
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All

rights reserved. Draft of December 29, 2021.

CHAPTER

13 Constituency Parsing

One morning I shot an elephant in my pajamas.
How he got into my pajamas I don’t know.

Groucho Marx, Animal Crackers, 1930

Syntactic parsing is the task of assigning a syntactic structure to a sentence. This
chapter focuses on constituency structures, those assigned by context-free grammars
of the kind described in Chapter 12. In the next chapter we’ll introduce dependency
parses, an alternative kind of parse structure,

Parse trees can be used in applications such as grammar checking: sentence that
cannot be parsed may have grammatical errors (or at least be hard to read). Parse
trees can be an intermediate stage of representation for semantic analysis (as we
show in Chapter 16) and thus play a role in applications like question answering.
For example to answer the question

Which flights to Denver depart before the Seattle flight?

we’ll need to know that the questioner wants a list of flights going to Denver, not
flights going to Seattle, and parse structure (knowing that to Denver modifies flights,
and which flights to Denver is the subject of the depart) can help us.

We begin by discussing ambiguity and the problems it presents, and then give
the Cocke-Kasami-Younger (CKY) algorithm (Kasami 1965, Younger 1967), the
standard dynamic programming approach to syntactic parsing. We’ve already seen
other dynamic programming algorithms like minimum edit distance (Chapter 2) and
Viterbi (Chapter 8).

The vanilla CKY algorithm returns an efficient representation of the set of parse
trees for a sentence, but doesn’t tell us which parse tree is the right one. For that,
we need to augment CKY with scores for each possible constituent. We’ll see how
to do this with neural span-based parsers. And we’ll introduce other methods like
supertagging for parsing CCG, partial parsing methods, for use in situations in
which a superficial syntactic analysis of an input may be sufficient, and the standard
set of metrics for evaluating parser accuracy.

13.1 Ambiguity

Ambiguity is the most serious problem faced by syntactic parsers. Chapter 8 intro-
duced the notions of part-of-speech ambiguity and part-of-speech disambigua-
tion. Here, we introduce a new kind of ambiguity, called structural ambiguity,structural

ambiguity
illustrated with a new toy grammar L1, shown in Figure 13.1, which adds a few
rules to the L0 grammar from the last chapter.

Structural ambiguity occurs when the grammar can assign more than one parse
to a sentence. Groucho Marx’s well-known line as Captain Spaulding in Animal
Crackers is ambiguous because the phrase in my pajamas can be part of the NP

2 CHAPTER 13 • CONSTITUENCY PARSING

Grammar Lexicon
S → NP VP Det → that | this | the | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | NWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP
Figure 13.1 The L1 miniature English grammar and lexicon.

S

VP

NP

Nominal

PP

in my pajamas

Nominal

Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

S

VP

PP

in my pajamas

VP

NP

Nominal

Noun

elephant

Det

an

Verb

shot

NP

Pronoun

I

Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

headed by elephant or a part of the verb phrase headed by shot. Figure 13.2 illus-
trates these two analyses of Marx’s line using rules from L1.

Structural ambiguity, appropriately enough, comes in many forms. Two common
kinds of ambiguity are attachment ambiguity and coordination ambiguity. A
sentence has an attachment ambiguity if a particular constituent can be attached toattachment

ambiguity
the parse tree at more than one place. The Groucho Marx sentence is an example of
PP-attachment ambiguity. Various kinds of adverbial phrases are also subject to this
kind of ambiguity. For instance, in the following example the gerundive-VP flying
to Paris can be part of a gerundive sentence whose subject is the Eiffel Tower or it
can be an adjunct modifying the VP headed by saw:

(13.1) We saw the Eiffel Tower flying to Paris.

In coordination ambiguity phrases can be conjoined by a conjunction like and.coordination
ambiguity

13.2 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 3

For example, the phrase old men and women can be bracketed as [old [men and
women]], referring to old men and old women, or as [old men] and [women], in
which case it is only the men who are old. These ambiguities combine in complex
ways in real sentences, like the following news sentence from the Brown corpus:

(13.2) President Kennedy today pushed aside other White House business to
devote all his time and attention to working on the Berlin crisis address he
will deliver tomorrow night to the American people over nationwide
television and radio.

This sentence has a number of ambiguities, although since they are semantically
unreasonable, it requires a careful reading to see them. The last noun phrase could be
parsed [nationwide [television and radio]] or [[nationwide television] and radio].
The direct object of pushed aside should be other White House business but could
also be the bizarre phrase [other White House business to devote all his time and
attention to working] (i.e., a structure like Kennedy affirmed [his intention to propose
a new budget to address the deficit]). Then the phrase on the Berlin crisis address he
will deliver tomorrow night to the American people could be an adjunct modifying
the verb pushed. A PP like over nationwide television and radio could be attached
to any of the higher VPs or NPs (e.g., it could modify people or night).

The fact that there are many grammatically correct but semantically unreason-
able parses for naturally occurring sentences is an irksome problem that affects all
parsers. Fortunately, the CKY algorithm below is designed to efficiently handle
structural ambiguities. And as we’ll see in the following section, we can augment
CKY with neural methods to choose a single correct parse by syntactic disambigua-
tion.syntactic

disambiguation

13.2 CKY Parsing: A Dynamic Programming Approach

Dynamic programming provides a powerful framework for addressing the prob-
lems caused by ambiguity in grammars. Recall that a dynamic programming ap-
proach systematically fills in a table of solutions to sub-problems. The complete ta-
ble has the solution to all the sub-problems needed to solve the problem as a whole.
In the case of syntactic parsing, these sub-problems represent parse trees for all the
constituents detected in the input.

The dynamic programming advantage arises from the context-free nature of our
grammar rules—once a constituent has been discovered in a segment of the input we
can record its presence and make it available for use in any subsequent derivation
that might require it. This provides both time and storage efficiencies since subtrees
can be looked up in a table, not reanalyzed. This section presents the Cocke-Kasami-
Younger (CKY) algorithm, the most widely used dynamic-programming based ap-
proach to parsing. Chart parsing (Kaplan 1973, Kay 1982) is a related approach,
and dynamic programming methods are often referred to as chart parsing methods.chart parsing

13.2.1 Conversion to Chomsky Normal Form
The CKY algorithm requires grammars to first be in Chomsky Normal Form (CNF).
Recall from Chapter 12 that grammars in CNF are restricted to rules of the form
A → B C or A → w. That is, the right-hand side of each rule must expand either to
two non-terminals or to a single terminal. Restricting a grammar to CNF does not

4 CHAPTER 13 • CONSTITUENCY PARSING

lead to any loss in expressiveness, since any context-free grammar can be converted
into a corresponding CNF grammar that accepts exactly the same set of strings as
the original grammar.

Let’s start with the process of converting a generic CFG into one represented in
CNF. Assuming we’re dealing with an ε-free grammar, there are three situations we
need to address in any generic grammar: rules that mix terminals with non-terminals
on the right-hand side, rules that have a single non-terminal on the right-hand side,
and rules in which the length of the right-hand side is greater than 2.

The remedy for rules that mix terminals and non-terminals is to simply introduce
a new dummy non-terminal that covers only the original terminal. For example, a
rule for an infinitive verb phrase such as INF-VP → to VP would be replaced by the
two rules INF-VP → TO VP and TO → to.

Rules with a single non-terminal on the right are called unit productions. WeUnit
productions

can eliminate unit productions by rewriting the right-hand side of the original rules
with the right-hand side of all the non-unit production rules that they ultimately lead
to. More formally, if A ∗⇒ B by a chain of one or more unit productions and B→ γ

is a non-unit production in our grammar, then we add A→ γ for each such rule in
the grammar and discard all the intervening unit productions. As we demonstrate
with our toy grammar, this can lead to a substantial flattening of the grammar and a
consequent promotion of terminals to fairly high levels in the resulting trees.

Rules with right-hand sides longer than 2 are normalized through the introduc-
tion of new non-terminals that spread the longer sequences over several new rules.
Formally, if we have a rule like

A → B C γ

we replace the leftmost pair of non-terminals with a new non-terminal and introduce
a new production, resulting in the following new rules:

A → X1 γ

X1 → B C

In the case of longer right-hand sides, we simply iterate this process until the of-
fending rule has been replaced by rules of length 2. The choice of replacing the
leftmost pair of non-terminals is purely arbitrary; any systematic scheme that results
in binary rules would suffice.

In our current grammar, the rule S → Aux NP VP would be replaced by the two
rules S → X1 VP and X1 → Aux NP.

The entire conversion process can be summarized as follows:

1. Copy all conforming rules to the new grammar unchanged.
2. Convert terminals within rules to dummy non-terminals.
3. Convert unit productions.
4. Make all rules binary and add them to new grammar.

Figure 13.3 shows the results of applying this entire conversion procedure to
the L1 grammar introduced earlier on page 2. Note that this figure doesn’t show
the original lexical rules; since these original lexical rules are already in CNF, they
all carry over unchanged to the new grammar. Figure 13.3 does, however, show
the various places where the process of eliminating unit productions has, in effect,
created new lexical rules. For example, all the original verbs have been promoted to
both VPs and to Ss in the converted grammar.

13.2 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 5

L1 Grammar L1 in CNF
S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP
Figure 13.3 L1 Grammar and its conversion to CNF. Note that although they aren’t shown
here, all the original lexical entries from L1 carry over unchanged as well.

13.2.2 CKY Recognition
With our grammar now in CNF, each non-terminal node above the part-of-speech
level in a parse tree will have exactly two daughters. A two-dimensional matrix can
be used to encode the structure of an entire tree. For a sentence of length n, we will
work with the upper-triangular portion of an (n+1)× (n+1) matrix. Each cell [i, j]
in this matrix contains the set of non-terminals that represent all the constituents that
span positions i through j of the input. Since our indexing scheme begins with 0, it’s
natural to think of the indexes as pointing at the gaps between the input words (as in
0 Book 1 that 2 flight 3). These gaps are often called fenceposts, on the metaphor offenceposts

the posts between segments of fencing. It follows then that the cell that represents
the entire input resides in position [0,n] in the matrix.

Since each non-terminal entry in our table has two daughters in the parse, it fol-
lows that for each constituent represented by an entry [i, j], there must be a position
in the input, k, where it can be split into two parts such that i < k < j. Given such
a position k, the first constituent [i,k] must lie to the left of entry [i, j] somewhere
along row i, and the second entry [k, j] must lie beneath it, along column j.

To make this more concrete, consider the following example with its completed
parse matrix, shown in Fig. 13.4.

(13.3) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each word in
the input. The subsequent diagonals above that superdiagonal contain constituents
that cover all the spans of increasing length in the input.

Given this setup, CKY recognition consists of filling the parse table in the right
way. To do this, we’ll proceed in a bottom-up fashion so that at the point where
we are filling any cell [i, j], the cells containing the parts that could contribute to

6 CHAPTER 13 • CONSTITUENCY PARSING

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2 S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Figure 13.4 Completed parse table for Book the flight through Houston.

this entry (i.e., the cells to the left and the cells below) have already been filled.
The algorithm given in Fig. 13.5 fills the upper-triangular matrix a column at a time
working from left to right, with each column filled from bottom to top, as the right
side of Fig. 13.4 illustrates. This scheme guarantees that at each point in time we
have all the information we need (to the left, since all the columns to the left have
already been filled, and below since we’re filling bottom to top). It also mirrors on-
line processing, since filling the columns from left to right corresponds to processing
each word one at a time.

function CKY-PARSE(words, grammar) returns table

for j← from 1 to LENGTH(words) do
for all {A | A → words[j] ∈ grammar}

table[j−1, j]← table[j−1, j] ∪ A
for i← from j−2 down to 0 do

for k← i+1 to j−1 do
for all {A | A → BC ∈ grammar and B ∈ table[i,k] and C ∈ table[k, j]}

table[i,j]← table[i,j] ∪ A

Figure 13.5 The CKY algorithm.

The outermost loop of the algorithm given in Fig. 13.5 iterates over the columns,
and the second loop iterates over the rows, from the bottom up. The purpose of the
innermost loop is to range over all the places where a substring spanning i to j in
the input might be split in two. As k ranges over the places where the string can be
split, the pairs of cells we consider move, in lockstep, to the right along row i and
down along column j. Figure 13.6 illustrates the general case of filling cell [i, j]. At
each such split, the algorithm considers whether the contents of the two cells can be
combined in a way that is sanctioned by a rule in the grammar. If such a rule exists,
the non-terminal on its left-hand side is entered into the table.

Figure 13.7 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to add
an entry to the table. Note that the action in cell [0,5] indicates the presence of three
alternative parses for this input, one where the PP modifies the flight, one where

13.2 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 7

...

...

[0,n]

[i,i+1] [i,i+2] [i,j-2] [i,j-1]

[i+1,j]

[i+2,j]

[j-1,j]

[j-2,j]

[i,j]

...

[0,1]

[n-1, n]

Figure 13.6 All the ways to fill the [i, j]th cell in the CKY table.

it modifies the booking, and one that captures the second argument in the original
VP→ Verb NP PP rule, now captured indirectly with the VP→ X2 PP rule.

13.2.3 CKY Parsing
The algorithm given in Fig. 13.5 is a recognizer, not a parser. That is, it can tell us
whether a valid parse exists for a given sentence based on whether or not if finds
an S in cell [0,n], but it can’t provide the derivation, which is the actual job for a
parser. To turn it into a parser capable of returning all possible parses for a given
input, we can make two simple changes to the algorithm: the first change is to
augment the entries in the table so that each non-terminal is paired with pointers to
the table entries from which it was derived (more or less as shown in Fig. 13.7), the
second change is to permit multiple versions of the same non-terminal to be entered
into the table (again as shown in Fig. 13.7). With these changes, the completed
table contains all the possible parses for a given input. Returning an arbitrary single
parse consists of choosing an S from cell [0,n] and then recursively retrieving its
component constituents from the table.

Returning every parse for a sentence may not be useful, since there may be an
exponential number of parses. We’ll see in the next section how to retrieve only the
best parse.

8 CHAPTER 13 • CONSTITUENCY PARSING

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2

Det NP

Nominal,
Noun

Nominal

Prep

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,VP,X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4] [0,5]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

Book the flight through Houston

S, VP, Verb,
Nominal,
Noun

S,
VP,
X2

Det NP NP

Nominal,
Noun

Nominal

Prep PP

NP,
Proper-
Noun

[0,1] [0,2] [0,3] [0,4]

[1,2] [1,3]

[2,3]

[1,4]

[2,5][2,4]

[3,4]

[4,5]

[3,5]

[1,5]

S2, VP
S3

S1,VP, X2

Figure 13.7 Filling the cells of column 5 after reading the word Houston.

13.3 • SPAN-BASED NEURAL CONSTITUENCY PARSING 9

13.2.4 CKY in Practice
Finally, we should note that while the restriction to CNF does not pose a prob-
lem theoretically, it does pose some non-trivial problems in practice. Obviously, as
things stand now, our parser isn’t returning trees that are consistent with the grammar
given to us by our friendly syntacticians. In addition to making our grammar devel-
opers unhappy, the conversion to CNF will complicate any syntax-driven approach
to semantic analysis.

One approach to getting around these problems is to keep enough information
around to transform our trees back to the original grammar as a post-processing step
of the parse. This is trivial in the case of the transformation used for rules with length
greater than 2. Simply deleting the new dummy non-terminals and promoting their
daughters restores the original tree.

In the case of unit productions, it turns out to be more convenient to alter the ba-
sic CKY algorithm to handle them directly than it is to store the information needed
to recover the correct trees. Exercise 13.3 asks you to make this change. Many of
the probabilistic parsers presented in Appendix C use the CKY algorithm altered in
just this manner.

13.3 Span-Based Neural Constituency Parsing

While the CKY parsing algorithm we’ve seen so far does great at enumerating all
the possible parse trees for a sentence, it has a large problem: it doesn’t tell us which
parse is the correct one! That is, it doesn’t disambiguate among the possible parses.
To solve the disambiguation problem we’ll use a simple neural extension of the
CKY algorithm. The intuition of such parsing algorithms (often called span-based
constituency parsing, or neural CKY), is to train a neural classifier to assign a
score to each constituent, and then use a modified version of CKY to combine these
constituent scores to find the best-scoring parse tree.

Here we’ll describe a version of the algorithm from Kitaev et al. (2019). This
parser learns to map a span of words to a constituent, and, like CKY, hierarchically
combines larger and larger spans to build the parse-tree bottom-up. But unlike clas-
sic CKY, this parser doesn’t use the hand-written grammar to constrain what con-
stituents can be combined, instead just relying on the learned neural representations
of spans to encode likely combinations.

13.3.1 Computing Scores for a Span
Let’s begin by considering just the constituent (we’ll call it a span) that lies betweenspan

fencepost positions i and j with non-terminal symbol label l. We’ll build a classifier
to assign a score s(i, j, l) to this constituent span.

Fig. 13.8 sketches the architecture. The input word tokens are embedded by
passing them through a pretrained language model like BERT. Because BERT oper-
ates on the level of subword (wordpiece) tokens rather than words, we’ll first need to
convert the BERT outputs to word representations. One standard way of doing this
is to simply use the last subword unit as the representation for the word (using the
first subword unit seems to work equivalently well). The embeddings can then be
passed through some postprocessing layers; Kitaev et al. (2019), for example, use 8
Transformer layers.

10 CHAPTER 13 • CONSTITUENCY PARSING

ENCODER

[START] Book the flight through Houston [END]

map to subwords

map back to words

0 1 32 4 5

MLP

i=1
hj-hi

j=3

NP

Compute score for span

Represent span

CKY for computing best parse

postprocessing layers

Figure 13.8 A simplified outline of computing the span score for the span the flight with
the label NP.

The resulting word encoder outputs yt are then use to compute a span score.
First, we must map the word encodings (indexed by word positions) to span encod-
ings (indexed by fenceposts). We do this by representing each fencepost with two
separate values; the intuition is that a span endpoint to the right of a word represents
different information than a span endpoint to the left of a word. We convert each
word output yt into a (leftward-pointing) value for spans ending at this fencepost,
−→y t , and a (rightward-pointing) value ←−y t for spans beginning at this fencepost, by
splitting yt into two halves. Each span then stretches from one double-vector fence-
post to another, as in the following representation of the flight, which is span(1,3):

START0 Book the flight through
y0
−→y0
←−y1 y1

−→y1
←−y2 y2

−→y2
←−y3 y3

−→y3
←−y4 y4

−→y4
←−y5 . . .

0© 1© 2© 3© 4©

span(1,3)

A traditional way to represent a span, developed originally for RNN-based models
(Wang and Chang, 2016), but extended also to Transformers, is to take the differ-
ence between the embeddings of its start and end, i.e., representing span (i, j) by
subtracting the embedding of i from the embedding of j. Here we represent a span
by concatenating the difference of each of its fencepost components:

v(i, j) = [−→y j −−→yi ; ←−−y j+1−←−−yi+1] (13.4)

The span vector v is then passed through an MLP span classifier, with two fully-
connected layers and one ReLU activation function, whose output dimensionality is
the number of possible non-terminal labels:

s(i, j, ·) = W2 ReLU(LayerNorm(W1v(i, j))) (13.5)

The MLP then outputs a score for each possible non-terminal.

13.4 • EVALUATING PARSERS 11

13.3.2 Integrating Span Scores into a Parse
Now we have a score for each labeled constituent span s(i, j, l). But we need a score
for an entire parse tree. Formally a tree T is represented as a set of |T | such labeled
spans, with the t th span starting at position it and ending at position jt , with label lt :

T = {(it , jt , lt) : t = 1, . . . , |T |} (13.6)

Thus once we have a score for each span, the parser can compute a score for the
whole tree s(T) simply by summing over the scores of its constituent spans:

s(T) =
∑

(i, j,l)∈T

s(i, j, l) (13.7)

And we can choose the final parse tree as the tree with the maximum score:

T̂ = argmax
T

s(T) (13.8)

The simplest method to produce the most likely parse is to greedily choose the
highest scoring label for each span. This greedy method is not guaranteed to produce
a tree, since the best label for a span might not fit into a complete tree. In practice,
however, the greedy method tends to find trees; in their experiments Gaddy et al.
(2018) finds that 95% of predicted bracketings form valid trees.

Nonetheless it is more common to use a variant of the CKY algorithm to find the
full parse. The variant defined in Gaddy et al. (2018) works as follows. Let’s define
sbest(i, j) as the score of the best subtree spanning (i, j). For spans of length one, we
choose the best label:

sbest(i, i+1) = max
l

s(i, i+1, l) (13.9)

For other spans (i, j), the recursion is:

sbest(i, j) = max
l

s(i, j, l)

+ max
k

[sbest(i,k)+ sbest(k, j)] (13.10)

Note that the parser is using the max label for span (i, j) + the max labels for spans
(i,k) and (k, j) without worrying about whether those decisions make sense given a
grammar. The role of the grammar in classical parsing is to help constrain possible
combinations of constituents (NPs like to be followed by VPs). By contrast, the
neural model seems to learn these kinds of contextual constraints during its mapping
from spans to non-terminals.

For more details on span-based parsing, including the margin-based training al-
gorithm, see Stern et al. (2017), Gaddy et al. (2018), Kitaev and Klein (2018), and
Kitaev et al. (2019).

13.4 Evaluating Parsers

The standard tool for evaluating parsers that assign a single parse tree to a sentence
is the PARSEVAL metrics (Black et al., 1991). The PARSEVAL metric measuresPARSEVAL

12 CHAPTER 13 • CONSTITUENCY PARSING

how much the constituents in the hypothesis parse tree look like the constituents in a
hand-labeled, reference parse. PARSEVAL thus requires a human-labeled reference
(or “gold standard”) parse tree for each sentence in the test set; we generally draw
these reference parses from a treebank like the Penn Treebank.

A constituent in a hypothesis parse Ch of a sentence s is labeled correct if there
is a constituent in the reference parse Cr with the same starting point, ending point,
and non-terminal symbol. We can then measure the precision and recall just as for
tasks we’ve seen already like named entity tagging:

labeled recall: = # of correct constituents in hypothesis parse of s
of correct constituents in reference parse of s

labeled precision: = # of correct constituents in hypothesis parse of s
of total constituents in hypothesis parse of s

As usual, we often report a combination of the two, F1:

F1 =
2PR

P+R
(13.11)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).

For comparing parsers that use different grammars, the PARSEVAL metric in-
cludes a canonicalization algorithm for removing information likely to be grammar-
specific (auxiliaries, pre-infinitival “to”, etc.) and for computing a simplified score
(Black et al., 1991). The canonical implementation of the PARSEVAL metrics is
called evalb (Sekine and Collins, 1997).evalb

13.5 Partial Parsing

Many language processing tasks do not require complex, complete parse trees for all
inputs. For these tasks, a partial parse, or shallow parse, of input sentences may bepartial parse

shallow parse sufficient. For example, information extraction systems generally do not extract all
the possible information from a text: they simply identify and classify the segments
in a text that are likely to contain valuable information.

One kind of partial parsing is known as chunking. Chunking is the processchunking

of identifying and classifying the flat, non-overlapping segments of a sentence that
constitute the basic non-recursive phrases corresponding to the major content-word
parts-of-speech: noun phrases, verb phrases, adjective phrases, and prepositional
phrases. The task of finding all the base noun phrases in a text is particularly com-
mon. Since chunked texts lack a hierarchical structure, a simple bracketing notation
is sufficient to denote the location and the type of the chunks in a given example:

(13.12) [NP The morning flight] [PP from] [NP Denver] [VP has arrived.]

This bracketing notation makes clear the two fundamental tasks that are involved
in chunking: segmenting (finding the non-overlapping extents of the chunks) and
labeling (assigning the correct tag to the discovered chunks). Some input words
may not be part of any chunk, particularly in tasks like base NP:

13.6 • CCG PARSING 13

(13.13) [NP The morning flight] from [NP Denver] has arrived.
What constitutes a syntactic base phrase depends on the application (and whether

the phrases come from a treebank). Nevertheless, some standard guidelines are fol-
lowed in most systems. First and foremost, base phrases of a given type do not
recursively contain any constituents of the same type. Eliminating this kind of recur-
sion leaves us with the problem of determining the boundaries of the non-recursive
phrases. In most approaches, base phrases include the headword of the phrase, along
with any pre-head material within the constituent, while crucially excluding any
post-head material. Eliminating post-head modifiers obviates the need to resolve
attachment ambiguities. This exclusion does lead to certain oddities, such as PPs
and VPs often consisting solely of their heads. Thus a flight from Indianapolis to
Houston would be reduced to the following:
(13.14) [NP a flight] [PP from] [NP Indianapolis][PP to][NP Houston]

Chunking Algorithms Chunking is generally done via supervised learning, train-
ing a BIO sequence labeler of the sort we saw in Chapter 8 from annotated training
data. Recall that in BIO tagging, we have a tag for the beginning (B) and inside (I) of
each chunk type, and one for tokens outside (O) any chunk. The following example
shows the bracketing notation of (13.12) on page 12 reframed as a tagging task:
(13.15) The

B NP
morning
I NP

flight
I NP

from
B PP

Denver
B NP

has
B VP

arrived
I VP

The same sentence with only the base-NPs tagged illustrates the role of the O tags.
(13.16) The

B NP
morning
I NP

flight
I NP

from
O

Denver
B NP

has
O

arrived.
O

Since annotation efforts are expensive and time consuming, chunkers usually
rely on existing treebanks like the Penn Treebank, extracting syntactic phrases from
the full parse constituents of a sentence, finding the appropriate heads and then in-
cluding the material to the left of the head, ignoring the text to the right. This is
somewhat error-prone since it relies on the accuracy of the head-finding rules de-
scribed in Chapter 12.

Given a training set, any sequence model can be used to chunk: CRF, RNN,
Transformer, etc. As with the evaluation of named-entity taggers, the evaluation of
chunkers proceeds by comparing chunker output with gold-standard answers pro-
vided by human annotators, using precision, recall, and F1.

13.6 CCG Parsing

Lexicalized grammar frameworks such as CCG pose problems for which the phrase-
based methods we’ve been discussing are not particularly well-suited. To quickly
review, CCG consists of three major parts: a set of categories, a lexicon that asso-
ciates words with categories, and a set of rules that govern how categories combine
in context. Categories can be either atomic elements, such as S and NP, or functions
such as (S\NP)/NP which specifies the transitive verb category. Rules specify how
functions, their arguments, and other functions combine. For example, the following
rule templates, forward and backward function application, specify the way that
functions apply to their arguments.

X/Y Y ⇒ X

Y X\Y ⇒ X

14 CHAPTER 13 • CONSTITUENCY PARSING

The first rule applies a function to its argument on the right, while the second
looks to the left for its argument. The result of applying either of these rules is the
category specified as the value of the function being applied. For the purposes of
this discussion, we’ll rely on these two rules along with the forward and backward
composition rules and type-raising, as described in Chapter 12.

13.6.1 Ambiguity in CCG
As is always the case in parsing, managing ambiguity is the key to successful CCG
parsing. The difficulties with CCG parsing arise from the ambiguity caused by the
large number of complex lexical categories combined with the very general nature of
the grammatical rules. To see some of the ways that ambiguity arises in a categorial
framework, consider the following example.

(13.17) United diverted the flight to Reno.

Our grasp of the role of the flight in this example depends on whether the prepo-
sitional phrase to Reno is taken as a modifier of the flight, as a modifier of the entire
verb phrase, or as a potential second argument to the verb divert. In a context-free
grammar approach, this ambiguity would manifest itself as a choice among the fol-
lowing rules in the grammar.

Nominal → Nominal PP

VP → VP PP

VP → Verb NP PP

In a phrase-structure approach we would simply assign the word to to the cate-
gory P allowing it to combine with Reno to form a prepositional phrase. The sub-
sequent choice of grammar rules would then dictate the ultimate derivation. In the
categorial approach, we can associate to with distinct categories to reflect the ways
in which it might interact with other elements in a sentence. The fairly abstract
combinatoric rules would then sort out which derivations are possible. Therefore,
the source of ambiguity arises not from the grammar but rather from the lexicon.

Let’s see how this works by considering several possible derivations for this
example. To capture the case where the prepositional phrase to Reno modifies the
flight, we assign the preposition to the category (NP\NP)/NP, which gives rise to
the following derivation.

United diverted the flight to Reno

NP (S\NP)/NP NP/N N (NP\NP)/NP NP
> >

NP NP\NP
<

NP
>

S\NP
<

S

Here, the category assigned to to expects to find two arguments: one to the right as
with a traditional preposition, and one to the left that corresponds to the NP to be
modified.

Alternatively, we could assign to to the category (S\S)/NP, which permits the
following derivation where to Reno modifies the preceding verb phrase.

13.6 • CCG PARSING 15

United diverted the flight to Reno

NP (S\NP)/NP NP/N N (S\S)/NP NP
> >

NP S\S
>

S\NP
<B

S\NP
<

S

A third possibility is to view divert as a ditransitive verb by assigning it to the
category ((S\NP)/PP)/NP, while treating to Reno as a simple prepositional phrase.

United diverted the flight to Reno

NP ((S\NP)/PP)/NP NP/N N PP/NP NP
> >

NP PP
>

(S\NP)/PP
>

S\NP
<

S

While CCG parsers are still subject to ambiguity arising from the choice of
grammar rules, including the kind of spurious ambiguity discussed in Chapter 12,
it should be clear that the choice of lexical categories is the primary problem to be
addressed in CCG parsing.

13.6.2 CCG Parsing Frameworks
Since the rules in combinatory grammars are either binary or unary, a bottom-up,
tabular approach based on the CKY algorithm should be directly applicable to CCG
parsing. Unfortunately, the large number of lexical categories available for each
word, combined with the promiscuity of CCG’s combinatoric rules, leads to an ex-
plosion in the number of (mostly useless) constituents added to the parsing table.
The key to managing this explosion of zombie constituents is to accurately assess
and exploit the most likely lexical categories possible for each word—a process
called supertagging.

The following sections describe two approaches to CCG parsing that make use of
supertags. Section 13.6.4, presents an approach that structures the parsing process
as a heuristic search through the use of the A* algorithm. The following section
then briefly describes a more traditional classifier-based approach that manages the
search space complexity through the use of adaptive supertagging—a process that
iteratively considers more and more tags until a parse is found.

13.6.3 Supertagging
Chapter 8 introduced the task of part-of-speech tagging, the process of assigning the
correct lexical category to each word in a sentence. Supertagging is the correspond-supertagging

ing task for highly lexicalized grammar frameworks, where the assigned tags often
dictate much of the derivation for a sentence (Bangalore and Joshi, 1999).

CCG supertaggers rely on treebanks such as CCGbank to provide both the over-
all set of lexical categories as well as the allowable category assignments for each
word in the lexicon. CCGbank includes over 1000 lexical categories, however, in

16 CHAPTER 13 • CONSTITUENCY PARSING

practice, most supertaggers limit their tagsets to those tags that occur at least 10
times in the training corpus. This results in a total of around 425 lexical categories
available for use in the lexicon. Note that even this smaller number is large in con-
trast to the 45 POS types used by the Penn Treebank tagset.

As with traditional part-of-speech tagging, the standard approach to building a
CCG supertagger is to use supervised machine learning to build a sequence labeler
from hand-annotated training data. To find the most likely sequence of tags given a
sentence, it is most common to use a neural sequence model, either RNN or Trans-
former.

It’s also possible, however, to use the CRF tagging model described in Chapter 8,
using similar features; the current word wi, its surrounding words within l words,
local POS tags and character suffixes, and the supertag from the prior timestep,
training by maximizing log-likelihood of the training corpus and decoding via the
Viterbi algorithm as described in Chapter 8.

Unfortunately the large number of possible supertags combined with high per-
word ambiguity leads the naive CRF algorithm to error rates that are too high for
practical use in a parser. The single best tag sequence T̂ will typically contain too
many incorrect tags for effective parsing to take place. To overcome this, we instead
return a probability distribution over the possible supertags for each word in the
input. The following table illustrates an example distribution for a simple sentence,
in which each column represents the probability of each supertag for a given word
in the context of the input sentence. The “...” represent all the remaining supertags
possible for each word.

United serves Denver
N/N: 0.4 (S\NP)/NP: 0.8 NP: 0.9
NP: 0.3 N: 0.1 N/N: 0.05
S/S: 0.1
S\S: .05

...

To get the probability of each possible word/tag pair, we’ll need to sum the
probabilities of all the supertag sequences that contain that tag at that location. This
can be done with the forward-backward algorithm that is also used to train the CRF,
described in Appendix A.

13.6.4 CCG Parsing using the A* Algorithm
The A* algorithm is a heuristic search method that employs an agenda to find an
optimal solution. Search states representing partial solutions are added to an agenda
based on a cost function, with the least-cost option being selected for further ex-
ploration at each iteration. When a state representing a complete solution is first
selected from the agenda, it is guaranteed to be optimal and the search terminates.

The A* cost function, f (n), is used to efficiently guide the search to a solution.
The f -cost has two components: g(n), the exact cost of the partial solution repre-
sented by the state n, and h(n) a heuristic approximation of the cost of a solution
that makes use of n. When h(n) satisfies the criteria of not overestimating the actual
cost, A* will find an optimal solution. Not surprisingly, the closer the heuristic can
get to the actual cost, the more effective A* is at finding a solution without having
to explore a significant portion of the solution space.

When applied to parsing, search states correspond to edges representing com-
pleted constituents. Each edge specifies a constituent’s start and end positions, its

13.6 • CCG PARSING 17

grammatical category, and its f -cost. Here, the g component represents the current
cost of an edge and the h component represents an estimate of the cost to complete
a derivation that makes use of that edge. The use of A* for phrase structure parsing
originated with Klein and Manning (2003), while the CCG approach presented here
is based on the work of Lewis and Steedman (2014).

Using information from a supertagger, an agenda and a parse table are initial-
ized with states representing all the possible lexical categories for each word in the
input, along with their f -costs. The main loop removes the lowest cost edge from
the agenda and tests to see if it is a complete derivation. If it reflects a complete
derivation it is selected as the best solution and the loop terminates. Otherwise, new
states based on the applicable CCG rules are generated, assigned costs, and entered
into the agenda to await further processing. The loop continues until a complete
derivation is discovered, or the agenda is exhausted, indicating a failed parse. The
algorithm is given in Fig. 13.9.

function CCG-ASTAR-PARSE(words) returns table or failure

supertags←SUPERTAGGER(words)
for i← from 1 to LENGTH(words) do

for all {A | (words[i], A, score) ∈ supertags}
edge←MAKEEDGE(i−1, i, A, score)
table← INSERTEDGE(table, edge)
agenda← INSERTEDGE(agenda, edge)

loop do
if EMPTY?(agenda) return failure
current←POP(agenda)
if COMPLETEDPARSE?(current) return table
table← INSERTEDGE(table, current)
for each rule in APPLICABLERULES(current) do

successor←APPLY(rule, current)
if successor not ∈ in agenda or chart

agenda← INSERTEDGE(agenda, successor)
else if successor ∈ agenda with higher cost

agenda←REPLACEEDGE(agenda, successor)

Figure 13.9 A*-based CCG parsing.

Heuristic Functions

Before we can define a heuristic function for our A* search, we need to decide how
to assess the quality of CCG derivations. We’ll make the simplifying assumption
that the probability of a CCG derivation is just the product of the probability of
the supertags assigned to the words in the derivation, ignoring the rules used in the
derivation. More formally, given a sentence S and derivation D that contains supertag
sequence T , we have:

P(D,S) = P(T,S) (13.18)

=

n∏
i=1

P(ti|si) (13.19)

To better fit with the traditional A* approach, we’d prefer to have states scored by
a cost function where lower is better (i.e., we’re trying to minimize the cost of a

18 CHAPTER 13 • CONSTITUENCY PARSING

derivation). To achieve this, we’ll use negative log probabilities to score deriva-
tions; this results in the following equation, which we’ll use to score completed
CCG derivations.

P(D,S) = P(T,S) (13.20)

=

n∑
i=1

− logP(ti|si) (13.21)

Given this model, we can define our f -cost as follows. The f -cost of an edge is
the sum of two components: g(n), the cost of the span represented by the edge, and
h(n), the estimate of the cost to complete a derivation containing that edge (these
are often referred to as the inside and outside costs). We’ll define g(n) for an edge
using Equation 13.21. That is, it is just the sum of the costs of the supertags that
comprise the span.

For h(n), we need a score that approximates but never overestimates the actual
cost of the final derivation. A simple heuristic that meets this requirement assumes
that each of the words in the outside span will be assigned its most probable su-
pertag. If these are the tags used in the final derivation, then its score will equal
the heuristic. If any other tags are used in the final derivation the f -cost will be
higher since the new tags must have higher costs, thus guaranteeing that we will not
overestimate.

Putting this all together, we arrive at the following definition of a suitable f -cost
for an edge.

f (wi, j, ti, j) = g(wi, j)+h(wi, j) (13.22)

=

j∑
k=i

− logP(tk|wk)+

i−1∑
k=1

min
t∈tags

(− logP(t|wk))+

N∑
k= j+1

min
t∈tags

(− logP(t|wk))

As an example, consider an edge representing the word serves with the supertag N
in the following example.

(13.23) United serves Denver.

The g-cost for this edge is just the negative log probability of this tag, −log10(0.1),
or 1. The outside h-cost consists of the most optimistic supertag assignments for
United and Denver, which are N/N and NP respectively. The resulting f -cost for
this edge is therefore 1.443.

An Example

Fig. 13.10 shows the initial agenda and the progress of a complete parse for this
example. After initializing the agenda and the parse table with information from the
supertagger, it selects the best edge from the agenda—the entry for United with the
tag N/N and f -cost 0.591. This edge does not constitute a complete parse and is
therefore used to generate new states by applying all the relevant grammar rules. In
this case, applying forward application to United: N/N and serves: N results in the
creation of the edge United serves: N[0,2], 1.795 to the agenda.

Skipping ahead, at the third iteration an edge representing the complete deriva-
tion United serves Denver, S[0,3], .716 is added to the agenda. However, the algo-
rithm does not terminate at this point since the cost of this edge (.716) does not place

13.6 • CCG PARSING 19

it at the top of the agenda. Instead, the edge representing Denver with the category
NP is popped. This leads to the addition of another edge to the agenda (type-raising
Denver). Only after this edge is popped and dealt with does the earlier state repre-
senting a complete derivation rise to the top of the agenda where it is popped, goal
tested, and returned as a solution.

United serves: N[0,2]
1.795

United: N/N
.591

Denver: N/N
2.494

Denver: N
1.795

serves: N
1.494

United: S\S
1.494

United: S/S
1.1938

United: NP
.716

Denver: NP
.591

serves: (S\NP)/NP
.591

serves Denver: S\NP[1,3]
.591

United serves Denver: S[0,3]
.716

Denver: S/(S\NP)[0,1]
.591

1

2 3

4 5

6

Initial
Agenda

Goal State

…

S: 0.716

S/NP: 0.591

United serves

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

N/N: 0.591
NP: 0.716
S/S: 1.1938
S\S: 1.494
…

Denver

(S\NP)/NP: 0.591
N: 1.494
…

NP: 0.591
N: 1.795
N/N: 2.494
…

N: 1.795

Figure 13.10 Example of an A* search for the example “United serves Denver”. The circled numbers on the
blue boxes indicate the order in which the states are popped from the agenda. The costs in each state are based
on f-costs using negative log10 probabilities.

The effectiveness of the A* approach is reflected in the coloring of the states
in Fig. 13.10 as well as the final parsing table. The edges shown in blue (includ-
ing all the initial lexical category assignments not explicitly shown) reflect states in
the search space that never made it to the top of the agenda and, therefore, never
contributed any edges to the final table. This is in contrast to the PCKY approach

20 CHAPTER 13 • CONSTITUENCY PARSING

where the parser systematically fills the parse table with all possible constituents for
all possible spans in the input, filling the table with myriad constituents that do not
contribute to the final analysis.

13.7 Summary

This chapter introduced constituency parsing. Here’s a summary of the main points:

• Structural ambiguity is a significant problem for parsers. Common sources
of structural ambiguity include PP-attachment, coordination ambiguity,
and noun-phrase bracketing ambiguity.

• Dynamic programming parsing algorithms, such as CKY, use a table of
partial parses to efficiently parse ambiguous sentences.

• CKY restricts the form of the grammar to Chomsky normal form (CNF).
• The basic CKY algorithm compactly represents all possible parses of the sen-

tence but doesn’t choose a single best parse.
• Choosing a single parse from all possible parses (disambiguation) can be

done by neural constituency parsers.
• Span-based neural constituency parses train a neural classifier to assign a score

to each constituent, and then use a modified version of CKY to combine these
constituent scores to find the best-scoring parse tree.

• Much of the difficulty in CCG parsing is disambiguating the highly rich lexical
entries, and so CCG parsers are generally based on supertagging. Supertag-
ging is the equivalent of part-of-speech tagging in highly lexicalized grammar
frameworks. The tags are very grammatically rich and dictate much of the
derivation for a sentence.

• Parsers are evaluated with three metrics: labeled recall, labeled precision,
and cross-brackets.

• Partial parsing and chunking are methods for identifying shallow syntac-
tic constituents in a text. They are solved by sequence models trained on
syntactically-annotated data.

Bibliographical and Historical Notes
Writing about the history of compilers, Knuth notes:

In this field there has been an unusual amount of parallel discovery of
the same technique by people working independently.

Well, perhaps not unusual, since multiple discovery is the norm in science (see
page ??). But there has certainly been enough parallel publication that this his-
tory errs on the side of succinctness in giving only a characteristic early mention of
each algorithm; the interested reader should see Aho and Ullman (1972).

Bottom-up parsing seems to have been first described by Yngve (1955), who
gave a breadth-first, bottom-up parsing algorithm as part of an illustration of a ma-
chine translation procedure. Top-down approaches to parsing and translation were
described (presumably independently) by at least Glennie (1960), Irons (1961), and

EXERCISES 21

Kuno and Oettinger (1963). While parsing via cascades of finite-state automata had
been common in the early history of parsing (Harris, 1962), the focus shifted to full
CFG parsing quite soon afterward.

Dynamic programming parsing, once again, has a history of independent dis-
covery. According to Martin Kay (personal communication), a dynamic program-
ming parser containing the roots of the CKY algorithm was first implemented by
John Cocke in 1960. Later work extended and formalized the algorithm, as well as
proving its time complexity (Kay 1967, Younger 1967, Kasami 1965). The related
well-formed substring table (WFST) seems to have been independently proposedWFST

by Kuno (1965) as a data structure that stores the results of all previous computa-
tions in the course of the parse. Based on a generalization of Cocke’s work, a similar
data structure had been independently described in Kay (1967) (and Kay 1973). The
top-down application of dynamic programming to parsing was described in Earley’s
Ph.D. dissertation (Earley 1968, Earley 1970). Sheil (1976) showed the equivalence
of the WFST and the Earley algorithm. Norvig (1991) shows that the efficiency of-
fered by dynamic programming can be captured in any language with a memoization
function (such as in LISP) simply by wrapping the memoization operation around a
simple top-down parser.

The earliest disambiguation algorithms for parsing were based on probabilistic
context-free grammars, first worked out by Booth (1969) and Salomaa (1969).

probabilistic
context-free

grammars
Baker (1979) proposed the inside-outside algorithm for unsupervised training of
PCFG probabilities, and used a CKY-style parsing algorithm to compute inside prob-
abilities. Jelinek and Lafferty (1991) extended the CKY algorithm to compute prob-
abilities for prefixes. A number of researchers starting in the early 1990s worked on
adding lexical dependencies to PCFGs and on making PCFG rule probabilities more
sensitive to surrounding syntactic structure. See the Statistical Constituency chapter
for more history.

Neural methods were applied to parsing at around the same time as statistical
parsing methods were developed (Henderson, 1994). In the earliest work neural
networks were used to estimate some of the probabilities for statistical constituency
parsers (Henderson, 2003, 2004; Emami and Jelinek, 2005) . The next decades saw
a wide variety of neural parsing algorithms, including recursive neural architectures
(Socher et al., 2011, 2013), encoder-decoder models (Vinyals et al., 2015; Choe and
Charniak, 2016), and the idea of focusing on spans (Cross and Huang, 2016). For
more on the span-based self-attention approach we describe in this chapter see Stern
et al. (2017), Gaddy et al. (2018), Kitaev and Klein (2018), and Kitaev et al. (2019).
See Chapter 14 for the parallel history of neural dependency parsing.

The classic reference for parsing algorithms is Aho and Ullman (1972); although
the focus of that book is on computer languages, most of the algorithms have been
applied to natural language.

Exercises
13.1 Implement the algorithm to convert arbitrary context-free grammars to CNF.

Apply your program to the L1 grammar.

13.2 Implement the CKY algorithm and test it with your converted L1 grammar.

22 CHAPTER 13 • CONSTITUENCY PARSING

13.3 Rewrite the CKY algorithm given in Fig. 13.5 on page 6 so that it can accept
grammars that contain unit productions.

13.4 Discuss the relative advantages and disadvantages of partial versus full pars-
ing.

13.5 Discuss how to augment a parser to deal with input that may be incorrect, for
example, containing spelling errors or mistakes arising from automatic speech
recognition.

13.6 Implement the PARSEVAL metrics described in Section 13.4. Next, use a
parser and a treebank, compare your metrics against a standard implementa-
tion. Analyze the errors in your approach.

Exercises 23

Aho, A. V. and J. D. Ullman. 1972. The Theory of Parsing,
Translation, and Compiling, volume 1. Prentice Hall.

Baker, J. K. 1979. Trainable grammars for speech recogni-
tion. Speech Communication Papers for the 97th Meeting
of the Acoustical Society of America.

Bangalore, S. and A. K. Joshi. 1999. Supertagging: An
approach to almost parsing. Computational Linguistics,
25(2):237–265.

Black, E., S. P. Abney, D. Flickinger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. L. Klavans, M. Y. Liberman, M. P. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A procedure for
quantitatively comparing the syntactic coverage of En-
glish grammars. Speech and Natural Language Work-
shop.

Booth, T. L. 1969. Probabilistic representation of formal
languages. IEEE Conference Record of the 1969 Tenth
Annual Symposium on Switching and Automata Theory.

Choe, D. K. and E. Charniak. 2016. Parsing as language
modeling. EMNLP. Association for Computational Lin-
guistics.

Cross, J. and L. Huang. 2016. Span-based constituency pars-
ing with a structure-label system and provably optimal
dynamic oracles. Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics.

Earley, J. 1968. An Efficient Context-Free Parsing Algorithm.
Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

Earley, J. 1970. An efficient context-free parsing algorithm.
CACM, 6(8):451–455.

Emami, A. and F. Jelinek. 2005. A neural syntactic language
model. Machine learning, 60(1):195–227.

Gaddy, D., M. Stern, and D. Klein. 2018. What’s going on
in neural constituency parsers? an analysis. NAACL HLT.

Glennie, A. 1960. On the syntax machine and the construc-
tion of a universal compiler. Tech. rep. No. 2, Contr.
NR 049-141, Carnegie Mellon University (at the time
Carnegie Institute of Technology), Pittsburgh, PA.

Harris, Z. S. 1962. String Analysis of Sentence Structure.
Mouton, The Hague.

Henderson, J. 1994. Description Based Parsing in a Connec-
tionist Network. Ph.D. thesis, University of Pennsylvania,
Philadelphia, PA.

Henderson, J. 2003. Inducing history representations for
broad coverage statistical parsing. HLT-NAACL-03.

Henderson, J. 2004. Discriminative training of a neural net-
work statistical parser. ACL.

Irons, E. T. 1961. A syntax directed compiler for ALGOL
60. CACM, 4:51–55.

Jelinek, F. and J. D. Lafferty. 1991. Computation of the
probability of initial substring generation by stochas-
tic context-free grammars. Computational Linguistics,
17(3):315–323.

Kaplan, R. M. 1973. A general syntactic processor. In
R. Rustin, editor, Natural Language Processing, pages
193–241. Algorithmics Press.

Kasami, T. 1965. An efficient recognition and syntax anal-
ysis algorithm for context-free languages. Technical
Report AFCRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA.

Kay, M. 1967. Experiments with a powerful parser. Proc.
2eme Conference Internationale sur le Traitement Au-
tomatique des Langues.

Kay, M. 1973. The MIND system. In R. Rustin, editor, Nat-
ural Language Processing, pages 155–188. Algorithmics
Press.

Kay, M. 1982. Algorithm schemata and data structures in
syntactic processing. In S. Allén, editor, Text Processing:
Text Analysis and Generation, Text Typology and Attribu-
tion, pages 327–358. Almqvist and Wiksell, Stockholm.

Kitaev, N., S. Cao, and D. Klein. 2019. Multilingual
constituency parsing with self-attention and pre-training.
ACL.

Kitaev, N. and D. Klein. 2018. Constituency parsing with a
self-attentive encoder. ACL.

Klein, D. and C. D. Manning. 2003. A* parsing: Fast exact
Viterbi parse selection. HLT-NAACL.

Kuno, S. 1965. The predictive analyzer and a path elimina-
tion technique. CACM, 8(7):453–462.

Kuno, S. and A. G. Oettinger. 1963. Multiple-path syntactic
analyzer. Information Processing 1962: Proceedings of
the IFIP Congress 1962. North-Holland.

Lewis, M. and M. Steedman. 2014. A* ccg parsing with a
supertag-factored model. EMNLP.

Norvig, P. 1991. Techniques for automatic memoization with
applications to context-free parsing. Computational Lin-
guistics, 17(1):91–98.

Salomaa, A. 1969. Probabilistic and weighted grammars.
Information and Control, 15:529–544.

Sekine, S. and M. Collins. 1997. The evalb software. http:
//cs.nyu.edu/cs/projects/proteus/evalb.

Sheil, B. A. 1976. Observations on context free parsing.
SMIL: Statistical Methods in Linguistics, 1:71–109.

Socher, R., J. Bauer, C. D. Manning, and A. Y. Ng. 2013.
Parsing with compositional vector grammars. ACL.

Socher, R., C. C.-Y. Lin, A. Y. Ng, and C. D. Manning. 2011.
Parsing natural scenes and natural language with recur-
sive neural networks. ICML.

Stern, M., J. Andreas, and D. Klein. 2017. A minimal span-
based neural constituency parser. ACL.

Vinyals, O., Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever,
and G. Hinton. 2015. Grammar as a foreign language.
NeurIPS.

Wang, W. and B. Chang. 2016. Graph-based dependency
parsing with bidirectional LSTM. ACL.

Yngve, V. H. 1955. Syntax and the problem of multiple
meaning. In W. N. Locke and A. D. Booth, editors,
Machine Translation of Languages, pages 208–226. MIT
Press.

Younger, D. H. 1967. Recognition and parsing of context-
free languages in time n3. Information and Control,
10:189–208.

https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://www.aclweb.org/anthology/H91-1060
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://aclanthology.org/N03-1014
https://aclanthology.org/N03-1014
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://www.aclweb.org/anthology/N03-1016
https://www.aclweb.org/anthology/N03-1016
https://doi.org/10.3115/v1/D14-1107
https://doi.org/10.3115/v1/D14-1107
https://www.aclweb.org/anthology/J91-1004
https://www.aclweb.org/anthology/J91-1004
http://cs.nyu.edu/cs/projects/proteus/evalb
http://cs.nyu.edu/cs/projects/proteus/evalb
https://aclanthology.org/P13-1045
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P16-1218
https://doi.org/10.18653/v1/P16-1218

	Constituency Parsing
	Ambiguity
	CKY Parsing: A Dynamic Programming Approach
	Conversion to Chomsky Normal Form
	CKY Recognition
	CKY Parsing
	CKY in Practice

	Span-Based Neural Constituency Parsing
	Computing Scores for a Span
	Integrating Span Scores into a Parse

	Evaluating Parsers
	Partial Parsing
	CCG Parsing
	Ambiguity in CCG
	CCG Parsing Frameworks
	Supertagging
	CCG Parsing using the A* Algorithm

	Summary
	Bibliographical and Historical Notes
	Exercises

