Logistic Regression

Background: Generative and Discriminative Classifiers
Logistic Regression

Important analytic tool in natural and social sciences

Baseline supervised machine learning tool for classification

Is also the foundation of neural networks
Generative and Discriminative Classifiers

Naïve Bayes is a **generative** classifier

by contrast:

Logistic regression is a **discriminative** classifier
Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet

imagenet
Generative Classifier:

• Build a model of what's in a cat image
 • Knows about whiskers, ears, eyes
 • Assigns a probability to any image:
 • how cat-y is this image?

Also build a model for dog images

Now given a new image:
Run both models and see which one fits better
Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else
Finding the correct class c from a document d in

Generative vs Discriminative Classifiers

Naive Bayes

$$\hat{c} = \arg\max_{c \in C} \underbrace{P(d|c)}_{\text{likelihood}} \underbrace{P(c)}_{\text{prior}}$$

Logistic Regression

$$\hat{c} = \arg\max_{c \in C} P(c|d)$$
Components of a probabilistic machine learning classifier

Given m input/output pairs $(x^{(i)}, y^{(i)})$:

1. A **feature representation** of the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, \ldots, x_n]$. Feature i for input $x^{(i)}$ is x_i, more completely $x_i^{(i)}$, or sometimes $f_i(x)$.

2. A **classification function** that computes \hat{y}, the estimated class, via $p(y|x)$, like the **sigmoid** or **softmax** functions.

3. An objective function for learning, like **cross-entropy loss**.

4. An algorithm for optimizing the objective function: **stochastic gradient descent**.
The two phases of Logistic Regression

Training: we learn weights w and b using **stochastic gradient descent** and **cross-entropy loss**.

Test: Given a test example x we compute $p(y|x)$ using learned weights w and b, and return whichever label ($y = 1$ or $y = 0$) is higher probability
Logistic Regression

Background: Generative and Discriminative Classifiers
Logistic Regression

Classification in Logistic Regression
Classification Reminder

Positive/negative sentiment
Spam/not spam
Authorship attribution (Hamilton or Madison?)

Alexander Hamilton
Text Classification: definition

Input:
- a document x
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

Output: a predicted class $y \in C$
Binary Classification in Logistic Regression

Given a series of input/output pairs:

- \((x^{(i)}, y^{(i)})\)

For each observation \(x^{(i)}\)

- We represent \(x^{(i)}\) by a **feature vector** \([x_1, x_2, ..., x_n]\)
- We compute an output: a predicted class \(\hat{y}^{(i)} \in \{0, 1\}\)
Features in logistic regression

- For feature x_i, weight w_i tells how important is x_i
 - $x_i = \text{"review contains \textquote{awesome}" : } w_i = +10$
 - $x_j = \text{"review contains \textquote{abysmal}" : } w_j = -10$
 - $x_k = \text{“review contains \textquote{mediocre}” : } w_k = -2$
Logistic Regression for one observation x

Input observation: vector $x = [x_1, x_2, \ldots, x_n]$

Weights: one per feature: $W = [w_1, w_2, \ldots, w_n]$

- Sometimes we call the weights $\theta = [\theta_1, \theta_2, \ldots, \theta_n]$

Output: a predicted class $\hat{y} \in \{0, 1\}$

(multinomial logistic regression: $y \in \{0, 1, 2, 3, 4\}$)
How to do classification

For each feature x_i, weight w_i tells us importance of x_i
 - (Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

$$z = \left(\sum_{i=1}^{n} w_i x_i \right) + b$$

$$z = w \cdot x + b$$

If this sum is high, we say $y=1$; if low, then $y=0$
But we want a probabilistic classifier

We need to formalize “sum is high”.

We’d like a principled classifier that gives us a probability, just like Naive Bayes did

We want a model that can tell us:

\[
p(y=1|x; \theta) \\
p(y=0|x; \theta)
\]
The problem: z isn't a probability, it's just a number!

$$z = w \cdot x + b$$

Solution: use a function of z that goes from 0 to 1

$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$
The very useful sigmoid or logistic function

\[y = \sigma(z) = \frac{1}{1 + e^{-z}} \]
Idea of logistic regression

We’ll compute $w \cdot x + b$
And then we’ll pass it through the sigmoid function:

$$\sigma(w \cdot x + b)$$

And we’ll just treat it as a probability
Making probabilities with sigmoids

\[P(y = 1) = \sigma(w \cdot x + b) \]
\[= \frac{1}{1 + \exp(-(w \cdot x + b))} \]

\[P(y = 0) = 1 - \sigma(w \cdot x + b) \]
\[= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))} \]
\[= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))} \]
By the way:

\[
P(y = 0) = 1 - \sigma(w \cdot x + b) \quad = \quad \sigma(-(w \cdot x + b))
\]

\[
= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}
\]

\[
= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}
\]

Because

\[
1 - \sigma(x) = \sigma(-x)
\]
Turning a probability into a classifier

\[
\hat{y} = \begin{cases}
1 & \text{if } P(y = 1|x) > 0.5 \\
0 & \text{otherwise}
\end{cases}
\]

0.5 here is called the decision boundary
The probabilistic classifier $P(y = 1) = \sigma(w \cdot x + b)$.
Turning a probability into a classifier

\[
\hat{y} = \begin{cases}
1 & \text{if } P(y = 1 | x) > 0.5 \\
0 & \text{otherwise}
\end{cases} \quad \begin{cases}
\text{if } w \cdot x + b > 0 \\
\text{if } w \cdot x + b \leq 0
\end{cases}
\]
Logistic Regression

Classification in Logistic Regression
Logistic Regression: A text (sentiment classification) example
Sentiment example: does $y=1$ or $y=0$?

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.
It's **hokey**. There are virtually **no** surprises, and the writing is **second-rate**. So why was it so **enjoyable**? For one thing, the cast is **great**. Another **nice** touch is the music | was overcome with the urge to get off the couch and start dancing. It sucked | in, and it'll do the same to you |.

<table>
<thead>
<tr>
<th>Var</th>
<th>Definition</th>
<th>Value in Fig. 5.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>count(positive lexicon) ∈ doc</td>
<td>3</td>
</tr>
<tr>
<td>x_2</td>
<td>count(negative lexicon) ∈ doc</td>
<td>2</td>
</tr>
<tr>
<td>x_3</td>
<td>1 if “no” ∈ doc 0 otherwise</td>
<td>1</td>
</tr>
<tr>
<td>x_4</td>
<td>count(1st and 2nd pronouns ∈ doc)</td>
<td>3</td>
</tr>
<tr>
<td>x_5</td>
<td>1 if “!” ∈ doc 0 otherwise</td>
<td>0</td>
</tr>
<tr>
<td>x_6</td>
<td>log(word count of doc)</td>
<td>(\ln(66) = 4.19)</td>
</tr>
</tbody>
</table>
Classifying sentiment for input x

<table>
<thead>
<tr>
<th>Var</th>
<th>Definition</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>$\text{count(positive lexicon) } \in \text{ doc}$</td>
<td>3</td>
</tr>
<tr>
<td>x_2</td>
<td>$\text{count(negative lexicon) } \in \text{ doc}$</td>
<td>2</td>
</tr>
<tr>
<td>x_3</td>
<td>$\begin{cases} 1 & \text{if "no" } \in \text{ doc} \ 0 & \text{otherwise} \end{cases}$</td>
<td>1</td>
</tr>
<tr>
<td>x_4</td>
<td>$\text{count(1st and 2nd pronouns } \in \text{ doc}$</td>
<td>3</td>
</tr>
<tr>
<td>x_5</td>
<td>$\begin{cases} 1 & \text{if "!" } \in \text{ doc} \ 0 & \text{otherwise} \end{cases}$</td>
<td>0</td>
</tr>
<tr>
<td>x_6</td>
<td>$\log(\text{word count of doc})$</td>
<td></td>
</tr>
</tbody>
</table>

Suppose $w = \begin{bmatrix} 2.5, -5.0, -1.2, 0.5, 2.0, 0.7 \end{bmatrix}$

$$b = 0.1$$
Classifying sentiment for input x

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$
$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$
$$= \sigma(.833)$$
$$= 0.70$$

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$
$$= 0.30$$
We can build features for logistic regression for any classification task: period disambiguation

This ends in a period.

The house at 465 Main St. is new.

\[x_1 = \begin{cases} 1 & \text{if "Case}(w_i) = \text{Lower}" \\ 0 & \text{otherwise} \end{cases} \]

\[x_2 = \begin{cases} 1 & \text{if } w_i \in \text{AcronymDict} \\ 0 & \text{otherwise} \end{cases} \]

\[x_3 = \begin{cases} 1 & \text{if } w_i = \text{St.} \& \text{Case}(w_{i-1}) = \text{Cap} \\ 0 & \text{otherwise} \end{cases} \]
Classification in (binary) logistic regression: summary

Given:

- a set of classes: (+ sentiment, - sentiment)
- a vector \mathbf{x} of features $[x_1, x_2, ..., x_n]$

 - $x_1 = \text{count}(\text{"awesome"})$

 - $x_2 = \log(\text{number of words in review})$
- A vector \mathbf{w} of weights $[w_1, w_2, ..., w_n]$

 - w_i for each feature f_i

\[
P(y = 1) = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}}
\]
Logistic Regression

Logistic Regression: A text example
Logistic Regression

Learning in Logistic Regression
Wait, where did the W’s come from?

Supervised classification: we know the correct label y (either 0 or 1) for each x.

What the system produces is an estimate, \hat{y}

We want to set w and b to minimize the distance between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$.

- We need a distance estimator: a loss function or a cost function
- We need an optimization algorithm to update w and b to minimize the loss.
Learning components

A loss function:
 ◦ cross-entropy loss

An optimization algorithm:
 ◦ stochastic gradient descent
Logistic Regression

Learning in Logistic Regression
Logistic Regression

Cross-Entropy Loss
The distance between \hat{y} and y

We want to know how far is the classifier output:

$$\hat{y} = \sigma(w \cdot x + b)$$

from the true output:

$$y \quad [=\text{either 0 or 1}]$$

We'll call this difference:

$$L(\hat{y}, y) = \text{how much } \hat{y} \text{ differs from the true } y$$
Intuition of **negative log likelihood loss**

= **cross-entropy loss**

A case of conditional maximum likelihood estimation

We choose the parameters w, b

that maximize the log probability of the true y labels in the training data given the observations x
Deriving cross-entropy loss for a single observation x.

Goal: maximize probability of the correct label $p(y|x)$

Since there are only 2 discrete outcomes (0 or 1) we can express the probability $p(y|x)$ from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}$$

noting:

- if $y=0$, this simplifies to \hat{y}
- if $y=1$, this simplifies to $1 - \hat{y}$
Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label $p(y|x)$

Maximize: \[p(y|x) = \hat{y}^y (1 - \hat{y})^{1-y} \]

Now take the log of both sides (mathematically handy)

Maximize: \[\log p(y|x) = \log [\hat{y}^y (1 - \hat{y})^{1-y}] \]
\[= y \log \hat{y} + (1 - y) \log (1 - \hat{y}) \]

Whatever values maximize $\log p(y|x)$ will also maximize $p(y|x)$
Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label $p(y|x)$

Maximize:
\[
\log p(y|x) = \log [\hat{y}^y (1 - \hat{y})^{1-y}]
\]
\[= y \log \hat{y} + (1 - y) \log (1 - \hat{y})
\]

Now flip sign to turn this into a loss: something to minimize

Cross-entropy loss (because is formula for cross-entropy(y, \hat{y}))

Minimize:
\[
L_{CE}(\hat{y}, y) = -\log p(y|x) = - [y \log \hat{y} + (1 - y) \log (1 - \hat{y})]
\]

Or, plugging in definition of \hat{y}:
\[
L_{CE}(\hat{y}, y) = - [y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]
\]
Let's see if this works for our sentiment example

We want loss to be:

- smaller if the model estimate is close to correct
- bigger if model is confused

Let's first suppose the true label of this is $y=1$ (positive)

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.
Let's see if this works for our sentiment example

True value is $y=1$. How well is our model doing?

$$p(+) = P(Y = 1|x) = \sigma(w \cdot x + b)$$
$$= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$$
$$= \sigma(0.833)$$
$$= 0.70$$

Pretty well! What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$
$$= -[\log \sigma(w \cdot x + b)]$$
$$= -\log(0.70)$$
$$= .36$$
Let's see if this works for our sentiment example

Suppose true value instead was y=0.

\[
p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)
\]

\[
= 0.30
\]

What's the loss?

\[
L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]
\]

\[
= -[\log (1 - \sigma(w \cdot x + b))]
\]

\[
= -\log (.30)
\]

\[
= 1.2
\]
5.4 Gradient Descent

Let's see if this works for our sentiment example

The loss when model was right (if true y=1)

\[L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))] \]
\[= -[\log \sigma(w \cdot x + b)] \]
\[= -\log(.70) \]
\[= .36 \]

Is lower than the loss when model was wrong (if true y=0):

\[L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))] \]
\[= -[\log (1 - \sigma(w \cdot x + b))] \]
\[= -\log (.30) \]
\[= 1.2 \]

Sure enough, loss was bigger when model was wrong!
Logistic Regression

Cross-Entropy Loss
Logistic Regression

Stochastic Gradient Descent
Our goal: minimize the loss

Let's make explicit that the loss function in parameterized by weights \(\theta=(w,b) \)

We want the weights that minimize the loss, averaged over all examples:

\[
\hat{\theta} = \arg\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})
\]
Intuition of gradient descent

How do I get to the bottom of this river canyon?

Look around me 360°
Find the direction of steepest slope
Go that way
Our goal: minimize the loss

For logistic regression, loss function is **convex**

- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)
Let's first visualize for a single scalar w.

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function.

The gradient descent algorithm answers this question by finding the gradient of the loss function at the current point and moving in the opposite direction. The gradient of a function of many variables is a vector pointing in the direction of the greatest increase in a function. The gradient is a multi-variable generalization of the slope, so for a function of one variable like the one in Fig. 5.3, we can informally think of the gradient as the slope. The dotted line in Fig. 5.3 shows the slope of this hypothetical loss function at point $w = w^1$. You can see that the slope of this dotted line is negative. Thus to find the minimum, gradient descent tells us to go in the opposite direction: moving w in a positive direction.

The magnitude of the amount to move in gradient descent is the value of the slope $\frac{df}{dw}(x; w)$ weighted by a learning rate η. A higher (faster) learning rate means that we should move w more on each step. The change we make in our parameter is Δw.

Figure 5.3

The first step in iteratively finding the minimum of this loss function, by moving w in the reverse direction from the slope of the function. Since the slope is negative, we need to move w in a positive direction, to the right. Here superscripts are used for learning steps, so w^1 means the initial value of w (which is 0), w^2 at the second step, and so on.
Gradients

The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move in the **opposite** direction.
How much do we move in that direction?

- The value of the gradient (slope in our example) $\frac{d}{dw} f(x; w)$ weighted by a **learning rate** η
- Higher learning rate means move w faster

$$w^{t+1} = w^t - \eta \frac{d}{dw} f(x; w)$$
Now let's consider N dimensions

We want to know where in the N-dimensional space (of the N parameters that make up θ) we should move.

The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the N dimensions.
Imagine 2 dimensions, w and b

Visualizing the gradient vector at the red point

It has two dimensions shown in the x-y plane

Now let's extend the intuition from a function of one scalar variable w to many variables, because we don't just want to move left or right, we want to know where in the N-dimensional space (of the N parameters that make up q) we should move.

The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of those N dimensions. If we're just imagining two weight dimensions (say for one weight w and one bias b), the gradient might be a vector with two orthogonal components, each of which tells us how much the ground slopes in the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value of a 2-dimensional gradient vector taken at the red point.

In an actual logistic regression, the parameter vector w is much longer than 1 or 2, since the input feature vector x can be quite long, and we need a weight w_i for each x_i. For each dimension/variable w_i in w (plus the bias b), the gradient will have a component that tells us the slope with respect to that variable. Essentially we're asking: “How much would a small change in that variable w_i influence the total loss function L?”

In each dimension w_i, we express the slope as a partial derivative $\frac{\partial}{\partial w_i}$ of the loss function. The gradient is then defined as a vector of these partials. We'll represent \hat{y} as $f(x; q)$ to make the dependence on q more obvious:

$$
\frac{\partial}{\partial w_1} L(f(x; q), y) = \frac{\partial}{\partial w_2} L(f(x; q), y) \ldots \frac{\partial}{\partial w_n} L(f(x; q), y)
$$

(5.15)

The final equation for updating q based on the gradient is thus:

$$
q_t + 1 = q_t - \frac{\partial}{\partial q} L(f(x; q), y)
$$

(5.16)
Real gradients

Are much longer; lots and lots of weights

For each dimension w_i, the gradient component i tells us the slope with respect to that variable.

- “How much would a small change in w_i influence the total loss function L?”
- We express the slope as a partial derivative ∂ of the loss ∂w_i.

The gradient is then defined as a vector of these partials.
The gradient

We’ll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious:

$$\nabla_\theta L(f(x; \theta), y)) = \left[\begin{array}{c} \frac{\partial}{\partial w_1} L(f(x; \theta), y) \\ \frac{\partial}{\partial w_2} L(f(x; \theta), y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x; \theta), y) \end{array} \right]$$

The final equation for updating θ based on the gradient is thus

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$
What are these partial derivatives for logistic regression?

The loss function

\[
L_{CE}(\hat{y}, y) = - [y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]
\]

The elegant derivative of this function (see textbook 5.8 for derivation)

\[
\frac{\partial L_{CE}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y]x_j
\]
5.4.1 The Gradient for Logistic Regression

In order to update q, we need a definition for the gradient $-L(f(x; q), y)$. Recall that for logistic regression, the cross-entropy loss function is:

$$L_{CE}(\hat{y}, y) = y \log(s(w \cdot x + b)) + (1 - y) \log(1 - s(w \cdot x + b))$$

(5.17)

It turns out that the derivative of this function for one observation vector x is Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

$$\frac{\partial L_{CE}(\hat{y}, y)}{\partial w_j} = [s(w \cdot x + b) y] x_j$$

(5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w_j represents a very intuitive value: the difference between the true y and our estimated $\hat{y} = s(w \cdot x + b)$ for that observation, multiplied by the corresponding input value x_j.

5.4.2 The Stochastic Gradient Descent Algorithm

Stochastic gradient descent is an online algorithm that minimizes the loss function by computing its gradient after each training example, and nudging q in the right direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

```
function STOCHASTIC GRADIENT DESCENT($L()$, $f()$, $x$, $y$) returns $\theta$

# where: $L$ is the loss function
# $f$ is a function parameterized by $\theta$
# $x$ is the set of training inputs $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$
# $y$ is the set of training outputs (labels) $y^{(1)}$, $y^{(2)}$, ..., $y^{(m)}$

$\theta \leftarrow 0$

repeat til done  # see caption
    For each training tuple $(x^{(i)}, y^{(i)})$ (in random order)
        1. Optional (for reporting):  # How are we doing on this tuple?
            Compute $\hat{y}^{(i)} = f(x^{(i)}; \theta)$  # What is our estimated output $\hat{y}$?            
            Compute the loss $L(\hat{y}^{(i)}, y^{(i)})$  # How far off is $\hat{y}^{(i)}$ from the true output $y^{(i)}$?
        2. $g \leftarrow \nabla_\theta L(f(x^{(i)}; \theta), y^{(i)})$  # How should we move $\theta$ to maximize loss?
        3. $\theta \leftarrow \theta - \eta g$  # Go the other way instead
    return $\theta$
```

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used to report how well we are doing on the current tuple. The algorithm can terminate when it converges (or when the gradient norm $\|g\| < \epsilon$), or when progress halts (for example when the loss starts going up on a held-out set).

The learning rate η is a hyperparameter that must be adjusted. If it's too high, the learner will take steps that are too large, overshooting the minimum of the loss function. If it's too low, the learner will take steps that are too small, and take too long to get to the minimum. It is common to start with a higher learning rate and then slowly decrease it, so that it is a function of the iteration k of training; the notation η_k can be used to mean the value of the learning rate at iteration k.

We'll discuss hyperparameters in more detail in Chapter 7, but briefly they are a special kind of parameter for any machine learning model. Unlike regular parameters of a model (weights like w and b), which are learned by the algorithm from the training set, hyperparameters are special parameters chosen by the algorithm designer that affect how the algorithm works.
Hyperparameters

The learning rate η is a **hyperparameter**
- too high: the learner will take big steps and overshoot
- too low: the learner will take too long

More on hyperparameters in Chapter 7

- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.
Logistic Regression

Stochastic Gradient Descent
Logistic Regression

Stochastic Gradient Descent: An example and more details
Working through an example

One step of gradient descent

A mini-sentiment example, where the true $y=1$ (positive)

Two features:

$x_1 = 3$ (count of positive lexicon words)
$x_2 = 2$ (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in Θ^0 are zero:

$w_1 = w_2 = b = 0$
$\eta = 0.1$
Example of gradient descent
Update step for update θ is:

$$
\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)
$$

where

$$
\frac{\partial L_{CE}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y] x_j
$$

Gradient vector has 3 dimensions:

$$
\nabla_{w,b} = \left[\begin{array}{c}
\frac{\partial L_{CE}(\hat{y}, y)}{\partial w_1} \\
\frac{\partial L_{CE}(\hat{y}, y)}{\partial w_2} \\
\frac{\partial L_{CE}(\hat{y}, y)}{\partial b}
\end{array} \right] = \left[\begin{array}{c}
(\sigma(w \cdot x + b) - y)x_1 \\
(\sigma(w \cdot x + b) - y)x_2 \\
\sigma(w \cdot x + b) - y
\end{array} \right] = \left[\begin{array}{c}
(\sigma(0) - 1)x_1 \\
(\sigma(0) - 1)x_2 \\
\sigma(0) - 1
\end{array} \right] = \left[\begin{array}{c}
-0.5x_1 \\
-0.5x_2 \\
-0.5
\end{array} \right] = \left[\begin{array}{c}
-1.5 \\
-1.0 \\
-0.5
\end{array} \right]
$$
Example of gradient descent

\[\nabla_{w,b} = \begin{bmatrix} \frac{\partial L_{CE}(\hat{y},y)}{\partial w_1} \\ \frac{\partial L_{CE}(\hat{y},y)}{\partial w_2} \\ \frac{\partial L_{CE}(\hat{y},y)}{\partial b} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_1 \\ (\sigma(w \cdot x + b) - y)x_2 \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_1 \\ (\sigma(0) - 1)x_2 \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} -0.5x_1 \\ -0.5x_2 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix} \]

Now that we have a gradient, we compute the new parameter vector \(\theta^1 \) by moving \(\theta^0 \) in the opposite direction from the gradient:

\[\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y) \]

\[\eta = 0.1; \]

\[\theta^1 = \begin{bmatrix} w_1 \\ w_2 \\ b \end{bmatrix} - \eta \begin{bmatrix} -1.5 \\ -1.0 \\ -0.5 \end{bmatrix} = \begin{bmatrix} .15 \\ .1 \\ .05 \end{bmatrix} \]

Note that enough negative examples would eventually make \(w_2 \) negative.
Mini-batch training

Stochastic gradient descent chooses a single random example at a time.
That can result in choppy movements
More common to compute gradient over batches of training instances.

Batch training: entire dataset

Mini-batch training: \(m \) examples (512, or 1024)
Logistic Regression

Stochastic Gradient Descent: An example and more details
Logistic Regression

Regularization
Overfitting

A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise
- A random word that perfectly predicts \(y \) (it happens to only occur in one class) will get a very high weight.
- Failing to generalize to a test set without this word.

A good model should be able to generalize
Overfitting

+

This movie drew me in, and it'll do the same to you.

-

I can't tell you how much I hated this movie. It sucked.

Useful or harmless features

X1 = "this"
X2 = "movie"
X3 = "hated"
X4 = "drew me in"

4gram features that just "memorize" training set and might cause problems

X5 = "the same to you"
X7 = "tell you how much"
Overfitting

4-gram model on tiny data will just memorize the data
- 100% accuracy on the training set

But it will be surprised by the novel 4-grams in the test data
- Low accuracy on test set

Models that are too powerful can **overfit** the data
- Fitting the details of the training data so exactly that the model doesn't generalize well to the test set

How to avoid overfitting?
- Regularization in logistic regression
- Dropout in neural networks
Regularization

A solution for overfitting

Add a regularization term $R(\theta)$ to the loss function
(for now written as maximizing logprob rather than minimizing loss)

$$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{m} \log P(y^{(i)}|x^{(i)}) - \alpha R(\theta)$$

Idea: choose an $R(\theta)$ that penalizes large weights
- fitting the data well with lots of big weights not as good as fitting the data a little less well, with small weights
L2 Regularization (\(=\) ridge regression)

The sum of the squares of the weights

The name is because this is the (square of the) \textbf{L2 norm} \(\|\theta\|_2\), \(=\) Euclidean distance of \(\theta\) to the origin.

\[
R(\theta) = \|\theta\|_2^2 = \sum_{j=1}^{n} \theta_j^2
\]

L2 regularized objective function:

\[
\hat{\theta} = \arg\max_{\theta} \left[\sum_{i=1}^{m} \log P(y^{(i)}|x^{(i)}) \right] - \alpha \sum_{j=1}^{n} \theta_j^2
\]
L1 Regularization (= lasso regression)

The sum of the (absolute value of the) weights

Named after the L1 norm $\|W\|_1$, = sum of the absolute values of the weights, = Manhattan distance

$$R(\theta) = \|\theta\|_1 = \sum_{i=1}^{n} |\theta_i|$$

L1 regularized objective function:

$$\hat{\theta} = \arg\max_{\theta} \left[\sum_{1=i}^{m} \log P(y^{(i)} | x^{(i)}) \right] - \alpha \sum_{j=1}^{n} |\theta_j|$$
Logistic Regression

Regularization
Logistic Regression

Multinomial Logistic Regression
Multinomial Logistic Regression

Often we need more than 2 classes

- Positive/negative/neutral
- Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
- Classify emergency SMSs into different actionable classes

If >2 classes we use **multinomial logistic regression**

- Softmax regression
- Multinomial logit
- (defunct names: Maximum entropy modeling or MaxEnt)

So "logistic regression" will just mean binary (2 output classes)
Multinomial Logistic Regression

The probability of everything must still sum to 1

\[P(\text{positive}|\text{doc}) + P(\text{negative}|\text{doc}) + P(\text{neutral}|\text{doc}) = 1 \]

Need a generalization of the sigmoid called the \textbf{softmax}

- Takes a vector \(z = [z_1, z_2, ..., z_k] \) of \(k \) arbitrary values
- Outputs a probability distribution
 - each value in the range \([0,1]\)
 - all the values summing to 1
The **softmax** function

Turns a vector \(z = [z_1, z_2, \ldots, z_k] \) of \(k \) arbitrary values into probabilities

\[
\text{softmax}(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^{k} \exp(z_j)} \quad 1 \leq i \leq k
\]

The denominator \(\sum_{i=1}^{k} e^{z_i} \) is used to normalize all the values into probabilities.

\[
\text{softmax}(z) = \left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \ldots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)} \right]
\]
The **softmax** function

- Turns a vector \(z = [z_1, z_2, \ldots, z_k] \) of \(k \) arbitrary values into probabilities

\[
 z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]
\]

\[
 \text{softmax}(z) = \begin{bmatrix}
 \frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)} & \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)} & \cdots & \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)}
\end{bmatrix}
\]

\[
 [0.055, 0.090, 0.0067, 0.10, 0.74, 0.010]
\]
Softmax in multinomial logistic regression

\[p(y = c|x) = \frac{\exp(w_c \cdot x + b_c)}{\sum_{j=1}^{k} \exp(w_j \cdot x + b_j)} \]

Input is still the dot product between weight vector \(w \) and input vector \(x \)
But now we’ll need separate weight vectors for each of the \(K \) classes.
Features in binary versus multinomial logistic regression

Binary: positive weight $\rightarrow y=1$ neg weight $\rightarrow y=0$

$$x_5 = \begin{cases} 1 & \text{if "!" } \in \text{doc} \\ 0 & \text{otherwise} \end{cases} \quad w_5 = 3.0$$

Multinominal: separate weights for each class:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Definition</th>
<th>$w_{5,+}$</th>
<th>$w_{5,-}$</th>
<th>$w_{5,0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_5(x)$</td>
<td>$\begin{cases} 1 & \text{if "!" } \in \text{doc} \ 0 & \text{otherwise} \end{cases}$</td>
<td>3.5</td>
<td>3.1</td>
<td>-5.3</td>
</tr>
</tbody>
</table>
Logistic Regression

Multinomial Logistic Regression