
!"#$%&'()'%*+),-.+/0,1+"(



!"#$%&'()'%*+),-.+/0,1+"(%2!&*3

¥ Given	
  
¥ A word	
  in	
  context	
  
¥ A	
  fixed	
  inventory	
  of	
  potential	
  word	
  senses
¥ Decide	
  which	
  sense	
  of	
  the	
  word	
  this	
  is

¥ Why?	
  Machine	
  translation,	
  QA,	
  speech	
  synthesis
¥ What	
  set	
  of	
  senses?

¥ English-­‐to-­‐Spanish	
  MT:	
  set	
  of	
  Spanish	
  translations
¥ Speech	
  Synthesis:	
  	
  homographs	
  like	
  bass and	
  bow
¥ In	
  general:	
  the	
  senses	
  in	
  a	
  thesaurus	
  like	
  WordNet
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¥ Lexical	
  Sample	
  task
¥ Small	
  pre-­‐selected	
  set	
  of	
  target	
  words	
  (line,	
  plant)
¥ And	
  inventory	
  of	
  senses	
  for	
  each	
  word
¥ &09'#6+)'$%-,:;+('% <',#(+(/=%1#,+(%,%:<,))+7+'#%7"#%',:;%5"#$

¥ All-­‐words	
  task
¥ Every	
  word	
  in	
  an	
  entire	
  text
¥ A	
  lexicon	
  with	
  senses	
  for	
  each	
  word
¥ Data	
  sparseness:	
  can’t	
  train	
  word-­‐specific	
  classifiers
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¥ Supervised	
  Machine	
  Learning
¥ Thesaurus/Dictionary	
  Methods
¥ Semi-­‐Supervised	
  Learning
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Supervised	
  
Machine	
  Learning
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¥ Supervised	
  machine	
  learning	
  approach:
¥ a	
  training	
  corpus of	
  words	
  tagged	
  in	
  context	
  with	
  their	
  sense
¥ used	
  to	
  train	
  a	
  classifier	
  that	
  can	
  tag	
  words	
  in	
  new	
  text

¥ Summary	
  of	
  what	
  we	
  need:
¥ the	
  1,/%)'1(“sense	
  inventory”)
¥ the	
  1#,+(+(/%:"#90)
¥ A	
  set	
  of	
  7',10#') extracted	
  from	
  the	
  training	
  corpus
¥ A	
  :<,))+7+'#
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¥ What’s	
  a	
  tag?
A	
  dictionary	
  sense?

¥ For	
  example,	
  for	
  WordNet	
  an	
  instance	
  of	
  AþbassAÿin	
  a	
  text	
  has	
  8	
  
possible	
  tags	
  or	
  labels	
  (bass1	
  through	
  bass8).
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1. bass	
  -­‐ (the	
  lowest	
  part	
  of	
  the	
  musical	
  range)
2. bass,	
  bass	
  part	
  -­‐ (the	
  lowest	
  part	
  in	
  polyphonic	
  	
  music)
3. bass,	
  basso	
  -­‐ (an	
  adult	
  male	
  singer	
  with	
  the	
  lowest	
  voice)
4. sea	
  bass,	
  bass	
  -­‐ (flesh	
  of	
  lean-­‐fleshed	
  saltwater	
  fish	
  of	
  the	
  family	
  

Serranidae)
5. freshwater	
  bass,	
  bass	
  -­‐ (any	
  of	
  various	
  North	
  American	
  lean-­‐fleshed	
  

freshwater	
  fishes	
  especially	
  of	
  the	
  genus	
  Micropterus)
6. bass,	
  bass	
  voice,	
  basso	
  -­‐ (the	
  lowest	
  adult	
  male	
  singing	
  voice)
7. bass	
  -­‐ (the	
  member	
  with	
  the	
  lowest	
  range	
  of	
  a	
  family	
  of	
  musical	
  

instruments)
8. bass	
  -­‐ (nontechnical	
  name	
  for	
  any	
  of	
  numerous	
  edible	
  	
  marine	
  and	
  

freshwater	
  spiny-­‐finned	
  fishes)
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WordNet Spanish Roget
Sense Translation Category Target Word in Context
bass4 lubina FISH/INSECT . . . Þsh as PaciÞc salmon and stripedbassand. . .
bass4 lubina FISH/INSECT . . . produce Þlets of smokedbassor sturgeon. . .
bass7 bajo MUSIC . . . exciting jazzbassplayer since Ray Brown. . .
bass7 bajo MUSIC . . . playbassbecause he doesnÕt have to solo. . .

Figure 16.5 Possible deÞnitions for the inventory of sense tags forbass.

the set of senses are small, supervised machine learning approaches are often used
to handle lexical sample tasks. For each word, a number of corpus instances (con-
text sentences) can be selected and hand-labeled with the correct sense of the target
word in each. ClassiÞer systems can then be trained with these labeled examples.
Unlabeled target words in context can then be labeled using such a trained classiÞer.
Early work in word sense disambiguation focused solely on lexical sample tasks
of this sort, building word-speciÞc algorithms for disambiguating single words like
line, interest, or plant.

In contrast, in theall-words task, systems are given entire texts and a lexiconall-words

with an inventory of senses for each entry and are required to disambiguate every
content word in the text. The all-words task is similar to part-of-speech tagging, ex-
cept with a much larger set of tags since each lemma has its own set. A consequence
of this larger set of tags is a serious data sparseness problem; it is unlikely that ade-
quate training data for every word in the test set will be available. Moreover, given
the number of polysemous words in reasonably sized lexicons, approaches based on
training one classiÞer per term are unlikely to be practical.

In the following sections we explore the application of various machine learning
paradigms to word sense disambiguation.

16.5 Supervised Word Sense Disambiguation

If we have data that has been hand-labeled with correct word senses, we can use a
supervised learningapproach to the problem of sense disambiguationÑextracting
features from the text and training a classiÞer to assign the correct sense given these
features. The output of training is thus a classiÞer system capable of assigning sense
labels to unlabeled words in context.

For lexical sampletasks, there are various labeled corpora for individual words;
these corpora consist of context sentences labeled with the correct sense for the tar-
get word. These include theline-hard-servecorpus containing 4,000 sense-tagged
examples ofline as a noun,hard as an adjective andserveas a verb(Leacock et al.,
1993), and theinterestcorpus with 2,369 sense-tagged examples ofinterestas a
noun(Bruce and Wiebe, 1994). The SENSEVAL project has also produced a num-
ber of such sense-labeled lexical sample corpora (SENSEVAL-1 with 34 words from
the HECTOR lexicon and corpus (Kilgarriff and Rosenzweig 2000, Atkins 1993),
SENSEVAL-2 and -3 with 73 and 57 target words, respectively (Palmer et al. 2001,
Kilgarriff 2001).

For trainingall-word disambiguation tasks we use asemantic concordance,semantic
concordance

a corpus in which each open-class word in each sentence is labeled with its word
sense from a speciÞc dictionary or thesaurus. One commonly used corpus is Sem-
Cor, a subset of the Brown Corpus consisting of over 234,000 words that were man-
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¥ Lexical	
  sample	
  task:
¥ Line-­‐hard-­‐serve	
  corpus	
  -­‐ 4000	
  examples	
  of	
  each
¥ Interest corpus	
  -­‐ 2369	
  sense-­‐tagged	
  examples

¥ All	
  words:
¥ &'-,(1+:%:"(:"#$,(:' :	
  a	
  corpus	
  in	
  which	
  each	
  open-­‐class	
  word	
  is	
  labeled	
  

with	
  a	
  sense	
  from	
  a	
  specific	
  dictionary/thesaurus.
¥ SemCor:	
  234,000	
  words	
  from	
  Brown	
  Corpus,	
  manually	
  tagged	
  with	
  

WordNet	
  senses
¥ SENSEVAL-­‐3	
  competition	
  corpora	
  -­‐ 2081	
  tagged	
  word	
  tokens
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<wf pos=PRP>K' </wf>
<wf pos=VB	
  lemma=recognize	
  wnsn=4	
  lexsn=2:31:00::>#':"/(+L'$ </wf>
<wf pos=DT>1;' </wf>
<wf pos=NN	
  lemma=gesture	
  wnsn=1	
  lexsn=1:04:00::>/')10#' </wf>
<punc>.</punc>
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“If	
  one	
  examines	
  the	
  words	
  in	
  a	
  book,	
  one	
  at	
  a	
  time	
  as	
  through	
  
an	
  opaque	
  mask	
  with	
  a	
  hole	
  in	
  it	
  one	
  word	
  wide,	
  then	
  it	
  is	
  
obviously	
  impossible	
  to	
  determine,	
  one	
  at	
  a	
  time,	
  the	
  meaning	
  
of	
  the	
  words…	
  
But	
  if	
  one	
  lengthens	
  the	
  slit	
  in	
  the	
  opaque	
  mask,	
  until	
  one	
  can	
  
see	
  not	
  only	
  the	
  central	
  word	
  in	
  question	
  but	
  also	
  say	
  N	
  words	
  
on	
  either	
  side,	
  then	
  if	
  N	
  is	
  large	
  enough	
  one	
  can	
  unambiguously	
  
decide	
  the	
  meaning	
  of	
  the	
  central	
  word…	
  
The	
  practical	
  question	
  is	
  :	
  ``What	
  minimum	
  value	
  of	
  N	
  will,	
  at	
  
least	
  in	
  a	
  tolerable	
  fraction	
  of	
  cases,	
  lead	
  to	
  the	
  correct	
  choice	
  
of	
  meaning	
  for	
  the	
  central	
  word?”
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¥ A	
  simple	
  representation	
  for	
  each	
  observation
(each	
  instance	
  of	
  a	
  target	
  word)
¥ S':1"#) of	
  sets	
  of	
  feature/value	
  pairs
¥ Represented	
  as	
  a	
  ordered	
  list	
  of	
  values
¥ These	
  vectors	
  represent,	
  e.g.,	
  the	
  window	
  of	
  words	
  around	
  

the	
  target
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¥ J"<<":,1+"(,< features	
  and	
  .,/ T"7T5"#$)%features
¥ J"<<":,1+"(,<

¥ Features	
  about	
  words	
  at	
  )9':+7+:positions	
  near	
  target	
  word
¥ Often	
  limited	
  to	
  just	
  word	
  identity	
  and	
  POS

¥ U,/ T"7T5"#$)
¥ Features	
  about	
  words	
  that	
  occur	
  anywhere	
  in	
  the	
  window	
  (regardless	
  

of	
  position)
¥ Typically	
  limited	
  to	
  frequency	
  counts
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¥ Example	
  text	
  (WSJ):
An	
  electric	
  guitar	
  and	
  .,)) player	
  stand	
  off	
  to	
  
one	
  side	
  not	
  really	
  part	
  of	
  the	
  scene

¥ Assume	
  a	
  window	
  of	
  +/-­‐ 2	
  from	
  the	
  target
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¥ Example	
  text	
  (WSJ)
An	
  electric	
  guitar	
  and	
  .,)) player	
  stand	
  off	
  to	
  
one	
  side	
  not	
  really	
  part	
  of	
  the	
  scene,	
  

¥ Assume	
  a	
  window	
  of	
  +/-­‐ 2	
  from	
  the	
  target
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¥ Position-­‐specific	
  information	
  about	
  the	
  words	
  and	
  
collocations	
  in	
  window

¥ guitar	
  and	
  bass player	
  stand

¥ word	
  1,2,3	
  grams	
  in	
  window	
  of	
  ?<3	
  is	
  common

10 CHAPTER 16 ¥ COMPUTING WITH WORD SENSES

ually tagged with WordNet senses (Miller et al. 1993, Landes et al. 1998). In ad-
dition, sense-tagged corpora have been built for theSENSEVAL all-word tasks. The
SENSEVAL-3 English all-words test data consisted of 2081 tagged content word to-
kens, from 5,000 total running words of English from the WSJ and Brown corpora
(Palmer et al., 2001).

The Þrst step in supervised training is to extract features that are predictive of
word senses. The insight that underlies all modern algorithms for word sense disam-
biguation was famously Þrst articulated byWeaver (1955)in the context of machine
translation:

If one examines the words in a book, one at a time as through an opaque
mask with a hole in it one word wide, then it is obviously impossible
to determine, one at a time, the meaning of the words. [. . . ] But if
one lengthens the slit in the opaque mask, until one can see not only
the central word in question but also say N words on either side, then
if N is large enough one can unambiguously decide the meaning of the
central word. [. . . ] The practical question is : ÒWhat minimum value of
N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?Ó

We Þrst perform some processing on the sentence containing the window, typi-
cally including part-of-speech tagging, lemmatization , and, in some cases, syntactic
parsing to reveal headwords and dependency relations. Context features relevant to
the target word can then be extracted from this enriched input. Afeature vectorfeature vector

consisting of numeric or nominal values encodes this linguistic information as an
input to most machine learning algorithms.

Two classes of features are generally extracted from these neighboring contexts,
both of which we have seen previously in part-of-speech tagging: collocational fea-
tures and bag-of-words features. Acollocation is a word or series of words in acollocation

position-speciÞc relationship to a target word (i.e., exactly one word to the right, or
the two words starting 3 words to the left, and so on). Thus,collocational featurescollocational

features
encode information aboutspeciÞcpositions located to the left or right of the target
word. Typical features extracted for these context words include the word itself, the
root form of the word, and the wordÕs part-of-speech. Such features are effective at
encoding local lexical and grammatical information that can often accurately isolate
a given sense.

For example consider the ambiguous wordbassin the following WSJ sentence:

(16.17) An electric guitar andbassplayer stand off to one side, not really part of
the scene, just as a sort of nod to gringo expectations perhaps.

A collocational feature vector, extracted from a window of two words to the right
and left of the target word, made up of the words themselves, their respective parts-
of-speech, and pairs of words, that is,

[wi! 2,POSi! 2,wi! 1,POSi! 1,wi+ 1,POSi+ 1,wi+ 2,POSi+ 2,wi! 1
i! 2,wi+ 1

i ] (16.18)

would yield the following vector:
[guitar, NN, and, CC, player, NN, stand, VB, and guitar, player stand]

High performing systems generally use POS tags and word collocations of length
1, 2, and 3 from a window of words 3 to the left and 3 to the right(Zhong and Ng,
2010).

The second type of feature consists ofbag-of-words information about neigh-
boring words. Abag-of-wordsmeans an unordered set of words, with their exactbag-of-words
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¥ “an	
  unordered	
  set	
  of	
  words”	
  – position	
  ignored
¥ Counts	
  of	
  words	
  occur	
  within	
  the	
  window.
¥ First	
  choose	
  a	
  vocabulary
¥ Then	
  count	
  how	
  often	
  each	
  of	
  those	
  terms	
  occurs	
  in	
  a	
  

given	
  window
¥sometimes	
  just	
  a	
  binary	
  “indicator”	
  1	
  or	
  0
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¥ Assume	
  we’ve	
  settled	
  on	
  a	
  possible	
  vocabulary	
  of	
  12	
  words	
  in	
  
“bass”	
  sentences:	
  

[fishing,	
  big,	
  sound,	
  player,	
  fly,	
  rod,	
  pound,	
  double,	
  runs,	
  playing,	
  guitar,	
  band]	
  

¥ The	
  vector	
  for:
guitar and	
  bass player stand
[0,0,0,1,0,0,0,0,0,0,1,0]	
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Classification



Dan	
  Jurafsky

J<,))+7+:,1+"(=%$'7+(+1+"(

¥ Input:
¥ a	
  word	
  w	
  and	
  some	
  features	
  f
¥ a	
  fixed	
  set	
  of	
  classes	
  	
  C	
  = {c1,	
  c2,…,	
  cJ}

¥ Output:	
  a	
  predicted	
  class	
  c! C
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¥ Input:	
  
¥ a	
  word	
  w	
  in	
  a	
  text	
  window	
  d	
  (which	
  we’ll	
  call	
  a	
  “document”)
¥ a	
  fixed	
  set	
  of	
  classes	
  	
  C	
  = {c1,	
  c2,…,	
  cJ}
¥ A	
  training	
  set	
  of	
  m hand-­‐labeled	
  text	
  windows	
  again	
  called	
  

“documents”	
  (d1,c1),....,(dm,cm)

¥ Output:	
  
¥ a	
  learned	
  classifier	
  γ:d ! c

22
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¥ Any	
  kind	
  of	
  classifier
¥ Naive Bayes
¥ Logistic	
  regression
¥ Neural	
  Networks
¥ Support-­‐vector	
  machines
¥ k-­‐Nearest	
  Neighbors

¥ …
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¥ P(c)	
  is	
  the	
  prior	
  probability	
  of	
  that	
  sense
¥ Counting	
  in	
  a	
  labeled	
  training	
  set.

¥ P(w|c)	
  	
  conditional	
  probability	
  of	
  a	
  word	
  given	
  a	
  particular	
  sense
¥ P(w|c)	
  =	
  count(w,c)/count(c)

¥ We	
  get	
  both	
  of	
  these	
  from	
  a	
  tagged	
  corpus	
  like	
  SemCor

¥ Can	
  also	
  generalize	
  to	
  look	
  at	
  other	
  features	
  besides	
  words.
¥ Then	
  it	
  would	
  be	
  P(f|c)	
  

¥ Conditional	
  probability	
  of	
  a	
  feature	
  given	
  a	
  sense
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J;"")+(/%,%:<,))=
P(f|d5)	
  

P(g|d5)	
   1/4	
  *	
  2/9	
  *	
  (2/9)2 *	
  2/9	
  
≈	
  0.0006

*": !"#$) J<,))
Training 1 fish	
  smoked	
  fish f

2 fish	
  line f
3 fish	
  haul	
  smoked f
4 guitar	
  jazz	
  line g

Test 5 line	
  guitar	
  jazz	
  jazz ?
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J"($+1+"(,<%W#".,.+<+1+')=
P(line|f)	
  =
P(guitar|f)	
  	
  	
  	
  =
P(jazz|f)	
  	
  	
  	
  	
  =
P(line|g)	
  =
P(guitar|g)	
  	
  	
  	
  	
  =
P(jazz|g)	
  	
  	
  	
  	
  	
  =	
  

W#+"#)=
P(f)=	
  
P(g)=	
  

3
4 1

4

öP(w |c) =
count(w,c)+1
count(c)+ |V |

öP(c) =
Nc

N

(1+1)	
  /	
  (8+6)	
  =	
  2/14
(0+1)	
  /	
  (8+6)	
  =	
  1/14

(1+1)	
  /	
  (3+6)	
  =	
  2/9	
  
(0+1)	
  /	
  (8+6)	
  =	
  1/14

(1+1)	
  /	
  (3+6)	
  =	
  2/9	
  
(1+1)	
  /	
  (3+6)	
  =	
  2/9	
  

3/4	
  *	
  2/14	
  *	
  (1/14)2 *	
  1/14	
  
≈	
  0.00003

!

!

V	
  =	
  {fish,	
  smoked,	
  line,	
  haul,	
  guitar,	
  jazz}



!"#$%&'()'%
*+),-.+/0,1+"(

Evaluations	
  and	
  
Baselines
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¥ Best	
  evaluation:	
  'O1#+()+:%2X'($T1"T'($YZ%[1,)8T.,)'$Y3%'6,<0,1+"(
¥ Embed	
  WSD	
  algorithm	
  in	
  a	
  task	
  and	
  see	
  if	
  you	
  can	
  do	
  the	
  task	
  better!

¥ What	
  we	
  often	
  do	
  for	
  convenience:	
  +(1#+()+:%'6,<0,1+"(
¥ Exact	
  match	
  )'()' ,::0#,:G

¥ %	
  of	
  words	
  tagged	
  identically	
  with	
  the	
  human-­‐manual	
  sense	
  tags
¥ Usually	
  evaluate	
  using	
  ;'<$ T"01%$,1,%from	
  same	
  labeled	
  corpus

¥ Baselines
¥ Most	
  frequent	
  sense
¥ The	
  Lesk algorithm
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¥ WordNet	
  senses	
  are	
  ordered	
  in	
  frequency	
  order
¥ So	
  Aþmost	
  frequent	
  senseAÿin	
  WordNet	
  =	
  Aþtake	
  the	
  first	
  senseAÿ
¥ Sense	
  frequencies	
  come	
  from	
  the	
  SemCor corpus
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¥ Human	
  inter-­‐annotator	
  agreement
¥ Compare	
  annotations	
  of	
  two	
  humans
¥ On	
  same	
  data
¥ Given	
  same	
  tagging	
  guidelines

¥ Human	
  agreements	
  on	
  all-­‐words	
  corpora	
  with	
  
WordNet	
  style	
  senses
¥ 75%-­‐80%	
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Dictionary	
  and	
  
Thesaurus	
  Methods
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¥ Let’s	
  disambiguate	
  “.,(8D in	
  this	
  sentence:
The	
  .,(8 can	
  guarantee	
  deposits	
  will	
  eventually	
  cover	
  future	
  tuition	
  costs	
  
because	
  it	
  invests	
  in	
  adjustable-­‐rate	
  mortgage	
  securities.	
  

¥ given	
  the	
  following	
  two	
  WordNet	
  senses:	
  

16.6 • WSD: DICTIONARY AND THESAURUS METHODS 13

function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense! most frequent sense for word
max-overlap! 0
context! set of words in sentence
for eachsensein senses of word do
signature! set of words in the gloss and examples of sense
overlap! COMPUTEOVERLAP(signature, context)
if overlap> max-overlapthen

max-overlap! overlap
best-sense! sense

end
return (best-sense)

Figure 16.6 The Simplified Lesk algorithm. The COMPUTEOVERLAP function returns the
number of words in common between two sets, ignoring function words or other words on a
stop list. The original Lesk algorithm defines the contextin a more complex way. The Cor-
pus Leskalgorithm weights each overlapping word w by its " logP(w) and includes labeled
training corpus data in the signature.

bank1 Gloss: a financial institution that accepts deposits and channels the
money into lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgage
on my home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of

the river and watched the currents”

Sense bank1 has two non-stopwords overlapping with the context in (16.19):
depositsand mortgage, while sense bank2 has zero words, so sense bank1 is chosen.

There are many obvious extensions to Simplified Lesk. The original Lesk algo-
rithm (Lesk, 1986) is slightly more indirect. Instead of comparing a target word’s
signature with the context words, the target signature is compared with the signatures
of each of the context words. For example, consider Lesk’s example of selecting the
appropriate sense of conein the phrase pine conegiven the following definitions for
pineand cone.

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness

cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would select cone3 as the correct sense since two
of the words in its entry, evergreenand tree, overlap with words in the entry for pine,
whereas neither of the other entries has any overlap with words in the definition of
pine. In general Simplified Lesk seems to work better than original Lesk.

The primary problem with either the original or simplified approaches, how-
ever, is that the dictionary entries for the target words are short and may not provide
enough chance of overlap with the context.3 One remedy is to expand the list of
words used in the classifier to include words related to, but not contained in, their

3 Indeed, Lesk (1986) notes that the performance of his system seems to roughly correlate with the
length of the dictionary entries.
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The	
  .,(8 can	
  guarantee	
  deposits	
  will	
  eventually	
  cover	
  future	
  
tuition	
  costs	
  because	
  it	
  invests	
  in	
  adjustable-­‐rate	
  mortgage	
  
securities.	
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best-sense! most frequent sense for word
max-overlap! 0
context! set of words in sentence
for eachsensein senses of word do
signature! set of words in the gloss and examples of sense
overlap! COMPUTEOVERLAP(signature, context)
if overlap> max-overlapthen

max-overlap! overlap
best-sense! sense

end
return (best-sense)

Figure 16.6 The Simplified Lesk algorithm. The COMPUTEOVERLAP function returns the
number of words in common between two sets, ignoring function words or other words on a
stop list. The original Lesk algorithm defines the contextin a more complex way. The Cor-
pus Leskalgorithm weights each overlapping word w by its " logP(w) and includes labeled
training corpus data in the signature.

bank1 Gloss: a financial institution that accepts deposits and channels the
money into lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgage
on my home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of

the river and watched the currents”

Sense bank1 has two non-stopwords overlapping with the context in (16.19):
depositsand mortgage, while sense bank2 has zero words, so sense bank1 is chosen.

There are many obvious extensions to Simplified Lesk. The original Lesk algo-
rithm (Lesk, 1986) is slightly more indirect. Instead of comparing a target word’s
signature with the context words, the target signature is compared with the signatures
of each of the context words. For example, consider Lesk’s example of selecting the
appropriate sense of conein the phrase pine conegiven the following definitions for
pineand cone.

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness

cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would select cone3 as the correct sense since two
of the words in its entry, evergreenand tree, overlap with words in the entry for pine,
whereas neither of the other entries has any overlap with words in the definition of
pine. In general Simplified Lesk seems to work better than original Lesk.

The primary problem with either the original or simplified approaches, how-
ever, is that the dictionary entries for the target words are short and may not provide
enough chance of overlap with the context.3 One remedy is to expand the list of
words used in the classifier to include words related to, but not contained in, their

3 Indeed, Lesk (1986) notes that the performance of his system seems to roughly correlate with the
length of the dictionary entries.

Choose	
  sense	
  with	
  most	
  word	
  overlap	
  between	
  gloss	
  and	
  context
(not	
  counting	
  function	
  words)
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¥ Assumes	
  we	
  have	
  some	
  sense-­‐labeled	
  data	
  (like	
  SemCor)
¥ Take	
  all	
  the	
  sentences	
  with	
  the	
  relevant	
  word	
  sense:

These	
  short,	
  "streamlined"	
  meetings	
  usually	
  are	
  sponsored	
  by	
  local	
  !"$%#&,	
  
Chambers	
  of	
  Commerce,	
  trade	
  associations,	
  or	
  other	
  civic	
  organizations.

¥ Now	
  add	
  these	
  to	
  the	
  gloss	
  +	
  examples	
  for	
  each	
  sense,	
  call	
  it	
  the	
  
“signature”	
  of	
  a	
  sense.

¥ Choose	
  sense	
  with	
  most	
  word	
  overlap	
  between	
  context	
  and	
  
signature.
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¥ Instead	
  of	
  just	
  removing	
  function	
  words

¥ Weigh	
  each	
  word	
  by	
  its	
   promiscuity’	
  across	
  documents
¥ Down-­‐weights	
  words	
  that	
  occur	
  in	
  every	
  `document’	
  (gloss,	
  example,	
  etc)
¥ These	
  are	
  generally	
  function	
  words,	
  but	
  is	
  a	
  more	
  fine-­‐grained	
  measure

¥ Weigh	
  each	
  overlapping	
  word	
  by	
  +(6'#)'%$":0-'(1%7#'\0'(:G

34
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¥ Weigh	
  each	
  overlapping	
  word	
  by	
  +(6'#)'%$":0-'(1%7#'\0'(:G

¥ N	
  is	
  the	
  total	
  number	
  of	
  documents
¥ dfi =	
  “document	
  frequency	
  of	
  word	
  i”
¥ =	
  #	
  of	
  documents	
  with	
  word	
  I

35

idfi = log N
dfi

!

"

#
#

$

%

&
&

score(sensei,  context j ) = idfw
w ! overlap(signaturei, context j )

"
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¥ First,	
  WordNet	
  can	
  be	
  viewed	
  as	
  a	
  graph

¥ senses	
  are	
  nodes
¥ relations	
  (hypernymy,	
  meronymy)	
  are	
  edges
¥ Also	
  add	
  edge	
  between	
  word	
  and	
  unambiguous	
  gloss	
  words

36

toast n
4

drink v
1

drinker n
1

drinking n
1

potation n
1

sip n
1

sip v
1

beverage n
1 milk n

1

liquid n
1food n

1

drink n
1

helping n
1

sup v
1

consumption n
1

consumer n
1

consume v
1
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¥ Insert	
  target	
  word	
  and	
  words	
  in	
  its	
  sentential	
  context	
  into	
  the	
  
graph,	
  with	
  directed	
  edges	
  to	
  their	
  senses

“She	
  drank	
  some	
  milk”
¥ Now	
  choose	
  the

most	
  central	
  sense
Add	
  some	
  probability	
  to
“drink”	
  and	
  “milk”	
  and	
  
compute	
  node	
  with
highest	
  “pagerank”37

drink v
1

drinker n
1

beverage n
1

boozing n
1

food n
1

drink n
1 milk n

1

milk n
2

milk n
3

milk n
4

drink v
2

drink v
3

drink v
4

drink v
5

nutriment n
1

ÒdrinkÓ ÒmilkÓ
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Semi-­‐Supervised	
  
Learning
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W#".<'- :	
  supervised	
  and	
  dictionary-­‐based	
  
approaches	
  require	
  large	
  hand-­‐built	
  resources

What	
  if	
  you	
  don’t	
  have	
  so	
  much	
  training	
  data?
&"<01+"(:	
  Bootstrapping

Generalize	
  from	
  a	
  very	
  small	
  hand-­‐labeled	
  seed-­‐set.
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¥ For	
  bass
¥ Rely	
  on	
  “One	
  sense	
  per	
  collocation” rule

¥ A	
  word	
  reoccurring	
  in	
  collocation	
  with	
  the	
  same	
  word	
  will	
  almost	
  
surely	
  have	
  the	
  same	
  sense.

¥ the	
  word	
  play occurs	
  with	
  the	
  music	
  sense	
  of	
  bass	
  
¥ the	
  word	
  fish occurs	
  with	
  the	
  fish	
  sense	
  of	
  bass
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16 CHAPTER 16 ¥ COMPUTING WITH WORD SENSES
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Figure 16.9 The Yarowsky algorithm disambiguating ÒplantÓ at two stages; Ò?Ó indicates an unlabeled ob-
servation, A and B are observations labeled as SENSE-A or SENSE-B. The initial stage (a) shows only seed
sentences! 0 labeled by collocates (ÒlifeÓ and ÒmanufacturingÓ). An intermediate stage is shown in (b) where
more collocates have been discovered (ÒequipmentÓ, ÒmicroscopicÓ, etc.) and more instances inV0 have been
moved into! 1, leaving a smaller unlabeled setV1. Figure adapted fromYarowsky (1995).

We need more good teachers Ð right now, there are only a half a dozen who canplay
the freebasswith ease.

An electric guitar andbass player stand off to one side, not really part of the scene, just
as a sort of nod to gringo expectations perhaps.
The researchers said the worms spend part of their life cycle in suchÞsh as PaciÞc
salmon and stripedbassand PaciÞc rockÞsh or snapper.

And it all started whenÞshermen decided the stripedbass in Lake Mead were too
skinny.

Figure 16.10 Samples ofbasssentences extracted from the WSJ by using the simple cor-
relatesplayandÞsh.

strongly associated with the target senses tend not to occur with the other sense.
Yarowsky deÞnes his seedset by choosing a single collocation for each sense.

For example, to generate seed sentences for the Þsh and musical musical senses
of bass, we might come up withÞshas a reasonable indicator ofbass1 andplay as
a reasonable indicator ofbass2. Figure16.10shows a partial result of such a search
for the strings ÒÞshÓ and ÒplayÓ in a corpus ofbassexamples drawn from the WSJ.

The original Yarowsky algorithm also makes use of a second heuristic, called
one sense per discourse, based on the work ofGale et al. (1992b), who noticed thatone sense per

discourse
a particular word appearing multiple times in a text or discourse often appeared with
the same sense. This heuristic seems to hold better for coarse-grained senses and
particularly for cases of homonymy rather than polysemy(Krovetz, 1998).

Nonetheless, it is still useful in a number of sense disambiguation situations. In
fact, theone sense per discourseheuristic is an important one throughout language
processing as it seems that many disambiguation tasks may be improved by a bias
toward resolving an ambiguity the same way inside a discourse segment.
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1) Hand	
  labeling
2) “One	
  sense	
  per	
  collocation”:

¥ A	
  word	
  reoccurring	
  in	
  collocation	
  with	
  the	
  same	
  word	
  will	
  almost	
  surely	
  
have	
  the	
  same	
  sense.

3) “One	
  sense	
  per	
  discourse”:
¥ The	
  sense	
  of	
  a	
  word	
  is	
  highly	
  consistent	
  within	
  a	
  document	
  	
  -­‐ Yarowsky

(1995)
¥ (At	
  least	
  for	
  non-­‐function	
  words,	
  and	
  especially	
  topic-­‐specific	
  words)
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¥ Word	
  Sense	
  Disambiguation:	
  choosing	
  correct	
  sense	
  in	
  context
¥ Applications:	
  MT,	
  QA,	
  etc.
¥ Three	
  classes	
  of	
  Methods

¥ Supervised	
  Machine	
  Learning:	
  Naive	
  Bayes	
  classifier
¥ Thesaurus/Dictionary	
  Methods
¥ Semi-­‐Supervised	
  Learning

¥ Main	
  intuition
¥ There	
  is	
  lots	
  of	
  information	
  in	
  a	
  word’s	
  context
¥ Simple	
  algorithms	
  based	
  just	
  on	
  word	
  counts	
  can	
  be	
  surprisingly	
  good44


