Vector Semantics

Introduction

Why vector models of meaning?
computing the similarity between words

“fast” is similar to “rapid”
“tall” is similar to “height”

Question answering:

Q: “How tall is Mt. Everest?”
Candidate A: “The official height of Mount Everest is 29029 feet”

Word similarity for plagiarism detection

MAINFRAMES
Mainframes are primarily referred to large

MAINFRAMES
Mainframes usually are referred those

computers with rapid, advanced
processing capabilities that can
execute and perform tasks equivalent
to many Personal Computers (PCs)
machines networked together. Itis
characterized with high quantity
Random Access Memory (RAM), very
large secondary storage devices, and
high-speed processors to cater for the
needs of the computers under its
service.

Consisting of advanced components,

mainframes have the capability of
running multiple large applications
required by many and most enterprises
and organizations. This is one of its
advantages. Mainframes are also
suitable to cater for those applications
(programs) or files that are of very high

computers with fast, advanced
processing capabilities that could
perform by itself tasks that may require
a lot of Personal Computers (PC)
Machines. Usually mainframes would
have lots of RAMs, very large
secondary storage devices, and very
fast processors to cater for the needs
of those computers under its service.

Due to the advanced components

mainframes have, these computers
have the capability of running multiple
large applications required by most
enterprises, which is one of its
advantage. Mainframes are also
suitable to cater for those applications
or files that are of very large demand

Problems with thesaurus-based meaning

e We don’t have a thesaurus for every language
e We can’t have a thesaurus for every year

e For historical linguistics, we need to compare word meanings
In year t to year t+1

e Thesauruses have problems with recall

e Many words and phrases are missing
e Thesauri work less well for verbs, adjectives

Distributional models of meaning
= vector-space models of meaning
= vector semantics

Intuitions: Zellig Harris (1954):

* “oculist and eye-doctor ... occur in almost the same
environments”

 “If A and B have almost identical environments we say that
they are synonyms.”

Firth (1957):
e “You shall know a word by the company it keeps!”

Intuition of distributional word similarity

* Nida example: Suppose | asked you what is tesgiiino?

A bottle of tesgqgiiino i1s on the table
Everybody likes tesgiiino

Tesgiiino makes you drunk

We make tesgqgiiino out of corn.

* From context words humans can guess tesgiiino means

e an alcoholic beverage like beer

e |ntuition for algorithm:

e Two words are similar if they have similar word contexts.

Four kinds of vector models

Sparse vector representations

1. Mutual-information weighted word co-occurrence matrices

Dense vector representations:

2. Singular value decomposition (and Latent Semantic
Analysis)

3. Neural-network-inspired models (skip-grams, CBOW)
4. Brown clusters

Shared intuition

Model the meaning of a word by “embedding” in a vector space.
The meaning of a word is a vector of numbers

e Vector models are also called “embeddings”.

Contrast: word meaning is represented in many computational
linguistic applications by a vocabulary index (“word number 545”)

Old philosophy joke:
Q: What’s the meaning of life?
A: LIFE’

Vector Semantics

Words and co-occurrence
vectors

Co-occurrence Matrices

e We represent how often a word occurs in a
document

e Term-document matrix

e Or how often a word occurs with another
e Term-term matrix

(or word-word co-occurrence matrix
10 or word-context matrix)

Term-document matrix

e Each cell: count of word w in a document d:
e Fach document is alcount vector|in NV: a column below

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

11

Similarity in term-document matrices

Two documents are similar if their vectors are similar

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

12

The words in a term-document matrix

Each word is a count vector in NP: a row below

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5

clown 6 117 0 0

13

The words in a term-document matrix

e Two words are similar if their vectors are similar

As You Like It Twelfth Night Julius Caesar HenryV

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5

clown 6 117 0 0

14

15

The word-word or word-context matrix

Instead of entire documents, use smaller contexts
e Paragraph
e Window of 4+ 4 words

A word is now defined by a vector over counts of
context words

Instead of each vector being of length D
Each vector is now of length | V|
The word-word matrixis |V|x]|V]

Word-Word matrix
Sample contexts + 7 words

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened
well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

aardvark computer data pinch result sugar

apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

Word-word matrix

e We showed only 4x6, but the real matrix is 50,000 x 50,000
e Soit's very sparse
 Most values are 0.
e That’s OK, since there are lots of efficient algorithms for sparse matrices.

e The size of windows depends on your goals

e The shorter the windows , the more syntactic the representation
+ 1-3 very syntacticy
e The longer the windows, the more semantic the representation

+ 4-10 more semanticy
17

2 kinds of co-occurrence between 2 words
(Schutze and Pedersen, 1993)

e First-order co-occurrence (syntagmatic association):
 They are typically nearby each other.
e wrote is a first-order associate of book or poem.

e Second-order co-occurrence (paradigmatic association):

 They have similar neighbors.

e wrote is a second- order associate of words like said or
remarked.

18

Vector Semantics

Positive Pointwise Mutual
Information (PPMI)

20

Problem with raw counts

Raw word frequency is not a great measure of
association between words

e |t's very skewed

e “the” and “of” are very frequent, but maybe not the most
discriminative

We’'d rather have a measure that asks whether a context word is
particularly informative about the target word.

e Positive Pointwise Mutual Information (PPMI)

Pointwise Mutual Information

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

PMI(X,Y) = log, Pfgg()y)

PMI between two words:

Do words x and y co-occur more than if they were independent?

P(word,,word,)

PMI(word,,word,) = log, P(word,)P(word.)

Positive Pointwise Mutual Information

PMI ranges from —oo to + o

But the negative values are problematic

e Things are co-occurring less than we expect by chance
e Unreliable without enormous corpora

* |magine wl and w2 whose probability is each 10°
 Hard to be sure p(w1,w2) is significantly different than 102

4

e Plusit’s not clear people are good at “unrelatedness’

So we just replace negative PMI values by O

Positive PMI (PPMI) between word1 and word?2:
P(word,,word,) 0)

l0g; P(word,)P(word,)’

PPMI(word,,word,) = max(

Computing PPMI on a term-context matrix

e Matrix F with W rows (words) and C columns (contexts)

o f.is# of times w; occursin context ¢. o o oo A o
J J pineapple 0 0 0 L1 0 1
C W digital 0 2 1 0 1 0
information 0 1 6 0 4 0
f Efij Efij
Y =1 =1
p.. — . J= = 1=
Y W C Dix = W C p*J W C
Ezfl] Ezf;] Ezfl]
=1 j=1 i=1 j=1 i=1 j=1
1 i .| pmy; 1t pmi;>0
pmi; = log, ppmi; = - ,
PP+ 0 otherwise

23

Count(w,context)

f-- computer data pinch result sugar
Dii = apricot 0 0 1 0 1
pineapple 0 0 1 0 1
EE digital 2 1 0 1 0
i=1 j=1 information 1 6 0 4 0
C 14
p(w=information,c=data) = 6/19 =.32 Efij Eflj
p(w=information) = 11/19 =.58 P(Wi)=‘]=]1v p(c;)= F}\,
p(c=data) =7/19 =.37 p(w,context) p(w)
computer data pinch result sugar
apricot 0.00 000 0.05 0.00 0.05 0.11
pineapple 0.00 000 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 000 0.21 0.00 0.58

24
p(context) 0.16 037 011 0.26 0.11

] p; apricot
pmi; =10g, DDy pineapple
T digital
information
p(context)

computer

0.00
0.00
0.11
0.05

0.16

data
0.00
0.00
0.05
0.32

0.37

p(w,context)

* pmi(information,data) =log, (.32 / (.37*.58)) =.58

25

PPMI(w,context)

computer
apricot -
pineapple -
digital 1.66
information 0.00

data

0.00
0.57

pinch

2.25
2.25

result

0.00
0.47

p(w)

pinch result sugar

0.05 0.00 0.05 0.11

0.05 0.00 0.05 0.11

0.00 0.05 0.00 0.21

0.00 0.21 0.00 0.58

0.11 0.26 0.11

(.57 using full precision)

sugar

2.25

2.25

Weighting PMI

e PMI is biased toward infrequent events
e Very rare words have very high PMI values

e Two solutions:

e Give rare words slightly higher probabilities
e Use add-one smoothing (which has a similar effect)

26

Weighting PMI: Giving rare context words
slightly higher probability

e Raise the context probabilitiesto a = 0.75:

PPMI, (w,c) = max(log, P(me)v;; :zc) ,0)
~ count(c)®
Palc) = > .count(c)®

e This helps because P,(c) > P(c) forrarec
e Consider two events, P(a) =.99 and P(b)=.01

y Fala) = 99:75+,01.75

_01.75
=97 Pp(b) = —g—z = .03

28

Use Laplace (add-1) smoothing

Add-2 Smoothed Count(w,context

computer data pinch result sugar
apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2
p(w,context) [add-2] p(w)
computer data pinch result sugar
apricot 0.03 0.03 0.05 0.03 0.05 0.20
pineapple 003 003 0.05 0.03 0.05 0.20
digital 0.07 005 0.03 0.05 0.03 0.24
information 005 0.14 0.03 0.10 0.03 0.36
p(context) 0.19 0.25 0.17 0.22 0.17

29

PPMI versus add-2 smoothed PPMI

PPMI(w,context)

computer data pinch result sugar
apricot - - 2.25 - 2.25
pineapple - - 2.25 - 2.25
digital 1.66 0.00 - 0.00 -
information 0.00 0.57 - 0.47 -

PPMI(w,context) [add-2]
computer data pinch result sugar

apricot 0.00 0.00 056 0.00 0.56
pineapple 0.00 0.00F 056 0.00 0.56
digital 0.62 0.00 0.00 0.00 0.00

information 0.00f 058 0.00 0.37 0.00

Vector Semantics

Measuring similarity: the
cosine

Measuring similarity

* @Given 2 target words v and w
e We'll need a way to measure their similarity.
e Most measure of vectors similarity are based on the:

e Dot product or inner product from linear algebra
N

dot-product(V,w) =V-w = g Viw; = Viw] +Vvown + ...+ Vywy
i=1
e High when two vectors have large values in same dimensions.

 Low (in fact O) for orthogonal vectors with zeros in complementary
32 distribution

Problem with dot product

N
dOt—pl‘OdUCt(_;, VT/) —V-w= Zviwi = VIW] +Vaowr + ... - VNWN
i=1
Dot product is longer if the vector is longer. Vector length:

N

V| = \ szz

=1

e Vectors are longer if they have higher values in each dimension
e That means more frequent words will have higher dot products

e That’s bad: we don’t want a similarity metric to be sensitive to
** word frequency

Solution: cosine

e Just divide the dot product by the length of the two vectors!

—

a-b
al|b|

e This turns out to be the cosine of the angle between them!

d-b = |d||b|cosB

= cos 6

34

Cosine for computing similarity

Dot product Unit vectors

\q /I/ Efvlll

cos(V,w) =

\v

\v \W\ \/E lel w?

v; is the PPMI value for word v in context i
w; is the PPMI value for word w in context /.

Cos(\fﬁ) is the cosine similarity of vand w

36

Cosine as a similarity metric

-1: vectors point in opposite directions |
+1: vectors point in same directions

0: vectors are orthogonal

Raw frequency or PPMI are non-
negative, so cosine range 0-1

_ arge mm

apricot

v EN ViW; digital 0 1 g)

cos(v,w) = ‘ ‘ ‘ ‘ i=l
i information 1 6 1
JE: lell information
Which pair of words is more similar? 240 + 0)
cosine(apricot,information) = 57970 Viz3621 va3s o
0+6+2
cosine(digital,information) = J0+1+4 Vi136+1 3305 =.58
0+0+0

=0

cosine(apricot,digital) =

V1+0+0 JO+1+4
37

38

Dimension 1: ‘large’

Visualizing vectors and angles

apricot 2
3 — digital 0

information 1

apricot

information
>

—

1 2 3 4 5 6 7

Dimension 2: ‘data’

digital

0
1
6

Clustering vectors to
visualize similarity in
co-occurrence
matrices

39

ANKLE

SHOULDER
ARM
LEG
« HAND
« FOOT

« HEAD

» NOSE

» FINGER
» TOE
» FACE

 EAR
« EYE

»« TOOTH

DOG
CAT

- PUPPY

« KITTEN

« COW
« MOUSE

—— TURTLE
' »« OYSTER
» LION

» BULL

CHICAGO
ATLANTA
« MONTREAL
 NASHVILLE

» TOKYO

 AMERICA

» BRAZIL

« MOSCOW

« FRANCE

« HAWAII

w“ ASIA

Rohde et al. (2006)

Other possible similarity measures

T l 11,><u
T

¢z, N

min(v;,w;)

SIm

cosme(‘_’ W)

: — Z:
SiMyaccard (VW) = ZN ———
i=1 i Wi
— 2><Zf\; Illill(l-’,' ,1-1"',')
simpyjce (V.) = EN : o)
7;:1" I 4 .
simg (V]|w) = D(¥|5%) 4 D(w| H2)

Vector Semantics

Measuring similarity: the
cosine

Evaluating similarity
(the same as for thesaurus-based)

* |ntrinsic Evaluation:

e Correlation between algorithm and human word similarity
ratings

e Extrinsic (task-based, end-to-end) Evaluation:

e Spelling error detection, WSD, essay grading
e Taking TOEFL multiple-choice vocabulary tests

Levied 1s closest in meaning to which of these:

imposed, believed, requested, correlated

Using syntax to define a word’s context

e Zellig Harris (1968)

“The meaning of entities, and the meaning of grammatical
relations among them, is related to the restriction of
combinations of these entities relative to other entities”

e Two words are similar if they have similar syntactic contexts
Duty and responsibility have similar syntactic distribution:

Modified by additional, administrative, assumed, collective,
adjectives congressional, constitutional ...

Objects of verbs assert, assign, assume, attend to, avoid, become, breach..

Co-occurrence vectors based on syntactic dependencies

DekangLin, 1998 “Automatic Retrieval and Clustering of Similar Words”

 Each dimension: a context word in one of R grammatical relations
e Subject-of- “absorb”

* |nstead of a vector of [V/ features, a vector of R/V/|
e Example: counts for the word cell :

S
= o &
- p— — ?
— — —
< = =
— v\ (D) ~ H
: o S -’ G) :
s o ~ g . p— ;—l p— — .
ol | = o = | OO 2 ™ I -
O — () o ~ |y D (D) Yot o
S’ . y— </ _c o) . » ~ Q) -
4 - 4 H ~ ﬂ ﬂ ~ —_— F , 0 H
—-:J Q) : : (e v\ v\ :_\‘J yom—(o—) U .\)" :
= | 2|2 A= 8 — e e . s|l=| 2| 0 21 8| A
. —— — S — g , -U p 4
- o - P ’ - ~ ~ o~ - \) \) !) _Q ! :
¢ ’ oy w-—"\ —‘—/\ \-IJ I\-l/ I‘-l/ . , - , P , - . & .
o O O ® O R e~ e B —|—= |-
- -/ ~ i 7 V| T T ~) o) o | = -
I I | . p— o p— ~ o~ — S’ e’ e’ -’ ~ o~ ~
. p— . p— . — r} = ®, >, -, | | | | o’ o’ (-
> | 2| @ Q| & = 2] = ol || =l 2| =
cell|1 (1 |1 16 | 30 3 |8 |1 6 (11|13 |2 312 |2

Syntactic dependencies for dimensions

e Alternative (Pad6 and Lapata 2007):
e Instead of having a |V| x R|V| matrix
e Have a |V]| x |V| matrix
e But the co-occurrence counts aren’t just counts of words in a window

e But counts of words that occur in one of R dependencies (subject, object,
etc).

e So M(“cell”,”absorb”) = count(subj(cell,absorb)) + count(obj(cell,absorb))
+ count(pobij(cell,absorb)), etc.

45

PMI applied to dependency relations

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL

Object of “drink” | Count _|PMI___

tea 2 11.8
liquid 2 10.5
wine 2 9.3
anything 3 5.2
it 3 1.3

e “Drink 1t” more common than “drink wine”
e But “wine” is a better “drinkable” thing than “it”

Alternative to PPMI for measuring
association

e tf-idf (that’s a hyphen not a minus sign)

e The combination of two factors

e Term frequency (Luhn 1957): frequency of the word (can be logged)
e Inverse document frequency (IDF) (Sparck Jones 1972)

N is the total number of documents (N)
* df; = “document frequency of word ldfl‘ = log d_
e =4 of documents with word / \ fi/

* w;; =word i in document j

Jj
w,=tf,; id]f

N7

48

tf-idf not generally used for word-word
similarity

But is by far the most common weighting when we are
considering the relationship of words to documents

Vector Semantics

Dense Vectors

Sparse versus dense vectors

* PPMI vectors are
e long (length |V|= 20,000 to 50,000)
e sparse (most elements are zero)

e Alternative: learn vectors which are
e short (length 200-1000)

e dense (most elements are non-zero)

50

Sparse versus dense vectors

e Why dense vectors?

51

e Short vectors may be easier to use as features in machine
learning (less weights to tune)

 Dense vectors may generalize better than storing explicit counts
e They may do better at capturing synonymy:

e car and automobile are synonyms; but are represented as
distinct dimensions; this fails to capture similarity between a

word with car as a neighbor and a word with automobile as a
neighbor

Three methods for getting short dense
vectors

e Singular Value Decomposition (SVD)
e A special case of this is called LSA — Latent Semantic Analysis

I” .

e “Neural Language Model”-inspired predictive models

e skip-grams and CBOW
* Brown clustering

52

Vector Semantics

Dense Vectors via SVD

54

Intuition

Approximate an N-dimensional dataset using fewer dimensions
By first rotating the axes into a new space

In which the highest order dimension captures the most
variance in the original dataset

And the next dimension captures the next most variance, etc.

Many such (related) methods:
e PCA - principle components analysis

e Factor Analysis
e SVD

55

6

Dimensipnality reduction

5

PCA dimension 2

PCA dimension 1

Singular Value Decomposition

Any rectangular w x ¢ matrix X equals the product of 3 matrices:

W: rows corresponding to original but m columns represents a
dimension in a new latent space, such that
* M column vectors are orthogonal to each other
* Columns are ordered by the amount of variance in the dataset each new
dimension accounts for
S: diagonal m x m matrix of singular values expressing the
importance of each dimension.

C: columns corresponding to original but m rows corresponding to
dingular values

57

Singular Value Decomposition

Contexts
-E ‘s_“ c
e | X |=| W “d |
<

m X m mX ¢
W X C W Xm

Landuaer and Dumais 1997

58

SVD applied to term-document matrix:
Latent Semantic AnalysiS peerwester et al (1988)

If instead of keeping all m dimensions, we just keep the top k
singular values. Let’s say 300.

The result is a least-squares approximation to the original X

But instead of multiplying, Contexts
we’ll just make use of W.
Each fW: B > ¢
ach row of W: Sl x [=|w 7
e A k-dimensional vector = M x h x ¢
e Representing word W k kK
<

W X C II"XW

59

LSA more details

e 300 dimensions are commonly used
e The cells are commonly weighted by a product of two weights

e Local weight: Log term frequency
 Global weight: either idf or an entropy measure

Let’s return to PPMI word-word matrices

e Can we apply to SVD to them?

60

SVD applied to term-term matrix

Vx|V

61

Vx|V

O1 0O O

0 02) 0

0 O O3

0 0 0 ..
Vx|V

. Oy

Vx|V

(I'm simplifying here by assuming the matrix has rank |V|)

Truncated SVD on term-term matrix

))] 1o 0 O O_[C
0 oo O 0 kx V]

Vx|V V| xk kx k

62

Truncated SVD produces embeddings

e Each row of W matrix is a k-dimensional embedding T]
representation of each word w fog I e — —
word |
e K mightrange from 50 to 1000 W

* Generally we keep the top k dimensions,
but some experiments suggest that
getting rid of the top 1 dimension or even _|V\ <k
the top 50 dimensions is helpful (Lapesa
and Evert 2014).

63

Embeddings versus sparse vectors

e Dense SVD embeddings sometimes work better than
sparse PPMI matrices at tasks like word similarity

 Denoising: low-order dimensions may represent unimportant
information

 Truncation may help the models generalize better to unseen data.

e Having a smaller number of dimensions may make it easier for
classifiers to properly weight the dimensions for the task.

e Dense models may do better at capturing higher order co-
occurrence.

64

Vector Semantics

Embeddings inspired by
neural language models:
skip-grams and CBOW

Prediction-based models:
An alternative way to get dense vectors

e Skip-gram (Mikolov et al. 2013a) CBOW (Mikolov et al. 2013b)
e Learn embeddings as part of the process of word prediction.

 Train a neural network to predict neighboring words

 |nspired by neural net language models.
* |nsodoing, learn dense embeddings for the words in the training corpus.

e Advantages:

e Fast, easy to train (much faster than SVD)
e Available online in the word2vec package
cc * Including sets of pretrained embeddings!

Skip-grams

 Predict each neighboring word

* in a context window of 2C words

e from the current word.

* Sofor C=2, we are given word w; and predicting these
4 words:

[Wl‘—27 We—1,Wri1, Wt—I—Z]

67

Skip-grams learn 2 embeddings
for each w

input embedding v, in the input matrix W

e Column i of the input matrix Wisthe 1 X d
embedding v; for word i in the vocabulary.

output embedding v/, in output matrix W’

e Row jof the output matrix W'isad X 1
vector embedding v'; for word i in the
vocabulary.

63

—

N —

V]

V| x d

Setup

e Walking through corpus pointing at word w(t), whose index in
the vocabulary is j, so we’ll call it W (1<j<|V]).

e Let’s predict w(t+1), whose index in the vocabulary is k (1 < k <
|V [). Hence our task is to compute P(w/| wj).

69

One-hot vectors

e A vector of length |V]

e 1 forthe target word and O for other words
e Soif “popsicle” is vocabulary word 5

e The one-hot vector is

e [0,0,0,0,1,0,0,0,0.......0]

70

Ski p-gram Output layer
probabilities of
context words

Projection layer

Input layer .
embedding for wy

e Q0O
[I] '\<
)

1-hot input vector

- e
X : .
X (&) .
.2 - o :
.+ e . @)
Wi x| W . S0
. |V|Xd . ?yl
T e : 'y,
@)) 9 : .
v ———— Waxv N
Y« t+1
1X|V| 1xd

Q0O - @

72

Ski p-gram Output layer

h = V; probabilities of
context words
@ Y1
Projection layer ®y —)
Input layer 2 = h
hp Y embedding for Wy O W
1-hot input vector
Xl ?‘ ? yk Wt—l
N S o :
- ° . O
W \%Y 240
t X |@ o
] : V|xd . f v)
® o 20 = W’h
‘ Q) °
Xy 3 — V\],dXIVI o Wiy
y t-+
1X|V] Ixd 1
Q| :
o)
!/}’|V|

Skip-gram

Output layer
h = V; probabilities of
context words
. . 0) Y1
Input layer Projection layer ®y, 0 = W’h
ot embedding for wy
-hot 1input vector —_ 7’
X, ;\ oy, Wy O=V kh
2 |® ° E O =V
: < E ' K K
Wi x o W ° Dy
O : MEE
® © ol :
Xy !} — W’dX|V|
Q| y, Wi+l
1X|V] 1xd :
: :
73 o) Yy

Turning outputs into probabilities
-ok=wkw
 We use softmax to turn into probabilities

exp(vv))

w eV exp(vy, - v;)

p(wilw;) = >

74

Embeddings from W and W’

 Since we have two embeddings, V; and v’j for each word Wi

e We can either:

* Justusey,
e Sumthem
e Concatenate them to make a double-length embedding

75

But wait; how do we learn the embeddings?

argmax log p(Text)
6

T
argmax log Hp(w(t_c), WD) Oy
0 =1

argmax Z log p(w!)| wl))
O —egjgej#0

M(t+7) . y()
—argmaxz Z log exp(v)

t=1 —c<j<c,j#0 Zwe‘wexp(viv-v(f))

= argmaxz Z VD))0 _og Z exp(v

t=1 —c<j<c,j#0 | welV|

77

Relation between skipgrams and PMI!

If we multiply WwW’’

We get a |V |x|V| matrix M, each entry wr corresponding to
some association between input word i and output word j

Levy and Goldberg (2014b) show that skip-gram reaches its
optimum just when this matrix is a shifted version of PMI:

WW'T=MPM! _|og k

So skip-gram is implicitly factoring a shifted version of the PMI
matrix into the two embedding matrices.

78

CBOW (Continuous Bag of Words)

Input layer

1-hot mput vectors
for each context word

X . .
: ‘ sum of embeddings probability of w
* e for context words t
Wil %5 (@ —
- — 9y
.l) ol Vi
: : @ Y2
: . . .
X ° ° .
M (@) W) (@}
X Ii . dx |V e o wy
X, (@) ®
S ¢ H £
Wi+l x @ v
I1xd

1X|V]

Properties of embeddings

e Nearest words to some embeddings (Mikolov et al. 20131)

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel = martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

79

Embeddings capture relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector(‘Rome’)

30

WOMAN

MAN/, /

UNCLE

QUEEN

/

KING

AUNT

QUEENS

KINGS \

QUEEN

/

KING

Vector Semantics

Brown clustering

32

Brown clustering

An agglomerative clustering algorithm that clusters words based
on which words precede or follow them

These word clusters can be turned into a kind of vector
We'll give a very brief sketch here.

33

Brown clustering algorithm

Each word is initially assigned to its own cluster.

We now consider consider merging each pair of clusters. Highest
quality merge is chosen.

e Quality = merges two words that have similar probabilities of preceding
and following words

e (More technically quality = smallest decrease in the likelihood of the
corpus according to a class-based language model)

Clustering proceeds until all words are in one big cluster.

Brown Clusters as vectors

By tracing the order in which clusters are merged, the model
builds a binary tree from bottom to top.

e Each word represented by binary string = path from root to leaf
e Each intermediate node is a cluster
e Chairman is 0010, “months” =01, and verbs =1

0 1

00 01 10 11

000 001 010 011 100 101 walk
CEO 0010 0011 November October run sprint

84 . .
chairman president

Brown cluster examples

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August

pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody

had hadn’t hath would’ve could’ve should’ve must’ve might’ve

asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle

great big vast sudden mere sheer gigantic lifelong scant colossal

down backwards ashore sideways southward northward overboard aloft downwards adrift

85

Class-based language model

* Suppose each word was in some class c..

P(wi\w,-_l) — P(Ci‘ci_l)P(Wi‘Ci)

P(corpus|C) = HP cilci—1)P(wi|ci)

36

Vector Semantics

Evaluating similarity

Evaluating similarity

 Extrinsic (task-based, end-to-end) Evaluation:

* Question Answering
e Spell Checking
e Essay grading

* |ntrinsic Evaluation:
e Correlation between algorithm and human word similarity ratings
e Wordsim353: 353 noun pairs rated 0-10. sim(plane,car)=5.77
e Taking TOEFL multiple-choice vocabulary tests

e Levied 1s closest 1n meaning to:

imposed, believed, requested, correlated

Summary

e Distributional (vector) models of meaning

e Sparse (PPMI-weighted word-word co-occurrence matrices)
* Dense:

e Word-word SVD 50-2000 dimensions

e Skip-grams and CBOW

e Brown clusters 5-20 binary dimensions.

39

