
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All

rights reserved. Draft of December 29, 2021.

CHAPTER

10 Machine Translation and
Encoder-Decoder Models

“I want to talk the dialect of your people. It’s no use of talking unless
people understand what you say.”

Zora Neale Hurston, Moses, Man of the Mountain 1939, p. 121

This chapter introduces machine translation (MT), the use of computers to trans-machine
translation

MT late from one language to another.
Of course translation, in its full generality, such as the translation of literature, or

poetry, is a difficult, fascinating, and intensely human endeavor, as rich as any other
area of human creativity.

Machine translation in its present form therefore focuses on a number of very
practical tasks. Perhaps the most common current use of machine translation is
for information access. We might want to translate some instructions on the web,information

access
perhaps the recipe for a favorite dish, or the steps for putting together some furniture.
Or we might want to read an article in a newspaper, or get information from an
online resource like Wikipedia or a government webpage in a foreign language.
MT for information
access is probably
one of the most com-
mon uses of NLP
technology, and Google
Translate alone (shown above) translates hundreds of billions of words a day be-
tween over 100 languages.

Another common use of machine translation is to aid human translators. MT sys-
tems are routinely used to produce a draft translation that is fixed up in a post-editingpost-editing

phase by a human translator. This task is often called computer-aided translation
or CAT. CAT is commonly used as part of localization: the task of adapting contentCAT

localization or a product to a particular language community.
Finally, a more recent application of MT is to in-the-moment human commu-

nication needs. This includes incremental translation, translating speech on-the-fly
before the entire sentence is complete, as is commonly used in simultaneous inter-
pretation. Image-centric translation can be used for example to use OCR of the text
on a phone camera image as input to an MT system to translate menus or street signs.

The standard algorithm for MT is the encoder-decoder network, also called theencoder-
decoder

sequence to sequence network, an architecture that can be implemented with RNNs
or with Transformers. We’ve seen in prior chapters that RNN or Transformer archi-
tecture can be used to do classification (for example to map a sentence to a positive
or negative sentiment tag for sentiment analysis), or can be used to do sequence la-
beling (for example to assign each word in an input sentence with a part-of-speech,
or with a named entity tag). For part-of-speech tagging, recall that the output tag is
associated directly with each input word, and so we can just model the tag as output
yt for each input word xt .

2 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

Encoder-decoder or sequence-to-sequence models are used for a different kind
of sequence modeling in which the output sequence is a complex function of the
entire input sequencer; we must map from a sequence of input words or tokens to a
sequence of tags that are not merely direct mappings from individual words.

Machine translation is exactly such a task: the words of the target language
don’t necessarily agree with the words of the source language in number or order.
Consider translating the following made-up English sentence into Japanese.

(10.1) English: He wrote a letter to a friend
Japanese: tomodachi

friend
ni
to

tegami-o
letter

kaita
wrote

Note that the elements of the sentences are in very different places in the different
languages. In English, the verb is in the middle of the sentence, while in Japanese,
the verb kaita comes at the end. The Japanese sentence doesn’t require the pronoun
he, while English does.

Such differences between languages can be quite complex. In the following ac-
tual sentence from the United Nations, notice the many changes between the Chinese
sentence (we’ve given in red a word-by-word gloss of the Chinese characters) and
its English equivalent.

(10.2) 大会/General Assembly在/on 1982年/1982 12月/December 10日/10通过
了/adopted第37号/37th决议/resolution，核准了/approved第二
次/second探索/exploration及/and和平peaceful利用/using外层空
间/outer space会议/conference的/of各项/various建议/suggestions。

On 10 December 1982 , the General Assembly adopted resolution 37 in
which it endorsed the recommendations of the Second United Nations
Conference on the Exploration and Peaceful Uses of Outer Space .

Note the many ways the English and Chinese differ. For example the order-
ing differs in major ways; the Chinese order of the noun phrase is “peaceful using
outer space conference of suggestions” while the English has “suggestions of the ...
conference on peaceful use of outer space”). And the order differs in minor ways
(the date is ordered differently). English requires the in many places that Chinese
doesn’t, and adds some details (like “in which” and “it”) that aren’t necessary in
Chinese. Chinese doesn’t grammatically mark plurality on nouns (unlike English,
which has the “-s” in “recommendations”), and so the Chinese must use the modi-
fier各项/various to make it clear that there is not just one recommendation. English
capitalizes some words but not others.

Encoder-decoder networks are very successful at handling these sorts of com-
plicated cases of sequence mappings. Indeed, the encoder-decoder algorithm is not
just for MT; it’s the state of the art for many other tasks where complex mappings
between two sequences are involved. These include summarization (where we map
from a long text to its summary, like a title or an abstract), dialogue (where we map
from what the user said to what our dialogue system should respond), semantic
parsing (where we map from a string of words to a semantic representation like
logic or SQL), and many others.

We’ll introduce the algorithm in sections Section 10.2, and in following sections
give important components of the model like beam search decoding, and we’ll
discuss how MT is evaluated, introducing the simple chrF metric.

But first, in the next section, we begin by summarizing the linguistic background
to MT: key differences among languages that are important to consider when con-
sidering the task of translation.

10.1 • LANGUAGE DIVERGENCES AND TYPOLOGY 3

10.1 Language Divergences and Typology

Some aspects of human language seem to be universal, holding true for every lan-universal

guage, or are statistical universals, holding true for most languages. Many universals
arise from the functional role of language as a communicative system by humans.
Every language, for example, seems to have words for referring to people, for talking
about eating and drinking, for being polite or not. There are also structural linguistic
universals; for example, every language seems to have nouns and verbs (Chapter 8),
has ways to ask questions, or issue commands, linguistic mechanisms for indicating
agreement or disagreement.

Yet languages also differ in many ways, and an understanding of what causes
such translation divergences will help us build better MT models. We often distin-translation

divergence
guish the idiosyncratic and lexical differences that must be dealt with one by one
(the word for ”dog” differs wildly from language to language), from systematic dif-
ferences that we can model in a general way (many languages put the verb before the
direct object; others put the verb after the direct object). The study of these system-
atic cross-linguistic similarities and differences is called linguistic typology. Thistypology

section sketches some typological facts that impact machine translation; the inter-
ested reader should also look into WALS, the World Atlas of Language Structures,
which gives many typological facts about languages (Dryer and Haspelmath, 2013).

10.1.1 Word Order Typology
As we hinted it in our example above comparing English and Japanese, languages
differ in the basic word order of verbs, subjects, and objects in simple declara-
tive clauses. German, French, English, and Mandarin, for example, are all SVOSVO

(Subject-Verb-Object) languages, meaning that the verb tends to come between
the subject and object. Hindi and Japanese, by contrast, are SOV languages, mean-SOV

ing that the verb tends to come at the end of basic clauses, and Irish and Arabic are
VSO languages. Two languages that share their basic word order type often haveVSO

other similarities. For example, VO languages generally have prepositions, whereas
OV languages generally have postpositions.

Let’s look in more detail at the example we saw above. In this SVO English
sentence, the verb wrote is followed by its object a letter and the prepositional phrase
to a friend, in which the preposition to is followed by its argument a friend. Arabic,
with a VSO order, also has the verb before the object and prepositions. By contrast,
in the Japanese example that follows, each of these orderings is reversed; the verb is
preceded by its arguments, and the postposition follows its argument.

(10.3) English: He wrote a letter to a friend
Japanese: tomodachi

friend
ni
to

tegami-o
letter

kaita
wrote

Arabic: katabt
wrote

risāla
letter

li
to

ṡadq
friend

Other kinds of ordering preferences vary idiosyncratically from language to lan-
guage. In some SVO languages (like English and Mandarin) adjectives tend to
appear before verbs, while in others languages like Spanish and Modern Hebrew,
adjectives appear after the noun:

(10.4) Spanish bruja verde English green witch

4 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

(a) (b)

Figure 10.1 Examples of other word order differences: (a) In German, adverbs occur in
initial position that in English are more natural later, and tensed verbs occur in second posi-
tion. (b) In Mandarin, preposition phrases expressing goals often occur pre-verbally, unlike
in English.

Fig. 10.1 shows examples of other word order differences. All of these word
order differences between languages can cause problems for translation, requiring
the system to do huge structural reorderings as it generates the output.

10.1.2 Lexical Divergences
Of course we also need to translate the individual words from one language to an-
other. For any translation, the appropriate word can vary depending on the context.
The English source-language word bass, for example, can appear in Spanish as the
fish lubina or the musical instrument bajo. German uses two distinct words for what
in English would be called a wall: Wand for walls inside a building, and Mauer for
walls outside a building. Where English uses the word brother for any male sib-
ling, Chinese and many other languages have distinct words for older brother and
younger brother (Mandarin gege and didi, respectively). In all these cases, trans-
lating bass, wall, or brother from English would require a kind of specialization,
disambiguating the different uses of a word. For this reason the fields of MT and
Word Sense Disambiguation (Chapter 18) are closely linked.

Sometimes one language places more grammatical constraints on word choice
than another. We saw above that English marks nouns for whether they are singular
or plural. Mandarin doesn’t. Or French and Spanish, for example, mark grammat-
ical gender on adjectives, so an English translation into French requires specifying
adjective gender.

The way that languages differ in lexically dividing up conceptual space may be
more complex than this one-to-many translation problem, leading to many-to-many
mappings. For example, Fig. 10.2 summarizes some of the complexities discussed
by Hutchins and Somers (1992) in translating English leg, foot, and paw, to French.
For example, when leg is used about an animal it’s translated as French jambe; but
about the leg of a journey, as French etape; if the leg is of a chair, we use French
pied.

Further, one language may have a lexical gap, where no word or phrase, shortlexical gap

of an explanatory footnote, can express the exact meaning of a word in the other
language. For example, English does not have a word that corresponds neatly to
Mandarin xiào or Japanese oyakōkōo (in English one has to make do with awkward
phrases like filial piety or loving child, or good son/daughter for both).

Finally, languages differ systematically in how the conceptual properties of an
event are mapped onto specific words. Talmy (1985, 1991) noted that languages
can be characterized by whether direction of motion and manner of motion are
marked on the verb or on the “satellites”: particles, prepositional phrases, or ad-
verbial phrases. For example, a bottle floating out of a cave would be described in
English with the direction marked on the particle out, while in Spanish the direction

10.1 • LANGUAGE DIVERGENCES AND TYPOLOGY 5

etape patte

jambe pied

 paw

 footleg
JOURNEY ANIMAL

HUMAN CHAIR

ANIMAL

BIRD

HUMAN

Figure 10.2 The complex overlap between English leg, foot, etc., and various French trans-
lations as discussed by Hutchins and Somers (1992).

would be marked on the verb:

(10.5) English: The bottle floated out.
Spanish: La

The
botella
bottle

salió
exited

flotando.
floating.

Verb-framed languages mark the direction of motion on the verb (leaving theverb-framed

satellites to mark the manner of motion), like Spanish acercarse ‘approach’, al-
canzar ‘reach’, entrar ‘enter’, salir ‘exit’. Satellite-framed languages mark thesatellite-framed

direction of motion on the satellite (leaving the verb to mark the manner of motion),
like English crawl out, float off, jump down, run after. Languages like Japanese,
Tamil, and the many languages in the Romance, Semitic, and Mayan languages fam-
ilies, are verb-framed; Chinese as well as non-Romance Indo-European languages
like English, Swedish, Russian, Hindi, and Farsi are satellite framed (Talmy 1991,
Slobin 1996).

10.1.3 Morphological Typology
Morphologically, languages are often characterized along two dimensions of vari-
ation. The first is the number of morphemes per word, ranging from isolatingisolating

languages like Vietnamese and Cantonese, in which each word generally has one
morpheme, to polysynthetic languages like Siberian Yupik (“Eskimo”), in which apolysynthetic

single word may have very many morphemes, corresponding to a whole sentence in
English. The second dimension is the degree to which morphemes are segmentable,
ranging from agglutinative languages like Turkish, in which morphemes have rel-agglutinative

atively clean boundaries, to fusion languages like Russian, in which a single affixfusion

may conflate multiple morphemes, like -om in the word stolom (table-SG-INSTR-
DECL1), which fuses the distinct morphological categories instrumental, singular,
and first declension.

Translating between languages with rich morphology requires dealing with struc-
ture below the word level, and for this reason modern systems generally use subword
models like the wordpiece or BPE models of Section 10.7.1.

10.1.4 Referential density
Finally, languages vary along a typological dimension related to the things they tend
to omit. Some languages, like English, require that we use an explicit pronoun when
talking about a referent that is given in the discourse. In other languages, however,
we can sometimes omit pronouns altogether, as the following example from Spanish
shows1:

1 Here we use the /0-notation; we’ll introduce this and discuss this issue further in Chapter 22

6 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

(10.6) [El jefe]i dio con un libro. /0i Mostró a un descifrador ambulante.
[The boss] came upon a book. [He] showed it to a wandering decoder.

Languages that can omit pronouns are called pro-drop languages. Even amongpro-drop

the pro-drop languages, there are marked differences in frequencies of omission.
Japanese and Chinese, for example, tend to omit far more than does Spanish. This
dimension of variation across languages is called the dimension of referential den-
sity. We say that languages that tend to use more pronouns are more referentiallyreferential

density
dense than those that use more zeros. Referentially sparse languages, like Chinese or
Japanese, that require the hearer to do more inferential work to recover antecedents
are also called cold languages. Languages that are more explicit and make it easiercold language

for the hearer are called hot languages. The terms hot and cold are borrowed fromhot language

Marshall McLuhan’s 1964 distinction between hot media like movies, which fill in
many details for the viewer, versus cold media like comics, which require the reader
to do more inferential work to fill out the representation (Bickel, 2003).

Translating from languages with extensive pro-drop, like Chinese or Japanese, to
non-pro-drop languages like English can be difficult since the model must somehow
identify each zero and recover who or what is being talked about in order to insert
the proper pronoun.

10.2 The Encoder-Decoder Model

Encoder-decoder networks, or sequence-to-sequence networks, are models ca-encoder-
decoder

pable of generating contextually appropriate, arbitrary length, output sequences.
Encoder-decoder networks have been applied to a very wide range of applications
including machine translation, summarization, question answering, and dialogue.

The key idea underlying these networks is the use of an encoder network that
takes an input sequence and creates a contextualized representation of it, often called
the context. This representation is then passed to a decoder which generates a task-
specific output sequence. Fig. 10.3 illustrates the architecture

…

Encoder

Decoder

Context

…

x1 x2 xn

y1 y2 ym

Figure 10.3 The encoder-decoder architecture. The context is a function of the hidden
representations of the input, and may be used by the decoder in a variety of ways.

Encoder-decoder networks consist of three components:

1. An encoder that accepts an input sequence, xn
1, and generates a corresponding

sequence of contextualized representations, hn
1. LSTMs, convolutional net-

works, and Transformers can all be employed as encoders.
2. A context vector, c, which is a function of hn

1, and conveys the essence of the
input to the decoder.

10.3 • ENCODER-DECODER WITH RNNS 7

3. A decoder, which accepts c as input and generates an arbitrary length se-
quence of hidden states hm

1 , from which a corresponding sequence of output
states ym

1 , can be obtained. Just as with encoders, decoders can be realized by
any kind of sequence architecture.

10.3 Encoder-Decoder with RNNs

Let’s begin by describing an encoder-decoder network based on a pair of RNNs.2

Recall the conditional RNN language model from Chapter 9 for computing p(y),
the probability of a sequence y. Like any language model, we can break down the
probability as follows:

p(y) = p(y1)p(y2|y1)p(y3|y1,y2)...P(ym|y1, ...,ym−1) (10.7)

At a particular time t, we pass the prefix of t − 1 tokens through the language
model, using forward inference to produce a sequence of hidden states, ending with
the hidden state corresponding to the last word of the prefix. We then use the final
hidden state of the prefix as our starting point to generate the next token.

More formally, if g is an activation function like tanh or ReLU, a function of
the input at time t and the hidden state at time t − 1, and f is a softmax over the
set of possible vocabulary items, then at time t the output yt and hidden state ht are
computed as:

ht = g(ht−1,xt) (10.8)

yt = f (ht) (10.9)

We only have to make one slight change to turn this language model with au-
toregressive generation into a translation model that can translate from a source textsource

in one language to a target text in a second: add a sentence separation marker attarget

the end of the source text, and then simply concatenate the target text. We briefly
introduced this idea of a sentence separator token in Chapter 9 when we considered
using a Transformer language model to do summarization, by training a conditional
language model.

If we call the source text x and the target text y, we are computing the probability
p(y|x) as follows:

p(y|x) = p(y1|x)p(y2|y1,x)p(y3|y1,y2,x)...P(ym|y1, ...,ym−1,x) (10.10)

Fig. 10.4 shows the setup for a simplified version of the encoder-decoder model
(we’ll see the full model, which requires attention, in the next section).

Fig. 10.4 shows an English source text (“the green witch arrived”), a sentence
separator token (<s>, and a Spanish target text (“llegó la bruja verde”). To trans-
late a source text, we run it through the network performing forward inference to
generate hidden states until we get to the end of the source. Then we begin autore-
gressive generation, asking for a word in the context of the hidden layer from the
end of the source input as well as the end-of-sentence marker. Subsequent words
are conditioned on the previous hidden state and the embedding for the last word
generated.

2 Later we’ll see how to use pairs of Transformers as well; it’s even possible to use separate architectures
for the encoder and decoder.

8 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

Source Text

Target Text

hn

embedding
layer

hidden
layer(s)

softmax

the green

llegó

witch arrived <s> llegó

la

la

bruja

bruja

verde

verde

</s>

(output of source is ignored)

Separator

Figure 10.4 Translating a single sentence (inference time) in the basic RNN version of encoder-decoder ap-
proach to machine translation. Source and target sentences are concatenated with a separator token in between,
and the decoder uses context information from the encoder’s last hidden state.

Let’s formalize and generalize this model a bit in Fig. 10.5. (To help keep things
straight, we’ll use the superscripts e and d where needed to distinguish the hidden
states of the encoder and the decoder.) The elements of the network on the left
process the input sequence x and comprise the encoder. While our simplified fig-
ure shows only a single network layer for the encoder, stacked architectures are the
norm, where the output states from the top layer of the stack are taken as the fi-
nal representation. A widely used encoder design makes use of stacked biLSTMs
where the hidden states from top layers from the forward and backward passes are
concatenated as described in Chapter 9 to provide the contextualized representations
for each time step.

Encoder

Decoder

hn
hd

1
he

3he
2he

1
hd

2
hd

3
hd

4

embedding
layer

hidden
layer(s)

softmax

x1 x2

y1

hd

n

x3 xn <s> y1

y2

y2

y3

y3

y4

yn

</s>

he
n = c = hd

0

(output is ignored during encoding)

Figure 10.5 A more formal version of translating a sentence at inference time in the basic RNN-based
encoder-decoder architecture. The final hidden state of the encoder RNN, he

n, serves as the context for the
decoder in its role as hd

0 in the decoder RNN.

The entire purpose of the encoder is to generate a contextualized representation
of the input. This representation is embodied in the final hidden state of the encoder,
he

n. This representation, also called c for context, is then passed to the decoder.
The decoder network on the right takes this state and uses it to initialize the first

10.3 • ENCODER-DECODER WITH RNNS 9

hidden state of the decoder. That is, the first decoder RNN cell uses c as its prior
hidden state hd

0 . The decoder autoregressively generates a sequence of outputs, an
element at a time, until an end-of-sequence marker is generated. Each hidden state
is conditioned on the previous hidden state and the output generated in the previous
state.

hd
1 hd

2 hd
i

y1 y2 yi

c

… …

…

Figure 10.6 Allowing every hidden state of the decoder (not just the first decoder state) to
be influenced by the context c produced by the encoder.

One weakness of this approach as described so far is that the influence of the
context vector, c, will wane as the output sequence is generated. A solution is to
make the context vector c available at each step in the decoding process by adding
it as a parameter to the computation of the current hidden state, using the following
equation (illustrated in Fig. 10.6):

hd
t = g(ŷt−1,hd

t−1,c) (10.11)

Now we’re ready to see the full equations for this version of the decoder in the basic
encoder-decoder model, with context available at each decoding timestep. Recall
that g is a stand-in for some flavor of RNN and ŷt−1 is the embedding for the output
sampled from the softmax at the previous step:

c = he
n

hd
0 = c

hd
t = g(ŷt−1,hd

t−1,c)

zt = f (hd
t)

yt = softmax(zt) (10.12)

Finally, as shown earlier, the output y at each time step consists of a softmax com-
putation over the set of possible outputs (the vocabulary, in the case of language
modeling or MT). We compute the most likely output at each time step by taking the
argmax over the softmax output:

ŷt = argmaxw∈VP(w|x,y1...yt−1) (10.13)

10.3.1 Training the Encoder-Decoder Model
Encoder-decoder architectures are trained end-to-end, just as with the RNN language
models of Chapter 9. Each training example is a tuple of paired strings, a source and
a target. Concatenated with a separator token, these source-target pairs can now
serve as training data.

For MT, the training data typically consists of sets of sentences and their transla-
tions. These can be drawn from standard datasets of aligned sentence pairs, as we’ll
discuss in Section 10.7.2. Once we have a training set, the training itself proceeds
as with any RNN-based language model. The network is given the source text and
then starting with the separator token is trained autoregressively to predict the next
word, as shown in Fig. 10.7.

10 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

Encoder

Decoder

embedding
layer

hidden
layer(s)

softmax

the green

llegó

witch arrived <s> llegó

la

la

bruja

bruja

verde

verde

</s> gold
answers

L1 =
-log P(y1)

x1 x2 x3 x4

<latexit sha1_base64="qOO6QdUN4jKU+f2F+W9QLLbCasc=">AAAB8XicbVBNS8NAEJ3Urxq/qh69BIvgqSQq6rHoxWMF+4FtKJvttl262YTdiRBC/4UXD4p49d9489+4aXPQ1gcDj/dmmJkXxIJrdN1vq7Syura+Ud60t7Z3dvcq+wctHSWKsiaNRKQ6AdFMcMmayFGwTqwYCQPB2sHkNvfbT0xpHskHTGPmh2Qk+ZBTgkZ67I0JZunUtu1+perW3BmcZeIVpAoFGv3KV28Q0SRkEqkgWnc9N0Y/Iwo5FWxq9xLNYkInZMS6hkoSMu1ns4unzolRBs4wUqYkOjP190RGQq3TMDCdIcGxXvRy8T+vm+Dw2s+4jBNkks4XDRPhYOTk7zsDrhhFkRpCqOLmVoeOiSIUTUh5CN7iy8ukdVbzLmvn9xfV+k0RRxmO4BhOwYMrqMMdNKAJFCQ8wyu8Wdp6sd6tj3lrySpmDuEPrM8fWfaQDg==</latexit>

ŷ

L2 =
-log P(y2)

L3 =
-log P(y3)

L4 =
-log P(y4)

L5 =
-log P(y5)

per-word
loss

L =
1

T

TX

i=1

Li

<latexit sha1_base64="eYmTRcKpCAXc4T8/8OMw5FPa7iQ=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRSUBeFohsXXVToC5oYJtNJO3QmCTMToYSs3Pgrblwo4tZvcOffOG2z0NYDFw7n3Mu99/gxo1JZ1rdRWFldW98obpa2tnd298z9g46MEoFJG0csEj0fScJoSNqKKkZ6sSCI+4x0/fHN1O8+ECFpFLbUJCYuR8OQBhQjpSXPPG7UnEAgnNpZ2socmXAvpTU7u2/Bhkc9s2xVrBngMrFzUgY5mp755QwinHASKsyQlH3bipWbIqEoZiQrOYkkMcJjNCR9TUPEiXTT2RsZPNXKAAaR0BUqOFN/T6SISznhvu7kSI3kojcV//P6iQou3ZSGcaJIiOeLgoRBFcFpJnBABcGKTTRBWFB9K8QjpFNROrmSDsFefHmZdM4rdrVydVct16/zOIrgCJyAM2CDC1AHt6AJ2gCDR/AMXsGb8WS8GO/Gx7y1YOQzh+APjM8fl1aYlA==</latexit>

y1 y2 y3 y4 y5

Total loss is the average
cross-entropy loss per

target word:

Figure 10.7 Training the basic RNN encoder-decoder approach to machine translation. Note that in the
decoder we usually don’t propagate the model’s softmax outputs ŷt , but use teacher forcing to force each input
to the correct gold value for training. We compute the softmax output distribution over ŷ in the decoder in order
to compute the loss at each token, which can then be averaged to compute a loss for the sentence.

Note the differences between training (Fig. 10.7) and inference (Fig. 10.4) with
respect to the outputs at each time step. The decoder during inference uses its own
estimated output ŷt as the input for the next time step xt+1. Thus the decoder will
tend to deviate more and more from the gold target sentence as it keeps generating
more tokens. In training, therefore, it is more common to use teacher forcing in theteacher forcing

decoder. Teacher forcing means that we force the system to use the gold target token
from training as the next input xt+1, rather than allowing it to rely on the (possibly
erroneous) decoder output ŷt . This speeds up training.

10.4 Attention

The simplicity of the encoder-decoder model is its clean separation of the encoder—
which builds a representation of the source text—from the decoder, which uses this
context to generate a target text. In the model as we’ve described it so far, this
context vector is hn, the hidden state of the last (nth) time step of the source text.
This final hidden state is thus acting as a bottleneck: it must represent absolutely
everything about the meaning of the source text, since the only thing the decoder
knows about the source text is what’s in this context vector (Fig. 10.8). Information
at the beginning of the sentence, especially for long sentences, may not be equally
well represented in the context vector.

The attention mechanism is a solution to the bottleneck problem, a way ofattention
mechanism

allowing the decoder to get information from all the hidden states of the encoder,
not just the last hidden state.

In the attention mechanism, as in the vanilla encoder-decoder model, the context
vector c is a single vector that is a function of the hidden states of the encoder, that
is, c = f (he

1 . . .h
e
n). Because the number of hidden states varies with the size of the

10.4 • ATTENTION 11

Encoder Decoderbottleneck
bottleneck

Figure 10.8 Requiring the context c to be only the encoder’s final hidden state forces all the
information from the entire source sentence to pass through this representational bottleneck.

input, we can’t use the entire tensor of encoder hidden state vectors directly as the
context for the decoder.

The idea of attention is instead to create the single fixed-length vector c by taking
a weighted sum of all the encoder hidden states. The weights focus on (‘attend
to’) a particular part of the source text that is relevant for the token the decoder is
currently producing. Attention thus replaces the static context vector with one that
is dynamically derived from the encoder hidden states, different for each token in
decoding.

This context vector, ci, is generated anew with each decoding step i and takes
all of the encoder hidden states into account in its derivation. We then make this
context available during decoding by conditioning the computation of the current
decoder hidden state on it (along with the prior hidden state and the previous output
generated by the decoder), as we see in this equation (and Fig. 10.9):

hd
i = g(ŷi−1,hd

i−1,ci) (10.14)

hd
1 hd

2 hd
i

y1 y2 yi

c1 c2 ci

… …

Figure 10.9 The attention mechanism allows each hidden state of the decoder to see a
different, dynamic, context, which is a function of all the encoder hidden states.

The first step in computing ci is to compute how much to focus on each encoder
state, how relevant each encoder state is to the decoder state captured in hd

i−1. We
capture relevance by computing— at each state i during decoding—a score(hd

i−1,h
e
j)

for each encoder state j.
The simplest such score, called dot-product attention, implements relevance asdot-product

attention
similarity: measuring how similar the decoder hidden state is to an encoder hidden
state, by computing the dot product between them:

score(hd
i−1,h

e
j) = hd

i−1 · he
j (10.15)

The score that results from this dot product is a scalar that reflects the degree of
similarity between the two vectors. The vector of these scores across all the encoder
hidden states gives us the relevance of each encoder state to the current step of the
decoder.

To make use of these scores, we’ll normalize them with a softmax to create a
vector of weights, αi j, that tells us the proportional relevance of each encoder hidden

12 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

state j to the prior hidden decoder state, hd
i−1.

αi j = softmax(score(hd
i−1,h

e
j) ∀ j ∈ e)

=
exp(score(hd

i−1,h
e
j)∑

k exp(score(hd
i−1,h

e
k))

(10.16)

Finally, given the distribution in α , we can compute a fixed-length context vector for
the current decoder state by taking a weighted average over all the encoder hidden
states.

ci =
∑

j

αi j he
j (10.17)

With this, we finally have a fixed-length context vector that takes into account
information from the entire encoder state that is dynamically updated to reflect the
needs of the decoder at each step of decoding. Fig. 10.10 illustrates an encoder-
decoder network with attention, focusing on the computation of one context vector
ci.

Encoder

Decoder

hd
i-1he

3he
2he

1
hd

ihidden
layer(s)

x1 x2

yi

x3 xn
yi-1 yi

yi+1

he
n

ci

.2.1.3.4attention
weights

ci-1

ci

<latexit sha1_base64="TNdNmv/RIlrhPa6LgQyjjQLqyBA=">AAACAnicdVDLSsNAFJ3UV62vqCtxM1gEVyHpI9Vd0Y3LCvYBTQyT6bSddvJgZiKUUNz4K25cKOLWr3Dn3zhpK6jogQuHc+7l3nv8mFEhTfNDyy0tr6yu5dcLG5tb2zv67l5LRAnHpIkjFvGOjwRhNCRNSSUjnZgTFPiMtP3xRea3bwkXNAqv5SQmboAGIe1TjKSSPP3AEUngjVIHsXiIvJSOpnB4Q7zR1NOLpmGaVbtqQdOwLbtk24qY5Yp9VoOWsjIUwQINT393ehFOAhJKzJAQXcuMpZsiLilmZFpwEkFihMdoQLqKhiggwk1nL0zhsVJ6sB9xVaGEM/X7RIoCISaBrzoDJIfit5eJf3ndRPZP3ZSGcSJJiOeL+gmDMoJZHrBHOcGSTRRBmFN1K8RDxBGWKrWCCuHrU/g/aZUMyzbKV5Vi/XwRRx4cgiNwAixQA3VwCRqgCTC4Aw/gCTxr99qj9qK9zltz2mJmH/yA9vYJSymYCA==</latexit>X

j

↵ijh
e
j

↵ij <latexit sha1_base64="y8s4mGdpwrGrBnuSR+p1gJJXYdo=">AAAB/nicdVDJSgNBEO2JW4zbqHjy0hgEL4YeJyQBL0EvHiOYBbIMPT09mTY9C909QhgC/ooXD4p49Tu8+Td2FkFFHxQ83quiqp6bcCYVQh9Gbml5ZXUtv17Y2Nza3jF391oyTgWhTRLzWHRcLClnEW0qpjjtJILi0OW07Y4up377jgrJ4uhGjRPaD/EwYj4jWGnJMQ+Cgedk7NSa9IgXq955MKDOrWMWUQnNAFGpYtfsakUTZNtWGUFrYRXBAg3HfO95MUlDGinCsZRdCyWqn2GhGOF0UuilkiaYjPCQdjWNcEhlP5udP4HHWvGgHwtdkYIz9ftEhkMpx6GrO0OsAvnbm4p/ed1U+bV+xqIkVTQi80V+yqGK4TQL6DFBieJjTTARTN8KSYAFJkonVtAhfH0K/yets5JVKdnX5WL9YhFHHhyCI3ACLFAFdXAFGqAJCMjAA3gCz8a98Wi8GK/z1pyxmNkHP2C8fQICDpWK</latexit>

hd
i�1 · he

j

……

Figure 10.10 A sketch of the encoder-decoder network with attention, focusing on the computation of ci. The
context value ci is one of the inputs to the computation of hd

i . It is computed by taking the weighted sum of all
the encoder hidden states, each weighted by their dot product with the prior decoder hidden state hd

i−1.

It’s also possible to create more sophisticated scoring functions for attention
models. Instead of simple dot product attention, we can get a more powerful function
that computes the relevance of each encoder hidden state to the decoder hidden state
by parameterizing the score with its own set of weights, Ws.

score(hd
i−1,h

e
j) = hd

t−1Wshe
j

The weights Ws, which are then trained during normal end-to-end training, give the
network the ability to learn which aspects of similarity between the decoder and
encoder states are important to the current application. This bilinear model also
allows the encoder and decoder to use different dimensional vectors, whereas the
simple dot-product attention requires that the encoder and decoder hidden states
have the same dimensionality.

10.5 • BEAM SEARCH 13

10.5 Beam Search

The decoding algorithm we gave above for generating translations has a problem (as
does the autoregressive generation we introduced in Chapter 9 for generating from a
conditional language model). Recall that algorithm: at each time step in decoding,
the output yt is chosen by computing a softmax over the set of possible outputs (the
vocabulary, in the case of language modeling or MT), and then choosing the highest
probability token (the argmax):

ŷt = argmaxw∈VP(w|x,y1...yt−1) (10.18)

Choosing the single most probable token to generate at each step is called greedygreedy

decoding; a greedy algorithm is one that make a choice that is locally optimal,
whether or not it will turn out to have been the best choice with hindsight.

Indeed, greedy search is not optimal, and may not find the highest probability
translation. The problem is that the token that looks good to the decoder now might
turn out later to have been the wrong choice!

Let’s see this by looking at the search tree, a graphical representation of thesearch tree

choices the decoder makes in searching for the best translation, in which we view
the decoding problem as a heuristic state-space search and systematically explore
the space of possible outputs. In such a search tree, the branches are the actions, in
this case the action of generating a token, and the nodes are the states, in this case
the state of having generated a particular prefix. We are searching for the best action
sequence, i.e. the target string with the highest probability. Fig. 10.11 demonstrates
the problem, using a made-up example. Notice that the most probable sequence is
ok ok </s> (with a probability of .4*.7*1.0), but a greedy search algorithm will fail
to find it, because it incorrectly chooses yes as the first word since it has the highest
local probability.

start

ok

yes

</s>

ok

yes

</s>

ok

yes

</s>

</s>

</s>

</s>

</s>

t2 t3

p(t1|source)

t1

p(t2|source, t1)

p(t3|source, t1,t2)

.1

.5

.4

.2
.4
.3

.1
.2
.7

1.0

1.0

1.0

1.0

Figure 10.11 A search tree for generating the target string T = t1, t2, ... from the vocabulary
V = {yes,ok,<s>}, given the source string, showing the probability of generating each token
from that state. Greedy search would choose yes at the first time step followed by yes, instead
of the globally most probable sequence ok ok.

Recall from Chapter 8 that for part-of-speech tagging we used dynamic pro-
gramming search (the Viterbi algorithm) to address this problem. Unfortunately,
dynamic programming is not applicable to generation problems with long-distance
dependencies between the output decisions. The only method guaranteed to find the

14 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

best solution is exhaustive search: computing the probability of every one of the V T

possible sentences (for some length value T) which is obviously too slow.
Instead, decoding in MT and other sequence generation problems generally uses

a method called beam search. In beam search, instead of choosing the best tokenbeam search

to generate at each timestep, we keep k possible tokens at each step. This fixed-size
memory footprint k is called the beam width, on the metaphor of a flashlight beambeam width

that can be parameterized to be wider or narrower.
Thus at the first step of decoding, we compute a softmax over the entire vocab-

ulary, assigning a probability to each word. We then select the k-best options from
this softmax output. These initial k outputs are the search frontier and these k initial
words are called hypotheses. A hypothesis is an output sequence, a translation-so-
far, together with its probability.

a
…

aardvark
..

arrived
..
the
…
zebra

start

t1

a
…

aardvark
..
the
..

witch
…
zebra

a
…

aardvark
..

green
..

witch
…
zebra

t2

hd
1

y1

EOS

y1
y2

y2

hd
1 hd

2

the

theEOS

hd
2

green

green

y3

hd
1 hd

2

arrived

arrivedEOS

y2

t3

hd
1 hd

2

the

theEOS

y2

hd
1 hd

2

the

theEOS

hd
2

witch

witch

y3

a
…
mage
..
the
..

witch
…
zebra

arrived
…

aardvark
..

green
..
who
…
zebra

y3

y3

Figure 10.12 Beam search decoding with a beam width of k = 2. At each time step, we choose the k best
hypotheses, compute the V possible extensions of each hypothesis, score the resulting k∗V possible hypotheses
and choose the best k to continue. At time 1, the frontier is filled with the best 2 options from the initial state
of the decoder: arrived and the. We then extend each of those, compute the probability of all the hypotheses so
far (arrived the, arrived aardvark, the green, the witch) and compute the best 2 (in this case the green and the
witch) to be the search frontier to extend on the next step. On the arcs we show the decoders that we run to score
the extension words (although for simplicity we haven’t shown the context value ci that is input at each step).

At subsequent steps, each of the k best hypotheses is extended incrementally
by being passed to distinct decoders, which each generate a softmax over the entire
vocabulary to extend the hypothesis to every possible next token. Each of these k∗V
hypotheses is scored by P(yi|x,y<i): the product of the probability of current word
choice multiplied by the probability of the path that led to it. We then prune the k∗V
hypotheses down to the k best hypotheses, so there are never more than k hypotheses

10.5 • BEAM SEARCH 15

at the frontier of the search, and never more than k decoders.
Fig. 10.12 illustrates this process with a beam width of 2.
This process continues until a </s> is generated indicating that a complete can-

didate output has been found. At this point, the completed hypothesis is removed
from the frontier and the size of the beam is reduced by one. The search continues
until the beam has been reduced to 0. The result will be k hypotheses.

Let’s see how the scoring works in detail, scoring each node by its log proba-
bility. Recall from Eq. 10.10 that we can use the chain rule of probability to break
down p(y|x) into the product of the probability of each word given its prior context,
which we can turn into a sum of logs (for an output string of length t):

score(y) = logP(y|x)
= log(P(y1|x)P(y2|y1,x)P(y3|y1,y2,x)...P(yt |y1, ...,yt−1,x))

=

t∑

i=1

logP(yi|y1, ...,yi−1,x) (10.19)

Thus at each step, to compute the probability of a partial translation, we simply add
the log probability of the prefix translation so far to the log probability of generating
the next token. Fig. 10.13 shows the scoring for the example sentence shown in
Fig. 10.12, using some simple made-up probabilities. Log probabilities are negative
or 0, and the max of two log probabilities is the one that is greater (closer to 0).

start

arrived

the

the

witch

green

witch

mage

who

y2 y3

log P(y1|x)

y1

log P(y2|y1,x) log P(y3|y2,y1,x)

-.92

-1.6

-1.2

-.69

-2.3

-.69

-1.6

-2.3

arrived-.11

-.51 witch

-.36

-.22
END

-.51
END

-2.3
at

-1.61
by

log P(y4|y3,y2,y1,x) log P(y5|y4,y3,y2,y1,x)

arrived

came-1.6

y4 y5

log P(arrived|x) log P(arrived witch|x)

log P(the|x)

log P(the green|x)

log P(the witch|x)

 =-1.6

log P (arrived the|x) log P (“the green witch arrived”|x)
= log P (the|x) + log P(green|the,x)

+ log P(witch | the, green,x)
+logP(arrived|the,green,witch,x)

+log P(END|the,green,witch,arrived,x)

= -2.3

= -3.9

= -1.6

= -2.1

=-.92

-2.1

-3.2

-4.4

-2.2

-2.5

-3.7

-2.7

-3.8

-2.7

-4.8

Figure 10.13 Scoring for beam search decoding with a beam width of k = 2. We maintain the log probability
of each hypothesis in the beam by incrementally adding the logprob of generating each next token. Only the top
k paths are extended to the next step.

Fig. 10.14 gives the algorithm.
One problem arises from the fact that the completed hypotheses may have differ-

ent lengths. Because models generally assign lower probabilities to longer strings,
a naive algorithm would also choose shorter strings for y. This was not an issue
during the earlier steps of decoding; due to the breadth-first nature of beam search
all the hypotheses being compared had the same length. The usual solution to this is

16 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

function BEAMDECODE(c, beam width) returns best paths

y0, h0←0
path← ()
complete paths← ()
state← (c, y0, h0, path) ;initial state
frontier←〈state〉 ;initial frontier

while frontier contains incomplete paths and beamwidth > 0
extended frontier←〈〉
for each state ∈ frontier do

y←DECODE(state)
for each word i ∈ Vocabulary do

successor←NEWSTATE(state, i, yi)
extended frontier←ADDTOBEAM(successor, extended frontier,

beam width)

for each state in extended frontier do
if state is complete do

complete paths←APPEND(complete paths, state)
extended frontier←REMOVE(extended frontier, state)
beam width←beam width - 1

frontier←extended frontier

return completed paths

function NEWSTATE(state, word, word prob) returns new state

function ADDTOBEAM(state, frontier, width) returns updated frontier

if LENGTH(frontier) < width then
frontier← INSERT(state, frontier)

else if SCORE(state) > SCORE(WORSTOF(frontier))
frontier←REMOVE(WORSTOF(frontier))
frontier← INSERT(state, frontier)

return frontier

Figure 10.14 Beam search decoding.

to apply some form of length normalization to each of the hypotheses, for example
simply dividing the negative log probability by the number of words:

score(y) =− logP(y|x) =
1
T

t∑

i=1

− logP(yi|y1, ...,yi−1,x) (10.20)

Beam search is common in large production MT systems, generally with beam
widths k between 5 and 10. What do we do with the resulting k hypotheses? In
some cases, all we need from our MT algorithm is the single best hypothesis, so we
can return that. In other cases our downstream application might want to look at all
k hypotheses, so we can pass them all (or a subset) to the downstream application
with their respective scores.

10.6 • ENCODER-DECODER WITH TRANSFORMERS 17

10.6 Encoder-Decoder with Transformers

The encoder-decoder architecture can also be implemented using transformers (rather
than RNN/LSTMs) as the component modules. At a high-level, the architecture,
sketched in Fig. 10.15, is quite similar to what we saw for RNNs. It consists of an
encoder that takes the source language input words X = x1, ...,xT and maps them
to an output representation Henc = h1, ...,hT ; usually via N = 6 stacked encoder
blocks. The decoder, just like the encoder-decoder RNN, is essentially a conditional
language model that attends to the encoder representation and generates the target
words one by one, at each timestep conditioning on the source sentence and the
previously generated target language words.

Encoder

The green

llego

witch arrived
<s> llego

la

la

bruja

bruja

verde

verde

</s>

Decoder

h h h h

cross-attention

transformer
blocks

Figure 10.15 The encoder-decoder architecture using transformer components. The encoder uses the trans-
former blocks we saw in Chapter 9, while the decoder uses a more powerful block with an extra encoder-decoder
attention layer. The final output of the encoder Henc = h1, ...,hT is used to form the K and V inputs to the cross-
attention layer in each decoder block.

But the components of the architecture differ somewhat from the RNN and also
from the transformer block we’ve seen. First, in order to attend to the source lan-
guage, the transformer blocks in the decoder has an extra cross-attention layer.
Recall that the transformer block of Chapter 9 consists of a self-attention layer that
attends to the input from the previous layer, followed by layer norm, a feed for-
ward layer, and another layer norm. The decoder transformer block includes an
extra layer with a special kind of attention, cross-attention (also sometimes calledcross-attention

encoder-decoder attention or source attention). Cross-attention has the same form
as the multi-headed self-attention in a normal transformer block, except that while
the queries as usual come from the previous layer of the decoder, the keys and values
come from the output of the encoder.

That is, the final output of the encoder Henc = h1, ...,ht is multiplied by the
cross-attention layer’s key weights WK and value weights WV, but the output from
the prior decoder layer Hdec[i−1] is multiplied by the cross-attention layer’s query
weights WQ:

Q = WQHdec[i−1]; K = WKHenc; V = WVHenc (10.21)

CrossAttention(Q,K,V) = softmax
(

QKᵀ

√
dk

)
V (10.22)

18 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

Self-Attention Layer

Layer Normalize

Feedforward Layer

Layer Normalize

Encoder

x1 x2 x3 xn…

+

+

Causal Self-Attention Layer

Layer Normalize

Cross-Attention Layer

Layer Normalize

Decoder

+

+

hnhnhn …

Feedforward Layer

Layer Normalize

+

hn

Encoder
Block 1

Block 2

Block 3

y3y2y1 … yn

Decoder
Block 1

Block 2

Block 3

Linear Layer

Figure 10.16 The transformer block for the encoder and the decoder. Each decoder block
has an extra cross-attention layer, which uses the output of the final encoder layer Henc =
h1, ...,ht to produce its key and value vectors.

The cross attention thus allows the decoder to attend to each of the source language
words as projected into the the entire encoder final output representations. The other
attention layer in each decoder block, the self-attention layer, is the same causal (left-
to-right) self-attention that we saw in Chapter 9. The self-attention in the encoder,
however, is allowed to look ahead at the entire source language text.

In training, just as for RNN encoder-decoders, we use teacher forcing, and train
autoregressively, at each time step predicting the next token in the target language,
using cross-entropy loss.

10.7 Some practical details on building MT systems

10.7.1 Tokenization
Machine translation systems generally use a fixed vocabulary, A common way to
generate this vocabulary is with the BPE or wordpiece algorithms sketched in Chap-wordpiece

ter 2. Generally a shared vocabulary is used for the source and target languages,
which makes it easy to copy tokens (like names) from source to target, so we build
the wordpiece/BPE lexicon on a corpus that contains both source and target lan-
guage data. Wordpieces use a special symbol at the beginning of each token; here’s
a resulting tokenization from the Google MT system (Wu et al., 2016):

words: Jet makers feud over seat width with big orders at stake
wordpieces: J et makers fe ud over seat width with big orders at stake

We gave the BPE algorithm in detail in Chapter 2; here are more details on the
wordpiece algorithm, which is given a training corpus and a desired vocabulary size

10.7 • SOME PRACTICAL DETAILS ON BUILDING MT SYSTEMS 19

V, and proceeds as follows:

1. Initialize the wordpiece lexicon with characters (for example a subset of Uni-
code characters, collapsing all the remaining characters to a special unknown
character token).

2. Repeat until there are V wordpieces:

(a) Train an n-gram language model on the training corpus, using the current
set of wordpieces.

(b) Consider the set of possible new wordpieces made by concatenating two
wordpieces from the current lexicon. Choose the one new wordpiece that
most increases the language model probability of the training corpus.

A vocabulary of 8K to 32K word pieces is commonly used.

10.7.2 MT corpora
Machine translation models are trained on a parallel corpus, sometimes called aparallel corpus

bitext, a text that appears in two (or more) languages. Large numbers of paral-
lel corpora are available. Some are governmental; the Europarl corpus (Koehn,Europarl

2005), extracted from the proceedings of the European Parliament, contains between
400,000 and 2 million sentences each from 21 European languages. The United Na-
tions Parallel Corpus contains on the order of 10 million sentences in the six official
languages of the United Nations (Arabic, Chinese, English, French, Russian, Span-
ish) Ziemski et al. (2016). Other parallel corpora have been made from movie and
TV subtitles, like the OpenSubtitles corpus (Lison and Tiedemann, 2016), or from
general web text, like the ParaCrawl corpus of 223 million sentence pairs between
23 EU languages and English extracted from the CommonCrawl Bañón et al. (2020).

Sentence alignment

Standard training corpora for MT come as aligned pairs of sentences. When creating
new corpora, for example for underresourced languages or new domains, these sen-
tence alignments must be created. Fig. 10.17 gives a sample hypothetical sentence
alignment.

F1: -Bonjour, dit le petit prince.

F2: -Bonjour, dit le marchand de pilules perfectionnées qui
apaisent la soif.
F3: On en avale une par semaine et l'on n'éprouve plus le
besoin de boire.
F4: -C’est une grosse économie de temps, dit le marchand.

F5: Les experts ont fait des calculs.

F6: On épargne cinquante-trois minutes par semaine.

F7: “Moi, se dit le petit prince, si j'avais cinquante-trois minutes
à dépenser, je marcherais tout doucement vers une fontaine..."

E1: “Good morning," said the little prince.

E2: “Good morning," said the merchant.

E3: This was a merchant who sold pills that had
been perfected to quench thirst.

E4: You just swallow one pill a week and you
won’t feel the need for anything to drink.

E5: “They save a huge amount of time," said the merchant.

E6: “Fifty−three minutes a week."

E7: “If I had fifty−three minutes to spend?" said the
little prince to himself.

E8: “I would take a stroll to a spring of fresh water”

Figure 10.17 A sample alignment between sentences in English and French, with sentences extracted from
Antoine de Saint-Exupery’s Le Petit Prince and a hypothetical translation. Sentence alignment takes sentences
e1, ...,en, and f1, ..., fn and finds minimal sets of sentences that are translations of each other, including single
sentence mappings like (e1,f1), (e4,f3), (e5,f4), (e6,f6) as well as 2-1 alignments (e2/e3,f2), (e7/e8,f7), and null
alignments (f5).

20 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

Given two documents that are translations of each other, we generally need two
steps to produce sentence alignments:

• a cost function that takes a span of source sentences and a span of target sen-
tences and returns a score measuring how likely these spans are to be transla-
tions.

• an alignment algorithm that takes these scores to find a good alignment be-
tween the documents.

Since it is possible to induce multilingual sentence embeddings (Artetxe and
Schwenk, 2019), cosine similarity of such embeddings provides a natural scoring
function (Schwenk, 2018). Thompson and Koehn (2019) give the following cost
function between two sentences or spans x,y from the source and target documents
respectively:

c(x,y) =
(1− cos(x,y))nSents(x) nSents(y)

∑S
s=1 1− cos(x,ys)+

∑S
s=1 1− cos(xs,y)

(10.23)

where nSents() gives the number of sentences (this biases the metric toward many
alignments of single sentences instead of aligning very large spans). The denom-
inator helps to normalize the similarities, and so x1, ...,xS,y1, ...,yS, are randomly
selected sentences sampled from the respective documents.

Usually dynamic programming is used as the alignment algorithm (Gale and
Church, 1993), in a simple extension of the minimum edit distance algorithm we
introduced in Chapter 2.

Finally, it’s helpful to do some corpus cleanup by removing noisy sentence pairs.
This can involve handwritten rules to remove low-precision pairs (for example re-
moving sentences that are too long, too short, have different URLs, or even pairs
that are too similar, suggesting that they were copies rather than translations). Or
pairs can be ranked by their multilingual embedding cosine score and low-scoring
pairs discarded.

10.7.3 Backtranslation
We’re often short of data for training MT models, since parallel corpora may be
limited for particular languages or domains. However, often we can find a large
monolingual corpus, to add to the smaller parallel corpora that are available.

Backtranslation is a way of making use of monolingual corpora in the targetbacktranslation

language by creating synthetic bitexts. In backtranslation, we train an intermediate
target-to-source MT system on the small bitext to translate the monolingual target
data to the source language. Now we can add this synthetic bitext (natural target
sentences, aligned with MT-produced source sentences) to our training data, and
retrain our source-to-target MT model. For example suppose we want to translate
from Navajo to English but only have a small Navajo-English bitext, although of
course we can find lots of monolingual English data. We use the small bitext to build
an MT engine going the other way (from English to Navajo). Once we translate the
monolingual English text to Navajo, we can add this synthetic Navajo/English bitext
to our training data.

Backtranslation has various parameters. One is how we generate the backtrans-
lated data; we can run the decoder in greedy inference, or use beam search. Or
we can do sampling, or Monte Carlo search. In Monte Carlo decoding, at eachMonte Carlo

search
timestep, instead of always generating the word with the highest softmax proba-
bility, we roll a weighted die, and use it to choose the next word according to its

10.8 • MT EVALUATION 21

softmax probability. This works just like the sampling algorithm we saw in Chap-
ter 3 for generating random sentences from n-gram language models. Imagine there
are only 4 words and the softmax probability distribution at time t is (the: 0.6, green:
0.2, a: 0.1, witch: 0.1). We roll a weighted die, with the 4 sides weighted 0.6, 0.2,
0.1, and 0.1, and chose the word based on which side comes up. Another parameter
is the ratio of backtranslated data to natural bitext data; we can choose to upsample
the bitext data (include multiple copies of each sentence).

In general backtranslation works surprisingly well; one estimate suggests that a
system trained on backtranslated text gets about 2/3 of the gain as would training on
the same amount of natural bitext (Edunov et al., 2018).

10.8 MT Evaluation

Translations are evaluated along two dimensions:

1. adequacy: how well the translation captures the exact meaning of the sourceadequacy

sentence. Sometimes called faithfulness or fidelity.

2. fluency: how fluent the translation is in the target language (is it grammatical,fluency

clear, readable, natural).

Using humans to evaluate is most accurate, but automatic metrics are also used for
convenience.

10.8.1 Using Human Raters to Evaluate MT

The most accurate evaluations use human raters, such as online crowdworkers, to
evaluate each translation along the two dimensions. For example, along the dimen-
sion of fluency, we can ask how intelligible, how clear, how readable, or how natural
the MT output (the target text) is. We can give the raters a scale, for example, from
1 (totally unintelligible) to 5 (totally intelligible, or 1 to 100, and ask them to rate
each sentence or paragraph of the MT output.

We can do the same thing to judge the second dimension, adequacy, using raters
to assign scores on a scale. If we have bilingual raters, we can give them the source
sentence and a proposed target sentence, and rate, on a 5-point or 100-point scale,
how much of the information in the source was preserved in the target. If we only
have monolingual raters but we have a good human translation of the source text, we
can give the monolingual raters the human reference translation and a target machine
translation and again rate how much information is preserved. An alternative is to
do ranking: give the raters a pair of candidate translations, and ask them which oneranking

they prefer.
Training of human raters (who are often online crowdworkers) is essential; raters

without translation expertise find it difficult to separate fluency and adequacy, and
so training includes examples carefully distinguishing these. Raters often disagree
(sources sentences may be ambiguous, raters will have different world knowledge,
raters may apply scales differently). It is therefore common to remove outlier raters,
and (if we use a fine-grained enough scale) normalizing raters by subtracting the
mean from their scores and dividing by the variance.

22 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

10.8.2 Automatic Evaluation
While humans produce the best evaluations of machine translation output, running a
human evaluation can be time consuming and expensive. For this reason automatic
metrics are often used. Automatic metrics are less accurate than human evaluation,
but can help test potential system improvements, and even be used as an automatic
loss function for training. In this section we introduce two families of such metrics,
those based on character- or word-overlap and those based on embedding similarity.

Automatic Evaluation by Character Overlap: chrF

The simplest and most robust metric for MT evaluation is called chrF, which standschrF

for character F-score (Popović, 2015). chrF (along with many other earlier related
metrics like BLEU, METEOR, TER, and others) is based on a simple intuition de-
rived from the pioneering work of Miller and Beebe-Center (1956): a good machine
translation will tend to contain characters and words that occur in a human trans-
lation of the same sentence. Consider a test set from a parallel corpus, in which
each source sentence has both a gold human target translation and a candidate MT
translation we’d like to evaluate. The chrF metric ranks each MT target sentence by
a function of the number of character n-gram overlaps with the human translation.

Given the hypothesis and the reference, chrF is given a parameter k indicating
the length of character n-grams to be considered, and computes the average of the
k precisions (unigram precision, bigram, and so on) and the average of the k recalls
(unigram recall, bigram recall, etc.):

chrP percentage of character 1-grams, 2-grams, ..., k-grams in the hypothesis that
occur in the reference, averaged.

chrR percentage of character 1-grams, 2-grams,..., k-grams in the reference that
occur in the hypothesis, averaged.

The metric then computes an F-score by combining chrP and chrR using a weighting
parameter β . It is common to set β = 2, thus weighing recall twice as much as
precision:

chrFβ = (1+β
2)

chrP · chrR
β 2 · chrP+ chrR

(10.24)

For β = 2, that would be:

chrF2 =
5 · chrP · chrR

4 · chrP+ chrR

For example, consider two hypotheses that we’d like to score against the refer-
ence translation witness for the past. Here are the hypotheses along with chrF values
computed using parameters k = β = 2 (in real examples, k would be a higher number
like 6):

REF: witness for the past,
HYP1: witness of the past, chrF2,2 = .86
HYP2: past witness chrF2,2 = .62

Let’s see how we computed that chrF value for HYP1 (we’ll leave the compu-
tation of the chrF value for HYP2 as an exercise for the reader). First, chrF ignores
spaces, so we’ll remove them from both the reference and hypothesis:

REF: witnessforthepast, (18 unigrams, 17 bigrams)
HYP1: witnessofthepast, (17 unigrams, 16 bigrams)

10.8 • MT EVALUATION 23

Next let’s see how many unigrams and bigrams match between the reference and
hypothesis:

unigrams that match: w i t n e s s f o t h e p a s t , (17 unigrams)
bigrams that match: wi it tn ne es ss th he ep pa as st t, (13 bigrams)

We use that to compute the unigram and bigram precisions and recalls:

unigram P: 17/17 = 1 unigram R: 17/18 = .944
bigram P: 13/16 = .813 bigram R: 13/17 = .765

Finally we average to get chrP and chrR, and compute the F-score:

chrP = (17/17+13/16)/2 = .906
chrR = (17/18+13/17)/2 = .855

chrF2,2 = 5
chrP∗ chrR

4chrP+ chrR
= .86

chrF is simple, robust, and correlates very well with human judgments in many
languages (Kocmi et al., 2021). There are various alternative overlap metrics. For
example, before the development of chrF, it was common to use a word-based
overlap metric called BLEU (for BiLingual Evaluation Understudy), that is purely
precision-based rather than combining precision and recall (Papineni et al., 2002).
The BLEU score for a corpus of candidate translation sentences is a function of
the n-gram word precision over all the sentences combined with a brevity penalty
computed over the corpus as a whole. Because BLEU is a word-based metric, it is
very sensitive to word tokenization, making it difficult to compare across situations,
and doesn’t work as well in languages with complex morphology.

Statistical Significance Testing for MT evals

Character or word overlap-based metrics like chrF (or BLEU, or etc.) are mainly
used to compare two systems, with the goal of answering questions like: did the
new algorithm we just invented improve our MT system? To know if the difference
between the chrF scores of two MT systems is a significant difference, we use the
paired bootstrap test, or the similar randomization test.

To get a confidence interval on a single chrF score using the bootstrap test, recall
from Section ?? that we take our test set (or devset) and create thousands of pseudo-
testsets by repeatedly sampling with replacement from the original test set. We now
compute the chrF score of each of the pseudo-testsets. If we drop the top 2.5% and
bottom 2.5% of the scores, the remaining scores will give us the 95% confidence
interval for the chrF score of our system.

To compare two MT systems A and B, we draw the same set of pseudo-testsets,
and compute the chrF scores for each of them. We then compute the percentage of
pseudo-test-sets in which A has a higher chrF score than B.

chrF: Limitations

While automatic character and word-overlap metrics like chrF or BLEU are useful,
they have important limitations. chrF is very local: a large phrase that is moved
around might barely change the chrF score at all, and chrF can’t evaluate cross-
sentence properties of a document like its discourse coherence (Chapter 22). chrF
and similar automatic metrics also do poorly at comparing very different kinds of
systems, such as comparing human-aided translation against machine translation, or

24 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

different machine translation architectures against each other (Callison-Burch et al.,
2006). Instead, automatic overlap metrics like chrF are most appropriate when eval-
uating changes to a single system.

10.8.3 Automatic Evaluation: Embedding-Based Methods

The chrF metric is based on measuring the exact character n-grams a human refer-
ence and candidate machine translation have in common. However, this criterion
is overly strict, since a good translation may use alternate words or paraphrases. A
solution first pioneered in early metrics like METEOR (Banerjee and Lavie, 2005)
was to allow synonyms to match between the reference x and candidate x̃. More
recent metrics use BERT or other embeddings to implement this intuition.

For example, in some situations we might have datasets that have human as-
sessments of translation quality. Such datasets consists of tuples (x, x̃,r), where
x = (x1, . . . ,xn) is a reference translation, x̃ = (x̃1, . . . , x̃m) is a candidate machine
translation, and r ∈ R is a human rating that expresses the quality of x̃ with respect
to x. Given such data, algorithms like COMET (Rei et al., 2020) BLEURT (Sellam
et al., 2020) train a predictor on the human-labeled datasets, for example by passing
x and x̃ through a version of BERT (trained with extra pretraining, and then fine-
tuned on the human-labeled sentences), followed by a linear layer that is trained to
predict r. The output of such models correlates highly with human labels.

In other cases, however, we don’t have such human-labeled datasets. In that
case we can measure the similarity of x and x̃ by the similarity of their embeddings.
The BERTSCORE algorithm (Zhang et al., 2020) shown in Fig. 10.18, for example,
passes the reference x and the candidate x̃ through BERT, computing a BERT em-
bedding for each token xi and x̃ j. Each pair of tokens (xi, x̃ j) is scored by its cosine

xi·x̃ j
|xi||x̃ j | . Each token in x is matched to a token in x̃ to compute recall, and each token in
x̃ is matched to a token in x to compute precision (with each token greedily matched
to the most similar token in the corresponding sentence). BERTSCORE provides
precision and recall (and hence F1):

RBERT =
1
|x|
∑

xi∈x

max
x̃ j∈x̃

xi · x̃ j PBERT =
1
|x̃|
∑

x̃ j∈x̃

max
xi∈x

xi · x̃ j (10.25)

Published as a conference paper at ICLR 2020

Reference
the weather is
cold today

Candidate
it is freezing today

Candidate

Contextual
Embedding

Pairwise Cosine
Similarity

RBERT = (0.713�1.27)+(0.515�7.94)+...
1.27+7.94+1.82+7.90+8.88

<latexit sha1_base64="OJyoKlmBAgUA0KDtUcsH/di5BlI=">AAACSHicbZDLattAFIaPnLRJ3JvTLrsZYgoJAqFxGqwsCqal0FVJQ5wELCNG41EyZHRh5ijECL1EnqAv002X2eUZsumipXRR6Mj2Ipf+MPDznXM4Z/64UNKg7187raXlR49XVtfaT54+e/6is/7y0OSl5mLIc5Xr45gZoWQmhihRieNCC5bGShzFZx+a+tG50Ebm2QFOCzFO2UkmE8kZWhR1ov2oClFcYPX+4/5BXZN3JEw049Wm7/XpdogyFYZQr9ffci3aoTsL1Pd23265oZrkaOqqaXAb5FIv6DXOdwMvCOqo0/U9fyby0NCF6Q52/15+BYC9qHMVTnJepiJDrpgxI+oXOK6YRsmVqNthaUTB+Bk7ESNrM2aPGVezIGryxpIJSXJtX4ZkRm9PVCw1ZprGtjNleGru1xr4v9qoxCQYVzIrShQZny9KSkUwJ02qZCK14Kim1jCupb2V8FNmc0SbfduGQO9/+aE57HnU9+gX2h18hrlW4TVswCZQ6MMAPsEeDIHDN7iBn/DL+e78cH47f+atLWcx8wruqNX6B8dUrVw=</latexit><latexit sha1_base64="RInTcZkWiVBnf/ncBstCvatCtG4=">AAACSHicbZDPShxBEMZ7Nproxugaj14al4AyMEyvyoyHwGIQPImKq8LOMvT09mhjzx+6a0KWYV4iL5EnySXH3HwGLx4U8SDYs7sHo/mg4eNXVVT1F+VSaHDda6vxbmb2/Ye5+ebHhU+LS63lz6c6KxTjPZbJTJ1HVHMpUt4DAZKf54rTJJL8LLr6VtfPvnOlRZaewCjng4RepCIWjIJBYSs8DssA+A8od/eOT6oKf8VBrCgr113HI5sBiIRrTJyOt2EbtE22p8hzdrY27EAOM9BVWTfYNbKJ43dq59q+4/tV2Gq7jjsWfmvI1LS7O08/f3nLi4dh628wzFiR8BSYpFr3iZvDoKQKBJO8agaF5jllV/SC941NqTlmUI6DqPAXQ4Y4zpR5KeAxfTlR0kTrURKZzoTCpX5dq+H/av0CYn9QijQvgKdssiguJIYM16nioVCcgRwZQ5kS5lbMLqnJEUz2TRMCef3lt+a04xDXIUek3T1AE82hVbSG1hFBHuqifXSIeoih3+gG3aF76491az1Yj5PWhjWdWUH/qNF4BkPYrbk=</latexit><latexit sha1_base64="RInTcZkWiVBnf/ncBstCvatCtG4=">AAACSHicbZDPShxBEMZ7Nproxugaj14al4AyMEyvyoyHwGIQPImKq8LOMvT09mhjzx+6a0KWYV4iL5EnySXH3HwGLx4U8SDYs7sHo/mg4eNXVVT1F+VSaHDda6vxbmb2/Ye5+ebHhU+LS63lz6c6KxTjPZbJTJ1HVHMpUt4DAZKf54rTJJL8LLr6VtfPvnOlRZaewCjng4RepCIWjIJBYSs8DssA+A8od/eOT6oKf8VBrCgr113HI5sBiIRrTJyOt2EbtE22p8hzdrY27EAOM9BVWTfYNbKJ43dq59q+4/tV2Gq7jjsWfmvI1LS7O08/f3nLi4dh628wzFiR8BSYpFr3iZvDoKQKBJO8agaF5jllV/SC941NqTlmUI6DqPAXQ4Y4zpR5KeAxfTlR0kTrURKZzoTCpX5dq+H/av0CYn9QijQvgKdssiguJIYM16nioVCcgRwZQ5kS5lbMLqnJEUz2TRMCef3lt+a04xDXIUek3T1AE82hVbSG1hFBHuqifXSIeoih3+gG3aF76491az1Yj5PWhjWdWUH/qNF4BkPYrbk=</latexit><latexit sha1_base64="fGWl4NCvlvtMu17rjLtk25oWpdc=">AAACSHicbZBLS+RAFIUrPT7bVzsu3RQ2ghIIqVbpuBgQRZiVqNgqdJpQqa5oYeVB1Y1ME/Lz3Lic3fwGNy6UwZ2VNgtfBwoO372Xe+uEmRQaXPef1fgxMTk1PTPbnJtfWFxqLf8812muGO+xVKbqMqSaS5HwHgiQ/DJTnMah5BfhzUFVv7jlSos0OYNRxgcxvUpEJBgFg4JWcBoUPvA/UOwfnp6VJf6F/UhRVmy4Tpds+SBirjFxOt1N26AdslOjrrO7vWn7cpiCLouqwa6QTRyvUznX9hzPK4NW23XcsfBXQ2rTRrWOg9Zff5iyPOYJMEm17hM3g0FBFQgmedn0c80zym7oFe8bm1BzzKAYB1HidUOGOEqVeQngMX0/UdBY61Ecms6YwrX+XKvgd7V+DpE3KESS5cAT9rYoyiWGFFep4qFQnIEcGUOZEuZWzK6pyRFM9k0TAvn85a/mvOMQ1yEnpL13VMcxg1bRGtpABHXRHvqNjlEPMXSHHtATerburUfrv/Xy1tqw6pkV9EGNxisxMKq0</latexit>

1.27

7.94

1.82

7.90

8.88

idf

weights

Importance Weighting
(Optional)

Maximum Similarity

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

x̂
<latexit sha1_base64="5QTnVRVSrnyzznVU7d5bF5u03Iw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp0x9TzJ5mg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+bnzsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UYXvuZUEmKXLHFojCVBGOS/06GQnOGcmoJZVrYWwkbU00Z2oQqNgRv+eVV0r6oe27du7+sNW6KOMpwAqdwDh5cQQPuoAktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB7A8j8k=</latexit><latexit sha1_base64="5QTnVRVSrnyzznVU7d5bF5u03Iw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp0x9TzJ5mg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+bnzsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UYXvuZUEmKXLHFojCVBGOS/06GQnOGcmoJZVrYWwkbU00Z2oQqNgRv+eVV0r6oe27du7+sNW6KOMpwAqdwDh5cQQPuoAktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB7A8j8k=</latexit><latexit sha1_base64="5QTnVRVSrnyzznVU7d5bF5u03Iw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp0x9TzJ5mg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+bnzsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UYXvuZUEmKXLHFojCVBGOS/06GQnOGcmoJZVrYWwkbU00Z2oQqNgRv+eVV0r6oe27du7+sNW6KOMpwAqdwDh5cQQPuoAktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB7A8j8k=</latexit><latexit sha1_base64="5QTnVRVSrnyzznVU7d5bF5u03Iw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDbbTbt0swm7E7GE/ggvHhTx6u/x5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJpwP6IjJULBKFqp0x9TzJ5mg2rNrbtzkFXiFaQGBZqD6ld/GLM04gqZpMb0PDdBP6MaBZN8VumnhieUTeiI9yxVNOLGz+bnzsiZVYYkjLUthWSu/p7IaGTMNApsZ0RxbJa9XPzP66UYXvuZUEmKXLHFojCVBGOS/06GQnOGcmoJZVrYWwkbU00Z2oQqNgRv+eVV0r6oe27du7+sNW6KOMpwAqdwDh5cQQPuoAktYDCBZ3iFNydxXpx352PRWnKKmWP4A+fzB7A8j8k=</latexit>

R
ef

er
en

ce

Figure 1: Illustration of the computation of the recall metric RBERT. Given the reference x and
candidate x̂, we compute BERT embeddings and pairwise cosine similarity. We highlight the greedy
matching in red, and include the optional idf importance weighting.

We experiment with different models (Section 4), using the tokenizer provided with each model.
Given a tokenized reference sentence x = hx1, . . . , xki, the embedding model generates a se-
quence of vectors hx1, . . . ,xki. Similarly, the tokenized candidate x̂ = hx̂1, . . . , x̂mi is mapped
to hx̂1, . . . , x̂li. The main model we use is BERT, which tokenizes the input text into a sequence
of word pieces (Wu et al., 2016), where unknown words are split into several commonly observed
sequences of characters. The representation for each word piece is computed with a Transformer
encoder (Vaswani et al., 2017) by repeatedly applying self-attention and nonlinear transformations
in an alternating fashion. BERT embeddings have been shown to benefit various NLP tasks (Devlin
et al., 2019; Liu, 2019; Huang et al., 2019; Yang et al., 2019a).

Similarity Measure The vector representation allows for a soft measure of similarity instead of
exact-string (Papineni et al., 2002) or heuristic (Banerjee & Lavie, 2005) matching. The cosine
similarity of a reference token xi and a candidate token x̂j is x>

i x̂j

kxikkx̂jk . We use pre-normalized
vectors, which reduces this calculation to the inner product x>

i x̂j . While this measure considers
tokens in isolation, the contextual embeddings contain information from the rest of the sentence.

BERTSCORE The complete score matches each token in x to a token in x̂ to compute recall,
and each token in x̂ to a token in x to compute precision. We use greedy matching to maximize
the matching similarity score,2 where each token is matched to the most similar token in the other
sentence. We combine precision and recall to compute an F1 measure. For a reference x and
candidate x̂, the recall, precision, and F1 scores are:

RBERT =
1

|x|
X

xi2x

max
x̂j2x̂

x>
i x̂j , PBERT =

1

|x̂|
X

x̂j2x̂

max
xi2x

x>
i x̂j , FBERT = 2

PBERT · RBERT

PBERT + RBERT
.

Importance Weighting Previous work on similarity measures demonstrated that rare words can
be more indicative for sentence similarity than common words (Banerjee & Lavie, 2005; Vedantam
et al., 2015). BERTSCORE enables us to easily incorporate importance weighting. We experiment
with inverse document frequency (idf) scores computed from the test corpus. Given M reference
sentences {x(i)}M

i=1, the idf score of a word-piece token w is

idf(w) = � log
1

M

MX

i=1

I[w 2 x(i)] ,

where I[·] is an indicator function. We do not use the full tf-idf measure because we process single
sentences, where the term frequency (tf) is likely 1. For example, recall with idf weighting is

RBERT =

P
xi2x idf(xi) maxx̂j2x̂ x>

i x̂jP
xi2x idf(xi)

.

Because we use reference sentences to compute idf , the idf scores remain the same for all systems
evaluated on a specific test set. We apply plus-one smoothing to handle unknown word pieces.

2We compare greedy matching with optimal assignment in Appendix C.

4

Figure 10.18 The computation of BERTSCORE recall from reference x and candidate x̂,
from Figure 1 in Zhang et al. (2020). This version shows an extended version of the metric in
which tokens are also weighted by their idf values.

10.9 • BIAS AND ETHICAL ISSUES 25

10.9 Bias and Ethical Issues

Machine translation raises many of the same ethical issues that we’ve discussed in
earlier chapters. For example, consider MT systems translating from Hungarian
(which has the gender neutral pronoun ő) or Spanish (which often drops pronouns)
into English (in which pronouns are obligatory, and they have grammatical gender).
When translating a reference to a person described without specified gender, MT
systems often default to male gender (Schiebinger 2014, Prates et al. 2019). And
MT systems often assign gender according to culture stereotypes of the sort we saw
in Section ??. Fig. 10.19 shows examples from Prates et al. (2019), in which Hun-
garian gender-neutral ő is a nurse is translated with she, but gender-neutral ő is a
CEO is translated with he. Prates et al. (2019) find that these stereotypes can’t com-
pletely be accounted for by gender bias in US labor statistics, because the biases are
amplified by MT systems, with pronouns being mapped to male or female gender
with a probability higher than if the mapping was based on actual labor employment
statistics.

Hungarian (gender neutral) source English MT output
ő egy ápoló she is a nurse
ő egy tudós he is a scientist
ő egy mérnök he is an engineer
ő egy pék he is a baker
ő egy tanár she is a teacher
ő egy vesküvőszervező she is a wedding organizer
ő egy vezérigazgató he is a CEO

Figure 10.19 When translating from gender-neutral languages like Hungarian into English,
current MT systems interpret people from traditionally male-dominated occupations as male,
and traditionally female-dominated occupations as female (Prates et al., 2019).

Similarly, a recent challenge set, the WinoMT dataset (Stanovsky et al., 2019)
shows that MT systems perform worse when they are asked to translate sentences
that describe people with non-stereotypical gender roles, like “The doctor asked the
nurse to help her in the operation”.

Many ethical questions in MT require further research. One open problem is
developing metrics for knowing what our systems don’t know. This is because MT
systems can be used in urgent situations where human translators may be unavailable
or delayed: in medical domains, to help translate when patients and doctors don’t
speak the same language, or in legal domains, to help judges or lawyers communi-
cate with witnesses or defendants. In order to ‘do no harm’, systems need ways to
assign confidence values to candidate translations, so they can abstain from givingconfidence

incorrect translations that may cause harm.
Another is the need for low-resource algorithms that can translate to and from

all the world’s languages, the vast majority of which do not have large parallel train-
ing texts available. This problem is exacerbated by the tendency of many MT ap-
proaches to focus on the case where one of the languages is English (Anastasopou-
los and Neubig, 2020). ∀ et al. (2020) propose a participatory design process to
encourage content creators, curators, and language technologists who speak these
low-resourced languages to participate in developing MT algorithms. They pro-low-resourced

languages
vide online groups, mentoring, and infrastructure, and report on a case study on
developing MT algorithms for low-resource African languages.

26 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

10.10 Summary

Machine translation is one of the most widely used applications of NLP, and the
encoder-decoder model, first developed for MT is a key tool that has applications
throughout NLP.

• Languages have divergences, both structural and lexical, that make translation
difficult.

• The linguistic field of typology investigates some of these differences; lan-
guages can be classified by their position along typological dimensions like
whether verbs precede their objects.

• Encoder-decoder networks (either for RNNs or transformers) are composed
of an encoder network that takes an input sequence and creates a contextu-
alized representation of it, the context. This context representation is then
passed to a decoder which generates a task-specific output sequence.

• The attention mechanism in RNNs, and cross-attention in transformers, al-
lows the decoder to view information from all the hidden states of the encoder.

• For the decoder, choosing the single most probable token to generate at each
step is called greedy decoding.

• In beam search, instead of choosing the best token to generate at each timestep,
we keep k possible tokens at each step. This fixed-size memory footprint k is
called the beam width.

• Machine translation models are trained on a parallel corpus, sometimes called
a bitext, a text that appears in two (or more) languages.

• Backtranslation is a way of making use of monolingual corpora in the target
language by running a pilot MT engine backwards to create synthetic bitexts.

• MT is evaluated by measuring a translation’s adequacy (how well it captures
the meaning of the source sentence) and fluency (how fluent or natural it is
in the target language). Human evaluation is the gold standard, but automatic
evaluation metrics like chrF, which measure character n-gram overlap with
human translations, or more recent metrics based on embedding similarity,
are also commonly used.

Bibliographical and Historical Notes
MT was proposed seriously by the late 1940s, soon after the birth of the computer
(Weaver, 1949/1955). In 1954, the first public demonstration of an MT system pro-
totype (Dostert, 1955) led to great excitement in the press (Hutchins, 1997). The
next decade saw a great flowering of ideas, prefiguring most subsequent develop-
ments. But this work was ahead of its time—implementations were limited by, for
example, the fact that pending the development of disks there was no good way to
store dictionary information.

As high-quality MT proved elusive (Bar-Hillel, 1960), there grew a consensus
on the need for better evaluation and more basic research in the new fields of for-
mal and computational linguistics. This consensus culminated in the famously crit-
ical ALPAC (Automatic Language Processing Advisory Committee) report of 1966
(Pierce et al., 1966) that led in the mid 1960s to a dramatic cut in funding for MT

BIBLIOGRAPHICAL AND HISTORICAL NOTES 27

in the US. As MT research lost academic respectability, the Association for Ma-
chine Translation and Computational Linguistics dropped MT from its name. Some
MT developers, however, persevered, and there were early MT systems like Météo,
which translated weather forecasts from English to French (Chandioux, 1976), and
industrial systems like Systran.

In the early years, the space of MT architectures spanned three general mod-
els. In direct translation, the system proceeds word-by-word through the source-
language text, translating each word incrementally. Direct translation uses a large
bilingual dictionary, each of whose entries is a small program with the job of trans-
lating one word. In transfer approaches, we first parse the input text and then ap-
ply rules to transform the source-language parse into a target language parse. We
then generate the target language sentence from the parse tree. In interlingua ap-
proaches, we analyze the source language text into some abstract meaning repre-
sentation, called an interlingua. We then generate into the target language from
this interlingual representation. A common way to visualize these three early ap-
proaches was the Vauquois triangle shown in Fig. 10.20. The triangle shows theVauquois

triangle
increasing depth of analysis required (on both the analysis and generation end) as
we move from the direct approach through transfer approaches to interlingual ap-
proaches. In addition, it shows the decreasing amount of transfer knowledge needed
as we move up the triangle, from huge amounts of transfer at the direct level (al-
most all knowledge is transfer knowledge for each word) through transfer (transfer
rules only for parse trees or thematic roles) through interlingua (no specific transfer
knowledge). We can view the encoder-decoder network as an interlingual approach,
with attention acting as an integration of direct and transfer, allowing words or their
representations to be directly accessed by the decoder.

source
text

target
text

Direct Translation

Transfer

Interlingua

Source Text:
Semantic/Syntactic

Structure

Target Text:
Semantic/Syntactic

Structureso
ur

ce
 la

ng
ua

ge

an
aly

sis

so
ur

ce
 la

ng
ua

ge

an
aly

sis

target language

 generation

Figure 10.20 The Vauquois (1968) triangle.

Statistical methods began to be applied around 1990, enabled first by the devel-
opment of large bilingual corpora like the Hansard corpus of the proceedings of the
Canadian Parliament, which are kept in both French and English, and then by the
growth of the Web. Early on, a number of researchers showed that it was possible
to extract pairs of aligned sentences from bilingual corpora, using words or simple
cues like sentence length (Kay and Röscheisen 1988, Gale and Church 1991, Gale
and Church 1993, Kay and Röscheisen 1993).

At the same time, the IBM group, drawing directly on the noisy channel model
for speech recognition, proposed two related paradigms for statistical MT. Thesestatistical MT

include the generative algorithms that became known as IBM Models 1 throughIBM Models

5, implemented in the Candide system. The algorithms (except for the decoder)Candide

were published in full detail— encouraged by the US government who had par-

28 CHAPTER 10 • MACHINE TRANSLATION AND ENCODER-DECODER MODELS

tially funded the work— which gave them a huge impact on the research community
(Brown et al. 1990, Brown et al. 1993). The group also developed a discriminative
approach, called MaxEnt (for maximum entropy, an alternative formulation of logis-
tic regression), which allowed many features to be combined discriminatively rather
than generatively (Berger et al., 1996), which was further developed by Och and Ney
(2002).

By the turn of the century, most academic research on machine translation used
statistical MT. An extended approach, called phrase-based translation was devel-phrase-based

translation
oped, based on inducing translations for phrase-pairs (Och 1998, Marcu and Wong
2002, Koehn et al. (2003), Och and Ney 2004, Deng and Byrne 2005, inter alia).
Once automatic metrics like BLEU were developed (Papineni et al., 2002), use log
linear formulation (Och and Ney, 2004) to directly optimize evaluation metrics like
BLEU in a method known as Minimum Error Rate Training, or MERT (Och,MERT

2003), also drawing from speech recognition models (Chou et al., 1993). Toolkits
like GIZA (Och and Ney, 2003) and Moses (Koehn et al. 2006, Zens and Ney 2007)Moses

were widely used.
There were also approaches around the turn of the century that were based on

syntactic structure (Chapter 12). Models based on transduction grammars (alsotransduction
grammars

called synchronous grammars assign a parallel syntactic tree structure to a pair of
sentences in different languages, with the goal of translating the sentences by ap-
plying reordering operations on the trees. From a generative perspective, we can
view a transduction grammar as generating pairs of aligned sentences in two lan-
guages. Some of the most widely used models included the inversion transduction
grammar (Wu, 1996) and synchronous context-free grammars (Chiang, 2005),

inversion
transduction

grammar
Neural networks had been applied at various times to various aspects of machine

translation; for example Schwenk et al. (2006) showed how to use neural language
models to replace n-gram language models in a Spanish-English system based on
IBM Model 4. The modern neural encoder-decoder approach was pioneered by
Kalchbrenner and Blunsom (2013), who used a CNN encoder and an RNN decoder.
Cho et al. (2014) (who coined the name “encoder-decoder”) and Sutskever et al.
(2014) then showed how to use extended RNNs for both encoder and decoder. The
idea that a generative decoder should take as input a soft weighting of the inputs,
the central idea of attention, was first developed by Graves (2013) in the context
of handwriting recognition. Bahdanau et al. (2015) extended the idea, named it
“attention” and applied it to MT. The transformer encoder-decoder was proposed by
Vaswani et al. (2017) (see the History section of Chapter 9).

Beam-search has an interesting relationship with human language processing;
(Meister et al., 2020) show that beam search enforces the cognitive property of uni-
form information density in text. Uniform information density is the hypothe-
sis that human language processors tend to prefer to distribute information equally
across the sentence (Jaeger and Levy, 2007).

Research on evaluation of machine translation began quite early. Miller and
Beebe-Center (1956) proposed a number of methods drawing on work in psycholin-
guistics. These included the use of cloze and Shannon tasks to measure intelligibility
as well as a metric of edit distance from a human translation, the intuition that un-
derlies all modern overlap-based automatic evaluation metrics. The ALPAC report
included an early evaluation study conducted by John Carroll that was extremely in-
fluential (Pierce et al., 1966, Appendix 10). Carroll proposed distinct measures for
fidelity and intelligibility, and had raters score them subjectively on 9-point scales.
Much early evaluation work focuses on automatic word-overlap metrics like BLEU

EXERCISES 29

(Papineni et al., 2002), NIST (Doddington, 2002), TER (Translation Error Rate)
(Snover et al., 2006), Precision and Recall (Turian et al., 2003), and METEOR
(Banerjee and Lavie, 2005); character n-gram overlap methods like chrF (Popović,
2015) came later. More recent evaluation work, echoing the ALPAC report, has
emphasized the importance of careful statistical methodology and the use of human
evaluation (Kocmi et al., 2021; Marie et al., 2021).

The early history of MT is surveyed in Hutchins 1986 and 1997; Nirenburg et al.
(2002) collects early readings. See Croft (1990) or Comrie (1989) for introductions
to linguistic typology.

Exercises
10.1 Compute by hand the chrF2,2 score for HYP2 on page 22 (the answer should

round to .62).

30 Chapter 10 • Machine Translation and Encoder-Decoder Models

Anastasopoulos, A. and G. Neubig. 2020. Should all cross-
lingual embeddings speak English? ACL.

Artetxe, M. and H. Schwenk. 2019. Massively multilingual
sentence embeddings for zero-shot cross-lingual transfer
and beyond. TACL, 7:597–610.

Bahdanau, D., K. H. Cho, and Y. Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate.
ICLR 2015.

Banerjee, S. and A. Lavie. 2005. METEOR: An automatic
metric for MT evaluation with improved correlation with
human judgments. Proceedings of ACL Workshop on In-
trinsic and Extrinsic Evaluation Measures for MT and/or
Summarization.

Bañón, M., P. Chen, B. Haddow, K. Heafield, H. Hoang,
M. Esplà-Gomis, M. L. Forcada, A. Kamran, F. Kirefu,
P. Koehn, S. Ortiz Rojas, L. Pla Sempere, G. Ramı́rez-
Sánchez, E. Sarrı́as, M. Strelec, B. Thompson, W. Waites,
D. Wiggins, and J. Zaragoza. 2020. ParaCrawl: Web-
scale acquisition of parallel corpora. ACL.

Bar-Hillel, Y. 1960. The present status of automatic transla-
tion of languages. In F. Alt, editor, Advances in Comput-
ers 1, pages 91–163. Academic Press.

Berger, A., S. A. Della Pietra, and V. J. Della Pietra. 1996. A
maximum entropy approach to natural language process-
ing. Computational Linguistics, 22(1):39–71.

Bickel, B. 2003. Referential density in discourse and syntac-
tic typology. Language, 79(2):708–736.

Brown, P. F., J. Cocke, S. A. Della Pietra, V. J. Della Pietra,
F. Jelinek, J. D. Lafferty, R. L. Mercer, and P. S. Roossin.
1990. A statistical approach to machine translation. Com-
putational Linguistics, 16(2):79–85.

Brown, P. F., S. A. Della Pietra, V. J. Della Pietra, and R. L.
Mercer. 1993. The mathematics of statistical machine
translation: Parameter estimation. Computational Lin-
guistics, 19(2):263–311.

Callison-Burch, C., M. Osborne, and P. Koehn. 2006. Re-
evaluating the role of BLEU in machine translation re-
search. EACL.

Chandioux, J. 1976. MÉTÉO: un système opérationnel pour
la traduction automatique des bulletins météorologiques
destinés au grand public. Meta, 21:127–133.

Chiang, D. 2005. A hierarchical phrase-based model for sta-
tistical machine translation. ACL.

Cho, K., B. van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. 2014. Learn-
ing phrase representations using RNN encoder–decoder
for statistical machine translation. EMNLP.

Chou, W., C.-H. Lee, and B. H. Juang. 1993. Minimum error
rate training based on n-best string models. ICASSP.

Comrie, B. 1989. Language Universals and Linguistic Ty-
pology, 2nd edition. Blackwell.

Croft, W. 1990. Typology and Universals. Cambridge Uni-
versity Press.

Deng, Y. and W. Byrne. 2005. HMM word and phrase align-
ment for statistical machine translation. HLT-EMNLP.

Doddington, G. 2002. Automatic evaluation of machine
translation quality using n-gram co-occurrence statistics.
HLT.

Dostert, L. 1955. The Georgetown-I.B.M. experiment. In
Machine Translation of Languages: Fourteen Essays,
pages 124–135. MIT Press.

Dryer, M. S. and M. Haspelmath, editors. 2013. The World
Atlas of Language Structures Online. Max Planck Insti-
tute for Evolutionary Anthropology, Leipzig. Available
online at http://wals.info.

Edunov, S., M. Ott, M. Auli, and D. Grangier. 2018. Under-
standing back-translation at scale. EMNLP.

∀, W. Nekoto, V. Marivate, T. Matsila, T. Fasubaa,
T. Kolawole, T. Fagbohungbe, S. O. Akinola, S. H.
Muhammad, S. Kabongo, S. Osei, S. Freshia, R. A.
Niyongabo, R. M. P. Ogayo, O. Ahia, M. Meressa,
M. Adeyemi, M. Mokgesi-Selinga, L. Okegbemi, L. J.
Martinus, K. Tajudeen, K. Degila, K. Ogueji, K. Siminyu,
J. Kreutzer, J. Webster, J. T. Ali, J. A. I. Orife,
I. Ezeani, I. A. Dangana, H. Kamper, H. Elsahar, G. Duru,
G. Kioko, E. Murhabazi, E. van Biljon, D. Whitenack,
C. Onyefuluchi, C. Emezue, B. Dossou, B. Sibanda, B. I.
Bassey, A. Olabiyi, A. Ramkilowan, A. Öktem, A. Ak-
infaderin, and A. Bashir. 2020. Participatory research
for low-resourced machine translation: A case study in
African languages. Findings of EMNLP.

Gale, W. A. and K. W. Church. 1991. A program for aligning
sentences in bilingual corpora. ACL.

Gale, W. A. and K. W. Church. 1993. A program for aligning
sentences in bilingual corpora. Computational Linguis-
tics, 19:75–102.

Graves, A. 2013. Generating sequences with recurrent neural
networks. ArXiv.

Hutchins, W. J. 1986. Machine Translation: Past, Present,
Future. Ellis Horwood, Chichester, England.

Hutchins, W. J. 1997. From first conception to first demon-
stration: The nascent years of machine translation, 1947–
1954. A chronology. Machine Translation, 12:192–252.

Hutchins, W. J. and H. L. Somers. 1992. An Introduction to
Machine Translation. Academic Press.

Jaeger, T. F. and R. P. Levy. 2007. Speakers optimize infor-
mation density through syntactic reduction. NeurIPS.

Kalchbrenner, N. and P. Blunsom. 2013. Recurrent continu-
ous translation models. EMNLP.

Kay, M. and M. Röscheisen. 1988. Text-translation align-
ment. Technical Report P90-00143, Xerox Palo Alto Re-
search Center, Palo Alto, CA.

Kay, M. and M. Röscheisen. 1993. Text-translation align-
ment. Computational Linguistics, 19:121–142.

Kocmi, T., C. Federmann, R. Grundkiewicz, M. Junczys-
Dowmunt, H. Matsushita, and A. Menezes. 2021. To ship
or not to ship: An extensive evaluation of automatic met-
rics for machine translation. ArXiv.

Koehn, P. 2005. Europarl: A parallel corpus for statistical
machine translation. MT summit, vol. 5.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Fed-
erico, N. Bertoldi, B. Cowan, W. Shen, C. Moran,
R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst.
2006. Moses: Open source toolkit for statistical machine
translation. ACL.

Koehn, P., F. J. Och, and D. Marcu. 2003. Statistical phrase-
based translation. HLT-NAACL.

https://www.aclweb.org/anthology/2020.acl-main.766
https://www.aclweb.org/anthology/2020.acl-main.766
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
http://www.aclweb.org/anthology/J96-1002.pdf
http://www.aclweb.org/anthology/J96-1002.pdf
http://www.aclweb.org/anthology/J96-1002.pdf
http://acl.ldc.upenn.edu/J/J90/J90-2002.pdf
http://acl.ldc.upenn.edu/J/J93/J93-2003.pdf
http://acl.ldc.upenn.edu/J/J93/J93-2003.pdf
https://www.aclweb.org/anthology/E06-1032
https://www.aclweb.org/anthology/E06-1032
https://www.aclweb.org/anthology/E06-1032
https://doi.org/10.3115/1219840.1219873
https://doi.org/10.3115/1219840.1219873
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/W10-3813
https://www.aclweb.org/anthology/W10-3813
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.3115/1218955.1219032
http://wals.info
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.3115/981344.981367
https://doi.org/10.3115/981344.981367
https://www.aclweb.org/anthology/J93-1004
https://www.aclweb.org/anthology/J93-1004
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/J93-1006
https://www.aclweb.org/anthology/J93-1006
https://arxiv.org/pdf/2107.10821.pdf
https://arxiv.org/pdf/2107.10821.pdf
https://arxiv.org/pdf/2107.10821.pdf
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://aclanthology.org/N03-1017
https://aclanthology.org/N03-1017

Exercises 31

Lison, P. and J. Tiedemann. 2016. Opensubtitles2016: Ex-
tracting large parallel corpora from movie and tv subti-
tles. LREC.

Marcu, D. and W. Wong. 2002. A phrase-based, joint proba-
bility model for statistical machine translation. EMNLP.

Marie, B., A. Fujita, and R. Rubino. 2021. Scientific credi-
bility of machine translation research: A meta-evaluation
of 769 papers. ACL 2021.

McLuhan, M. 1964. Understanding Media: The Extensions
of Man. New American Library.

Meister, C., T. Vieira, and R. Cotterell. 2020. If beam search
is the answer, what was the question? EMNLP.

Miller, G. A. and J. G. Beebe-Center. 1956. Some psycho-
logical methods for evaluating the quality of translations.
Mechanical Translation, 3:73–80.

Nirenburg, S., H. L. Somers, and Y. Wilks, editors. 2002.
Readings in Machine Translation. MIT Press.

Och, F. J. 1998. Ein beispielsbasierter und statis-
tischer Ansatz zum maschinellen Lernen von
natürlichsprachlicher Übersetzung. Ph.D. thesis, Uni-
versität Erlangen-Nürnberg, Germany. Diplomarbeit
(diploma thesis).

Och, F. J. 2003. Minimum error rate training in statistical
machine translation. ACL.

Och, F. J. and H. Ney. 2002. Discriminative training and
maximum entropy models for statistical machine transla-
tion. ACL.

Och, F. J. and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational Lin-
guistics, 29(1):19–51.

Och, F. J. and H. Ney. 2004. The alignment template ap-
proach to statistical machine translation. Computational
Linguistics, 30(4):417–449.

Papineni, K., S. Roukos, T. Ward, and W.-J. Zhu. 2002. Bleu:
A method for automatic evaluation of machine transla-
tion. ACL.

Pierce, J. R., J. B. Carroll, E. P. Hamp, D. G. Hays, C. F.
Hockett, A. G. Oettinger, and A. J. Perlis. 1966. Lan-
guage and Machines: Computers in Translation and Lin-
guistics. ALPAC report. National Academy of Sciences,
National Research Council, Washington, DC.

Popović, M. 2015. chrF: character n-gram F-score for auto-
matic MT evaluation. Proceedings of the Tenth Workshop
on Statistical Machine Translation.

Prates, M. O. R., P. H. Avelar, and L. C. Lamb. 2019. Assess-
ing gender bias in machine translation: a case study with
Google Translate. Neural Computing and Applications,
32:6363–6381.

Rei, R., C. Stewart, A. C. Farinha, and A. Lavie.
2020. COMET: A neural framework for MT evaluation.
EMNLP.

Schiebinger, L. 2014. Scientific research must take gender
into account. Nature, 507(7490):9.

Schwenk, H. 2018. Filtering and mining parallel data in a
joint multilingual space. ACL.

Schwenk, H., D. Dechelotte, and J.-L. Gauvain. 2006. Con-
tinuous space language models for statistical machine
translation. COLING/ACL.

Sellam, T., D. Das, and A. Parikh. 2020. BLEURT: Learning
robust metrics for text generation. ACL.

Slobin, D. I. 1996. Two ways to travel. In M. Shibatani
and S. A. Thompson, editors, Grammatical Construc-
tions: Their Form and Meaning, pages 195–220. Claren-
don Press.

Snover, M., B. Dorr, R. Schwartz, L. Micciulla, and
J. Makhoul. 2006. A study of translation edit rate with
targeted human annotation. AMTA-2006.

Stanovsky, G., N. A. Smith, and L. Zettlemoyer. 2019. Eval-
uating gender bias in machine translation. ACL.

Sutskever, I., O. Vinyals, and Q. V. Le. 2014. Sequence to
sequence learning with neural networks. NeurIPS.

Talmy, L. 1985. Lexicalization patterns: Semantic structure
in lexical forms. In T. Shopen, editor, Language Typology
and Syntactic Description, Volume 3. Cambridge Univer-
sity Press. Originally appeared as UC Berkeley Cognitive
Science Program Report No. 30, 1980.

Talmy, L. 1991. Path to realization: A typology of event
conflation. BLS-91.

Thompson, B. and P. Koehn. 2019. Vecalign: Improved sen-
tence alignment in linear time and space. EMNLP.

Turian, J. P., L. Shen, and I. D. Melamed. 2003. Evaluation
of machine translation and its evaluation. Proceedings of
MT Summit IX.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. 2017. Atten-
tion is all you need. NeurIPS.

Vauquois, B. 1968. A survey of formal grammars and al-
gorithms for recognition and transformation in machine
translation. IFIP Congress 1968.

Weaver, W. 1949/1955. Translation. In W. N. Locke
and A. D. Boothe, editors, Machine Translation of Lan-
guages, pages 15–23. MIT Press. Reprinted from a mem-
orandum written by Weaver in 1949.

Wu, D. 1996. A polynomial-time algorithm for statistical
machine translation. ACL.

Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith,
J. Riesa, A. Rudnick, O. Vinyals, G. S. Corrado,
M. Hughes, and J. Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human and
machine translation. ArXiv preprint arXiv:1609.08144.

Zens, R. and H. Ney. 2007. Efficient phrase-table represen-
tation for machine translation with applications to online
MT and speech translation. NAACL-HLT.

Zhang, T., V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi.
2020. Bertscore: Evaluating text generation with BERT.
ICLR 2020.

Ziemski, M., M. Junczys-Dowmunt, and B. Pouliquen. 2016.
The United Nations parallel corpus v1.0. LREC.

https://www.aclweb.org/anthology/L16-1147
https://www.aclweb.org/anthology/L16-1147
https://www.aclweb.org/anthology/L16-1147
citeseer.nj.nec.com/marcu02phrasebased.html
citeseer.nj.nec.com/marcu02phrasebased.html
https://doi.org/10.18653/v1/2021.acl-long.566
https://doi.org/10.18653/v1/2021.acl-long.566
https://doi.org/10.18653/v1/2021.acl-long.566
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.3115/1075096.1075117
https://doi.org/10.3115/1075096.1075117
https://doi.org/10.3115/1073083.1073133
https://doi.org/10.3115/1073083.1073133
https://doi.org/10.3115/1073083.1073133
https://doi.org/10.1162/089120103321337421
https://doi.org/10.1162/089120103321337421
https://doi.org/10.1162/0891201042544884
https://doi.org/10.1162/0891201042544884
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/P18-2037
https://doi.org/10.18653/v1/P18-2037
https://aclanthology.org/P06-2093
https://aclanthology.org/P06-2093
https://aclanthology.org/P06-2093
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.3115/981863.981884
https://doi.org/10.3115/981863.981884
https://www.aclweb.org/anthology/N07-1062
https://www.aclweb.org/anthology/N07-1062
https://www.aclweb.org/anthology/N07-1062
https://www.aclweb.org/anthology/L16-1561

	Machine Translation and Encoder-Decoder Models
	Language Divergences and Typology
	Word Order Typology
	Lexical Divergences
	Morphological Typology
	Referential density

	The Encoder-Decoder Model
	Encoder-Decoder with RNNs
	Training the Encoder-Decoder Model

	Attention
	Beam Search
	Encoder-Decoder with Transformers
	Some practical details on building MT systems
	Tokenization
	MT corpora
	Backtranslation

	MT Evaluation
	Using Human Raters to Evaluate MT
	Automatic Evaluation
	Automatic Evaluation: Embedding-Based Methods

	Bias and Ethical Issues
	Summary
	Bibliographical and Historical Notes
	Exercises

