Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All
rights reserved. Draft of December 29, 2021.

CHAPTER

Transfer Learning with Pre-
trained Language Models and
Contextual Embeddings

“How much do we know at any time? Much more, or so I believe, than we know we
know.”

Agatha Christie, The Moving Finger

Fluent speakers bring an enormous amount of knowledge to bear during compre-
hension and production of language. This knowledge is embodied in many forms,
perhaps most obviously in the vocabulary. That is, in the rich representations as-
sociated with the words we know, including their grammatical function, meaning,
real-world reference, and pragmatic function. This makes the vocabulary a useful
lens to explore the acquisition of knowledge from text, by both people and machines.

Estimates of the size of adult vocabularies vary widely both within and across
languages. For example, estimates of the vocabulary size of young adult speakers of
American English range from 30,000 to 100,000 depending on the resources used
to make the estimate and the definition of what it means to know a word. What is
agreed upon is that the vast majority of words that mature speakers use in their day-
to-day interactions are acquired early in life through spoken interactions in context
with care givers and peers, usually well before the start of formal schooling. This
active vocabulary is extremely limited compared to the size of the adult vocabulary
(usually on the order of 2000 words for young speakers) and is quite stable, with
very few additional words learned via casual conversation beyond this early stage.
Obviously, this leaves a very large number of words to be acquired by some other
means.

A simple consequence of these facts is that children have to learn about 7 to 10
words a day, every single day, to arrive at observed vocabulary levels by the time
they are 20 years of age. And indeed empirical estimates of vocabulary growth in
late elementary through high school are consistent with this rate. How do children
achieve this rate of vocabulary growth given their daily experiences during this pe-
riod? We know that most of this growth is not happening through direct vocabulary
instruction in school since these methods are largely ineffective, and are not de-
ployed at a rate that would result in the reliable acquisition of words at the required
rate.

The most likely remaining explanation is that the bulk of this knowledge ac-
quisition happens as a by-product of reading. Research into the average amount of
time children spend reading, and the lexical diversity of the texts they read, indicate
that it is possible to achieve the desired rate. But the mechanism behind this rate of
learning must be remarkable indeed, since at some points during learning the rate of
vocabulary growth exceeds the rate at which new words are appearing to the learner!

Many of these facts have motivated approaches to word learning based on the

2 CHAPTER 11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

distributional hypothesis, introduced in Chapter 6. This is the idea that something
about what we’re loosely calling word meanings can be learned even without any
grounding in the real world, solely based on the content of the texts we’ve encoun-
tered over our lives. This knowledge is based on the complex association of words
with the words they co-occur with (and with the words that those words occur with).

The crucial insight of the distributional hypothesis is that the knowledge that we
acquire through this process can be brought to bear during language processing long
after its initial acquisition in novel contexts. We saw in Chapter 6 that embeddings
(static word representations) can be learned from text and then employed for other
purposes like measuring word similarity or studying meaning change over time.

In this chapter, we expand on this idea in two large ways. First, we’ll intro-
duce the idea of contextual embeddings: representations for words in context. The
methods of Chapter 6 like word2vec or GloVe learned a single vector embedding
for each unique word w in the vocabulary. By contrast, with contextual embeddings,
such as those learned by popular methods like BERT (Devlin et al., 2019) or GPT
(Radford et al., 2019) or their descendants, each word w will be represented by a
different vector each time it appears in a different context.

pretraining Second, we’ll introduce in this chapter the idea of pretraining and fine-tuning.
fine-tuning ~ We call pretraining the process of learning some sort of representation of meaning
for words or sentences by processing very large amounts of text. We’ll call these
pretrained models pretrained language models, since they can take the form of
the transformer language models we introduced in Chapter 9. We call fine-tuning
the process of taking the representations from these pretrained models, and further
training the model, often via an added neural net classifier, to perform some down-
stream task like named entity tagging or question answering or coreference. The
intuition is that the pretraining phase learns a language model that instantiates a rich
representations of word meaning, that thus enables the model to more easily learn
(‘be fine-tuned to’) the requirements of a downstream language understanding task.

The pretrain-finetune paradigm is an instance of what is called transfer learning
in machine learning: the method of acquiring knowledge from one task or domain,
and then applying it (transferring it) to solve a new task. Of course, adding ground-
ing from vision or from real-world interaction into pretrained models can help build
even more powerful models, but even text alone is remarkably useful, and we will
limit our attention here to purely textual models.

There are two common paradigms for pretrained language models. One is the
causal or left-to-right transformer model we introduced in Chapter 9. In this chapter
we’ll introduce a second paradigm, called the bidirectional transformer encoder,
and the method of masked language modeling, introduced with the BERT model
(Devlin et al., 2019) that allows the model to see entire texts at a time, including
both the right and left context.

Finally, we’ll show how the contextual embeddings from these pretrained lan-
guage models can be used to transfer the knowledge embodied in these models to
novel applications via fine-tuning. Indeed, in later chapters we’ll see pretrained
language models fine-tuned to tasks from parsing to question answering, from infor-
mation extraction to semantic parsing.

transfer
learning

11.1

11.1 + BIDIRECTIONAL TRANSFORMER ENCODERS 3

Bidirectional Transformer Encoders

Let’s begin by introducing the bidirectional transformer encoder that underlies mod-
els like BERT and its descendants like ROBERTa (Liu et al., 2019) or SpanBERT
(Joshi et al., 2020). In Chapter 9 we explored causal (left-to-right) transformers
that can serve as the basis for powerful language models—models that can eas-
ily be applied to autoregressive generation problems such as contextual generation,
summarization and machine translation. However, when applied to sequence classi-
fication and labeling problems causal models have obvious shortcomings since they
are based on an incremental, left-to-right processing of their inputs. If we want to
assign the correct named-entity tag to each word in a sentence, or other sophisticated
linguistic labels like the parse tags we’ll introduce in later chapters, we’ll want to be
able to take into account information from the right context as we process each ele-
ment. Fig. 11.1, reproduced here from Chapter 9, illustrates the information flow in
the purely left-to-right approach of Chapter 9. As can be seen, the hidden state com-
putation at each point in time is based solely on the current and earlier elements of
the input, ignoring potentially useful information located to the right of each tagging

decision.
Self-A i
e (B2 g e)

ORI A causal, backward looking, transformer model like Chapter 9. Each output is
computed independently of the others using only information seen earlier in the context.

Self-LAat;(Z?tion @_ _‘J\ % ;] %’_Jj

X1 X2 @ X4 X5

3T W] Information flow in a bidirectional self-attention model. In processing each
element of the sequence, the model attends to all inputs, both before and after the current one.

Bidirectional encoders overcome this limitation by allowing the self-attention
mechanism to range over the entire input, as shown in Fig. 11.2. The focus of bidi-
rectional encoders is on computing contextualized representations of the tokens in an

4 CHAPTER 11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

input sequence that are generally useful across a range of downstream applications.
Therefore, bidirectional encoders use self-attention to map sequences of input em-
beddings (x1,...,X,) to sequences of output embeddings the same length (yy,...,¥,),
where the output vectors have been contextualized using information from the entire
input sequence.

This contextualization is accomplished through the use of the same self-attention
mechanism used in causal models. As with these models, the first step is to gener-
ate a set of key, query and value embeddings for each element of the input vector
x through the use of learned weight matrices WQ, WX, and WY. These weights
project each input vector X; into its specific role as a key, query, or value.

qi:WQX,'; ki:WKXi; Vi:WVXi (11.1)

The output vector y; corresponding to each input element x; is a weighted sum of all
the input value vectors v, as follows:

n
yi = Za,-jvj (11.2)
j=i

The o weights are computed via a softmax over the comparison scores between
every element of an input sequence considered as a query and every other element
as a key, where the comparison scores are computed using dot products.

exp(score;;)

o = (11.3)
" > i_j exp(score;)

score;; = ¢;-K; (11.4)

Since each output vector, y;, is computed independently, the processing of an
entire sequence can be parallelized via matrix operations. The first step is to pack
the input embeddings x; into a matrix X € RV*?_ That is, each row of X is the
embedding of one token of the input. We then multiply X by the key, query, and
value weight matrices (all of dimensionality d x d) to produce matrices Q € RV*?,
K € R¥*4 and V € RV*4, containing all the key, query, and value vectors in a single
step.

Q=XW?, K=XxWK, v=xwV (11.5)

Given these matrices we can compute all the requisite query-key comparisons si-
multaneously by multiplying Q and KT in a single operation. Fig. 11.3 illustrates
the result of this operation for an input with length 5.

Finally, we can scale these scores, take the softmax, and then multiply the result
by V resulting in a matrix of shape N x d where each row contains a contextualized
output embedding corresponding to each token in the input.

. QKT)
SelfAttention(Q,K,V) = softmax < A% (11.6)
() Vi

As shown in Fig. 11.3, the full set of self-attention scores represented by QK”
constitute an all-pairs comparison between the keys and queries for each element
of the input. In the case of causal language models in Chapter 9, we masked the
upper triangular portion of this matrix (in Fig. ??) to eliminate information about
future words since this would make the language modeling training task trivial. With

11.1 + BIDIRECTIONAL TRANSFORMER ENCODERS 5

g1kl |qi-k2 |q1k3 |qik4 |q1-k5

g2:k1 |q2-k2 | g2+k3 |g2:ké |q2-k5

g3+k1 | q3-k2 | g3+k3 | g3+k4 | q3-k5

qd+k1 | qd-k2 | q4+k3 |gd-kd |q4-k5

q5k1 |g5°k2 | g5°k3 | g5°k4 | g5-k5

N

JOROICRO] The N x N QKT matrix showing the complete set of g; - k; comparisons.

bidirectional encoders we simply skip the mask, allowing the model to contextualize
each token using information from the entire input.

Beyond this simple change, all of the other elements of the transformer archi-
tecture remain the same for bidirectional encoder models. Inputs to the model are
segmented using subword tokenization and are combined with positional embed-
dings before being passed through a series of standard transformer blocks consisting
of self-attention and feedforward layers augmented with residual connections and
layer normalization, as shown in Fig. 11.4.

1]\

/Transformer (Layer Normalize
Block

Feedforward Layer

pp—

(Layer Normalize)

Residual
connection [

—

Residual
connection [Self-Attention Layer]

- L — J

We s . &)

ISICRI®Y A transformer block showing all the layers.

To make this more concrete, the original bidirectional transformer encoder model,
BERT (Devlin et al., 2019), consisted of the following:

* A subword vocabulary consisting of 30,000 tokens generated using the Word-

Piece algorithm (Schuster and Nakajima, 2012),

* Hidden layers of size of 768,

* 12 layers of transformer blocks, with 12 multihead attention layers each.
The result is a model with over 100M parameters. The use of WordPiece (one of the
large family of subword tokenization algorithms that includes the BPE algorithm

we saw in Chapter 2) means that BERT and its descendants are based on subword
tokens rather than words. Every input sentence first has to be tokenized, and then

6 CHAPTER11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

all further processing takes place on subword tokens rather than words. This will
require, as we’ll see, that for some NLP tasks that require notions of words (like
named entity tagging, or parsing) we will occasionally need to map subwords back
to words.

Finally, a fundamental issue with transformers is that the size of the input layer
dictates the complexity of model. Both the time and memory requirements in a
transformer grow quadratically with the length of the input. It’s necessary, therefore,
to set a fixed input length that is long enough to provide sufficient context for the
model to function and yet still be computationally tractable. For BERT, a fixed input
size of 512 subword tokens was used.

11.2 Training Bidirectional Encoders

We trained causal transformer language models in Chapter 9 by making them iter-
atively predict the next word in a text. But eliminating the causal mask makes the
guess-the-next-word language modeling task trivial since the answer is now directly
available from the context, so we’re in need of a new training scheme. Fortunately,
the traditional learning objective suggests an approach that can be used to train bidi-
rectional encoders. Instead of trying to predict the next word, the model learns to

cozetask perform a fill-in-the-blank task, technically called the cloze task (Taylor, 1953). To
see this, let’s return to the motivating example from Chapter 3. Instead of predicting
which words are likely to come next in this example:

Please turn your homework .
we’re asked to predict a missing item given the rest of the sentence.

Please turn homework in.

That is, given an input sequence with one or more elements missing, the learning
task is to predict the missing elements. More precisely, during training the model is
deprived of one or more elements of an input sequence and must generate a proba-
bility distribution over the vocabulary for each of the missing items. We then use the
cross-entropy loss from each of the model’s predictions to drive the learning process.

This approach can be generalized to any of a variety of methods that corrupt the
training input and then asks the model to recover the original input. Examples of the
kinds of manipulations that have been used include masks, substitutions, reorder-
ings, deletions, and extraneous insertions into the training text.

11.2.1 Masking Words

Masked The original approach to training bidirectional encoders is called Masked Language
Language Modeling (MLM) (Devlin et al., 2019). As with the language model training meth-
Modelin ,

MM ods we've already seen, MLM uses unannotated text from a large corpus. Here, the
model is presented with a series of sentences from the training corpus where a ran-
dom sample of tokens from each training sequence is selected for use in the learning
task. Once chosen, a token is used in one of three ways:

e Itis replaced with the unique vocabulary token [MASK].

* It is replaced with another token from the vocabulary, randomly sampled
based on token unigram probabilities.

e Itis left unchanged.

11.2 ¢ TRAINING BIDIRECTIONAL ENCODERS 7

In BERT, 15% of the input tokens in a training sequence are sampled for learning.
Of these, 80% are replaced with [MASK], 10% are replaced with randomly selected
tokens, and the remaining 10% are left unchanged.

The MLM training objective is to predict the original inputs for each of the
masked tokens using a bidirectional encoder of the kind described in the last section.
The cross-entropy loss from these predictions drives the training process for all the
parameters in the model. Note that all of the input tokens play a role in the self-
attention process, but only the sampled tokens are used for learning.

More specifically, the original input sequence is first tokenized using a subword
model. The sampled items which drive the learning process are chosen from among
the set of tokenized inputs. Word embeddings for all of the tokens in the input
are retrieved from the word embedding matrix and then combined with positional
embeddings to form the input to the transformer.

long thanks the
CE Loss 108 Yiom 108 Yin
Softmax over
Vocabulary Dﬂﬂﬂm mﬂ,ﬂ,n
WV WV

Bidirectional Transformer Encoder

e 88 8.8 88 B8 88 58 B3 8
Positional
Embeddings P! P2 P 1o P 6 p7 P

So [mask] and [mask] for all apricot fish

So long and thanks for all the fish

Masked language model training. In this example, three of the input tokens are selected, two of
which are masked and the third is replaced with an unrelated word. The probabilities assigned by the model
to these three items are used as the training loss. (In this and subsequent figures we display the input as words
rather than subword tokens; the reader should keep in mind that BERT and similar models actually use subword
tokens instead.)

Fig. 11.5 illustrates this approach with a simple example. Here, long, thanks and
the have been sampled from the training sequence, with the first two masked and the
replaced with the randomly sampled token apricot. The resulting embeddings are
passed through a stack of bidirectional transformer blocks. To produce a probability
distribution over the vocabulary for each of the masked tokens, the output vector
from the final transformer layer for each of the masked tokens is multiplied by a
learned set of classification weights Wy € RIVI¥dh and then through a softmax to
yield the required predictions over the vocabulary.

y; = softmax(Wyh;)
With a predicted probability distribution for each masked item, we can use cross-

entropy to compute the loss for each masked item—the negative log probability
assigned to the actual masked word, as shown in Fig. 11.5. The gradients that form

8 CHAPTER 11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

the basis for the weight updates are based on the average loss over the sampled
learning items from a single training sequence (or batch of sequences).

11.2.2 Masking Spans

For many NLP applications, the natural unit of interest may be larger than a single
word (or token). Question answering, syntactic parsing, coreference and seman-
tic role labeling applications all involve the identification and classification of con-
stituents, or phrases. This suggests that a span-oriented masked learning objective
might provide improved performance on such tasks.

A span is a contiguous sequence of one or more words selected from a train-
ing text, prior to subword tokenization. In span-based masking, a set of randomly
selected spans from a training sequence are chosen. In the SpanBERT work that
originated this technique (Joshi et al., 2020), a span length is first chosen by sam-
pling from a geometric distribution that is biased towards shorter spans an with upper
bound of 10. Given this span length, a starting location consistent with the desired
span length and the length of the input is sampled uniformly.

Once a span is chosen for masking, all the words within the span are substituted
according to the same regime used in BERT: 80% of the time the span elements are
substituted with the [MASK] token, 10% of the time they are replaced by randomly
sampled words from the vocabulary, and 10% of the time they are left as is. Note
that this substitution process is done at the span level—all the tokens in a given span
are substituted using the same method. As with BERT, the total token substitution
is limited to 15% of the training sequence input. Having selected and masked the
training span, the input is passed through the standard transformer architecture to
generate contextualized representations of the input tokens.

Downstream span-based applications rely on span representations derived from
the tokens within the span, as well as the start and end points, or the boundaries, of
a span. Representations for these boundaries are typically derived from the first and
last words of a span, the words immediately preceding and following the span, or
some combination of them. The SpanBERT learning objective augments the MLM
objective with a boundary oriented component called the Span Boundary Objective
(SBO). The SBO relies on a model’s ability to predict the words within a masked
span from the words immediately preceding and following it. This prediction is
made using the output vectors associated with the words that immediately precede
and follow the span being masked, along with positional embedding that signals
which word in the span is being predicted:

L(x) = Lywm(x)+ Lspo(x) (11.7)
Lspo(x) = —logP(x|xy,Xe, px) (11.8)

where s denotes the position of the word before the span and e denotes the word
after the end. The prediction for a given position i within the span is produced
by concatenating the output embeddings for words s and e span boundary vectors
with a positional embedding for position i and passing the result through a 2-layer
feedforward network.

s = FENN([y;—15Ve+1:Pi-s+1]) (11.9)
z = softmax(Es) (11.10)

The final loss is the sum of the BERT MLM loss and the SBO loss.

11.2 + TRAINING BIDIRECTIONAL ENCODERS 9

Fig. 11.6 illustrates this with one of our earlier examples. Here the span selected
is and thanks for which spans from position 3 to 5. The total loss associated with
the masked token thanks is the sum of the cross-entropy loss generated from the pre-
diction of thanks from the output y4, plus the cross-entropy loss from the prediction
of thanks from the output vectors for y;, y¢ and the embedding for position 4 in the
span.

Embedding
Layer

Span-based loss

— 1og Ythanks =F —log Ythanks

s

o

Bidirectional Transformer Encoder

0 long [mask] [mask] [mask] all the fish
So long and thanks for all the fish

13T PBNY Span-based language model training. In this example, a span of length 3 is selected for training
and all of the words in the span are masked. The figure illustrates the loss computed for word thanks; the loss
for the entire span is based on the loss for all three of the words in the span.

Next Sentence
Prediction

11.2.3 Next Sentence Prediction

The focus of masked-based learning is on predicting words from surrounding con-
texts with the goal of producing effective word-level representations. However, an
important class of applications involves determining the relationship between pairs
of sentences. These includes tasks like paraphrase detection (detecting if two sen-
tences have similar meanings), entailment (detecting if the meanings of two sen-
tences entail or contradict each other) or discourse coherence (deciding if two neigh-
boring sentences form a coherent discourse).

To capture the kind of knowledge required for applications such as these, BERT
introduced a second learning objective called Next Sentence Prediction (NSP). In
this task, the model is presented with pairs of sentences and is asked to predict
whether each pair consists of an actual pair of adjacent sentences from the training
corpus or a pair of unrelated sentences. In BERT, 50% of the training pairs consisted
of positive pairs, and in the other 50% the second sentence of a pair was randomly
selected from elsewhere in the corpus. The NSP loss is based on how well the model
can distinguish true pairs from random pairs.

To facilitate NSP training, BERT introduces two new tokens to the input repre-
sentation (tokens that will prove useful for fine-tuning as well). After tokenizing the

10 CHAPT

ER11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

input with the subword model, the token [CLS] is prepended to the input sentence
pair, and the token [SEP] is placed between the sentences and after the final token of
the second sentence. Finally, embeddings representing the first and second segments
of the input are added to the word and positional embeddings to allow the model to
more easily distinguish the input sentences.

During training, the output vector from the final layer associated with the [CLS]
token represents the next sentence prediction. As with the MLM objective, a learned
set of classification weights Wxgp € R?*% is used to produce a two-class prediction
from the raw [CLS] vector.

yi = softmax(WNsphi)
Cross entropy is used to compute the NSP loss for each sentence pair presented

to the model. Fig. 11.7 illustrates the overall NSP training setup. In BERT, the NSP
loss was used in conjunction with the MLM training objective to form final loss.

OF Loes

Softmax m

Segment +
Posmonal

1

Wsp £\

Bidirectional Transformer Encoder

uﬁ §36 636 694 064 899 uﬁ $34 844

[CLS] Cancel my flight [SEP] And hotel [SEP]

An example of the NSP loss calculation.

11.2.4 Training Regimes

The corpus used in training BERT and other early transformer-based language mod-
els consisted of an 800 million word corpus of book texts called BooksCorpus (Zhu
et al., 2015) and a 2.5 Billion word corpus derived from the English Wikipedia, for
a combined size of 3.3 Billion words. The BooksCorpus is no longer used (for in-
tellectual property reasons), and in general, as we’ll discuss later, state-of-the-art
models employ corpora that are orders of magnitude larger than these early efforts.

To train the original BERT models, pairs of sentences were selected from the
training corpus according to the next sentence prediction 50/50 scheme. Pairs were
sampled so that their combined length was less than the 512 token input. Tokens
within these sentence pairs were then masked using the MLM approach with the
combined loss from the MLM and NSP objectives used for a final loss. Approx-
imately 40 passes (epochs) over the training data was required for the model to
converge.

The result of this pretraining process consists of both learned word embeddings,
as well as all the parameters of the bidirectional encoder that are used to produce
contextual embeddings for novel inputs.

contextual
embeddings

11.3 ¢ TRANSFER LEARNING THROUGH FINE-TUNING 11

11.2.5 Contextual Embeddings

Given a pretrained language model and a novel input sentence, we can think of the
output of the model as constituting contextual embeddings for each token in the
input. These contextual embeddings can be used as a contextual representation of
the meaning of the input token for any task requiring the meaning of word.

Contextual embeddings are thus vectors representing some aspect of the meaning
of a token in context. For example, given a sequence of input tokens xy, ..., x,, we can
use the output vector y; from the final layer of the model as a representation of the
meaning of token x; in the context of sentence xy, ...,x,. Or instead of just using the
vector y; from the final layer of the model, it’s common to compute a representation
for x; by averaging the output tokens y; from each of the last four layers of the model.

Just as we used static embeddings like word2vec to represent the meaning of
words, we can use contextual embeddings as representations of word meanings in
context for any task that might require a model of word meaning. Where static
embeddings represent the meaning of word fypes (vocabulary entries), contextual
embeddings represent the meaning of word tokens: instances of a particular word
type in a particular context. Contextual embeddings can thus by used for tasks like
measuring the semantic similarity of two words in context, and are useful in linguis-
tic tasks that require models of word meaning.

In the next section, however, we’ll see the most common use of these repre-
sentations: as embeddings of word or even entire sentences that are the inputs to
classifiers in the fine-tuning process for downstream NLP applications.

11.3 Transfer Learning through Fine-Tuning

fine-tuning

sentence
embedding

The power of pretrained language models lies in their ability to extract generaliza-
tions from large amounts of text—generalizations that are useful for myriad down-
stream applications. To make practical use of these generalizations, we need to
create interfaces from these models to downstream applications through a process
called fine-tuning. Fine-tuning facilitates the creation of applications on top of pre-
trained models through the addition of a small set of application-specific parameters.
The fine-tuning process consists of using labeled data from the application to train
these additional application-specific parameters. Typically, this training will either
freeze or make only minimal adjustments to the pretrained language model parame-
ters.

The following sections introduce fine-tuning methods for the most common ap-
plications including sequence classification, sequence labeling, sentence-pair infer-
ence, and span-based operations.

11.3.1 Sequence Classification

Sequence classification applications often represent an input sequence with a single
consolidated representation. With RNNs, we used the hidden layer associated with
the final input element to stand for the entire sequence. A similar approach is used
with transformers. An additional vector is added to the model to stand for the entire
sequence. This vector is sometimes called the sentence embedding since it refers
to the entire sequence, although the term ‘sentence embedding’ is also used in other
ways. In BERT, the [CLS] token plays the role of this embedding. This unique token

12 CHAPTER 11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

is added to the vocabulary and is prepended to the start of all input sequences, both
during pretraining and encoding. The output vector in the final layer of the model
for the [CLS] input represents the entire input sequence and serves as the input to

classifier head a classifier head, a logistic regression or neural network classifier that makes the

relevant decision.

As an example, let’s return to the problem of sentiment classification. A sim-
ple approach to fine-tuning a classifier for this application involves learning a set of
weights, W¢, to map the output vector for the [CLS] token, ycLgs to a set of scores
over the possible sentiment classes. Assuming a three-way sentiment classification
task (positive, negative, neutral) and dimensionality dj, for the size of the language
model hidden layers gives W € R3*%. Classification of unseen documents pro-
ceeds by passing the input text through the pretrained language model to generate
YcLs, multiplying it by W, and finally passing the resulting vector through a soft-
max.

y = softmax(WcycLs) (11.11)

Finetuning the values in W requires supervised training data consisting of input
sequences labeled with the appropriate class. Training proceeds in the usual way;
cross-entropy loss between the softmax output and the correct answer is used to
drive the learning that produces We.

A key difference from what we’ve seen earlier with neural classifiers is that this
loss can be used to not only learn the weights of the classifier, but also to update the
weights for the pretrained language model itself. In practice, reasonable classifica-
tion performance is typically achieved with only minimal changes to the language
model parameters, often limited to updates over the final few layers of the trans-
former. Fig. 11.8 illustrates this overall approach to sequence classification.

Word +

Embacings ‘ # ‘ ‘ # ‘

Yyors

softmax

We £

Bidirectional Transformer Encoder

CLS] entirely predlctable and lacks energy

Figure 11.8

Sequence classification with a bidirectional transformer encoder. The output vector for the

[CLS] token serves as input to a simple classifier.

11.3.2 Pair-Wise Sequence Classification

As mentioned in Section 11.2.3, an important type of problem involves the classi-
fication of pairs of input sequences. Practical applications that fall into this class
include logical entailment, paraphrase detection and discourse analysis.

11.3 ¢ TRANSFER LEARNING THROUGH FINE-TUNING 13

Fine-tuning an application for one of these tasks proceeds just as with pretraining
using the NSP objective. During fine-tuning, pairs of labeled sentences from the
supervised training data are presented to the model. As with sequence classification,
the output vector associated with the prepended [CLS] token represents the model’s
view of the input pair. And as with NSP training, the two inputs are separated by
the a [SEP] token. To perform classification, the [CLS] vector is multiplied by a
set of learning classification weights and passed through a softmax to generate label
predictions, which are then used to update the weights.

As an example, let’s consider an entailment classification task with the Multi-
Genre Natural Language Inference (MultiNLI) dataset (Williams et al., 2018). In

natural . . .

language the task of natural language inference or NLI, also called recognizing textual

inference entailment, a model is presented with a pair of sentences and must classify the re-
lationship between their meanings. For example in the MultiNLI corpus, pairs of
sentences are given one of 3 labels: entails, contradicts and neutral. These labels
describe a relationship between the meaning of the first sentence (the premise) and
the meaning of the second sentence (the hypothesis). Here are representative exam-
ples of each class from the corpus:

e Neutral

a: Jon walked back to the town to the smithy.
b: Jon traveled back to his hometown.

e Contradicts

a: Tourist Information offices can be very helpful.
b: Tourist Information offices are never of any help.

e Entails

a: I’'m confused.

b: Not all of it is very clear to me.

A relationship of contradicts means that the premise contradicts the hypothesis; en-
tails means that the premise entails the hypothesis; neutral means that neither is
necessarily true. The meaning of these labels is looser than strict logical entailment
or contradiction indicating that a typical human reading the sentences would most
likely interpret the meanings in this way.

To fine-tune a classifier for the MultiNLI task, we pass the premise/hypothesis
pairs through a bidirectional encoder as described above and use the output vector
for the [CLS] token as the input to the classification head. As with ordinary sequence
classification, this head provides the input to a three-way classifier that can be trained
on the MultiNLI training corpus.

11.3.3 Sequence Labelling

Sequence labelling tasks, such as part-of-speech tagging or BIO-based named entity
recognition, follow the same basic classification approach. Here, the final output
vector corresponding to each input token is passed to a classifier that produces a
softmax distribution over the possible set of tags. Again, assuming a simple classifier
consisting of a single feedforward layer followed by a softmax, the set of weights
to be learned for this additional layer is Wk € R¥*dr where k is the number of
possible tags for the task. As with RNNs, a greedy approach, where the argmax tag
for each token is taken as a likely answer, can be used to generate the final output

14 CHAPTER 11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

tag sequence. Fig. 11.9 illustrates an example of this approach.

yi = softmax(Wgz;) (11.12)
t; = argmax(y;) (11.13)
Alternatively, the distribution over labels provided by the softmax for each input

token can be passed to a conditional random field (CRF) layer which can take global
tag-level transitions into account.

argmax

i &5 .L i &

Bidirectional Transformer Encoder

A

[CLS] Janet WI|| back t b|II

VIR Sequence labeling for part-of-speech tagging with a bidirectional transformer encoder. The out-
put vector for each input token is passed to a simple k-way classifier.

A complication with this approach arises from the use of subword tokenization
such as WordPiece or Byte Pair Encoding. Supervised training data for tasks like
named entity recognition (NER) is typically in the form of BIO tags associated with
text segmented at the word level. For example the following sentence containing
two named entities:

[Loc Mt. Sanitas | is in [[oc Sunshine Canyon] .
would have the following set of per-word BIO tags.

(11.14) Mz Sanitas is in Sunshine Canyon .
B-LOCI-LOC O O B-LOC I-LOC O

Unfortunately, the WordPiece tokenization for this sentence yields the following
sequence of tokens which doesn’t align directly with BIO tags in the ground truth
annotation:

'Mt’, ’.’, ’'San’, ’##itas’, 'is’, ’in’, ’Sunshine’, ’'Canyon’ ’.’
To deal with this misalignment, we need a way to assign BIO tags to subword
tokens during training and a corresponding way to recover word-level tags from
subwords during decoding. For training, we can just assign the gold-standard tag
associated with each word to all of the subword tokens derived from it.
For decoding, the simplest approach is to use the argmax BIO tag associated with
the first subword token of a word. Thus, in our example, the BIO tag assigned to

11.3 ¢ TRANSFER LEARNING THROUGH FINE-TUNING 15

“Mt” would be assigned to “Mt.” and the tag assigned to “San” would be assigned
to “Sanitas”, effectively ignoring the information in the tags assigned to “.” and
“#titas”. More complex approaches combine the distribution of tag probabilities

across the subwords in an attempt to find an optimal word-level tag.

11.3.4 Fine-tuning for Span-Based Applications

Span-oriented applications operate in a middle ground between sequence level and
token level tasks. That is, in span-oriented applications the focus is on generating
and operating with representations of contiguous sequences of tokens. Typical op-
erations include identifying spans of interest, classifying spans according to some
labeling scheme, and determining relations among discovered spans. Applications
include named entity recognition, question answering, syntactic parsing, semantic
role labeling and coreference resolution.

Formally, given an input sequence x consisting of T tokens, (xi,x2,...,x7), a
span is a contiguous sequence of tokens with start i and end j such that 1 <=i <=
Jj <=T. This formulation results in a total set of spans equal to @ For practical
purposes, span-based models often impose an application-specific length limit L, so
the legal spans are limited to those where j —i < L. In the following, we’ll refer to
the enumerated set of legal spans in x as S(x).

The first step in fine-tuning a pretrained language model for a span-based ap-
plication using the contextualized input embeddings from the model to generate
representations for all the spans in the input. Most schemes for representing spans
make use of two primary components: representations of the span boundaries and
summary representations of the contents of each span. To compute a unified span
representation, we concatenate the boundary representations with the summary rep-
resentation.

In the simplest possible approach, we can use the contextual embeddings of
the start and end tokens of a span as the boundaries, and the average of the output
embeddings within the span as the summary representation.

1 J
g = ———— Y I (11.15)

Y (j*l)‘i*l;
spanRep;; = [hishj;gi] (11.16)

A weakness of this approach is that it doesn’t distinguish the use of a word’s em-
bedding as the beginning of a span from its use as the end of one. Therefore, more
elaborate schemes for representing the span boundaries involve learned representa-
tions for start and end points through the use of two distinct feedforward networks:

s; = FFNNyan(hi) (11.17)
ej = FFNNend(/’lj) (11.18)
spanRep;; = [sizejigijl (11.19)

Similarly, a simple average of the vectors in a span is unlikely to be an optimal
representation of a span since it treats all of a span’s embeddings as equally impor-
tant. For many applications, a more useful representation would be centered around
the head of the phrase corresponding to the span. One method for getting at such in-
formation in the absence of a syntactic parse is to use a standard self-attention layer
to generate a span representation.

gij = SelfATTN (hl‘;]‘) (11.20)

16 CHAPTER11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

Now, given span representations g for each span in S(x), classifiers can be fine-
tuned to generate application-specific scores for various span-oriented tasks: binary
span identification (is this a legitimate span of interest or not?), span classification
(what kind of span is this?), and span relation classification (how are these two spans
related?).

To ground this discussion, let’s return to named entity recognition (NER). Given
a scheme for representing spans and set of named entity types, a span-based ap-
proach to NER is a straightforward classification problem where each span in an
input is assigned a class label. More formally, given an input sequence x, we want
to assign a label y, from the set of valid NER labels, to each of the spans in S(x).
Since most of the spans in a given input will not be named entities we’ll add the
label NULL to the set of typesin Y.

yij = softmax(FFNN(g;;)) (11.21)

Softmax

Classification N I _ 7

Scores C FFNN) C FFNN)

Span representation

Span summary

Contextualized

Embeddings (h) (119 (X119 @ @00 @00 @09 m

(Bidirectional Transformer Encoder)

Ja?ne ViIIanLeva gf Un?ted Airl?nes Holging distssed
— _/

PER ORG

VBNl A span-oriented approach to named entity classification. The figure only illustrates the compu-
tation for 2 spans corresponding to ground truth named entities. In reality, the network scores all of the @

spans in the text. That is, all the unigrams, bigrams, trigrams, etc. up to the length limit.

With this approach, fine-tuning entails using supervised training data to learn
the parameters of the final classifier, as well as the weights used to generate the
boundary representations, and the weights in the self-attention layer that generates
the span content representation. During training, the model’s predictions for all
spans are compared to their gold-standard labels and cross-entropy loss is used to
drive the training.

During decoding, each span is scored using a softmax over the final classifier
output to generate a distribution over the possible labels, with the argmax score for
each span taken as the correct answer. Fig. 11.10 illustrates this approach with an
example. A variation on this scheme designed to improve precision adds a calibrated
threshold to the labeling of a span as anything other than NULL.

There are two significant advantages to a span-based approach to NER over a
BIO-based per-word labeling approach. The first advantage is that BIO-based ap-
proaches are prone to a labeling mis-match problem. That is, every label in a longer
named entity must be correct for an output to be judged correct. Returning to the
example in Fig. 11.10, the following labeling would be judged entirely wrong due to
the incorrect label on the first item. Span-based approaches only have to make one
classification for each span.

11.4 <+ TRANSFER LEARNING VIA PROMPTING 17

(11.22) Jane Villanueva of United Airlines Holding discussed ...
B-PER I-PER O I-ORG I-ORG I-ORG O

The second advantage to span-based approaches is that they naturally accommo-
date embedded named entities. For example, in this example both United Airlines
and United Airlines Holding are legitimate named entities. The BIO approach has
no way of encoding this embedded structure. But the span-based approach can nat-
urally label both since the spans are labeled separately.

11.4 Transfer Learning via Prompting

11.4.1 Text-to-Text Models
11.4.2 Prompting
11.4.3 Contextual (Few-Shot) Learning

11.5 Training Corpora

11.6 Potential Harms from Language Models

Large pretrained neural language models exhibit many of the potential harms dis-
cussed in Chapter 4 and Chapter 6. Many of these harms become realized when
pretrained language models are fine-tuned to downstream tasks, particularly those
involving text generation, such as in assistive technologies like web search query
completion, or predictive typing for email (Olteanu et al., 2020).

For example, language models can generate toxic language. Gehman et al.
(2020) show that many kinds of completely non-toxic prompts can nonetheless lead
large language models to output hate speech and abuse. Brown et al. (2020) and
Sheng et al. (2019) showed that large language models generate sentences display-
ing negative attitudes toward minority identities such as being Black or gay.

Indeed, language models are biased in a number of ways by the distributions of
their training data. Gehman et al. (2020) shows that large language model training
datasets include toxic text scraped from banned sites. In addition to problems of
toxicity, internet data is disproportionately generated by authors from developed
countries, and many large language models train on data from Reddit, whose authors
skew male and young. Such biased population samples likely skew the resulting
generation away from the perspectives or topics of underrepresented populations.
Furthermore, language models can amplify demographic and other biases in training
data, just as we saw for embedding models in Chapter 6.

Language models can also be a tool for generating text for misinformation,
phishing, radicalization, and other socially harmful activities (Brown et al., 2020).
McGuffie and Newhouse (2020) show how large language models generate text that
emulates online extremists, with the risk of amplifying extremist movements and
their attempt to radicalize and recruit.

Finally, there are important privacy issues. Language models, like other machine

18 CHAPTER11 ¢ TRANSFER LEARNING WITH PRETRAINED LANGUAGE MODELS AND CONTEXTUAL EMBEDDINGS

learning models, can leak information about their training data. It is thus possible
for an adversary to extract individual training-data phrases from a language model
such as an individual person’s name, phone number, and address (Henderson et al.
2017, Carlini et al. 2020). This is a problem if large language models are trained on
private datasets such has electronic health records (EHRs).

Mitigating all these harms is an important but unsolved research question in
NLP. Extra pretraining (Gururangan et al., 2020) on non-toxic subcorpora seems to
reduce a language model’s tendency to generate toxic language somewhat (Gehman
et al.,, 2020). And analyzing the data used to pretrain large language models is
important to understand toxicity and bias in generation, as well as privacy, making
it extremely important that language models include datasheets (page ??) or model
cards (page ??) giving full replicable information on the corpora used to train them.

11.7 Summary

This chapter has introduced the topic of transfer learning from pretrained language
models. Here’s a summary of the main points that we covered:

* Bidirectional encoders can be used to generate contextualized representations
of input embeddings using the entire input context.

* Pretrained language models based on bidirectional encoders can be learned
using a masked language model objective where a model is trained to guess
the missing information from an input.

* Pretrained language models can be fine-tuned for specific applications by
adding lightweight classifier layers on top of the outputs of the pretrained
model.

Bibliographical and Historical Notes

Bibliographical and Historical Notes

19

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. 2020. Lan-
guage models are few-shot learners. ArXiv preprint
arXiv:2005.14165.

Carlini, N., F. Tramer, E. Wallace, M. Jagielski, A. Herbert-
Voss, K. Lee, A. Roberts, T. Brown, D. Song, U. Erlings-
son, A. Oprea, and C. Raffell. 2020. Extracting train-
ing data from large language models. ArXiv preprint
arXiv:2012.07805.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. NAACL HLT.

Gehman, S., S. Gururangan, M. Sap, Y. Choi, and N. A.
Smith. 2020. RealToxicityPrompts: Evaluating neu-
ral toxic degeneration in language models. Findings of
EMNLP.

Gururangan, S., A. Marasovi¢, S. Swayamdipta, K. Lo,
I. Beltagy, D. Downey, and N. A. Smith. 2020. Don’t
stop pretraining: Adapt language models to domains and
tasks. ACL.

Henderson, P., K. Sinha, N. Angelard-Gontier, N. R. Ke,
G. Fried, R. Lowe, and J. Pineau. 2017. Ethical chal-
lenges in data-driven dialogue systems. AAAI/ACM Al
Ethics and Society Conference.

Joshi, M., D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and
O. Levy. 2020. SpanBERT: Improving pre-training by
representing and predicting spans. TACL, 8:64-77.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
2019. RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv preprint arXiv:1907.11692.

McGuffie, K. and A. Newhouse. 2020. The radicalization
risks of GPT-3 and advanced neural language models.
ArXiv preprint arXiv:2009.06807.

Olteanu, A., F. Diaz, and G. Kazai. 2020. When are search
completion suggestions problematic? CSCW.

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. 2019. Language models are unsupervised
multitask learners. OpenAl tech report.

Schuster, M. and K. Nakajima. 2012. Japanese and korean
voice search. ICASSP.

Sheng, E., K.-W. Chang, P. Natarajan, and N. Peng. 2019.
The woman worked as a babysitter: On biases in language
generation. EMNLP.

Taylor, W. L. 1953. Cloze procedure: A new tool for mea-
suring readability. Journalism Quarterly, 30:415-433.
Williams, A., N. Nangia, and S. Bowman. 2018. A broad-
coverage challenge corpus for sentence understanding

through inference. NAACL HLT.

Zhu, Y., R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun,
A. Torralba, and S. Fidler. 2015. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. IEEE International Con-
ference on Computer Vision.

https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://doi.org/10.18653/v1/D19-1339
https://doi.org/10.18653/v1/D19-1339
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

	Transfer Learning with Pretrained Language Models and Contextual Embeddings
	Bidirectional Transformer Encoders
	Training Bidirectional Encoders
	Masking Words
	Masking Spans
	Next Sentence Prediction
	Training Regimes
	Contextual Embeddings

	Transfer Learning through Fine-Tuning
	Sequence Classification
	Pair-Wise Sequence Classification
	Sequence Labelling
	Fine-tuning for Span-Based Applications

	Transfer Learning via Prompting
	Text-to-Text Models
	Prompting
	Contextual (Few-Shot) Learning

	Training Corpora
	Potential Harms from Language Models
	Summary
	Bibliographical and Historical Notes

