In addition, the computation performed for each item is
independent of all the other computations. The first point ensures that we can use
this approach to create language models and use them for autoregressive generation,
and the second point means that we can easily parallelize both forward inference
and training of such models.

Y Z Ys Vs Vs
@m @@+ -0 --00 @@+ -0 --00 @@+ -0 --00 @@+ -0 --00

Self-Attention
Layer

S

X, X, X, X, Xs

Tl BE] I[nformation flow in a causal (or masked) self-attention model. In processing each element of
the sequence, the model attends to all the inputs up to, and including, the current one. Unlike RNNs, the
computations at each time step are independent of all the other steps and therefore can be performed in parallel.

At the core of an attention-based approach is the ability to compare an item of
interest to a collection of other items in way that reveals their relevance in the current
context. In the case of self-attention, the set of comparisons are to other elements
within a given sequence. The result of these comparisons is then used to compute an
output for the current input. For example, returning to Fig. 9.15, the computation of
y3 is based on a set of comparisons between the input x3 and its preceding elements
x1 and x», and to x3 itself. The simplest form of comparison between elements in a
self-attention layer is a dot product. To allow for other possible comparisons, let’s
refer to the result of these comparisons as scores.

score(xi,Xj) = Xi-Xj 9.14)

The result of a dot product is a scalar value ranging from —oo to oo, the larger
the value the more similar the vectors that are being compared. Continuing with our

20 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

example, the first step in computing y3 would be to compute three scores: x3 - xq,
x3 -xp and x3 - x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, «;;, that indicates the proportional

relevance of each input to the input element i that is the current focus of attention.
o;j = softmax(score(x;,x;)) Vj<i 9.15)

exp(score(xi,x;))
> iy exp(score(x;,xi))
Given the proportional scores in &, we then generate an output value y; by taking
the sum of the inputs seen so far, weighted by their respective & value.

yi = Z 0 (9.17)

J<i

(9.16)

The steps embodied in Equations 9.14 through 9.17 represent the core of an
attention-based approach: a set of comparisons to relevant items in some context,
a normalization of those scores to provide a probability distribution, followed by a
weighted sum using this distribution. The output y is the result of this straightfor-
ward computation over the inputs.

Unfortunately, this simple mechanism provides no opportunity for learning, ev-
erything is directly based on the original input values x. In particular, there are no
opportunities to learn the diverse ways that words can contribute to the represen-
tation of longer inputs. To allow for this kind of learning, Transformers include
additional parameters in the form of a set of weight matrices that operate over the
input embeddings. To motivate these new parameters, consider the different roles
that each input embedding plays during the course of the attention process.

* As the current focus of attention when being compared to all of the other
preceding inputs. We’ll refer to this role as a query.

* In its role as a preceding input being compared to the current focus of atten-
tion. We’ll refer to this role as a key.

* And finally, as a value used to compute the output for the current focus of
attention.

To capture the different roles that input embeddings play in each of these steps,
Transformers introduce three sets of weights which we’ll call W€, WX, and WV.
These weights will be used to compute linear transformations of each input x with
the resulting values being used in their respective roles in subsequent calculations.

qi =W ki=WEx;; vi=W'x,

Given input embeddings of size d,,, the dimensionality of these matrices are d; X dyy,,
di X d, and d, x d,,, respectively. In the original Transformer work (Vaswani et al.,
2017), dy, was 1024 and 64 for dy, d,; and d,.

Given these projections, the score between a current focus of attention, x; and
an element in the preceding context, x; consists of a dot product between its query
vector ¢; and the preceding elements key vectors k;. Let’s update our previous com-
parison calculation to reflect this.

score(x;,x;) = qi-k; (9.18)

The ensuing softmax calculation resulting in ¢; ; remains the same, but the output
calculation for y; is now based on a weighted sum over the value vectors v.

vi = ZO{,’]‘V]' (9.19)

J<i

9.4 ¢ SELF-ATTENTION NETWORKS: TRANSFORMERS 21

Ys

Output Vector (XXX XTXI)

Weight and Sum 3
value vectors (0 «) (O -0) @ « 0)
A A \ A
Softmax
Key/Query B
Comparisons *=
o <«
@5 @ G

Generate 2 o> &) o
key, query value ' ‘ ' ‘ ' ‘
vectors \ \ \
(CEEXXCRXXCI0) (CEEXXCRXXCIO) (CEEXXCRXXCID)]

X4 X5 X3

DTSRI Calculation of the value of the third element of a sequence using causal self-attention.

Fig. 9.16 illustrates this calculation in the case of computing the third output y3 in a
sequence.

A practical consideration that arises in computing ¢;; arises from the use of a
dot product as a comparison in combination with the exponential in the softmax.
The result of dot product can be an arbitrarily large (positive or negative) value.
Exponentiating such large values can lead to numerical issues and to an effective
loss of gradients during training. To avoid this, the dot product needs to be scaled
in a suitable fashion. A scaled dot-product approach divides the result of the dot
product by a factor related to the size of the embeddings before passing them through
the softmax. A typical approach is to divide the dot product by the square root of
the dimensionality of the query and key vectors, leading us to update our scoring
function one more time.

gi-kj
Ve

This description of the self-attention process has been from the perspective of
computing a single output at a particular point in time. However, since each out-
put, y;, is computed independently this entire process can be parallelized by taking
advantage of efficient matrix multiplication routines by packing the input embed-

score(xj,x;) = (9.20)

22 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

multihead
self-attention
layers

dings into a single matrix and multiplying it by the key, query and value matrices to
produce matrices containing all the key, query and value vectors.

0=w2%; K=wKkx; v=w'x

Given these matrices we can compute all the requisite query-key comparisons
simultaneously by multiplying K and Q in a single matrix multiplication. Taking
this one step further, we can scale these scores, take the softmax, and then multiply
the result by V, thus reducing the entire self-attention step for an entire sequence to
the following computation.

: OK")

Attention(Q, K = softmax 21
SelfAttention(Q,K,V) <\/67k Vv (9.21)
Unfortunately, this process goes a bit too far since the calculation of the compar-
isons in QK7 results in a score for each query value to every key value, including
those that follow the query. This is inappropriate in the setting of language modeling
since guessing the next word is pretty simple if you already know it. To fix this, the
elements in the upper-triangular portion of the comparisons matrix are zeroed out

(set to —oo), thus eliminating any knowledge of words that follow in the sequence.

Transformer Blocks

The self-attention calculation lies at the core of what’s called a transformer block,
which, in addition to the self-attention layer, includes additional feedforward layers,
residual connections, and normalizing layers. Fig. 9.17 illustrates a typical trans-
former block consisting of a single attention layer followed by a fully-connected
feedforward layer with residual connections and layer normalizations following each.
These blocks can then be stacked just as was the case for stacked RNNs.

Multihead Attention

The different words in a sentence can relate to each other in many different ways si-
multaneously. For example, distinct syntactic, semantic, and discourse relationships
can hold between verbs and their arguments in a sentence. It would be difficult for
a single transformer block to learn to capture all of the different kinds of parallel
relations among its inputs. Transformers address this issue with multihead self-
attention layers. These are sets of self-attention layers, called heads, that reside in
parallel layers at the same depth in a model, each with its own set of parameters.
Given these distinct sets of parameters, each head can learn different aspects of the
relationships that exist among inputs at the same level of abstraction.

To implement this notion, each head, i, in a self-attention layer is provided with
its own set of key, query and value matrices: WX, WiQ and WY. These are used
to project the inputs to the layer, x;, separately for each head, with the rest of the
self-attention computation remaining unchanged. The output of a multi-head layer
with / heads consists of & vectors of the same length. To make use of these vec-
tors in further processing, they are combined and then reduced down to the original
input dimension d,,. This is accomplished by concatenating the outputs from each
head and then using yet another linear projection to reduce it to the original output
dimension.

MultiHeadAttn(Q,K,V) wO (head) ® head, ... ® heady,)
head; = SelfAttention(W2X, WEX WY X)

9.4 ¢ SELF-ATTENTION NETWORKS: TRANSFORMERS 23

Y 2 Vs Ya
(e=s=e0 @s=e=s0 @i=e=e® @ewe=eo |
A
e N
[Add and Normalize]
t
[Feedforward Layer]
Transformer |
Block
[Add and Normalize]
i
[Self-Attention Layer]
A
~ J
X, X, X, X,

Rl with all the layers

Fig. 9.18 illustrates this approach with 4 self-attention heads. This multihead
layer replaces the single self-attention layer in the transformer block shown earlier
in Fig. 9.17, the rest of the Transformer block with its feedforward layer, residual
connections, and layer norms remains the same.

Positional Embeddings

With RNNs information about the order of the inputs was baked into the nature of
the models. Unfortunately, the same isn’t true for Transformers; there’s nothing that
would allow such models to make use of information about the relative, or absolute,
positions of the elements of an input sequence. This can be seen from the fact that if
you scramble the order of inputs in the attention computation illustrated earlier you
get exactly the same answer. To address this issue, Transformer inputs are combined
with positional embeddings specific to each position in an input sequence.

Where do we get these positional embeddings? A simple and effective approach
is to start with randomly initialized embeddings corresponding to each possible input
position up to some maximum length. For example, just as we have an embedding
for the word fish, we’ll have an embedding for the position 3. As with word embed-
dings, these positional embeddings are learned along with other parameters during
training. To produce an input embedding that captures positional information, we
just add the word embedding for each input to its corresponding positional embed-
ding. This new embedding serves as the input for further processing.

A potential problem with this approach is that there will be plenty of training
examples for the initial positions in our inputs and correspondingly fewer at the
outer length limits. These latter embeddings may be poorly trained and may not

positional
embeddings

24 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

Yi Y, Vs Y
4 WO N\
[Concat]

Multihead Attention

Layer
ve wE dY]
| >

W2, Wi oy 4
fronar

fw.w:\“.qr Self-Attention Layef I

X X5 X3 Xn

P BE] Multihead self-attention: Each of the multihead self-attention layers is provided with its own
set of key, query and value weight matrices. The outputs from each of the layers are concatenated and then
projected down to d,,;54., thus producing an output of the right size.

generalize well during testing. An alternative approach to positional embeddings is
to choose a static function that maps an integer inputs to real-valued vectors in a
way that captures the inherent relationships among the positions. That is, it captures
the fact that position 4 in an input is more closely related to position 5 than it is to
position 17. A combination of sine and cosine functions with differing frequencies
was used in the original Transformer work.

9.4.1 Transformers as Autoregressive Language Models

Now that we’ve seen all the major components of Transformers, let’s examine how
to deploy them as language models via semi-supervised learning. To do this, we’ll
proceed just as we did with the RNN-based approach: given a training corpus of
plain text we’ll train a model to predict the next word in a sequence using teacher
forcing. Fig. 9.19 illustrates the general approach. At each step, given all the pre-
ceding words, the final Transformer layer produces an output distribution over the
entire vocabulary. During training, the probability assigned to the correct word is
used to calculate the cross-entropy loss for each item in the sequence. As with
RNNs, the loss for a training sequence is the average cross-entropy loss over the
entire sequence.

Note the key difference between this figure and the earlier RNN-based version
for shown in Fig. 9.6. There the calculation of the outputs and the losses at each step
was inherently serial given the recurrence in the calculation of the hidden states.
With Transformers, each training item can be processed in parallel since the output
for each element in the sequence is computed separately. Once trained, we can
compute the perplexity of the resulting model, or autoregressively generate novel
text just as with RNN-based models.

9.4 ¢ SELF-ATTENTION NETWORKS: TRANSFORMERS 25

Next word a hole in the ground
| | | K
Loss [—Togya | [—108Uhote | [—Toguin | [—108¥the | [—108Ysround] = TZLCE

Yooy (el) Galn) Gl) G) G

G0 o ba o -

Transformer
Block(s)

Input
Embeddings

769 @060

In a hole in the

UV Training a Transformer as a language model.

Contextual Generation and Summarization

A simple variation on autoregressive generation that underlies a number of practi-
cal applications uses a prior context to prime the autoregressive generation process.
Fig. 9.20 illustrates this with the task of text completion. Here a standard language
model is given the prefix to some text and is asked to generate a possible completion
to it. Note that as the generation process proceeds, the model has direct access to
the priming context as well as to all of its own subsequently generated outputs. This
ability to incorporate the entirety of the earlier context and generated outputs at each
time step is the key to the power of these models.

Completion Text

A
aavie A3 \
ground ! there

! |
! i
Sample from Softmax R T 1 I
! |
| |
Transformer ! :
Blocks i
i
Input I
Embeddings |
: there
| 7

Prefix Text

PRI Autoregressive text completion with Transformers.

Text

summarization Text summarization is a practical application of context-based autoregressive

generation. Here, the task is to take a full-length article and produce an effective
summary of it. To train a Transformer-based autoregressive model to perform this
task, we start with a corpus consisting of full-length articles accompanied by their

26 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

corresponding summaries. Fig. 9.21 shows an example of this kind of data from a
widely used summarization corpus consisting of CNN and Daily Mirror news arti-
cles.

Original Article
The only thing crazier than a guy in snowbound Massachusetts boxing up the powdery white stuff
and offering it for sale online? People are actually buying it. For $89, self-styled entrepreneur
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough
for 10 to 15 snowballs, he says.
But not if you live in New England or surrounding states. “We will not ship snow to any states
in the northeast!” says Waring’s website, ShipSnow Yo.com. “We’re in the business of expunging
snow!”
His website and social media accounts claim to have filled more than 133 orders for snow — more
than 30 on Tuesday alone, his busiest day yet. With more than 45 total inches, Boston has set a
record this winter for the snowiest month in its history. Most residents see the huge piles of snow
choking their yards and sidewalks as a nuisance, but Waring saw an opportunity.
According to Boston.com, it all started a few weeks ago, when Waring and his wife were shov-
eling deep snow from their yard in Manchester-by-the-Sea, a coastal suburb north of Boston.
He joked about shipping the stuff to friends and family in warmer states, and an idea was born.
His business slogan: “Our nightmare is your dream!” At first, ShipSnowYo sold snow packed
into empty 16.9-ounce water bottles for $19.99, but the snow usually melted before it reached its
destination...

Summary

Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough
for 10 to 15 snowballs, he says. But not if you live in New England or surrounding states.

Ny ®Al Examples of articles and summaries from the CNN/Daily Mail corpus (Hermann et al., 2015),
(Nallapati et al., 2016).

A surprisingly effective approach to applying Transformers to summarization is
to append a summary to each full-length article in a corpus, with a unique marker
separating the two. More formally, each article-summary pair (xy, ..., %), (V1,---s¥n)
in a training corpus is converted into a single training instance (x1,...,Xpm, 0,¥1,...n)
with an overall length of n+m + 1. These training instances are treated as long
sentences and then used to train an autoregressive language model using teacher
forcing, exactly as we did earlier.

Once trained, full articles ending with the special marker are used as the context
to prime the generation process to produce a summary as illustrated in Fig. 9.22.
Note that, in contrast to RNNs, the model has access to the original article as well
as to the newly generated text throughout the process.

As we’ll see in later chapters, variations on this simple scheme are the basis
for successful text-to-text applications including machine translation, summariza-
tion and question answering.

9.5 Potential Harms from Language Models

Large neural language models exhibit many of the potential harms discussed in
Chapter 4 and Chapter 6. Problems may occur whenever language models are used
for text generation, such as in assistive technologies like web search query comple-
tion or predictive typing for email (Olteanu et al., 2020).

9.5 ¢ POTENTIAL HARMS FROM LANGUAGE MODELS 27

Generated Summary

©@0::9::009
| \ !
The only reached its destination i Kyle ! Waring ! wil
P A } A : 4
" L s %
~— o -
Original Story Delimiter

PPl Summarization with Transformers.

For example, language models can generate toxic language. Gehman et al.
(2020) show that many kinds of completely non-toxic prompts can nonetheless lead
large language models to output hate speech and abuse. Brown et al. (2020) and
Sheng et al. (2019) showed that large language models generate sentences display-
ing negative attitudes toward minority identities such as being Black or gay.

Indeed, language models are biased in a number of ways by the distributions
of their training data. Gehman et al. (2020) shows that large language model train-
ing datasets include toxic text scraped from banned sites. In addition to problems
of toxicity, internet data is disproportionally generated by authors from developed
countries, and many large language models train on data from Reddit, whose authors
skew male and young. Such biased population samples likely skew the resulting
generation away from the perspectives or topics of underrepresented populations.
Furthermore, language models can amplify demographic and other biases in train-
ing data, just as we saw for embedding models in Chapter 6.

Language models can also be a tool for generating text for misinformation,
phishing, radicalization, and other socially harmful activities (Brown et al., 2020).
(McGuffie and Newhouse, 2020) show how large language models generate text
that emulates online extremists, with the risk of amplifying extremist movements
and their attempt to radicalize and recruit.

Finally, there are important privacy issues. Language models, like other machine
learning models, can leak information about their training data. It is thus possible
for an adversary to extract individual training-data phrases from a language model
such as an individual person’s name, phone number, and address (Carlini et al. 2020,
using the techniques introduced by Henderson et al. 2017). This is a problem if large
language models are trained on private datasets such has electronic health records
(EHRs).

Mitigating all these harms is an important but unsolved research question in
NLP. Extra pre-training (Gururangan et al., 2020) on non-toxic subcorpora seems to
reduce a language model’s tendency to generate toxic language somewhat (Gehman
et al., 2020). And analyzing the data used to pretrain large language models is
important to understand toxicity and bias in generation, as well as privacy, making
it extremely important that language models include datasheets (page ??) or model
cards (page ??) giving full replicable information on the corpora used to train them.

28 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

9.6 Summary

This chapter has introduced the concept of recurrent neural networks and how they
can be applied to language problems. Here’s a summary of the main points that we
covered:

* In simple Recurrent Neural Networks sequences are processed naturally as an
element at a time.

* The output of a neural unit at a particular point in time is based both on the
current input and value of the hidden layer from the previous time step.

* RNNS can be trained with a straightforward extension of the backpropagation
algorithm, known as backpropagation through time (BPTT).

* Common language-based applications for RNNs include:

— Probabilistic language modeling, where the model assigns a probability
to a sequence, or to the next element of a sequence given the preceding
words.

— Auto-regressive generation using a trained language model.

— Sequence labeling, where each element of a sequence is assigned a label,
as with part-of-speech tagging.

— Sequence classification, where an entire text is assigned to a category, as
in spam detection, sentiment analysis or topic classification.

» Simple recurrent networks often fail since it is extremely difficult to success-
fully train them do to problems maintaining useful gradients over time.

* More complex gated architectures such as LSTMs and GRUs are designed
to overcome these issues by explicitly managing the task of deciding what to
remember and forget in their hidden and context layers.

Bibliographical and Historical Notes

Influential investigations of the kind of simple RNNs discussed here were conducted
in the context of the Parallel Distributed Processing (PDP) group at UC San Diego
in the 1980’s. Much of this work was directed at human cognitive modeling rather
than practical NLP applications Rumelhart and McClelland 1986 McClelland and
Rumelhart 1986. Models using recurrence at the hidden layer in a feedforward net-
work (Elman networks) were introduced by Elman (1990). Similar architectures
were investigated by Jordan (1986) with a recurrence from the output layer, and
Mathis and Mozer (1995) with the addition of a recurrent context layer prior to the
hidden layer. The possibility of unrolling a recurrent network into an equivalent
feedforward network is discussed in (Rumelhart and McClelland, 1986).

In parallel with work in cognitive modeling, RNNs were investigated extensively
in the continuous domain in the signal processing and speech communities (Giles
et al., 1994). Schuster and Paliwal (1997) introduced bidirectional RNNs and de-
scribed results on the TIMIT phoneme transcription task.

While theoretically interesting, the difficulty with training RNNs and manag-
ing context over long sequences impeded progress on practical applications. This
situation changed with the introduction of LSTMs in Hochreiter and Schmidhuber

BIBLIOGRAPHICAL AND HISTORICAL NOTES 29

(1997). Impressive performance gains were demonstrated on tasks at the bound-
ary of signal processing and language processing including phoneme recognition
(Graves and Schmidhuber, 2005), handwriting recognition (Graves et al., 2007) and
most significantly speech recognition (Graves et al., 2013).

Interest in applying neural networks to practical NLP problems surged with the
work of Collobert and Weston (2008) and Collobert et al. (2011). These efforts made
use of learned word embeddings, convolutional networks, and end-to-end training.
They demonstrated near state-of-the-art performance on a number of standard shared
tasks including part-of-speech tagging, chunking, named entity recognition and se-
mantic role labeling without the use of hand-engineered features.

Approaches that married LSTMs with pre-trained collections of word-embeddings
based on word2vec (Mikolov et al., 2013) and GLOVE (Pennington et al., 2014),
quickly came to dominate many common tasks: part-of-speech tagging (Ling et al.,
2015), syntactic chunking (S¢gaard and Goldberg, 2016), and named entity recog-
nition via IOB tagging Chiu and Nichols 2016, Ma and Hovy 2016, opinion mining
(Irsoy and Cardie, 2014), semantic role labeling (Zhou and Xu, 2015) and AMR
parsing (Foland and Martin, 2016). As with the earlier surge of progress involving
statistical machine learning, these advances were made possible by the availability
of training data provided by CONLL, SemEval, and other shared tasks, as well as
shared resources such as Ontonotes (Pradhan et al., 2007), and PropBank (Palmer
et al., 2005).

30 Chapter9 -

Deep Learning Architectures for Sequence Processing

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020).
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Er-
lingsson, U., Oprea, A., and Raffell, C. (2020). Extracting
training data from large language models. arXiv preprint
arXiv:2012.07805.

Chiu, J. P. C. and Nichols, E. (2016). Named entity recogni-
tion with bidirectional LSTM-CNNs. TACL 4, 357-370.

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learn-
ing phrase representations using RNN encoder—decoder for
statistical machine translation. EMNLP.

Collobert, R. and Weston, J. (2008). A unified architecture
for natural language processing: Deep neural networks with
multitask learning. ICML.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural language
processing (almost) from scratch. JMLR 12, 2493-2537.

Elman, J. L. (1990). Finding structure in time. Cognitive
science 14(2), 179-211.

Foland, W. and Martin, J. H. (2016). CU-NLP at semeval-
2016 task 8: AMR parsing using Istm-based recurrent neu-
ral networks. Proceedings of the 10th International Work-
shop on Semantic Evaluation.

Gehman, S., Gururangan, S., Sap, M., Choi, Y., and Smith,

N. A. (2020). RealToxicityPrompts: Evaluating neu-
ral toxic degeneration in language models. Findings of
EMNLP.

Giles, C. L., Kuhn, G. M., and Williams, R. J. (1994). Dy-
namic recurrent neural networks: Theory and applications.
IEEE Trans. Neural Netw. Learning Syst. 5(2), 153-156.

Graves, A., Ferndandez, S., Liwicki, M., Bunke, H., and
Schmidhuber, J. (2007). Unconstrained on-line handwrit-
ing recognition with recurrent neural networks. NeurIPS.

Graves, A., Mohamed, A., and Hinton, G. E. (2013). Speech
recognition with deep recurrent neural networks. /EEE In-
ternational Conference on Acoustics, Speech and Signal
Processing, ICASSP.

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme
classification with bidirectional LSTM and other neural
network architectures. Neural Networks 18(5-6), 602—-610.

Gururangan, S., Marasovié, A., Swayamdipta, S., Lo, K.,
Beltagy, 1., Downey, D., and Smith, N. A. (2020). Don’t
stop pretraining: Adapt language models to domains and
tasks. ACL.

Henderson, P., Sinha, K., Angelard-Gontier, N., Ke, N. R.,
Fried, G., Lowe, R., and Pineau, J. (2017). Ethical chal-
lenges in data-driven dialogue systems. AAAI/ACM Al
Ethics and Society Conference.

Hermann, K. M., Kodisky, T., Grefenstette, E., Espeholt, L.,
Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching
machines to read and comprehend. Proceedings of the 28th
International Conference on Neural Information Process-
ing Systems - Volume 1. MIT Press.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation 9(8), 1735-1780.

Irsoy, O. and Cardie, C. (2014). Opinion mining with deep
recurrent neural networks. EMNLP.

Jordan, M. (1986). Serial order: A parallel distributed pro-
cessing approach. Tech. rep. ICS Report 8604, University
of California, San Diego.

Ling, W., Dyer, C., Black, A. W., Trancoso, I., Fermandez,
R., Amir, S., Marujo, L., and Luis, T. (2015). Finding func-
tion in form: Compositional character models for open vo-
cabulary word representation. EMNLP.

Ma, X. and Hovy, E. H. (2016). End-to-end sequence label-
ing via bi-directional LSTM-CNNs-CRF. ACL.

Mathis, D. A. and Mozer, M. C. (1995). On the compu-
tational utility of consciousness. Tesauro, G., Touretzky,
D. S., and Alspector, J. (Eds.), Advances in Neural Infor-
mation Processing Systems VII. MIT Press.

McClelland, J. L. and Rumelhart, D. E. (Eds.). (1986). Paral-
lel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Vol. 2: Psychological and Biological
Models. MIT Press.

McGuffie, K. and Newhouse, A. (2020). The radicalization
risks of GPT-3 and advanced neural language models. arXiv
preprint arXiv:2009.06807.

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J.
(2013). Efficient estimation of word representations in vec-
tor space. ICLR 2013.

Mikolov, T., Karafiat, M., Burget, L., éernocky, J., and Khu-
danpur, S. (2010). Recurrent neural network based lan-
guage model. INTERSPEECH 2010.

Miller, G. A. and Selfridge, J. A. (1950). Verbal context
and the recall of meaningful material. American Journal of
Psychology 63, 176-185.

Nallapati, R., Zhou, B., dos Santos, C., Guiilgzehre, C., and
Xiang, B. (2016). Abstractive text summarization using
sequence-to-sequence RNNs and beyond. Proceedings of
The 20th SIGNLL Conference on Computational Natural
Language Learning. Association for Computational Lin-
guistics.

Olteanu, A., Diaz, F., and Kazai, G. (2020). When are search
completion suggestions problematic?. CSCW.

Palmer, M., Kingsbury, P., and Gildea, D. (2005). The propo-
sition bank: An annotated corpus of semantic roles. Com-
putational Linguistics 31(1), 71-106.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. EMNLP.

Pradhan, S., Hovy, E. H., Marcus, M. P., Palmer, M.,
Ramshaw, L. A., and Weischedel, R. M. (2007). Ontonotes:
a unified relational semantic representation. Int. J. Semantic
Computing 1(4), 405-419.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error propa-
gation. Rumelhart, D. E. and McClelland, J. L. (Eds.), Par-
allel Distributed Processing, Vol. 2, 318-362. MIT Press.

Bibliographical and Historical Notes

31

Rumelhart, D. E. and McClelland, J. L. (Eds.). (1986). Paral-
lel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Vol. 1: Foundations. MIT Press.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recur-
rent neural networks. IEEE Transactions on Signal Pro-
cessing 45, 2673-2681.

Shannon, C. E. (1951). Prediction and entropy of printed
English. Bell System Technical Journal 30, 50—-64.

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N. (2019).
The woman worked as a babysitter: On biases in language
generation. EMNLP.

S@gaard, A. and Goldberg, Y. (2016). Deep multi-task learn-
ing with low level tasks supervised at lower layers. ACL.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, t.., and Polosukhin, 1. (2017).

Attention is all you need. NeurIPS.

Werbos, P. (1974). Beyond regression: new tools for predic-
tion and analysis in the behavioral sciences. Ph.D. thesis,
Harvard University.

Werbos, P. J. (1990). Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE 78(10),
1550-1560.

Zhou, J. and Xu, W. (2015). End-to-end learning of semantic
role labeling using recurrent neural networks. ACL.

	Deep Learning Architectures for Sequence Processing
	Language Models Revisited
	Recurrent Neural Networks
	Inference in RNNs
	Training
	RNNs as Language Models
	Other Applications of RNNs
	RNNs for Sequence Classification
	Stacked and Bidirectional RNNs

	Managing Context in RNNs: LSTMs and GRUs
	Long Short-Term Memory
	Gated Recurrent Units
	Gated Units, Layers and Networks

	Self-Attention Networks: Transformers
	Transformers as Autoregressive Language Models

	Potential Harms from Language Models
	Summary
	Bibliographical and Historical Notes

