Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All
rights reserved. Draft of January 12, 2022.

CHAPTER

Deep Learning Architectures
for Sequence Processing

Time will explain.
Jane Austen, Persuasion

Language is an inherently temporal phenomenon. Spoken language is a sequence of
acoustic events over time, and we comprehend and produce both spoken and written
language as a continuous input stream. The temporal nature of language is reflected
in the metaphors we use; we talk of the flow of conversations, news feeds, and twitter
streams, all of which emphasize that language is a sequence that unfolds in time.

This temporal nature is reflected in some of the algorithms we use to process lan-
guage. For example, the Viterbi algorithm applied to HMM part-of-speech tagging,
proceeds through the input a word at a time, carrying forward information gleaned
along the way. Yet other machine learning approaches, like those we’ve studied for
sentiment analysis or other text classification tasks don’t have this temporal nature —
they assume simultaneous access to all aspects of their input.

The feedforward networks of Chapter 7 also assumed simultaneous access, al-
though they also had a simple model for time. Recall that we applied feedforward
networks to language modeling by having them look only at a fixed-size window of
words, and then sliding this window over the input, making independent predictions
along the way. Fig. 9.1, reproduced from Chapter 7, shows a neural language model
with window size 3 predicting what word follows the input for all the. Subsequent
words are predicted by sliding the window forward a word at a time.

The simple feedforward sliding-window is promising, but isn’t a completely sat-
isfactory solution to temporality. By using embeddings as inputs, it does solve the
main problem of the simple n-gram models of Chapter 3 (recall that n-grams were
based on words rather than embeddings, making them too literal, unable to general-
ize across contexts of similar words). But feedforward networks still share another
weakness of n-gram approaches: limited context. Anything outside the context win-
dow has no impact on the decision being made. Yet many language tasks require
access to information that can be arbitrarily distant from the current word. Second,
the use of windows makes it difficult for networks to learn systematic patterns aris-
ing from phenomena like constituency and compositionality: the way the meaning
of words in phrases combine together. For example, in Fig. 9.1 the phrase all the
appears in one window in the second and third positions, and in the next window in
the first and second positions, forcing the network to learn two separate patterns for
what should be the same item.

This chapter introduces two important deep learning architectures designed to
address these challenges: recurrent neural networks and transformer networks. Both
approaches have mechanisms to deal directly with the sequential nature of language
that allow them to capture and exploit the temporal nature of language. The recurrent
network offers a new way to represent the prior context, allowing the model’s deci-

2 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

p(ant|...) p(doe]...) p(fish]...) p(zebral...)

t t t t
output layer y [O Q Q Qj

hidden layer h (h]
w
embedding layer e
|’ for | all | the ‘I ? .2
\ J
Wt-3 Wt-2 Wi-1 Wi

IO RE Simplified sketch of a feedforward neural language model moving through a
text. At each time step ¢ the network converts N context words, each to a d-dimensional
embedding, and concatenates the N embeddings together to get the Nd x 1 unit input vector
x for the network. The output of the network is a probability distribution over the vocabulary
representing the model’s belief with respect to each word being the next possible word.

sion to depend on information from hundreds of words in the past. The transformer
offers new mechanisms (self-attention and positional encodings) that help represent
time and help focus on how words relate to each other over long distances. We’ll
see how to apply both models to the task of language modeling, to sequence mod-
eling tasks like part-of-speech tagging, and to text classification tasks like sentiment
analysis.

9.1 Language Models Revisited

In this chapter, we’ll begin exploring the RNN and transformer architectures through
the lens of probabilistic language models, so let’s briefly remind ourselves of the
framework for language modeling. Recall from Chapter 3 that probabilistic lan-
guage models predict the next word in a sequence given some preceding context.
For example, if the preceding context is “Thanks for all the” and we want to know
how likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. We can also
assign probabilities to entire sequences by using these conditional probabilities in
combination with the chain rule:

P(win) = HP(Wi|W<i)
i=1

Recall that we evaluate language models by examining how well they predict
unseen text. Intuitively, good models are those that assign higher probabilities to
unseen data (are less surprised when encountering the new words).

perplexity

9.2 ¢ RECURRENT NEURAL NETWORKS 3

We instantiate this intuition by using perplexity to measure the quality of a
language model. Recall from page ?? that the perplexity (PP) of a model 6 on an
unseen test set is the inverse probability that 0 assigns to the test set, normalized by
the test set length. For a test set wy.,, the perplexity is

S

PPg(wi) = Po(Win)~

1
= (| —- 9.1
PO(Wl:n) @D

To visualize how perplexity can be computed as a function of the probabilities our
LM will compute for each new word, we can use the chain rule to expand the com-
putation of probability of the test set:

n
1
PPg(wi.n) = H m .

i=1 '

9.2 Recurrent Neural Networks

Elman
Networks

A recurrent neural network (RNN) is any network that contains a cycle within its
network connections, meaning that the value of some unit is directly, or indirectly,
dependent on its own earlier outputs as an input. While powerful, such networks
are difficult to reason about and to train. However, within the general class of recur-
rent networks there are constrained architectures that have proven to be extremely
effective when applied to language. In this section, we consider a class of recurrent
networks referred to as ElIman Networks (Elman, 1990) or simple recurrent net-
works. These networks are useful in their own right and serve as the basis for more
complex approaches like the Long Short-Term Memory (LSTM) networks discussed
later in this chapter. In this chapter when we use the term RNN we’ll be referring to
these simpler more constrained networks (although you will often see the term RNN
to mean any net with recurrent properties including LSTMs).

X hy Yy

Simple recurrent neural network after Elman (1990). The hidden layer includes
a recurrent connection as part of its input. That is, the activation value of the hidden layer
depends on the current input as well as the activation value of the hidden layer from the
previous time step.

Fig. 9.2 illustrates the structure of an RNN. As with ordinary feedforward net-
works, an input vector representing the current input, x,, is multiplied by a weight
matrix and then passed through a non-linear activation function to compute the val-
ues for a layer of hidden units. This hidden layer is then used to calculate a cor-
responding output, y;. In a departure from our earlier window-based approach, se-
quences are processed by presenting one item at a time to the network. We’ll use

4 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

subscripts to represent time, thus X, will mean the input vector x at time ¢. The key
difference from a feedforward network lies in the recurrent link shown in the figure
with the dashed line. This link augments the input to the computation at the hidden
layer with the value of the hidden layer from the preceding point in time.

The hidden layer from the previous time step provides a form of memory, or
context, that encodes earlier processing and informs the decisions to be made at
later points in time. Critically, this approach does not impose a fixed-length limit
on this prior context; the context embodied in the previous hidden layer can include
information extending back to the beginning of the sequence.

Adding this temporal dimension makes RNNs appear to be more complex than
non-recurrent architectures. But in reality, they’re not all that different. Given an
input vector and the values for the hidden layer from the previous time step, we’re
still performing the standard feedforward calculation introduced in Chapter 7. To
see this, consider Fig. 9.3 which clarifies the nature of the recurrence and how it
factors into the computation at the hidden layer. The most significant change lies in
the new set of weights, U, that connect the hidden layer from the previous time step
to the current hidden layer. These weights determine how the network makes use of
past context in calculating the output for the current input. As with the other weights
in the network, these connections are trained via backpropagation.

(Yt)
\'}
(hy)
U w
(he_q) (X;)
Simple recurrent neural network illustrated as a feedforward network.

9.2.1 Inference in RNNs

Forward inference (mapping a sequence of inputs to a sequence of outputs) in an
RNN is nearly identical to what we’ve already seen with feedforward networks. To
compute an output y, for an input x;, we need the activation value for the hidden
layer h;. To calculate this, we multiply the input x, with the weight matrix W, and
the hidden layer from the previous time step h,_; with the weight matrix U. We
add these values together and pass them through a suitable activation function, g,
to arrive at the activation value for the current hidden layer, h;. Once we have the
values for the hidden layer, we proceed with the usual computation to generate the
output vector.

ht = g(Uht71+WXt) 9.3)
y: = f(Vh;) 9.4)

It’s worthwhile here to be careful about specifying the dimensions of the input, hid-
den and output layers, as well as the weight matrices to make sure these calculations

9.2 ¢ RECURRENT NEURAL NETWORKS 5§

are correct. Let’s refer to the input, hidden and output layer dimensions as d;,, dj,
and d,,, respectively. Given this, our three parameter matrices are: W & R%*in
U € R%*dh_and V € Rouxdp

In the commonly encountered case of soft classification, computing y; consists
of a softmax computation that provides a probability distribution over the possible
output classes.

y; = softmax(Vh,) 9.5)

The fact that the computation at time ¢ requires the value of the hidden layer from
time # — 1 mandates an incremental inference algorithm that proceeds from the start
of the sequence to the end as illustrated in Fig. 9.4. The sequential nature of simple
recurrent networks can also be seen by unrolling the network in time as is shown in
Fig. 9.5. In this figure, the various layers of units are copied for each time step to
illustrate that they will have differing values over time. However, the various weight
matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h'«0

for i< 1 to LENGTH(x) do
h,‘%g(Uhi,l + WX,‘)
vi ¢ f(Vh;)

return y

ISR Forward inference in a simple recurrent network. The matrices U, V and W are
shared across time, while new values for h and y are calculated with each time step.

9.2.2 Training

As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.3, we now have 3 sets of weights to update: W, the
weights from the input layer to the hidden layer, U, the weights from the previous
hidden layer to the current hidden layer, and finally V, the weights from the hidden
layer to the output layer.

Fig. 9.5 highlights two considerations that we didn’t have to worry about with
backpropagation in feedforward networks. First, to compute the loss function for
the output at time ¢ we need the hidden layer from time # — 1. Second, the hidden
layer at time ¢ influences both the output at time ¢ and the hidden layer at time 7 + 1
(and hence the output and loss at 7 4 1). It follows from this that to assess the error
accruing to h,, we’ll need to know its influence on both the current output as well as
the ones that follow.

Tailoring the backpropagation algorithm to this situation leads to a two-pass al-
gorithm for training the weights in RNNs. In the first pass, we perform forward
inference, computing h;, y;, accumulating the loss at each step in time, saving the
value of the hidden layer at each step for use at the next time step. In the second
phase, we process the sequence in reverse, computing the required gradients as we
go, computing and saving the error term for use in the hidden layer for each step

Backpropags- backward in time. This general approach is commonly referred to as Backpropaga-
tion Through tion Through Time (Werbos 1974, Rumelhart et al. 1986, Werbos 1990).

Time

6 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

v w
Ch (Xo)
w

»
>

A simple recurrent neural network shown unrolled in time. Network layers are recalculated for
each time step, while the weights U, V and W are shared in common across all time steps.

Fortunately, with modern computational frameworks and adequate computing
resources, there is no need for a specialized approach to training RNNs. As illus-
trated in Fig. 9.5, explicitly unrolling a recurrent network into a feedforward com-
putational graph eliminates any explicit recurrences, allowing the network weights
to be trained directly. In such an approach, we provide a template that specifies the
basic structure of the network, including all the necessary parameters for the input,
output, and hidden layers, the weight matrices, as well as the activation and output
functions to be used. Then, when presented with a specific input sequence, we can
generate an unrolled feedforward network specific to that input, and use that graph
to perform forward inference or training via ordinary backpropagation.

For applications that involve much longer input sequences, such as speech recog-
nition, character-level processing, or streaming of continuous inputs, unrolling an
entire input sequence may not be feasible. In these cases, we can unroll the input
into manageable fixed-length segments and treat each segment as a distinct training
1tem.

9.3 RNNs as Language Models

RNN language models (Mikolov et al., 2010) process the input sequence one word at
a time, attempting to predict the next word from the current word and the previous
hidden state. RNNs don’t have the limited context problem that n-gram models
have, since the hidden state can in principle represent information about all of the
preceding words all the way back to the beginning of the sequence.

Forward inference in a recurrent language model proceeds exactly as described
in Section 9.2.1. The input sequence X = [X;...;X;...;Xy] consists of a series of
word embeddings each represented as a one-hot vector of size [V| x 1, and the output

9.3 ¢ RNNSs AS LANGUAGE MODELS 7

prediction, y, is a vector representing a probability distribution over the vocabulary.
At each step, the model uses the word embedding matrix E to retrieve the embedding
for the current word, and then combines it with the hidden layer from the previous
step to compute a new hidden layer. This hidden layer is then used to generate
an output layer which is passed through a softmax layer to generate a probability
distribution over the entire vocabulary. That is, at time ¢:

e = Ex; 9.6)
h, = g(Uh,_; +We,) 9.7
y: = softmax(Vhy) 9.8)

The vector resulting from Vh can be thought of as a set of scores over the vocabulary
given the evidence provided in h. Passing these scores through the softmax normal-
izes the scores into a probability distribution. The probability that a particular word
i in the vocabulary is the next word is represented by y[i], the ith component of y;:

P(Wt+1 :i|W1,...,Wt) = Yt[l] (99)

The probability of an entire sequence is just the product of the probabilities of each
item in the sequence, where we’ll use y;[w;| to mean the probability of the true word
w; at time step i.

n

P(wia) = [[Pwilwii1) (9.10)
i=1

= []vilwi ©.11)
i=1

To train an RNN as a language model, we use a corpus of text as training material,
having the model predict the next word at each time step . We train the model to
minimize the error in predicting the true next word in the training sequence, using
cross-entropy as the loss function. Recall that the cross-entropy loss measures the
difference between a predicted probability distribution and the correct distribution.

Lee = =) yiw]log:[w] 9.12)

weV

In the case of language modeling, the correct distribution y; comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary
where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word. So at time ¢ the CE loss is the negative log
probability the model assigns to the next word in the training sequence.

Lee(¥i,y:) = —log§:[witi] (9.13)

Thus at each word position ¢ of the input, the model takes as input the correct se-
quence of tokens wy,, and uses them to compute a probability distribution over
possible next words so as to compute the model’s loss for the next token w; 1. Then
we move to the next word, we ignore what the model predicted for the next word
and instead use the correct sequence of tokens wy., 1 to estimate the probability of
token wy 5. This idea that we always give the model the correct history sequence to

8 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

Next word long and thanks for all
T
Loss =1 T — —] =1 1
[—Iog Yiong] 108 Yand] [Flogyimants| [—I08 Yror | 02 Vall)
t=1
y
Softmax over (ol) (ol) (ol)

e g EJ

Input e
Embeddings

So long and thanks for
IO R] Training RNNs as language models.

predict the next word (rather than feeding the model its best case from the previous
teacher forcing time step) is called teacher forcing.

The weights in the network are adjusted to minimize the average CE loss over
the training sequence via gradient descent. Fig. 9.6 illustrates this training regimen.
Careful readers may have noticed that the input embedding matrix E and the final
layer matrix V, which feeds the output softmax, are quite similar. The columns of E
represent the word embeddings for each word in the vocabulary learned during the
training process with the goal that words that have similar meaning and function will
have similar embeddings. And, since the length of these embeddings corresponds to

the size of the hidden layer dj,, the shape of the embedding matrix E is dj, x |V|.
The final layer matrix V provides a way to score the likelihood of each word in
the vocabulary given the evidence present in the final hidden layer of the network
through the calculation of Vh. This results in a dimensionality |V'| X dj,. That is, the
rows of V provide a second set of learned word embeddings that capture relevant
aspects of word meaning and function. This leads to an obvious question — is it
Weight tying even necessary to have both? Weight tying is a method that dispenses with this
redundancy and simply uses a single set of embeddings at the input and softmax
layers. That is, we dispense with V and use E in both the start and end of the

computation.
h, = g(Uh,_; +We,) (9.15)
y, = softmax(E™e¢a’p,) (9.16)

In addition to providing improved model perplexity, this approach significantly re-
duces the number of parameters required for the model.

9.4 RNNs for other NLP tasks

Now that we’ve seen the basic RNN architecture, let’s consider how to apply it to
three types of NLP tasks: sequence classification tasks like sentiment analysis and

9.4 ¢ RNNS FOR OTHER NLP TASKS 9

topic classification, sequence labeling tasks like part-of-speech tagging, and fext
generation tasks. And we’ll see in Chapter 10 how to use them for encoder-decoder
approaches to summarization, machine translation, and question answering.

9.4.1 Sequence Labeling

In sequence labeling, the network’s task is to assign a label chosen from a small
fixed set of labels to each element of a sequence, like the part-of-speech tagging and
named entity recognition tasks from Chapter 8. In an RNN approach to sequence
labeling, inputs are word embeddings and the outputs are tag probabilities generated
by a softmax layer over the given tagset, as illustrated in Fig. 9.7.

Argmax NNP MD VB DT NN
y
Softrtr;aéxs over [DDD:. MDD] mﬂaﬂ] [:DD: MDD] [D:DLD:.D] []_LHDDD]
RNN " T1Th I [] [i

Layer(s) L_‘ \T‘

mbedcings ¢ § 8 g

Words Janet will back the bill

IOl Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U, V and W weight matrices
that comprise the network. The outputs of the network at each time step represent
the distribution over the POS tagset generated by a softmax layer.

To generate a sequence of tags for a given input, we run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output
tagset at each time step, we will again employ the cross-entropy loss during training.

9.4.2 RNN:s for Sequence Classification

Another use of RNNs is to classify entire sequences rather than the tokens within
them. We’ve already encountered sentiment analysis in Chapter 4, in which we clas-
sify a text as positive or negative. Other sequence classification tasks for mapping
sequences of text to one from a small set of categories include document-level topic
classification, spam detection, or message routing for customer service applications.

To apply RNNG in this setting, we pass the text to be classified through the RNN
a word at a time generating a new hidden layer at each time step. We can then take
the hidden layer for the last token of the text, h,, to constitute a compressed repre-

10 CHAPTER Y9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

end-to-end
training

pooling

sentation of the entire sequence. We can pass this representation h,, to a feedforward
network that chooses a class via a softmax over the possible classes. Fig. 9.8 illus-
trates this approach.

(FFN»

i

13T R] Sequence classification using a simple RNN combined with a feedforward net-
work. The final hidden state from the RNN is used as the input to a feedforward network that
performs the classification.

=
RNN
T

L

-3>< >
-

Note that in this approach there don’t need intermediate outputs for the words
in the sequence preceding the last element. Therefore, there are no loss terms as-
sociated with those elements. Instead, the loss function used to train the weights in
the network is based entirely on the final text classification task. The output from
the softmax output from the feedforward classifier together with a cross-entropy loss
drives the training. The error signal from the classification is backpropagated all the
way through the weights in the feedforward classifier through, to its input, and then
through to the three sets of weights in the RNN as described earlier in Section 9.2.2.
The training regimen that uses the loss from a downstream application to adjust the
weights all the way through the network is referred to as end-to-end training.

Another option, instead of using just the last token A, to represent the whole
sequence, is to use some sort of pooling function of all the hidden states #; for each
word i in the sequence. For example, we can create a representation that pools all
the n hidden states by taking their element-wise mean:

1 n
hyean = ; z;hi 9.17)
i=

Or we can take the element-wise max; the element-wise max of a set of n vectors is
a new vector whose kth element is the max of the kth elements of all the n vectors.

9.4.3 Generation with RNN-Based Language Models

RNN-based language models can also be used to generate text. Text generation is
of enormous practical importance, part of tasks like question answering, machine
translation, text summarization, and conversational dialogue; any ask where a sys-
tem needs to produce text, conditioned on some other text.

Recall back in Chapter 3 we saw how to generate text from an n-gram language
model by adapting a technique suggested contemporaneously by Claude Shannon
(Shannon, 1951) and the psychologists George Miller and Selfridge (Miller and Sel-
fridge, 1950). We first randomly sample a word to begin a sequence based on its

autoregressive
generation

9.4 < RNNS FOR OTHER NLP TaASks 11

suitability as the start of a sequence. We then continue to sample words conditioned
on our previous choices until we reach a pre-determined length, or an end of se-
quence token is generated.

Today, this approach of using a language model to incrementally generate words
by repeatedly sampling the next word conditioned on our previous choices is called
autoregressive generation. The procedure is basically the same as that described
on ??, in a neural context:

* Sample a word in the output from the softmax distribution that results from
using the beginning of sentence marker, <s>, as the first input.

* Use the word embedding for that first word as the input to the network at the
next time step, and then sample the next word in the same fashion.

» Continue generating until the end of sentence marker, </s>, is sampled or a
fixed length limit is reached.

Technically an autoregressive model is a model that predicts a value at time ¢ based
on a linear function of the previous values at times — 1, t — 2, and so on. Although
language models are not linear (since they have many layers of non-linearities), we
loosely refer to this generation technique as autoregressive generation since the
word generated at each time step is conditioned on the word selected by the network
from the previous step. Fig. 9.9 illustrates this approach. In this figure, the details of
the RNN’s hidden layers and recurrent connections are hidden within the blue block.

This simple architecture underlies state-of-the-art approaches to applications
such as machine translation, summarization, and question answering. The key to
these approaches is to prime the generation component with an appropriate context.
That is, instead of simply using <s> to get things started we can provide a richer
task-appropriate context; for translation the context is the sentence in the source lan-
guage; for summarization it’s the long text we want to summarize. We’ll discuss the
application of contextual generation to the problem of summarization in Section 9.9
in the context of transformer-based language models, and then again in Chapter 10
when we introduce encoder-decoder models.

~ -~ -~

e e

7/
g

Sampled Word SO/ i Ioné i and i ?
i IR
softmax () | (L) 1 (Gds) 1 (Gdo)
) I y I y I y
AT
RNN = : |
Manlenl e
Embedding g i i g i g
I I I
Input Word <s8> i 480 i Lc>ng i ?-nd
e e e

I3tV Autoregressive generation with an RNN-based neural language model.

12 CHAPTER Y9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

9.5 Stacked and Bidirectional RNN architectures

Stacked RNNs

Recurrent networks are quite flexible. By combining the feedforward nature of un-
rolled computational graphs with vectors as common inputs and outputs, complex
networks can be treated as modules that can be combined in creative ways. This
section introduces two of the more common network architectures used in language
processing with RNNs.

9.5.1 Stacked RNNs

In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves as
the input to a subsequent layer, as shown in Fig. 9.10.

; Ij_l rTi ;
({1 ——nAws—{] |
[1] RNN 2 j
[]] RNN 1]

R)

AT Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

Stacked RNNs generally outperform single-layer networks. One reason for this
success seems to be that the network induces representations at differing levels of
abstraction across layers. Just as the early stages of the human visual system detect
edges that are then used for finding larger regions and shapes, the initial layers of
stacked networks can induce representations that serve as useful abstractions for
further layers—representations that might prove difficult to induce in a single RNN.
The optimal number of stacked RNNs is specific to each application and to each
training set. However, as the number of stacks is increased the training costs rise
quickly.

9.5.2 Bidirectional RNNs

The RNN uses information from the left (prior) context to make its predictions at
time ¢. But in many applications we have access to the entire input sequence; in
those cases we would like to use words from the context to the right of 7. One way
to do this is to run two separate RNNs, one left-to-right, and one right-to-left, and
concatenate their representations.

9.6 ¢« THELSTM 13

In the left-to-right RNNs we’ve discussed so far, the hidden state at a given time
t represents everything the network knows about the sequence up to that point. The
state is a function of the inputs x1, ..., x; and represents the context of the network to
the left of the current time.

b, = RNNpmara(X1,--.,%) (9.18)

This new notation hfl simply corresponds to the normal hidden state at time ¢, repre-
senting everything the network has gleaned from the sequence so far.

To take advantage of context to the right of the current input, we can train an
RNN on a reversed input sequence. With this approach, the hidden state at time ¢
represents information about the sequence to the right of the current input:

hl; = RNNpackward (Xt> v Xn) 9.19)

Here, the hidden state h represents all the information we have discerned about the
sequence from ¢ to the end of the sequence.

bidirectional A bidirectional RNN (Schuster and Paliwal, 1997) combines two independent
RNNSs, one where the input is processed from the start to the end, and the other from
the end to the start. We then concatenate the two representations computed by the
networks into a single vector that captures both the left and right contexts of an input
at each point in time. Here we use either the semicolon ;” or the equivalent symbol
@ to mean vector concatenation:

h, = [h};h%)
= h o (9.20)

Fig. 9.11 illustrates such a bidirectional network that concatenates the outputs of
the forward and backward pass. Other simple ways to combine the forward and
backward contexts include element-wise addition or multiplication. The output at
each step in time thus captures information to the left and to the right of the current
input. In sequence labeling applications, these concatenated outputs can serve as the
basis for a local labeling decision.

Bidirectional RNNs have also proven to be quite effective for sequence classifi-
cation. Recall from Fig. 9.8 that for sequence classification we used the final hidden
state of the RNN as the input to a subsequent feedforward classifier. A difficulty
with this approach is that the final state naturally reflects more information about
the end of the sentence than its beginning. Bidirectional RNNs provide a simple
solution to this problem; as shown in Fig. 9.12, we simply combine the final hidden
states from the forward and backward passes (for example by concatenation) and
use that as input for follow-on processing.

9.6 The LSTM

In practice, it is quite difficult to train RNNs for tasks that require a network to make
use of information distant from the current point of processing. Despite having ac-
cess to the entire preceding sequence, the information encoded in hidden states tends
to be fairly local, more relevant to the most recent parts of the input sequence and
recent decisions. Yet distant information is critical to many language applications.
Consider the following example in the context of language modeling.

14 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

Y3 Yn
U‘“ concatenated

»U outputs
(e RNN 2 ———{ |

T J
[D\— —RNN 1] #

AT BB A bidirectional RNN. Separate models are trained in the forward and backward
directions, with the output of each model at each time point concatenated to represent the
bidirectional state at that time point.

Y1 Yo

(FFN)

[D*A’D*Aﬂ\—— RNN 1 —>EU

X1 X2 X3 Xn

IO APl A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.

(9.21) The flights the airline was cancelling were full.

Assigning a high probability to was following airline is straightforward since airline
provides a strong local context for the singular agreement. However, assigning an
appropriate probability to were is quite difficult, not only because the plural flights is
quite distant, but also because the intervening context involves singular constituents.
Ideally, a network should be able to retain the distant information about plural flights
until it is needed, while still processing the intermediate parts of the sequence cor-
rectly.

One reason for the inability of RNNs to carry forward critical information is that
the hidden layers, and, by extension, the weights that determine the values in the hid-

vanishing
gradients

Long
short-term
memory

forget gate

add gate

9.6 ¢« THELSTM 15

den layer, are being asked to perform two tasks simultaneously: provide information
useful for the current decision, and updating and carrying forward information re-
quired for future decisions.

A second difficulty with training RNNs arises from the need to backpropagate
the error signal back through time. Recall from Section 9.2.2 that the hidden layer at
time ¢ contributes to the loss at the next time step since it takes part in that calcula-
tion. As a result, during the backward pass of training, the hidden layers are subject
to repeated multiplications, as determined by the length of the sequence. A frequent
result of this process is that the gradients are eventually driven to zero, a situation
called the vanishing gradients problem.

To address these issues, more complex network architectures have been designed
to explicitly manage the task of maintaining relevant context over time, by enabling
the network to learn to forget information that is no longer needed and to remember
information required for decisions still to come.

The most commonly used such extension to RNNs is the Long short-term
memory (LSTM) network (Hochreiter and Schmidhuber, 1997). LSTMs divide
the context management problem into two sub-problems: removing information no
longer needed from the context, and adding information likely to be needed for later
decision making. The key to solving both problems is to learn how to manage this
context rather than hard-coding a strategy into the architecture. LSTMs accomplish
this by first adding an explicit context layer to the architecture (in addition to the
usual recurrent hidden layer), and through the use of specialized neural units that
make use of gates to control the flow of information into and out of the units that
comprise the network layers. These gates are implemented through the use of addi-
tional weights that operate sequentially on the input, and previous hidden layer, and
previous context layers.

The gates in an LSTM share a common design pattern; each consists of a feed-
forward layer, followed by a sigmoid activation function, followed by a pointwise
multiplication with the layer being gated. The choice of the sigmoid as the activation
function arises from its tendency to push its outputs to either 0 or 1. Combining this
with a pointwise multiplication has an effect similar to that of a binary mask. Values
in the layer being gated that align with values near 1 in the mask are passed through
nearly unchanged; values corresponding to lower values are essentially erased.

The first gate we’ll consider is the forget gate. The purpose of this gate to delete
information from the context that is no longer needed. The forget gate computes a
weighted sum of the previous state’s hidden layer and the current input and passes
that through a sigmoid. This mask is then multiplied element-wise by the context
vector to remove the information from context that is no longer required. Element-
wise multiplication of two vectors (represented by the operator ®, and sometimes
called the Hadamard product) is the vector of the same dimension as the two input
vectors, where each element i is the product of element i in the two input vectors:

ft = G(Ulfh[71+W‘th) (922)
k = ¢ Of (9.23)

The next task is compute the actual information we need to extract from the previous
hidden state and current inputs—the same basic computation we’ve been using for
all our recurrent networks.

g = tanh(Ugh,_; + W,x;) (9.24)

Next, we generate the mask for the add gate to select the information to add to the

16 CHAPTERY9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

-
Ct-1 1
—/
N
hi1 vl
Xp—{—x
>‘<,>/ ° LSTM
+ /
N J

IFTNCIPRR] A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the

current input, x, the previous hidden state, /;_1, and the previous context, ¢;_1. The outputs are a new hidden
state, i, and an updated context, c;.

output gate

current context.

i = o(Uh,_1 +W;ix,) (9.25)
= &0Ok (9.26)

Next, we add this to the modified context vector to get our new context vector.
¢ =Jjitk 9.27)

The final gate we’ll use is the output gate which is used to decide what informa-
tion is required for the current hidden state (as opposed to what information needs
to be preserved for future decisions).

0, = G(Uoht—l +W0X[) (928)
h, o, ®tanh(c,) (9.29)

Fig. 9.13 illustrates the complete computation for a single LSTM unit. Given the
appropriate weights for the various gates, an LSTM accepts as input the context
layer, and hidden layer from the previous time step, along with the current input
vector. It then generates updated context and hidden vectors as output. The hidden
layer, h;, can be used as input to subsequent layers in a stacked RNN, or to generate
an output for the final layer of a network.

9.6.1 Gated Units, Layers and Networks

The neural units used in LSTMs are obviously much more complex than those used
in basic feedforward networks. Fortunately, this complexity is encapsulated within
the basic processing units, allowing us to maintain modularity and to easily exper-
iment with different architectures. To see this, consider Fig. 9.14 which illustrates
the inputs and outputs associated with each kind of unit.

At the far left, (a) is the basic feedforward unit where a single set of weights and
a single activation function determine its output, and when arranged in a layer there
are no connections among the units in the layer. Next, (b) represents the unit in a
simple recurrent network. Now there are two inputs and an additional set of weights
to go with it. However, there is still a single activation function and output.

9.7 ¢ SELF-ATTENTION NETWORKS: TRANSFORMERS 17

Ct hy

hy
a
@

X A1 Xt Ct1 M %

@ (b) (©

I3T VBB Basic neural units used in feedforward, simple recurrent networks (SRN), and
long short-term memory (LSTM).

The increased complexity of the LSTM units is encapsulated within the unit
itself. The only additional external complexity for the LSTM over the basic recurrent
unit (b) is the presence of the additional context vector as an input and output.

This modularity is key to the power and widespread applicability of LSTM units.
LSTM units (or other varieties, like GRUs) can be substituted into any of the network
architectures described in Section 9.5. And, as with simple RNNs, multi-layered
networks making use of gated units can be unrolled into deep feedforward networks
and trained in the usual fashion with backpropagation.

9.7 Self-Attention Networks: Transformers

transformers

self-attention

While the addition of gates allows LSTMs to handle more distant information than
RNNs, they don’t completely solve the underlying problem: passing information
through an extended series of recurrent connections leads to information loss and
difficulties in training. Moreover, the inherently sequential nature of recurrent net-
works makes it hard to do computation in parallel. These considerations led to the
development of transformers — an approach to sequence processing that eliminates
recurrent connections and returns to architectures reminiscent of the fully connected
networks described earlier in Chapter 7.

Transformers map sequences of input vectors (Xj,...,X,) to sequences of out-
put vectors (yj,...,yn) of the same length. Transformers are made up of stacks of
transformer blocks, which are multilayer networks made by combining simple lin-
ear layers, feedforward networks, and self-attention layers, the key innovation of
transformers. Self-attention allows a network to directly extract and use information
from arbitrarily large contexts without the need to pass it through intermediate re-
current connections as in RNNs. We’ll start by describing how self-attention works
and then return to how it fits into larger transformer blocks.

Fig. 9.15 illustrates the flow of information in a single causal, or backward look-
ing, self-attention layer. As with the overall transformer, a self-attention layer maps
input sequences (X1, ...,X,) to output sequences of the same length (yi,...,y,). When
processing each item in the input, the model has access to all of the inputs up to and
including the one under consideration, but no access to information about inputs
beyond the current one. In addition, the computation performed for each item is

18 CHAPTER Y9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

independent of all the other computations. The first point ensures that we can use
this approach to create language models and use them for autoregressive generation,
and the second point means that we can easily parallelize both forward inference
and training of such models.

Self-Attention | |] | — |
Layer 7 /)ﬁ %/J—i_
X4 @ @ X4 X5

Information flow in a causal (or masked) self-attention model. In processing
each element of the sequence, the model attends to all the inputs up to, and including, the
current one. Unlike RNNSs, the computations at each time step are independent of all the
other steps and therefore can be performed in parallel.

At the core of an attention-based approach is the ability to compare an item of
interest to a collection of other items in a way that reveals their relevance in the
current context. In the case of self-attention, the set of comparisons are to other
elements within a given sequence. The result of these comparisons is then used to
compute an output for the current input. For example, returning to Fig. 9.15, the
computation of y3 is based on a set of comparisons between the input x3 and its
preceding elements x; and X;, and to x3 itself. The simplest form of comparison
between elements in a self-attention layer is a dot product. Let’s refer to the result
of this comparison as a score (we’ll be updating this equation to add attention to the
computation of this score):

score(X;,X;) = X;-X; (9.30)

The result of a dot product is a scalar value ranging from —oo to oo, the larger
the value the more similar the vectors that are being compared. Continuing with our
example, the first step in computing y3 would be to compute three scores: X3 - Xi,
X3 - X and X3 - x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, «;;, that indicates the proportional
relevance of each input to the input element i that is the current focus of attention.

o;j = softmax(score(x;,x;)) Vj<i 9.31)

_ exp(score(X;,X;)) vi<i 9.32)

Zf{:l exp(score(x;,Xy)) o

Given the proportional scores in &, we then generate an output value y; by taking
the sum of the inputs seen so far, weighted by their respective o value.

yi = Za,-jx.,- (9.33)

J<i

The steps embodied in Equations 9.30 through 9.33 represent the core of an
attention-based approach: a set of comparisons to relevant items in some context,

query

key

value

9.7 ¢ SELF-ATTENTION NETWORKS: TRANSFORMERS 19

a normalization of those scores to provide a probability distribution, followed by a
weighted sum using this distribution. The output y is the result of this straightfor-
ward computation over the inputs.

This kind of simple attention can be useful, and indeed we’ll see in Chapter 10
how to use this simple idea of attention for LSTM-based encoder-decoder models
for machine translation.

But transformers allow us to create a more sophisticated way of representing
how words can contribute to the representation of longer inputs. Consider the three
different roles that each input embedding plays during the course of the attention
process.

* As the current focus of attention when being compared to all of the other
preceding inputs. We’ll refer to this role as a query.

* In its role as a preceding input being compared to the current focus of atten-
tion. We’ll refer to this role as a key.

* And finally, as a value used to compute the output for the current focus of
attention.

To capture these three different roles, transformers introduce weight matrices
WQ WK and WV. These weights will be used to project each input vector x; into a
representation of its role as a key, query, or value.

q; = WQX,'; k;, = WKXi; vV, = WVXi (9.34)

The inputs x and outputs y of transformers, as well as the intermediate vectors after
the various layers, all have the same dimensionality 1 x d. For now let’s assume the
dimensionalities of the transform matrices are W€ € R?*4, WK ¢ R4*d and WY ¢
R?*4_ Later we’ll need separate dimensions for these matrices when we introduce
multi-headed attention, so let’s just make a note that we’ll have a dimension dj for
the key and query vectors, and a dimension d, for the value vectors, both of which
for now we’ll set to d. In the original transformer work (Vaswani et al., 2017), d was
1024.

Given these projections, the score between a current focus of attention, x; and
an element in the preceding context, X; consists of a dot product between its query
vector q; and the preceding element’s key vectors Kk ;. This dot product has the right
shape since both the query and the key are of dimensionality 1 x d. Let’s update our
previous comparison calculation to reflect this, replacing Eq. 9.30 with Eq. 9.35:

score(X;,X;) = q;-k; (9.35)

The ensuing softmax calculation resulting in ¢; ; remains the same, but the output
calculation for y; is now based on a weighted sum over the value vectors v.

yi = Z(X{jVj (9.36)

J<i

Fig. 9.16 illustrates this calculation in the case of computing the third output y3 in a
sequence.

The result of a dot product can be an arbitrarily large (positive or negative) value.
Exponentiating such large values can lead to numerical issues and to an effective loss
of gradients during training. To avoid this, the dot product needs to be scaled in a
suitable fashion. A scaled dot-product approach divides the result of the dot product
by a factor related to the size of the embeddings before passing them through the

20 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

Output Vector

Weight and Sum
value vectors

e @ : T
Key/Query
Comparisons Sl
o, B0 | BC<0 | 808+
“ y’\(/:{ectci/rs | % % %

ISTNCIPATY Calculating the value of ys3, the third element of a sequence using causal (left-
to-right) self-attention.

softmax. A typical approach is to divide the dot product by the square root of the
dimensionality of the query and key vectors (di), leading us to update our scoring
function one more time, replacing Eq. 9.30 and Eq. 9.35 with Eq. 9.37:

qi-k;
Vg

This description of the self-attention process has been from the perspective of
computing a single output at a single time step i. However, since each output, y;, is
computed independently this entire process can be parallelized by taking advantage
of efficient matrix multiplication routines by packing the input embeddings of the N
tokens of the input sequence into a single matrix X € RV*?, That is, each row of X
is the embedding of one token of the input. We then multiply X by the key, query,
and value matrices (all of dimensionality d x d) to produce matrices Q € RV*9,
K € RV*? and V € RV*4_ containing all the key, query, and value vectors:

score(X;,X;) = 9.37)

Q=XW? K=XxWK, v=xwV (9.38)

Given these matrices we can compute all the requisite query-key comparisons simul-
taneously by multiplying Q and KT in a single matrix multiplication (the product is
of shape N x N; Fig. 9.17 shows a visualization). Taking this one step further, we
can scale these scores, take the softmax, and then multiply the result by V resulting
in a matrix of shape N x d: a vector embedding representation for each token in the
input. We’ve reduced the entire self-attention step for an entire sequence of N tokens

9.7 ¢ SELF-ATTENTION NETWORKS: TRANSFORMERS 21
to the following computation:

. QKT)
SelfAttention(Q,K,V) = softmax (\' (9.39)
(@EV) V&

Unfortunately, this process goes a bit too far since the calculation of the comparisons
in QKT results in a score for each query value to every key value, including those
that follow the query. This is inappropriate in the setting of language modeling
since guessing the next word is pretty simple if you already know it. To fix this, the
elements in the upper-triangular portion of the matrix are zeroed out (set to —oo),
thus eliminating any knowledge of words that follow in the sequence. Fig. 9.17
depicts the QKT matrix. (we’ll see in Chapter 11 how to make use of words in the
future for tasks that need it).

q1-k1 —00 —00 | —o0 | —o0

g2+k1|g2:k2| —o0 | —c0 | —o0

N |g3k1|g3:k2|q3:k3| —c0 | —oo

q4+k1 |gd-k2 [g4-k3|qd-kd| —oo

a5+k1|g5°k2 |g5°k3 | q5+k4 | q5+k5

N

ARV CPRY The N x N QTT matrix showing the ¢; - k; values, with the upper-triangle por-
tion of the comparisons matrix zeroed out (set to —oo, which the softmax will turn to zero).

Fig. 9.17 also makes it clear that attention is quadratic in the length of the input,
since at each layer we need to compute dot products between each pair of tokens in
the input. This makes it extremely expensive for the input to a transformer to consist
of long documents (like entire Wikipedia pages, or novels), and so most applications
have to limit the input length, for example to at most a page or a paragraph of text at a
time. Finding more efficient attention mechanisms is an ongoing research direction.

9.7.1 Transformer Blocks

The self-attention calculation lies at the core of what’s called a transformer block,
which, in addition to the self-attention layer, includes additional feedforward layers,
residual connections, and normalizing layers. The input and output dimensions of
these blocks are matched so they can be stacked just as was the case for stacked
RNNs.

Fig. 9.18 illustrates a standard transformer block consisting of a single attention
layer followed by a fully-connected feedforward layer with residual connections
and layer normalizations following each. We’ve already seen feedforward layers in
Chapter 7, but what are residual connections and layer norm? In deep networks,
residual connections are connections that pass information from a lower layer to a
higher layer without going through the intermediate layer. Allowing information
from the activation going forward and the gradient going backwards to skip a layer
improves learning and gives higher level layers direct access to information from
lower layers (He et al., 2016). Residual connections in transformers are implemented

22 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

layer norm

T]\

/Transformer (Layer Normalize
Block

Residual [

connection Feedforward Layer]

pp—

(Layer Normalize)

—>

Residual
connection [Self-Attention Layer]

- e — J

We s . &)

IDTICAE] A transformer block showing all the layers.

by added a layer’s input vector to its output vector before passing it forward. In the
transformer block shown in Fig. 9.18, residual connections are used with both the
attention and feedforward sublayers. These summed vectors are then normalized
using layer normalization (Ba et al., 2016). If we think of a layer as one long vector
of units, the resulting function computed in a transformer block can be expressed as:

LayerNorm(x + SelfAttn(x)) (9.40)
y = LayerNorm(z+ FFNN(z)) (9.41)

Layer normalization (or layer norm) is one of many forms of normalization that
can be used to improve training performance in deep neural networks by keeping
the values of a hidden layer in a range that facilitates gradient-based training. Layer
norm is a variation of the standard score, or z-score, from statistics applied to a
single hidden layer. The first step in layer normalization is to calculate the mean, u,
and standard deviation, o, over the elements of the vector to be normalized. Given
a hidden layer with dimensionality dj,, these values are calculated as follows.

(9.42)

(9.43)

Given these values, the vector components are normalized by subtracting the mean
from each and dividing by the standard deviation. The result of this computation is
a new vector with zero mean and a standard deviation of one.
N X—
= x-p) (9.44)
c
Finally, in the standard implementation of layer normalization, two learnable
parameters, ¥ and 3, representing gain and offset values, are introduced.

LayerNorm =y X+ f (9.45)

9.7 ¢ SELF-ATTENTION NETWORKS: TRANSFORMERS 23

9.7.2 Multihead Attention

The different words in a sentence can relate to each other in many different ways si-
multaneously. For example, distinct syntactic, semantic, and discourse relationships
can hold between verbs and their arguments in a sentence. It would be difficult for
a single transformer block to learn to capture all of the different kinds of parallel
multihead relations among its inputs. Transformers address this issue with multihead self-
self-att?g;ier;r; attention layers. These are sets of self-attention layers, called heads, that reside in
parallel layers at the same depth in a model, each with its own set of parameters.
Given these distinct sets of parameters, each head can learn different aspects of the

relationships that exist among inputs at the same level of abstraction.

To implement this notion, each head, 7, in a self-attention layer is provided with
its own set of key, query and value matrices: WX, WiQ and WY These are used
to project the inputs into separate key, value, and query embeddings separately for
each head, with the rest of the self-attention computation remaining unchanged. In
multi-head attention, instead of using the model dimension d that’s used for the input
and output from the model, the key and query embeddings have dimensionality dj,
and the value embeddings are dimensionality d, (in the original transformer paper
d; = d, = 64). Thus for each head i, we have weight layers WIQ € R¥x4 WK ¢
R?*d and WY € R4 and these get multiplied by the inputs packed into X to
produce Q € RV*%, K € RV*% and V € RV*%_ The output of each of the / heads
is of shape N X d,,, and so the output of the multi-head layer with /& heads consists
of h vectors of shape N x d,. To make use of these vectors in further processing,
they are combined and then reduced down to the original input dimension d. This
is accomplished by concatenating the outputs from each head and then using yet
another linear projection, WO € R"*?_to reduce it to the original output dimension
for each token, or a total N x d output.

MultiHeadAtm(X) = (head; ©head,... © head,;,)W? (9.46)
Q=XW2; K=XWK; v=xw/ (9.47)
head; = SelfAttention(Q,K, V) (9.48)

Fig. 9.19 illustrates this approach with 4 self-attention heads. This multihead
layer replaces the single self-attention layer in the transformer block shown earlier
in Fig. 9.18, the rest of the transformer block with its feedforward layer, residual
connections, and layer norms remains the same.

9.7.3 Modeling word order: positional embeddings

How does a transformer model the position of each token in the input sequence?
With RNNs, information about the order of the inputs was built into the structure of
the model. Unfortunately, the same isn’t true for transformers; the models as we’ve
described them so far don’t have any notion of the relative, or absolute, positions
of the tokens in the input. This can be seen from the fact that if you scramble the
order of the inputs in the attention computation in Fig. 9.16 you get exactly the same
answer.

One simple solution is to modify the input embeddings by combining them with
positional embeddings specific to each position in an input sequence.

Where do we get these positional embeddings? The simplest method is to start
with randomly initialized embeddings corresponding to each possible input position
up to some maximum length. For example, just as we have an embedding for the

positional
embeddings

24 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

)
- R
Project down to d WO
Cocatercte (o | e | v | e
[w, wk, wY, Head 4]
Multihead (W, /‘ =
. LW WYy ead 3]
Attention [e /H >]
Layer SRR
(W wK WY, Head /)/
_ N\ // J
\l/x
© B

INCIPRE] Multihead self-attention: Each of the multihead self-attention layers is provided with its own
set of key, query and value weight matrices. The outputs from each of the layers are concatenated and then
projected down to d, thus producing an output of the same size as the input so layers can be stacked.

word fish, we’ll have an embedding for the position 3. As with word embeddings,
these positional embeddings are learned along with other parameters during training.
To produce an input embedding that captures positional information, we just add the
word embedding for each input to its corresponding positional embedding. This new
embedding serves as the input for further processing. Fig. 9.20 shows the idea.

Transformer
Blocks

Composite
Embeddings
(input + position)

Word %
Embeddings .8..

Position
Embeddings

y

Janet will back the bill

I3TuN W] A simple way to model position: simply adding an embedding representation
of the absolute position to the input word embedding.

A potential problem with the simple absolute position embedding approach is
that there will be plenty of training examples for the initial positions in our inputs and
correspondingly fewer at the outer length limits. These latter embeddings may be
poorly trained and may not generalize well during testing. An alternative approach to

9.8 ¢ TRANSFORMERS AS LANGUAGE MODELS 25

positional embeddings is to choose a static function that maps integer inputs to real-
valued vectors in a way that captures the inherent relationships among the positions.
That is, it captures the fact that position 4 in an input is more closely related to
position 5 than it is to position 17. A combination of sine and cosine functions with
differing frequencies was used in the original transformer work. Developing better
position representations is an ongoing research topic.

9.8 Transformers as Language Models

Now that we’ve seen all the major components of transformers, let’s examine how
to deploy them as language models via semi-supervised learning. To do this, we’ll
proceed just as we did with the RNN-based approach: given a training corpus of
plain text we’ll train a model to predict the next word in a sequence using teacher
forcing. Fig. 9.21 illustrates the general approach. At each step, given all the preced-
ing words, the final transformer layer produces an output distribution over the entire
vocabulary. During training, the probability assigned to the correct word is used
to calculate the cross-entropy loss for each item in the sequence. As with RNNs,
the loss for a training sequence is the average cross-entropy loss over the entire se-
quence.

Next word
Loss
Softmax over
Vocabulary

Linear Layer

Transformer
Block

Input
Embeddings

long and thanks for aII

I’ log Ylong | |7 lOg yandl | log ythanks |— log Yfor | |— lOg Yall | e =

o
D @ (mﬂm * #

|
Sl
R
h
Q
&)

So long and thanks for

VAl Training a transformer as a language model.

Note the key difference between this figure and the earlier RNN-based version
shown in Fig. 9.6. There the calculation of the outputs and the losses at each step was
inherently serial given the recurrence in the calculation of the hidden states. With
transformers, each training item can be processed in parallel since the output for
each element in the sequence is computed separately. Once trained, we can compute
the perplexity of the resulting model, or autoregressively generate novel text just as
with RNN-based models.

26 CHAPTERY9 -

DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

9.9 Contextual Generation and Summarization

A simple variation on autoregressive generation that underlies a number of practi-
cal applications uses a prior context to prime the autoregressive generation process.
Fig. 9.22 illustrates this with the task of text completion. Here a standard language
model is given the prefix to some text and is asked to generate a possible completion
to it. Note that as the generation process proceeds, the model has direct access to
the priming context as well as to all of its own subsequently generated outputs. This
ability to incorporate the entirety of the earlier context and generated outputs at each
time step is the key to the power of these models.

Transformer
Blocks

Input :
Embeddings ?

Completion Text

Sample from Softmax

linear layer
- I
& |
i 1
H H i i
@) '@ I [
[i
T i I
So long and thanks for i _al i _the
i P4
N— _
Y
Prefix Text

AT WP) Autoregressive text completion with transformers.

Text
summarization

Text summarization is a practical application of context-based autoregressive
generation. The task is to take a full-length article and produce an effective summary
of it. To train a transformer-based autoregressive model to perform this task, we start
with a corpus consisting of full-length articles accompanied by their corresponding
summaries. Fig. 9.23 shows an example of this kind of data from a widely used
summarization corpus consisting of CNN and Daily Mirror news articles.

A simple but surprisingly effective approach to applying transformers to sum-
marization is to append a summary to each full-length article in a corpus, with
a unique marker separating the two. More formally, each article-summary pair
(X1, .esXm), (V1,...,yn) in a training corpus is converted into a single training instance
(X1, -y Xm, 0,¥1,...yn) With an overall length of n+m+ 1. These training instances
are treated as long sentences and then used to train an autoregressive language model
using teacher forcing, exactly as we did earlier.

Once trained, full articles ending with the special marker are used as the context
to prime the generation process to produce a summary as illustrated in Fig. 9.24.
Note that, in contrast to RNNs, the model has access to the original article as well
as to the newly generated text throughout the process.

As we’ll see in later chapters, variations on this simple scheme are the basis
for successful text-to-text applications including machine translation, summariza-
tion and question answering.

9.9 ¢ CONTEXTUAL GENERATION AND SUMMARIZATION 27

Original Article

The only thing crazier than a guy in snowbound Massachusetts boxing up the powdery white stuff

and offering it for sale online? People are actually buying it. For $89, self-styled entrepreneur

Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough

for 10 to 15 snowballs, he says.

But not if you live in New England or surrounding states. “We will not ship snow to any states

in the northeast!” says Waring’s website, ShipSnow Yo.com. “We’re in the business of expunging

snow!”

His website and social media accounts claim to have filled more than 133 orders for snow — more

than 30 on Tuesday alone, his busiest day yet. With more than 45 total inches, Boston has set a

record this winter for the snowiest month in its history. Most residents see the huge piles of snow

choking their yards and sidewalks as a nuisance, but Waring saw an opportunity.

According to Boston.com, it all started a few weeks ago, when Waring and his wife were shov-

eling deep snow from their yard in Manchester-by-the-Sea, a coastal suburb north of Boston.

He joked about shipping the stuff to friends and family in warmer states, and an idea was born.

His business slogan: “Our nightmare is your dream!” At first, ShipSnow Yo sold snow packed

into empty 16.9-ounce water bottles for $19.99, but the snow usually melted before it reached its

destination...

Summary

Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough

for 10 to 15 snowballs, he says. But not if you live in New England or surrounding states.
Examples of articles and summaries from the CNN/Daily Mail corpus (Hermann et al., 2015),
(Nallapati et al., 2016).

Generated Summary

Warin/g

i
i
i

The only reached its destination 1 i Kyle
L.

Waring will
4 L7 g
¥ /
o
Original Story Delimiter

Tl 2% Summarization with transformers.

9.9.1 Applying Transformers to other NLP tasks

Transformers can also be used for sequence labeling tasks (like part-of-speech tag-

ging or named entity tagging) and sequence classification tasks (like sentiment clas-

sification), as we’ll see in detail in Chapter 11. Just to give a preview, however, we

don’t directly train a raw transformer on these tasks. Instead, we use a technique

pretraining called pretraining, in which we first train a transformer language model on a large
corpus of text, in a normal self-supervised way, and only afterwards add a linear or

finetune feedforward layer on top that we finetune on a smaller dataset hand-labeled with
part-of-speech or sentiment labels. Pretraining on large amounts of data via the

28 CHAPTER9 ¢ DEEP LEARNING ARCHITECTURES FOR SEQUENCE PROCESSING

self-supervised language model objective turns out to be a very useful way of incor-
porating rich information about language, and the resulting representations make it
much easier to learn from the generally smaller supervised datasets for tagging or
sentiment.

9.10 Summary

This chapter has introduced the concepts of recurrent neural networks and trans-
formers and how they can be applied to language problems. Here’s a summary of
the main points that we covered:

* In simple Recurrent Neural Networks sequences are processed one element at
a time, with the output of each neural unit at time ¢ based both on the current
input at ¢ and the hidden layer from time ¢ — 1.

* RNNS can be trained with a straightforward extension of the backpropagation
algorithm, known as backpropagation through time (BPTT).

» Simple recurrent networks fail on long inputs because of problems like van-
ishing gradients; instead modern systems use more complex gated architec-
tures such as LSTMs that explicitly decide what to remember and forget in
their hidden and context layers.

* Transformers are non-recurrent networks based on self-attention. A self-
attention layer maps input sequences to output sequences of the same length,
using attention heads that model how the surrounding words are relevant for
the processing of the current word.

* A transformer block consists of a single attention layer followed by a feed-
forward layer with residual connections and layer normalizations following
each. Transformer blocks can be stacked to make deeper and more powerful
networks.

* Common language-based applications for RNNs and transformers include:

Probabilistic language modeling: assigning a probability to a sequence,
or to the next element of a sequence given the preceding words.
Auto-regressive generation using a trained language model.

Sequence labeling like part-of-speech tagging, where each element of a
sequence is assigned a label.

Sequence classification, where an entire text is assigned to a category, as
in spam detection, sentiment analysis or topic classification.

Bibliographical and Historical Notes

Influential investigations of RNNs were conducted in the context of the Parallel Dis-
tributed Processing (PDP) group at UC San Diego in the 1980’s. Much of this work
was directed at human cognitive modeling rather than practical NLP applications
Rumelhart and McClelland 1986 McClelland and Rumelhart 1986. Models using
recurrence at the hidden layer in a feedforward network (Elman networks) were in-
troduced by Elman (1990). Similar architectures were investigated by Jordan (1986)
with a recurrence from the output layer, and Mathis and Mozer (1995) with the

BIBLIOGRAPHICAL AND HISTORICAL NOTES 29

addition of a recurrent context layer prior to the hidden layer. The possibility of
unrolling a recurrent network into an equivalent feedforward network is discussed
in (Rumelhart and McClelland, 1986).

In parallel with work in cognitive modeling, RNNs were investigated extensively
in the continuous domain in the signal processing and speech communities (Giles
et al. 1994, Robinson et al. 1996). Schuster and Paliwal (1997) introduced bidirec-
tional RNNs and described results on the TIMIT phoneme transcription task.

While theoretically interesting, the difficulty with training RNNs and manag-
ing context over long sequences impeded progress on practical applications. This
situation changed with the introduction of LSTMs in Hochreiter and Schmidhuber
(1997) and Gers et al. (2000). Impressive performance gains were demonstrated
on tasks at the boundary of signal processing and language processing including
phoneme recognition (Graves and Schmidhuber, 2005), handwriting recognition
(Graves et al., 2007) and most significantly speech recognition (Graves et al., 2013).

Interest in applying neural networks to practical NLP problems surged with the
work of Collobert and Weston (2008) and Collobert et al. (2011). These efforts made
use of learned word embeddings, convolutional networks, and end-to-end training.
They demonstrated near state-of-the-art performance on a number of standard shared
tasks including part-of-speech tagging, chunking, named entity recognition and se-
mantic role labeling without the use of hand-engineered features.

Approaches that married LSTMs with pre-trained collections of word-embeddings
based on word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)
quickly came to dominate many common tasks: part-of-speech tagging (Ling et al.,
2015), syntactic chunking (Sggaard and Goldberg, 2016), named entity recognition
(Chiu and Nichols, 2016; Ma and Hovy, 2016), opinion mining (Irsoy and Cardie,
2014), semantic role labeling (Zhou and Xu, 2015) and AMR parsing (Foland and
Martin, 2016). As with the earlier surge of progress involving statistical machine
learning, these advances were made possible by the availability of training data pro-
vided by CONLL, SemEval, and other shared tasks, as well as shared resources such
as Ontonotes (Pradhan et al., 2007), and PropBank (Palmer et al., 2005).

The transformer (Vaswani et al., 2017) was developed drawing on two lines of
prior research: self-attention and memory networks. Encoder-decoder attention,
the idea of using a soft weighting over the encodings of input words to inform a gen-
erative decoder (see Chapter 10) was developed by Graves (2013) in the context of
handwriting generation, and Bahdanau et al. (2015) for MT. This idea was extended
to self-attention by dropping the need for separate encoding and decoding sequences
and instead seeing attention a way of weighting the tokens in collecting information
passed from lower layers to higher layers (Ling et al., 2015; Cheng et al., 2016; Liu
et al., 2016). Other aspects of the transformer, including the terminology of key,
query, and value, came from memory networks, a mechanism for adding an ex-
ternal read-write memory to networks, by using an embedding of a query to match
keys representing content in an associative memory (Sukhbaatar et al., 2015; Weston
et al., 2015; Graves et al., 2014).

30 Chapter9 -

Deep Learning Architectures for Sequence Processing

Ba, J. L., J. R. Kiros, and G. E. Hinton. 2016. Layer normal-
ization. NeurIPS workshop.

Bahdanau, D., K. H. Cho, and Y. Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate.
ICLR 2015.

Cheng, J., L. Dong, and M. Lapata. 2016. Long short-term
memory-networks for machine reading. EMNLP.

Chiu, J. P. C. and E. Nichols. 2016. Named entity recognition
with bidirectional LSTM-CNNs. TACL, 4:357-370.

Collobert, R. and J. Weston. 2008. A unified architecture for
natural language processing: Deep neural networks with
multitask learning. JCML.

Collobert, R., J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural language
processing (almost) from scratch. JMLR, 12:2493-2537.

Elman, J. L. 1990. Finding structure in time. Cognitive sci-
ence, 14(2):179-211.

Foland, W. and J. H. Martin. 2016. CU-NLP at SemEval-
2016 task 8: AMR parsing using LSTM-based recurrent
neural networks. SemEval-2016.

Gers, F. A., J. Schmidhuber, and F. Cummins. 2000. Learn-
ing to forget: Continual prediction with Istm. Neural
computation, 12(10):2451-2471.

Giles, C. L., G. M. Kuhn, and R. J. Williams. 1994. Dynamic
recurrent neural networks: Theory and applications.
IEEE Trans. Neural Netw. Learning Syst., 5(2):153-156.

Graves, A. 2013. Generating sequences with recurrent neural
networks. ArXiv.

Graves, A., S. Fernandez, M. Liwicki, H. Bunke, and
J. Schmidhuber. 2007. Unconstrained on-line handwrit-
ing recognition with recurrent neural networks. NeurlPS.

Graves, A., A. Mohamed, and G. E. Hinton. 2013. Speech
recognition with deep recurrent neural networks. IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP.

Graves, A. and J. Schmidhuber. 2005. Framewise phoneme
classification with bidirectional LSTM and other neural
network architectures. Neural Networks, 18(5-6):602—
610.

Graves, A., G. Wayne, and I. Danihelka. 2014. Neural Tur-
ing machines. ArXiv.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual
learning for image recognition. CVPR.

Hermann, K. M., T. Ko¢isky, E. Grefenstette, L. Espeholt,
W. Kay, M. Suleyman, and P. Blunsom. 2015. Teach-
ing machines to read and comprehend. Proceedings of
the 28th International Conference on Neural Information
Processing Systems - Volume 1. MIT Press.

Hochreiter, S. and J. Schmidhuber. 1997. Long short-term
memory. Neural Computation, 9(8):1735-1780.

Irsoy, O. and C. Cardie. 2014. Opinion mining with deep
recurrent neural networks. EMNLP.

Jordan, M. 1986. Serial order: A parallel distributed process-
ing approach. Technical Report ICS Report 8604, Univer-
sity of California, San Diego.

Ling, W., C. Dyer, A. W. Black, I. Trancoso, R. Fermandez,
S. Amir, L. Marujo, and T. Luis. 2015. Finding function
in form: Compositional character models for open vocab-
ulary word representation. EMNLP.

Liu, Y., C. Sun, L. Lin, and X. Wang. 2016. Learning natural
language inference using bidirectional LSTM model and
inner-attention. ArXiv.

Ma, X. and E. H. Hovy. 2016. End-to-end sequence labeling
via bi-directional LSTM-CNNs-CRF. ACL.

Mathis, D. A. and M. C. Mozer. 1995. On the computational
utility of consciousness. Advances in Neural Information
Processing Systems VII. MIT Press.

McClelland, J. L. and D. E. Rumelhart, editors. 1986. Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 2: Psychological and
Biological Models. MIT Press.

Mikolov, T., K. Chen, G. S. Corrado, and J. Dean. 2013. Ef-
ficient estimation of word representations in vector space.
ICLR 2013.

Mikolov, T., M. Karafiat, L. Burget, J. éernocky, and
S. Khudanpur. 2010. Recurrent neural network based lan-
guage model. INTERSPEECH.

Miller, G. A. and J. A. Selfridge. 1950. Verbal context and
the recall of meaningful material. American Journal of
Psychology, 63:176-185.

Nallapati, R., B. Zhou, C. dos Santos, C. Gulgehre, and
B. Xiang. 2016. Abstractive text summarization using
sequence-to-sequence RNNs and beyond. CoNLL.

Palmer, M., P. Kingsbury, and D. Gildea. 2005. The proposi-
tion bank: An annotated corpus of semantic roles. Com-
putational Linguistics, 31(1):71-106.

Pennington, J., R. Socher, and C. D. Manning. 2014. GloVe:
Global vectors for word representation. EMNLP.

Pradhan, S., E. H. Hovy, M. P. Marcus, M. Palmer, L. A.
Ramshaw, and R. M. Weischedel. 2007. Ontonotes: a
unified relational semantic representation. Int. J. Seman-
tic Computing, 1(4):405-419.

Robinson, T., M. Hochberg, and S. Renals. 1996. The use
of recurrent neural networks in continuous speech recog-
nition. In C.-H. Lee, F. K. Soong, and K. K. Paliwal,
editors, Automatic speech and speaker recognition, pages
233-258. Springer.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986.
Learning internal representations by error propagation. In
D. E. Rumelhart and J. L. McClelland, editors, Parallel
Distributed Processing, volume 2, pages 318-362. MIT
Press.

Rumelhart, D. E. and J. L. McClelland, editors. 1986. Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 1: Foundations. MIT
Press.

Schuster, M. and K. K. Paliwal. 1997. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Process-
ing, 45:2673-2681.

Shannon, C. E. 1951. Prediction and entropy of printed En-
glish. Bell System Technical Journal, 30:50-64.

Sggaard, A. and Y. Goldberg. 2016. Deep multi-task learning
with low level tasks supervised at lower layers. ACL.

Sukhbaatar, S., A. Szlam, J. Weston, and R. Fergus. 2015.
End-to-end memory networks. NeurIPS.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and 1. Polosukhin. 2017. Atten-
tion is all you need. NeurIPS.

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.06450.pdf
https://doi.org/10.18653/v1/D16-1053
https://doi.org/10.18653/v1/D16-1053
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.18653/v1/S16-1185
https://doi.org/10.18653/v1/S16-1185
https://doi.org/10.18653/v1/S16-1185
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/pdf/1410.5401.pdf
https://arxiv.org/pdf/1410.5401.pdf
https://doi.org/10.3115/v1/D14-1080
https://doi.org/10.3115/v1/D14-1080
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
https://arxiv.org/pdf/1605.09090.pdf
https://arxiv.org/pdf/1605.09090.pdf
https://arxiv.org/pdf/1605.09090.pdf
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038

Bibliographical and Historical Notes

31

Werbos, P. 1974. Beyond regression: new tools for predic-
tion and analysis in the behavioral sciences. Ph.D. thesis,
Harvard University.

Werbos, P. J. 1990. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE,
78(10):1550-1560.

Weston, J., S. Chopra, and A. Bordes. 2015. Memory net-
works. ICLR 2015.

Zhou, J. and W. Xu. 2015. End-to-end learning of semantic
role labeling using recurrent neural networks. ACL.

https://arxiv.org/pdf/1410.3916.pdf
https://arxiv.org/pdf/1410.3916.pdf
https://doi.org/10.3115/v1/P15-1109
https://doi.org/10.3115/v1/P15-1109

	Deep Learning Architectures for Sequence Processing
	Language Models Revisited
	Recurrent Neural Networks
	Inference in RNNs
	Training

	RNNs as Language Models
	RNNs for other NLP tasks
	Sequence Labeling
	RNNs for Sequence Classification
	Generation with RNN-Based Language Models

	Stacked and Bidirectional RNN architectures
	Stacked RNNs
	Bidirectional RNNs

	The LSTM
	Gated Units, Layers and Networks

	Self-Attention Networks: Transformers
	Transformer Blocks
	Multihead Attention
	Modeling word order: positional embeddings

	Transformers as Language Models
	Contextual Generation and Summarization
	Applying Transformers to other NLP tasks

	Summary
	Bibliographical and Historical Notes

