Naive Bayes and Sentiment Classification

The Task of Text Classification
Is this spam?

Subject: Important notice!
From: Stanford University <newsforum@stanford.edu>
Date: October 28, 2011 12:34:16 PM PDT
To: undisclosed-recipients;;

Greats News!

You can now access the latest news by using the link below to login to Stanford University News Forum.

Click on the above link to login for more information about this new exciting forum. You can also copy the above link to your browser bar and login for more information about the new services.

© Stanford University. All Rights Reserved.
Who wrote which Federalist papers?

1787-8: anonymous essays try to convince New York to ratify U.S Constitution: Jay, Madison, Hamilton.

Authorship of 12 of the letters in dispute

1963: solved by Mosteller and Wallace using Bayesian methods
What is the subject of this medical article?

MEDLINE Article

MeSH Subject Category Hierarchy
- Antagonists and Inhibitors
- Blood Supply
- Chemistry
- Drug Therapy
- Embryology
- Epidemiology
...
Positive or negative movie review?

+ ...zany characters and richly applied satire, and some great plot twists

- It was pathetic. The worst part about it was the boxing scenes...

...awesome caramel sauce and sweet toasty almonds. I love this place!

+ ...awful pizza and ridiculously overpriced...

-
Positive or negative movie review?

+ ...zany characters and **richly** applied satire, and some **great** plot twists

- It was **pathetic**. The **worst** part about it was the boxing scenes...

 ...**awesome** caramel sauce and sweet toasty almonds. I **love** this place!

+ ...**awful** pizza and **ridiculously** overpriced...
Why sentiment analysis?

Movie: is this review positive or negative?

Products: what do people think about the new iPhone?

Public sentiment: how is consumer confidence?

Politics: what do people think about this candidate or issue?

Prediction: predict election outcomes or market trends from sentiment
Scherer Typology of Affective States

Emotion: brief organically synchronized ... evaluation of a major event
- angry, sad, joyful, fearful, ashamed, proud, elated

Mood: diffuse non-caused low-intensity long-duration change in subjective feeling
- cheerful, gloomy, irritable, listless, depressed, buoyant

Interpersonal stances: affective stance toward another person in a specific interaction
- friendly, flirtatious, distant, cold, warm, supportive, contemptuous

Attitudes: enduring, affectively colored beliefs, dispositions towards objects or persons
- liking, loving, hating, valuing, desiring

Personality traits: stable personality dispositions and typical behavior tendencies
- nervous, anxious, reckless, morose, hostile, jealous
Scherer Typology of Affective States

Emotion: brief organically synchronized ... evaluation of a major event
- angry, sad, joyful, fearful, ashamed, proud, elated

Mood: diffuse non-caused low-intensity long-duration change in subjective feeling
- cheerful, gloomy, irritable, listless, depressed, buoyant

Interpersonal stances: affective stance toward another person in a specific interaction
- friendly, flirtatious, distant, cold, warm, supportive, contemptuous

Attitudes: enduring, affectively colored beliefs, dispositions towards objects or persons
- liking, loving, hating, valuing, desiring

Personality traits: stable personality dispositions and typical behavior tendencies
- nervous, anxious, reckless, morose, hostile, jealous
Basic Sentiment Classification

Sentiment analysis is the detection of attitudes

Simple task we focus on in this chapter
 ◦ Is the attitude of this text positive or negative?

We return to affect classification in later chapters
Summary: Text Classification

Sentiment analysis
Spam detection
Authorship identification
Language Identification
Assigning subject categories, topics, or genres
...
Text Classification: definition

Input:
- a document \(d \)
- a fixed set of classes \(C = \{c_1, c_2, \ldots, c_J\} \)

Output: a predicted class \(c \in C \)
Classification Methods: Hand-coded rules

Rules based on combinations of words or other features
 ◦ spam: black-list-address OR (“dollars” AND “you have been selected”)

Accuracy can be high
 ◦ If rules carefully refined by expert

But building and maintaining these rules is expensive
Classification Methods: Supervised Machine Learning

Input:
- a document d
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
- A training set of m hand-labeled documents $(d_1, c_1), ..., (d_m, c_m)$

Output:
- a learned classifier $\gamma: d \rightarrow c$
Classification Methods:
Supervised Machine Learning

Any kind of classifier
- Naïve Bayes
- Logistic regression
- Neural networks
- k-Nearest Neighbors
- ...

Text Classification and Naive Bayes

The Task of Text Classification
Text Classification and Naive Bayes

Naive Bayes (I)
Naive Bayes Intuition

Simple ("naive") classification method based on Bayes rule

Relies on very simple representation of document

- Bag of words
I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!
The bag of words representation

\[\gamma = (c) \]

<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>seen</td>
<td>2</td>
</tr>
<tr>
<td>sweet</td>
<td>1</td>
</tr>
<tr>
<td>whimsical</td>
<td>1</td>
</tr>
<tr>
<td>recommend</td>
<td>1</td>
</tr>
<tr>
<td>happy</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Naive Bayes (I)
Text Classification and Naïve Bayes

Formalizing the Naive Bayes Classifier
Bayes’ Rule Applied to Documents and Classes

• For a document d and a class c

\[
P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}
\]
Naive Bayes Classifier (I)

\[
C_{\text{MAP}} = \arg \max_{c \in C} P(c | d)
\]

\[
= \arg \max_{c \in C} \frac{P(d | c)P(c)}{P(d)}
\]

\[
= \arg \max_{c \in C} P(d | c)P(c)
\]

MAP is “maximum a posteriori” = most likely class

Bayes Rule

Dropping the denominator
Naive Bayes Classifier (II)

\[c_{MAP} = \arg\max_{c \in C} P(d \mid c)P(c) \]

\[= \arg\max_{c \in C} P(x_1, x_2, \ldots, x_n \mid c)P(c) \]
Naïve Bayes Classifier (IV)

\[c_{MAP} = \arg\max_{c \in C} P(x_1, x_2, \ldots, x_n \mid c)P(c) \]

\(O(|X|^n \cdot |C|) \) parameters

Could only be estimated if a very, very large number of training examples was available.

How often does this class occur?

We can just count the relative frequencies in a corpus.
Multinomial Naive Bayes Independence Assumptions

\[P(x_1, x_2, \ldots, x_n \mid c) \]

Bag of Words assumption: Assume position doesn’t matter

Conditional Independence: Assume the feature probabilities \(P(x_i \mid c_j) \) are independent given the class \(c \).

\[P(x_1, \ldots, x_n \mid c) = P(x_1 \mid c) \cdot P(x_2 \mid c) \cdot P(x_3 \mid c) \cdot \ldots \cdot P(x_n \mid c) \]
Multinomial Naive Bayes Classifier

\[
c_{MAP} = \arg\max_{c \in C} P(x_1, x_2, \ldots, x_n \mid c) P(c)
\]

\[
c_{NB} = \arg\max_{c \in C} P(c_j) \prod_{x \in X} P(x \mid c)
\]
Applying Multinomial Naive Bayes Classifiers to Text Classification

$$c_{NB} = \arg \max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(x_i | c_j)$$
Problems with multiplying lots of probs

There's a problem with this:

\[c_{NB} = \arg\max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(x_i | c_j) \]

Multiplying lots of probabilities can result in floating-point underflow!

Luckily, \(\log(ab) = \log(a) + \log(b) \)

Let's sum logs of probabilities instead of multiplying probabilities!
We actually do everything in log space

Instead of this:

\[c_{NB} = \arg\max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(x_i | c_j) \]

This:

\[c_{NB} = \arg\max_{c_j \in C} \left[\log P(c_j) + \sum_{i \in \text{positions}} \log P(x_i | c_j) \right] \]

This is ok since log doesn't change the ranking of the classes (class with highest prob still has highest log prob)

Model is now just max of sum of weights: a \textbf{linear} function of the inputs

So naive bayes is a \textbf{linear classifier}
Text Classification and Naïve Bayes

Formalizing the Naïve Bayes Classifier
Classification and Naïve Bayes

Naive Bayes: Learning
Learning the Multinomial Naive Bayes Model

First attempt: maximum likelihood estimates

- simply use the frequencies in the data

\[
\hat{P}(c_j) = \frac{\text{doccount}(C = c_j)}{N_{\text{doc}}}
\]

\[
\hat{P}(w_i \mid c_j) = \frac{\text{count}(w_i, c_j)}{\sum_{w \in V} \text{count}(w, c_j)}
\]
Parameter estimation

\[
\hat{P}(w_i | c_j) = \frac{\text{count}(w_i, c_j)}{\sum_{w \in V} \text{count}(w, c_j)}
\]

fraction of times word \(w_i \) appears among all words in documents of topic \(c_j \)

Create mega-document for topic \(j \) by concatenating all docs in this topic

- Use frequency of \(w \) in mega-document
Problem with Maximum Likelihood

What if we have seen no training documents with the word *fantastic* and classified in the topic *positive* (*thumbs-up*)?

\[
\hat{P}("\text{fantastic}\mid\text{positive}) = \frac{\text{count}("\text{fantastic}\), \text{positive})}{\sum_{w\in V} \text{count}(w, \text{positive})} = 0
\]

Zero probabilities cannot be conditioned away, no matter the other evidence!

\[
c_{MAP} = \arg\max_c \hat{P}(c) \prod_i \hat{P}(x_i \mid c)
\]
Laplace (add-1) smoothing for Naïve Bayes

\[
\hat{P}(w_i \mid c) = \frac{\text{count}(w_i, c) + 1}{\sum_{w \in V} (\text{count}(w, c) + 1)}
\]

\[
= \frac{\text{count}(w_i, c) + 1}{\left(\sum_{w \in V} \text{count}(w, c)\right) + |V|}
\]
Unknown words

What about unknown words
 ◦ that appear in our test data
 ◦ but not in our training data or vocab

We **ignore** them
 ◦ Remove them from the test document!
 ◦ Pretend they weren't there!
 ◦ Don't include any probability for them at all.

Why don't we build an unknown word model?
 ◦ It doesn't help: knowing which class has more unknown words is not generally a useful thing to know!
Stop words

Some systems ignore another class of words:

Stop words: very frequent words like *the* and *a*.

- Sort the whole vocabulary by frequency in the training, call the top 10 or 50 words the **stopword list**.
- Now we remove all stop words from the training and test sets as if they were never there.

But in most text classification applications, removing stop words don't help, so it's more common to **not** use stopword lists and use all the words in naive Bayes.
Multinomial Naïve Bayes: Learning

- From training corpus, extract *Vocabulary*

Calculate $P(c_j)$ terms
- For each c_j in C

 $docs_j \leftarrow$ all docs with class $= c_j$

 $$P(c_j) \leftarrow \frac{|docs_j|}{|\text{total # documents}|}$$

Calculate $P(w_k \mid c_j)$ terms
- $Text_j \leftarrow$ single doc containing all $docs_j$
- For each word w_k in *Vocabulary*

 $$n_k \leftarrow \# \text{ of occurrences of } w_k \text{ in } Text_j$$

 $$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha |\text{Vocabulary}|}$$
Text Classification and Naive Bayes

Naive Bayes: Learning
Text Classification and Naive Bayes

Sentiment and Binary Naive Bayes
Let's do a worked sentiment example!

<table>
<thead>
<tr>
<th>Cat</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>just plain boring</td>
</tr>
<tr>
<td></td>
<td>entirely predictable and lacks energy</td>
</tr>
<tr>
<td></td>
<td>no surprises and very few laughs</td>
</tr>
<tr>
<td></td>
<td>very powerful</td>
</tr>
<tr>
<td></td>
<td>the most fun film of the summer</td>
</tr>
<tr>
<td>Test</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>predictable with no fun</td>
</tr>
</tbody>
</table>

The prior $P(c)$ for the two classes is computed via Eq. 4.11 as N_c / N_{doc}:

$P(+) = \frac{2}{5}$

$P(-) = \frac{3}{5}$

The word with doesn't occur in the training set, so we drop it completely (as mentioned above, we don't use unknown word models for naive Bayes). The likelihoods from the training set for the remaining three words "predictable", "no", and "fun", are as follows, from Eq. 4.14 (computing the probabilities for the remainder of the words in the training set is left as an exercise for the reader):

$P("predictable" | +) = \frac{1 + 1}{14 + 20}$

$P("predictable" | -) = \frac{0 + 1}{19 + 20}$

$P("no" | +) = \frac{1 + 1}{14 + 20}$

$P("no" | -) = \frac{0 + 1}{19 + 20}$

$P("fun" | +) = \frac{1 + 1}{14 + 20}$

$P("fun" | -) = \frac{1 + 1}{19 + 20}$

For the test sentence $S = \text{predictable with no fun}$, after removing the word 'with', the chosen class, via Eq. 4.9, is therefore computed as follows:

$P(+ | S) \cdot P(S) = \frac{2}{5} \cdot \frac{3}{5} \cdot \frac{1}{10} = \frac{6}{10}$

$P(- | S) \cdot P(S) = \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{10} = \frac{3}{10}$

The model thus predicts the class negative for the test sentence.

4.4 Optimizing for Sentiment Analysis

While standard naive Bayes text classification can work well for sentiment analysis, some small changes are generally employed that improve performance. First, for sentiment classification and a number of other text classification tasks, whether a word occurs or not seems to matter more than its frequency. Thus it often improves performance to clip the word counts in each document at 1 (see the end of the chapter for pointers to these results). This variant is called binary.
4.3 Worked example

While standard naive Bayes text classification can work well for sentiment analysis, some small changes are generally employed that improve performance. For the test sentence $S = \text{"predictable with no fun"}$, after removing the word 'with', the chosen class, via Eq. 4.14, is therefore computed as follows:

Prior from training:

- $P(-) = 3/5$
- $P(+) = 2/5$

Drop "with"

Likelihoods from training:

<table>
<thead>
<tr>
<th>Cat</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>just plain boring</td>
</tr>
<tr>
<td></td>
<td>entirely predictable and lacks energy</td>
</tr>
<tr>
<td></td>
<td>no surprises and very few laughs</td>
</tr>
<tr>
<td></td>
<td>very powerful</td>
</tr>
<tr>
<td></td>
<td>the most fun film of the summer</td>
</tr>
<tr>
<td>Test</td>
<td>predictable with no fun</td>
</tr>
</tbody>
</table>

Scoring the test set:

- $P(-)P(S|-) = \frac{3}{5} \times \frac{2 \times 2 \times 1}{34^3} = 6.1 \times 10^{-5}$
- $P(+)P(S|+) = \frac{2}{5} \times \frac{1 \times 1 \times 2}{29^3} = 3.2 \times 10^{-5}$
Optimizing for sentiment analysis

For tasks like sentiment, word **occurrence** is more important than word **frequency**.

- The occurrence of the word *fantastic* tells us a lot
- The fact that it occurs 5 times may not tell us much more.

Binary multinominal naive bayes, or binary NB

- Clip our word counts at 1
- Note: this is different than Bernoulli naive bayes; see the textbook at the end of the chapter.
Binary Multinomial Naïve Bayes: Learning

• From training corpus, extract *Vocabulary*

Calculate $P(c_j)$ terms
 ◦ For each c_j in C do
 $\text{docs}_j \leftarrow$ all docs with class $= c_j$

 $P(c_j) \leftarrow \frac{|\text{docs}_j|}{|\text{total # documents}|}$

• Calculate $P(w_k \mid c_j)$ terms
 ◦ Remove single doc containing all docs_j
 ◦ For each word w_k in Vocabulary
 $n_k \leftarrow$ # of occurrences of w_k in Text_j

 $P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \cdot |\text{Vocabulary}|}$
Binary Multinomial Naive Bayes
on a test document d

First remove all duplicate words from d
Then compute NB using the same equation:

$$c_{NB} = \arg\max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(w_i | c_j)$$
Binary multinominal naive Bayes

Four original documents:

- it was pathetic the worst part was the boxing scenes
- no plot twists or great scenes
+ and satire and great plot twists
+ great scenes great film

Counts can still be 2! Binarization is within-doc!
Text Classification and Naive Bayes

Sentiment and Binary Naive Bayes
Text Classification and Naive Bayes

More on Sentiment Classification
Sentiment Classification: Dealing with Negation

I really like this movie
I really don't like this movie

Negation changes the meaning of "like" to negative.

Negation can also change negative to positive-ish

- Don't dismiss this film
- Doesn't let us get bored
Sentiment Classification: Dealing with Negation

Simple baseline method:
Add NOT_ to every word between negation and following punctuation:

didn’t like this movie , but I

 Didn’t NOT_like NOT_this NOT_movie but I
Sentiment Classification: Lexicons

Sometimes we don't have enough labeled training data.

In that case, we can make use of pre-built word lists called **lexicons**.

There are various publicly available lexicons.
MPQA Subjectivity Cues Lexicon

Home page: http://www.cs.pitt.edu/mpqa/subj_lexicon.html

6885 words from 8221 lemmas, annotated for intensity (strong/weak)
 ◦ 2718 positive
 ◦ 4912 negative

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
– : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate
The General Inquirer

- Home page: http://www.wjh.harvard.edu/~inquirer
- List of Categories: http://www.wjh.harvard.edu/~inquirer/homecat.htm
- Spreadsheet: http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls

Categories:
- Positiv (1915 words) and Negativ (2291 words)
- Strong vs Weak, Active vs Passive, Overstated versus Understated
- Pleasure, Pain, Virtue, Vice, Motivation, Cognitive Orientation, etc

Free for Research Use
Bing Liu Opinion Lexicon

Bing Liu's Page on Opinion Mining
http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

6786 words
- 2006 positive
- 4783 negative
Using Lexicons in Sentiment Classification

Add a feature that gets a count whenever a word from the lexicon occurs

- E.g., a feature called "this word occurs in the positive lexicon" or "this word occurs in the negative lexicon"

Now all positive words (good, great, beautiful, wonderful) or negative words count for that feature.

Using 1-2 features isn't as good as using all the words.

- But when training data is sparse or not representative of the test set, dense lexicon features can help
Naive Bayes in Other tasks: Spam Filtering

SpamAssassin Features:

- Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN)
- From: starts with many numbers
- Subject is all capitals
- HTML has a low ratio of text to image area
- "One hundred percent guaranteed"
- Claims you can be removed from the list
- http://spamassassin.apache.org/tests_3_3_x.html
Naïve Bayes in Language ID

Determining what language a piece of text is written in.

Features based on character n-grams do very well

Important to train on lots of varieties of each language (world English, etc)
Summary: Naive Bayes is Not So Naive

Very Fast, low storage requirements
Work well with very small amounts of training data
Robust to Irrelevant Features
 Irrelevant Features cancel each other without affecting results
Very good in domains with many equally important features
 Decision Trees suffer from fragmentation in such cases – especially if little data
Optimal if the independence assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
A good dependable baseline for text classification
 But we will see other classifiers that give better accuracy

Slide from Chris Manning
Text Classification and Naive Bayes

More on Sentiment Classification
Naïve Bayes: Relationship to Language Modeling
Generative Model for Multinomial Naïve Bayes
Naïve Bayes and Language Modeling

Naïve bayes classifiers can use any sort of feature
- URL, email address, dictionaries, network features

But if, as in the previous slides
- We use only word features
- We use all of the words in the text (not a subset)

Then
- Naive bayes has an important similarity to language modeling.
Each class = a unigram language model

Assigning each word: $P(\text{word} \mid c)$

Assigning each sentence: $P(s \mid c) = \prod P(\text{word} \mid c)$

<table>
<thead>
<tr>
<th>Class pos</th>
<th>I</th>
<th>love</th>
<th>this</th>
<th>fun</th>
<th>film</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P(s \mid \text{pos}) = 0.0000005$
Naïve Bayes as a Language Model

Which class assigns the higher probability to s?

$$P(s|\text{pos}) > P(s|\text{neg})$$
Naïve Bayes: Relationship to Language Modeling
Text Classification and Naïve Bayes

Precision, Recall, and F measure
Evaluation

Let's consider just binary text classification tasks. Imagine you're the CEO of Delicious Pie Company. You want to know what people are saying about your pies.

So you build a "Delicious Pie" tweet detector:

- Positive class: tweets about Delicious Pie Co
- Negative class: all other tweets
The 2-by-2 confusion matrix

<table>
<thead>
<tr>
<th></th>
<th>Gold Positive</th>
<th>Gold Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Positive</td>
<td>True Positive</td>
<td>False Positive</td>
</tr>
<tr>
<td>System Negative</td>
<td>False Negative</td>
<td>True Negative</td>
</tr>
</tbody>
</table>

- **Precision** $= \frac{tp}{tp+fp}$
- **Recall** $= \frac{tp}{tp+fn}$
- **Accuracy** $= \frac{tp+tn}{tp+fp+tn+fn}$

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let's first consider some simple binary detection tasks. For example, in spam detection, our goal is to label every text as being in the spam category (“positive”) or not in the spam category (“negative”). For each item (email document) we therefore need to know whether our system called it spam or not. We also need to know whether the email is actually spam or not, i.e. the human-defined labels for each document that we are trying to match. We will refer to these human labels as the **gold labels**.

Or imagine you’re the CEO of the Delicious Pie Company and you need to know what people are saying about your pies on social media, so you build a system that detects tweets concerning Delicious Pie. Here the positive class is tweets about Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or pie-tweet-detector) is doing. To evaluate any system for detecting things, we start by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrix is a table for visualizing how an algorithm performs with respect to the human gold labels, using two dimensions (system output and gold labels), and each cell labeling a set of possible outcomes. In the spam detection case, for example, true positives are documents that are indeed spam (indicated by human-created gold labels) that our system correctly said were spam. False negatives are documents that are indeed spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for **accuracy**, which asks what percentage of all the observations (for the spam or pie examples that means all emails or tweets) our system labeled correctly. Although accuracy might seem a natural metric, we generally don’t use it for text classification tasks. That’s because accuracy doesn’t work well when the classes are unbalanced (as indeed they are with spam, which is a large majority of email, or with tweets, which are mainly not about pie).
Evaluation: Accuracy

Why don't we use accuracy as our metric?

Imagine we saw 1 million tweets
- 100 of them talked about Delicious Pie Co.
- 999,900 talked about something else

We could build a dumb classifier that just labels every tweet "not about pie"
- It would get 99.99% accuracy!!! Wow!!!!
- But useless! Doesn't return the comments we are looking for!
- That's why we use precision and recall instead
Evaluation: Precision

% of items the system detected (i.e., items the system labeled as positive) that are in fact positive (according to the human gold labels)

\[
\text{Precision} = \frac{\text{true positives}}{\text{true positives} + \text{false positives}}
\]
Evaluation: Recall

% of items actually present in the input that were correctly identified by the system.

\[
\text{Recall} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}
\]
Why Precision and recall

Our dumb pie-classifier
 ◦ Just label nothing as "about pie"

Accuracy=99.99%
 but

Recall = 0
 ◦ (it doesn't get any of the 100 Pie tweets)

Precision and recall, unlike accuracy, emphasize true positives:
 ◦ finding the things that we are supposed to be looking for.
A combined measure: F

F measure: a single number that combines P and R:

\[
F_\beta = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}
\]

We almost always use balanced \(F_1 \) (i.e., \(\beta = 1 \))

\[
F_1 = \frac{2PR}{P + R}
\]
Development Test Sets ("Devsets") and Cross-validation

Train on training set, tune on devset, report on testset

- This avoids overfitting (‘tuning to the test set’)
- More conservative estimate of performance
- But paradox: want as much data as possible for training, and ad much for dev; how to split?
Cross-validation: multiple splits
Pool results over splits, Compute pooled dev performance

Figure 4.6
Separate confusion matrices for the 3 classes from the previous figure, showing the pooled confusion matrix and the microaveraged and macroaveraged precision.
Text Classification and Naive Bayes

Precision, Recall, and F measure
Evaluation with more than two classes
Confusion Matrix for 3-class classification

<table>
<thead>
<tr>
<th></th>
<th>gold labels</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>urgent</td>
<td>normal</td>
<td>spam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>urgent</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>5</td>
<td>60</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spam</td>
<td>3</td>
<td>30</td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System output

- **Precision**
 - $\text{precision}_u = \frac{8}{8 + 10 + 1} = \frac{8}{25}$
 - $\text{precision}_n = \frac{60}{5 + 60 + 50} = \frac{60}{115}$
 - $\text{precision}_s = \frac{200}{3 + 30 + 200} = \frac{200}{233}$

- **Recall**
 - $\text{recall}_u = \frac{8}{8 + 5 + 3} = \frac{8}{16}$
 - $\text{recall}_n = \frac{60}{10 + 60 + 30} = \frac{60}{100}$
 - $\text{recall}_s = \frac{200}{1 + 50 + 200} = \frac{200}{251}$

Notes

- Harmonic mean is used because it is a conservative metric; the harmonic mean of two values is closer to the minimum of the two values than the arithmetic mean is. Thus it weighs the lower of the two numbers more heavily.

- Up to now we have been describing text classification tasks with only two classes. But lots of classification tasks in language processing have more than two classes. For sentiment analysis we generally have 3 classes (positive, negative, neutral) and even more classes are common for tasks like part-of-speech tagging, word sense disambiguation, semantic role labeling, emotion detection, and so on. Luckily the naive Bayes algorithm is already a multi-class classification algorithm.
How to combine P/R from 3 classes to get one metric

Macroaveraging:
- compute the performance for each class, and then average over classes

Microaveraging:
- collect decisions for all classes into one confusion matrix
- compute precision and recall from that table.
Macroaveraging and Microaveraging

<table>
<thead>
<tr>
<th>Class 1: Urgent</th>
<th>Class 2: Normal</th>
<th>Class 3: Spam</th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>true urgent</td>
<td>true normal</td>
<td>true spam</td>
<td>true yes</td>
</tr>
<tr>
<td>system urgent</td>
<td>system normal</td>
<td>system spam</td>
<td>system yes</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>200</td>
<td>268</td>
</tr>
<tr>
<td>11</td>
<td>55</td>
<td>33</td>
<td>99</td>
</tr>
<tr>
<td>true not</td>
<td>true not</td>
<td>true not</td>
<td>true no</td>
</tr>
<tr>
<td>system not</td>
<td>system not</td>
<td>system not</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>51</td>
<td>99</td>
</tr>
<tr>
<td>340</td>
<td>212</td>
<td>83</td>
<td>635</td>
</tr>
</tbody>
</table>

Precision:
- \(\text{precision} = \frac{8}{8+11} = .42 \)
- \(\text{precision} = \frac{60}{60+55} = .52 \)
- \(\text{precision} = \frac{200}{200+33} = .86 \)
- \(\text{microaverage precision} = \frac{268}{268+99} = .73 \)

Macroaverage precision:
\[\frac{.42 + .52 + .86}{3} = .60 \]
Evaluation with more than two classes
Text Classification and Naive Bayes

Statistical Significance Testing
How do we know if one classifier is better than another?

Given:
- Classifier A and B
- Metric M: \(M(A,x) \) is the performance of A on testset x
- \(\delta(x) \) be the performance difference between A, B on x:
 - \(\delta(x) = M(A,x) - M(B,x) \)

- We want to know if \(\delta(x) > 0 \), meaning A is better than B
- \(\delta(x) \) is called the **effect size**
- Suppose we look and see that \(\delta(x) \) is positive. Are we done?
- No! This might be just an accident of this one test set, or circumstance of the experiment. Instead:
Statistical Hypothesis Testing

Consider two hypotheses:
- Null hypothesis: A isn't better than B \(H_0 : \delta(x) \leq 0 \)
- A is better than B \(H_1 : \delta(x) > 0 \)

We want to rule out \(H_0 \)

We create a random variable \(X \) ranging over test sets

And ask, how likely, if \(H_0 \) is true, that among these test sets we saw the \(\delta(x) \) we saw, formalized as the p-value:

\[
P(\delta(X) \geq \delta(x)|H_0 \text{ is true})
\]
Statistical Hypothesis Testing

\[P(\delta(X) \geq \delta(x)|H_0 \text{ is true}) \]

- In our example, this p-value is the probability that we would see \(\delta(x) \) assuming \(H_0 \) (=A is not better than \(B \)).
- If \(H_0 \) is true but \(\delta(x) \) is huge, that is surprising! Very low probability!
- A very small p-value means that the difference we observed is very unlikely under the null hypothesis, and we can reject the null hypothesis.
- Very small: .05 or .01
- A result (e.g., “A is better than \(B \)”) is \textbf{statistically significant} if the \(\delta \) we saw has a probability that is below the threshold and we therefore reject this null hypothesis.
Statistical Hypothesis Testing

- How do we compute this probability?
- In NLP, we don't tend to use parametric tests (like t-tests)
- Instead we use non-parametric tests based on sampling: artificially creating many versions of the setup.
- For example, suppose we had created zillions of testset x'.
 - Now we measure the value of $\delta(x')$ on each test set
 - That gives us a distribution
 - Now set a threshold (say .01).
 - So if we see that in 99% of the test sets $\delta(x) > \delta(x')$
 - We conclude that our original test set delta was a real delta and not an artifact.
Statistical Hypothesis Testing

Two common approaches:

- approximate randomization
- bootstrap test

Paired tests:

- Comparing two sets of observations in which each observation in one set can be paired with an observation in another.
- For example, when looking at systems A and B on the same test set, we can compare the performance of system A and B on each same observation x_i.
Text Classification and Naive Bayes

Statistical Significance Testing
Text Classification and Naive Bayes

The Paired Bootstrap Test
Bootstrap test

Efron and Tibshirani, 1993

Can apply to any metric (accuracy, precision, recall, F1, etc).

Bootstrap means to repeatedly draw large numbers of smaller samples with replacement (called **bootstrap samples**) from an original larger sample.
Bootstrap example

Consider a baby text classification example with a test set x of 10 documents, using accuracy as metric.

Suppose these are the results of systems A and B on x, with 4 outcomes (A & B both right, A & B both wrong, A right/B wrong, A wrong/B right):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>A%</th>
<th>B%</th>
<th>δ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>AB</td>
<td>.70</td>
<td>.50</td>
<td>.20</td>
</tr>
</tbody>
</table>
Bootstrap example

Now we create, many, say, $b=10{,}000$ virtual test sets $x(i)$, each of size $n = 10$.

To make each $x(i)$, we randomly select a cell from row x, with replacement, 10 times:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>A%</th>
<th>B%</th>
<th>δ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>AB</td>
<td>.70</td>
<td>.50</td>
<td>.20</td>
</tr>
<tr>
<td>$x^{(1)}$</td>
<td>AB</td>
<td>.60</td>
<td>.60</td>
<td>.00</td>
</tr>
<tr>
<td>$x^{(2)}$</td>
<td>AB</td>
<td>.60</td>
<td>.70</td>
<td>-.10</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$x^{(b)}$</td>
<td></td>
</tr>
</tbody>
</table>
Bootstrap example

Now we have a distribution! We can check how often A has an accidental advantage, to see if the original $\delta(x)$ we saw was very common.

Now assuming H0, that means normally we expect $\delta(x')=0$

So we just count how many times the $\delta(x')$ we found exceeds the expected 0 value by $\delta(x)$ or more:

$$p\text{-value}(x) = \sum_{i=1}^{b} \mathbb{1} \left(\delta(x^{(i)}) - \delta(x) \geq 0 \right)$$
Bootstrap example

Alas, it's slightly more complicated.

We didn’t draw these samples from a distribution with 0 mean; we created them from the original test set \(x \), which happens to be biased (by .20) in favor of \(A \).

So to measure how surprising is our observed \(\delta(x) \), we actually compute the p-value by counting how often \(\delta(x') \) exceeds the expected value of \(\delta(x) \) by \(\delta(x) \) or more:

\[
p-value(x) = \sum_{i=1}^{b} \mathbb{1} \left(\delta(x^{(i)}) - \delta(x) \geq \delta(x) \right)
\]

\[
= \sum_{i=1}^{b} \mathbb{1} \left(\delta(x^{(i)}) \geq 2\delta(x) \right)
\]
Bootstrap example

Suppose:
- We have 10,000 test sets $x(i)$ and a threshold of .01
- And in only 47 of the test sets do we find that $\delta(x(i)) \geq 2\delta(x)$
- The resulting p-value is .0047
- This is smaller than .01, indicating $\delta(x)$ is indeed sufficiently surprising
- And we reject the null hypothesis and conclude A is better than B.
Paired bootstrap example


```plaintext
function Bootstrap(test set x, num of samples b) returns p-value(x)

Calculate \( \delta(x) \)  # how much better does algorithm A do than B on x
s = 0
for i = 1 to b do
    for j = 1 to n do  # Draw a bootstrap sample \( x^{(i)} \) of size n
        Select a member of x at random and add it to \( x^{(i)} \)
    Calculate \( \delta(x^{(i)}) \)  # how much better does algorithm A do than B on \( x^{(i)} \)
    s ← s + 1 if \( \delta(x^{(i)}) > 2\delta(x) \)
p-value(x) \( \approx \frac{s}{b} \)  # on what % of the b samples did algorithm A beat expectations?
return p-value(x)  # if very few did, our observed \( \delta \) is probably not accidental
```
Text Classification and Naive Bayes

The Paired Bootstrap Test
Text Classification and Naive Bayes

Avoiding Harms in Classification
Harms in sentiment classifiers

Kiritchenko and Mohammad (2018) found that most sentiment classifiers assign lower sentiment and more negative emotion to sentences with African American names in them.

This perpetuates negative stereotypes that associate African Americans with negative emotions.
Harms in toxicity classification

Toxicity detection is the task of detecting hate speech, abuse, harassment, or other kinds of toxic language. But some toxicity classifiers incorrectly flag as being toxic sentences that are non-toxic but simply mention identities like blind people, women, or gay people. This could lead to censorship of discussion about these groups.
What causes these harms?

Can be caused by:

- Problems in the training data; machine learning systems are known to amplify the biases in their training data.
- Problems in the human labels
- Problems in the resources used (like lexicons)
- Problems in model architecture (like what the model is trained to optimized)

Mitigation of these harms is an open research area

Meanwhile: model cards
Model Cards

(Mitchell et al., 2019)

For each algorithm you release, document:

- training algorithms and parameters
- training data sources, motivation, and preprocessing
- evaluation data sources, motivation, and preprocessing
- intended use and users
- model performance across different demographic or other groups and environmental situations
Text Classification and Naive Bayes

Avoiding Harms in Classification