
!"#$%&'()'%*+),-.+/0,1+"(

!"#$%&'()'%*+),-.+/0,1+"(%2!&*3

¥ Given	

¥ A word	
 in	
 context	

¥ A	
 fixed	
 inventory	
 of	
 potential	
 word	
 senses
¥ Decide	
 which	
 sense	
 of	
 the	
 word	
 this	
 is

¥ Why?	
 Machine	
 translation,	
 QA,	
 speech	
 synthesis
¥ What	
 set	
 of	
 senses?

¥ English-­‐to-­‐Spanish	
 MT:	
 set	
 of	
 Spanish	
 translations
¥ Speech	
 Synthesis:	
 	
 homographs	
 like	
 bass and	
 bow
¥ In	
 general:	
 the	
 senses	
 in	
 a	
 thesaurus	
 like	
 WordNet

45"%6,#+,(1)%"7%!&*%1,)8

¥ Lexical	
 Sample	
 task
¥ Small	
 pre-­‐selected	
 set	
 of	
 target	
 words	
 (line,	
 plant)
¥ And	
 inventory	
 of	
 senses	
 for	
 each	
 word
¥ &09'#6+)'$%-,:;+('% <',#(+(/=%1#,+(%,%:<,))+7+'#%7"#%',:;%5"#$

¥ All-­‐words	
 task
¥ Every	
 word	
 in	
 an	
 entire	
 text
¥ A	
 lexicon	
 with	
 senses	
 for	
 each	
 word
¥ Data	
 sparseness:	
 can’t	
 train	
 word-­‐specific	
 classifiers

!&*%>'1;"$)

¥ Supervised	
 Machine	
 Learning
¥ Thesaurus/Dictionary	
 Methods
¥ Semi-­‐Supervised	
 Learning

4

!"#$%&'()'%
*+),-.+/0,1+"(

Supervised	

Machine	
 Learning

&09'#6+)'$%>,:;+('%?',#(+(/%@99#",:;')

¥ Supervised	
 machine	
 learning	
 approach:
¥ a	
 training	
 corpus of	
 words	
 tagged	
 in	
 context	
 with	
 their	
 sense
¥ used	
 to	
 train	
 a	
 classifier	
 that	
 can	
 tag	
 words	
 in	
 new	
 text

¥ Summary	
 of	
 what	
 we	
 need:
¥ the	
 1,/%)'1(“sense	
 inventory”)
¥ the	
 1#,+(+(/%:"#90)
¥ A	
 set	
 of	
 7',10#') extracted	
 from	
 the	
 training	
 corpus
¥ A	
 :<,))+7+'#

&09'#6+)'$%!&*%A=%!&*%4,/)

¥ What’s	
 a	
 tag?
A	
 dictionary	
 sense?

¥ For	
 example,	
 for	
 WordNet	
 an	
 instance	
 of	
 AþbassAÿin	
 a	
 text	
 has	
 8	

possible	
 tags	
 or	
 labels	
 (bass1	
 through	
 bass8).

B%)'()')%"7%C.,))D%+(%!"#$E'1

1. bass	
 -­‐ (the	
 lowest	
 part	
 of	
 the	
 musical	
 range)
2. bass,	
 bass	
 part	
 -­‐ (the	
 lowest	
 part	
 in	
 polyphonic	
 	
 music)
3. bass,	
 basso	
 -­‐ (an	
 adult	
 male	
 singer	
 with	
 the	
 lowest	
 voice)
4. sea	
 bass,	
 bass	
 -­‐ (flesh	
 of	
 lean-­‐fleshed	
 saltwater	
 fish	
 of	
 the	
 family	

Serranidae)
5. freshwater	
 bass,	
 bass	
 -­‐ (any	
 of	
 various	
 North	
 American	
 lean-­‐fleshed	

freshwater	
 fishes	
 especially	
 of	
 the	
 genus	
 Micropterus)
6. bass,	
 bass	
 voice,	
 basso	
 -­‐ (the	
 lowest	
 adult	
 male	
 singing	
 voice)
7. bass	
 -­‐ (the	
 member	
 with	
 the	
 lowest	
 range	
 of	
 a	
 family	
 of	
 musical	

instruments)
8. bass	
 -­‐ (nontechnical	
 name	
 for	
 any	
 of	
 numerous	
 edible	
 	
 marine	
 and	

freshwater	
 spiny-­‐finned	
 fishes)

F(6'(1"#G%"7%)'()'%1,/)%7"#%!"##
16.5 ¥ SUPERVISEDWORD SENSEDISAMBIGUATION 9

WordNet Spanish Roget
Sense Translation Category Target Word in Context
bass4 lubina FISH/INSECT . . . Þsh as PaciÞc salmon and stripedbassand. . .
bass4 lubina FISH/INSECT . . . produce Þlets of smokedbassor sturgeon. . .
bass7 bajo MUSIC . . . exciting jazzbassplayer since Ray Brown. . .
bass7 bajo MUSIC . . . playbassbecause he doesnÕt have to solo. . .

Figure 16.5 Possible deÞnitions for the inventory of sense tags forbass.

the set of senses are small, supervised machine learning approaches are often used
to handle lexical sample tasks. For each word, a number of corpus instances (con-
text sentences) can be selected and hand-labeled with the correct sense of the target
word in each. ClassiÞer systems can then be trained with these labeled examples.
Unlabeled target words in context can then be labeled using such a trained classiÞer.
Early work in word sense disambiguation focused solely on lexical sample tasks
of this sort, building word-speciÞc algorithms for disambiguating single words like
line, interest, or plant.

In contrast, in theall-words task, systems are given entire texts and a lexiconall-words

with an inventory of senses for each entry and are required to disambiguate every
content word in the text. The all-words task is similar to part-of-speech tagging, ex-
cept with a much larger set of tags since each lemma has its own set. A consequence
of this larger set of tags is a serious data sparseness problem; it is unlikely that ade-
quate training data for every word in the test set will be available. Moreover, given
the number of polysemous words in reasonably sized lexicons, approaches based on
training one classiÞer per term are unlikely to be practical.

In the following sections we explore the application of various machine learning
paradigms to word sense disambiguation.

16.5 Supervised Word Sense Disambiguation

If we have data that has been hand-labeled with correct word senses, we can use a
supervised learningapproach to the problem of sense disambiguationÑextracting
features from the text and training a classiÞer to assign the correct sense given these
features. The output of training is thus a classiÞer system capable of assigning sense
labels to unlabeled words in context.

For lexical sampletasks, there are various labeled corpora for individual words;
these corpora consist of context sentences labeled with the correct sense for the tar-
get word. These include theline-hard-servecorpus containing 4,000 sense-tagged
examples ofline as a noun,hard as an adjective andserveas a verb(Leacock et al.,
1993), and theinterestcorpus with 2,369 sense-tagged examples ofinterestas a
noun(Bruce and Wiebe, 1994). The SENSEVAL project has also produced a num-
ber of such sense-labeled lexical sample corpora (SENSEVAL-1 with 34 words from
the HECTOR lexicon and corpus (Kilgarriff and Rosenzweig 2000, Atkins 1993),
SENSEVAL-2 and -3 with 73 and 57 target words, respectively (Palmer et al. 2001,
Kilgarriff 2001).

For trainingall-word disambiguation tasks we use asemantic concordance,semantic
concordance

a corpus in which each open-class word in each sentence is labeled with its word
sense from a speciÞc dictionary or thesaurus. One commonly used corpus is Sem-
Cor, a subset of the Brown Corpus consisting of over 234,000 words that were man-

&09'#6+)'$%!&*%H=%I'1%,%:"#90)

¥ Lexical	
 sample	
 task:
¥ Line-­‐hard-­‐serve	
 corpus	
 -­‐ 4000	
 examples	
 of	
 each
¥ Interest corpus	
 -­‐ 2369	
 sense-­‐tagged	
 examples

¥ All	
 words:
¥ &'-,(1+:%:"(:"#$,(:' :	
 a	
 corpus	
 in	
 which	
 each	
 open-­‐class	
 word	
 is	
 labeled	

with	
 a	
 sense	
 from	
 a	
 specific	
 dictionary/thesaurus.
¥ SemCor:	
 234,000	
 words	
 from	
 Brown	
 Corpus,	
 manually	
 tagged	
 with	

WordNet	
 senses
¥ SENSEVAL-­‐3	
 competition	
 corpora	
 -­‐ 2081	
 tagged	
 word	
 tokens

&'-J"#

<wf pos=PRP>K' </wf>
<wf pos=VB	
 lemma=recognize	
 wnsn=4	
 lexsn=2:31:00::>#':"/(+L'$ </wf>
<wf pos=DT>1;' </wf>
<wf pos=NN	
 lemma=gesture	
 wnsn=1	
 lexsn=1:04:00::>/')10#' </wf>
<punc>.</punc>

11

&09'#6+)'$%!&*%M=%NO1#,:1%7',10#'%6':1"#)
F(10+1+"(%7#"-%!,##'(%!',6'#%2APQQ3=

“If	
 one	
 examines	
 the	
 words	
 in	
 a	
 book,	
 one	
 at	
 a	
 time	
 as	
 through	

an	
 opaque	
 mask	
 with	
 a	
 hole	
 in	
 it	
 one	
 word	
 wide,	
 then	
 it	
 is	

obviously	
 impossible	
 to	
 determine,	
 one	
 at	
 a	
 time,	
 the	
 meaning	

of	
 the	
 words…	

But	
 if	
 one	
 lengthens	
 the	
 slit	
 in	
 the	
 opaque	
 mask,	
 until	
 one	
 can	

see	
 not	
 only	
 the	
 central	
 word	
 in	
 question	
 but	
 also	
 say	
 N	
 words	

on	
 either	
 side,	
 then	
 if	
 N	
 is	
 large	
 enough	
 one	
 can	
 unambiguously	

decide	
 the	
 meaning	
 of	
 the	
 central	
 word…	

The	
 practical	
 question	
 is	
 :	
 ``What	
 minimum	
 value	
 of	
 N	
 will,	
 at	

least	
 in	
 a	
 tolerable	
 fraction	
 of	
 cases,	
 lead	
 to	
 the	
 correct	
 choice	

of	
 meaning	
 for	
 the	
 central	
 word?”

R',10#'%6':1"#)

¥ A	
 simple	
 representation	
 for	
 each	
 observation
(each	
 instance	
 of	
 a	
 target	
 word)
¥ S':1"#) of	
 sets	
 of	
 feature/value	
 pairs
¥ Represented	
 as	
 a	
 ordered	
 list	
 of	
 values
¥ These	
 vectors	
 represent,	
 e.g.,	
 the	
 window	
 of	
 words	
 around	

the	
 target

45"%8+($)%"7%7',10#')%+(%1;'%6':1"#)

¥ J"<<":,1+"(,< features	
 and	
 .,/ T"7T5"#$)%features
¥ J"<<":,1+"(,<

¥ Features	
 about	
 words	
 at	
)9':+7+:positions	
 near	
 target	
 word
¥ Often	
 limited	
 to	
 just	
 word	
 identity	
 and	
 POS

¥ U,/ T"7T5"#$)
¥ Features	
 about	
 words	
 that	
 occur	
 anywhere	
 in	
 the	
 window	
 (regardless	

of	
 position)
¥ Typically	
 limited	
 to	
 frequency	
 counts

NO,-9<')

¥ Example	
 text	
 (WSJ):
An	
 electric	
 guitar	
 and	
 .,)) player	
 stand	
 off	
 to	

one	
 side	
 not	
 really	
 part	
 of	
 the	
 scene

¥ Assume	
 a	
 window	
 of	
 +/-­‐ 2	
 from	
 the	
 target

NO,-9<')

¥ Example	
 text	
 (WSJ)
An	
 electric	
 guitar	
 and	
 .,)) player	
 stand	
 off	
 to	

one	
 side	
 not	
 really	
 part	
 of	
 the	
 scene,	

¥ Assume	
 a	
 window	
 of	
 +/-­‐ 2	
 from	
 the	
 target

J"<<":,1+"(,<7',10#')

¥ Position-­‐specific	
 information	
 about	
 the	
 words	
 and	

collocations	
 in	
 window

¥ guitar	
 and	
 bass player	
 stand

¥ word	
 1,2,3	
 grams	
 in	
 window	
 of	
 ?<3	
 is	
 common

10 CHAPTER 16 ¥ COMPUTING WITH WORD SENSES

ually tagged with WordNet senses (Miller et al. 1993, Landes et al. 1998). In ad-
dition, sense-tagged corpora have been built for theSENSEVAL all-word tasks. The
SENSEVAL-3 English all-words test data consisted of 2081 tagged content word to-
kens, from 5,000 total running words of English from the WSJ and Brown corpora
(Palmer et al., 2001).

The Þrst step in supervised training is to extract features that are predictive of
word senses. The insight that underlies all modern algorithms for word sense disam-
biguation was famously Þrst articulated byWeaver (1955)in the context of machine
translation:

If one examines the words in a book, one at a time as through an opaque
mask with a hole in it one word wide, then it is obviously impossible
to determine, one at a time, the meaning of the words. [. . .] But if
one lengthens the slit in the opaque mask, until one can see not only
the central word in question but also say N words on either side, then
if N is large enough one can unambiguously decide the meaning of the
central word. [. . .] The practical question is : ÒWhat minimum value of
N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?Ó

We Þrst perform some processing on the sentence containing the window, typi-
cally including part-of-speech tagging, lemmatization , and, in some cases, syntactic
parsing to reveal headwords and dependency relations. Context features relevant to
the target word can then be extracted from this enriched input. Afeature vectorfeature vector

consisting of numeric or nominal values encodes this linguistic information as an
input to most machine learning algorithms.

Two classes of features are generally extracted from these neighboring contexts,
both of which we have seen previously in part-of-speech tagging: collocational fea-
tures and bag-of-words features. Acollocation is a word or series of words in acollocation

position-speciÞc relationship to a target word (i.e., exactly one word to the right, or
the two words starting 3 words to the left, and so on). Thus,collocational featurescollocational

features
encode information aboutspeciÞcpositions located to the left or right of the target
word. Typical features extracted for these context words include the word itself, the
root form of the word, and the wordÕs part-of-speech. Such features are effective at
encoding local lexical and grammatical information that can often accurately isolate
a given sense.

For example consider the ambiguous wordbassin the following WSJ sentence:

(16.17) An electric guitar andbassplayer stand off to one side, not really part of
the scene, just as a sort of nod to gringo expectations perhaps.

A collocational feature vector, extracted from a window of two words to the right
and left of the target word, made up of the words themselves, their respective parts-
of-speech, and pairs of words, that is,

[wi! 2,POSi! 2,wi! 1,POSi! 1,wi+ 1,POSi+ 1,wi+ 2,POSi+ 2,wi! 1
i! 2,wi+ 1

i] (16.18)

would yield the following vector:
[guitar, NN, and, CC, player, NN, stand, VB, and guitar, player stand]

High performing systems generally use POS tags and word collocations of length
1, 2, and 3 from a window of words 3 to the left and 3 to the right(Zhong and Ng,
2010).

The second type of feature consists ofbag-of-words information about neigh-
boring words. Abag-of-wordsmeans an unordered set of words, with their exactbag-of-words

10 CHAPTER 16 ¥ COMPUTING WITH WORD SENSES

ually tagged with WordNet senses (Miller et al. 1993, Landes et al. 1998). In ad-
dition, sense-tagged corpora have been built for theSENSEVAL all-word tasks. The
SENSEVAL-3 English all-words test data consisted of 2081 tagged content word to-
kens, from 5,000 total running words of English from the WSJ and Brown corpora
(Palmer et al., 2001).

The Þrst step in supervised training is to extract features that are predictive of
word senses. The insight that underlies all modern algorithms for word sense disam-
biguation was famously Þrst articulated byWeaver (1955)in the context of machine
translation:

If one examines the words in a book, one at a time as through an opaque
mask with a hole in it one word wide, then it is obviously impossible
to determine, one at a time, the meaning of the words. [. . .] But if
one lengthens the slit in the opaque mask, until one can see not only
the central word in question but also say N words on either side, then
if N is large enough one can unambiguously decide the meaning of the
central word. [. . .] The practical question is : ÒWhat minimum value of
N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?Ó

We Þrst perform some processing on the sentence containing the window, typi-
cally including part-of-speech tagging, lemmatization , and, in some cases, syntactic
parsing to reveal headwords and dependency relations. Context features relevant to
the target word can then be extracted from this enriched input. Afeature vectorfeature vector

consisting of numeric or nominal values encodes this linguistic information as an
input to most machine learning algorithms.

Two classes of features are generally extracted from these neighboring contexts,
both of which we have seen previously in part-of-speech tagging: collocational fea-
tures and bag-of-words features. Acollocation is a word or series of words in acollocation

position-speciÞc relationship to a target word (i.e., exactly one word to the right, or
the two words starting 3 words to the left, and so on). Thus,collocational featurescollocational

features
encode information aboutspecific positions located to the left or right of the target
word. Typical features extracted for these context words include the word itself, the
root form of the word, and the wordÕs part-of-speech. Such features are effective at
encoding local lexical and grammatical information that can often accurately isolate
a given sense.

For example consider the ambiguous wordbass in the following WSJ sentence:

(16.17) An electric guitar andbassplayer stand off to one side, not really part of
the scene, just as a sort of nod to gringo expectations perhaps.

A collocational feature vector, extracted from a window of two words to the right
and left of the target word, made up of the words themselves, their respective parts-
of-speech, and pairs of words, that is,

[wi! 2,POSi! 2,wi! 1,POSi! 1,wi+ 1,POSi+ 1,wi+ 2,POSi+ 2,wi! 1
i! 2,w

i+ 1
i] (16.18)

would yield the following vector:
[guitar, NN, and, CC, player, NN, stand, VB, and guitar, player stand]

High performing systems generally use POS tags and word collocations of length
1, 2, and 3 from a window of words 3 to the left and 3 to the right(Zhong and Ng,
2010).

The second type of feature consists ofbag-of-words information about neigh-
boring words. Abag-of-wordsmeans an unordered set of words, with their exactbag-of-words

U,/ T"7T5"#$)%7',10#')

¥ “an	
 unordered	
 set	
 of	
 words”	
 – position	
 ignored
¥ Counts	
 of	
 words	
 occur	
 within	
 the	
 window.
¥ First	
 choose	
 a	
 vocabulary
¥ Then	
 count	
 how	
 often	
 each	
 of	
 those	
 terms	
 occurs	
 in	
 a	

given	
 window
¥sometimes	
 just	
 a	
 binary	
 “indicator”	
 1	
 or	
 0

J" TV::0##'(:'%NO,-9<'

¥ Assume	
 we’ve	
 settled	
 on	
 a	
 possible	
 vocabulary	
 of	
 12	
 words	
 in	

“bass”	
 sentences:	

[fishing,	
 big,	
 sound,	
 player,	
 fly,	
 rod,	
 pound,	
 double,	
 runs,	
 playing,	
 guitar,	
 band]	

¥ The	
 vector	
 for:
guitar and	
 bass player stand
[0,0,0,1,0,0,0,0,0,0,1,0]	

!"#$%&'()'%
*+),-.+/0,1+"(

Classification

Dan	
 Jurafsky

J<,))+7+:,1+"(=%$'7+(+1+"(

¥ Input:
¥ a	
 word	
 w	
 and	
 some	
 features	
 f
¥ a	
 fixed	
 set	
 of	
 classes	
 	
 C	
 = {c1,	
 c2,…,	
 cJ}

¥ Output:	
 a	
 predicted	
 class	
 c! C

Dan	
 Jurafsky

J<,))+7+:,1+"(%>'1;"$)=
&09'#6+)'$%>,:;+('%?',#(+(/

¥ Input:	

¥ a	
 word	
 w	
 in	
 a	
 text	
 window	
 d	
 (which	
 we’ll	
 call	
 a	
 “document”)
¥ a	
 fixed	
 set	
 of	
 classes	
 	
 C	
 = {c1,	
 c2,…,	
 cJ}
¥ A	
 training	
 set	
 of	
 m hand-­‐labeled	
 text	
 windows	
 again	
 called	

“documents”	
 (d1,c1),....,(dm,cm)

¥ Output:	

¥ a	
 learned	
 classifier	
 γ:d ! c

22

Dan	
 Jurafsky J<,))+7+:,1+"(%>'1;"$)=
&09'#6+)'$%>,:;+('%?',#(+(/

¥ Any	
 kind	
 of	
 classifier
¥ Naive Bayes
¥ Logistic	
 regression
¥ Neural	
 Networks
¥ Support-­‐vector	
 machines
¥ k-­‐Nearest	
 Neighbors

¥ …

@99<G+(/%E,+6'%U,G')%1"%!&*

¥ P(c)	
 is	
 the	
 prior	
 probability	
 of	
 that	
 sense
¥ Counting	
 in	
 a	
 labeled	
 training	
 set.

¥ P(w|c)	
 	
 conditional	
 probability	
 of	
 a	
 word	
 given	
 a	
 particular	
 sense
¥ P(w|c)	
 =	
 count(w,c)/count(c)

¥ We	
 get	
 both	
 of	
 these	
 from	
 a	
 tagged	
 corpus	
 like	
 SemCor

¥ Can	
 also	
 generalize	
 to	
 look	
 at	
 other	
 features	
 besides	
 words.
¥ Then	
 it	
 would	
 be	
 P(f|c)	

¥ Conditional	
 probability	
 of	
 a	
 feature	
 given	
 a	
 sense

Dan	
 Jurafsky

J;"")+(/%,%:<,))=
P(f|d5)	

P(g|d5)	
 1/4	
 *	
 2/9	
 *	
 (2/9)2 *	
 2/9	

≈	
 0.0006

*": !"#$) J<,))
Training 1 fish	
 smoked	
 fish f

2 fish	
 line f
3 fish	
 haul	
 smoked f
4 guitar	
 jazz	
 line g

Test 5 line	
 guitar	
 jazz	
 jazz ?

25

J"($+1+"(,<%W#".,.+<+1+')=
P(line|f)	
 =
P(guitar|f)	
 	
 	
 	
 =
P(jazz|f)	
 	
 	
 	
 	
 =
P(line|g)	
 =
P(guitar|g)	
 	
 	
 	
 	
 =
P(jazz|g)	
 	
 	
 	
 	
 	
 =	

W#+"#)=
P(f)=	

P(g)=	

3
4 1

4

öP(w |c) =
count(w,c)+1
count(c)+ |V |

öP(c) =
Nc

N

(1+1)	
 /	
 (8+6)	
 =	
 2/14
(0+1)	
 /	
 (8+6)	
 =	
 1/14

(1+1)	
 /	
 (3+6)	
 =	
 2/9	

(0+1)	
 /	
 (8+6)	
 =	
 1/14

(1+1)	
 /	
 (3+6)	
 =	
 2/9	

(1+1)	
 /	
 (3+6)	
 =	
 2/9	

3/4	
 *	
 2/14	
 *	
 (1/14)2 *	
 1/14	

≈	
 0.00003

!

!

V	
 =	
 {fish,	
 smoked,	
 line,	
 haul,	
 guitar,	
 jazz}

!"#$%&'()'%
*+),-.+/0,1+"(

Evaluations	
 and	

Baselines

!&*%N6,<0,1+"()%,($%.,)'<+(')

¥ Best	
 evaluation:	
 'O1#+()+:%2X'($T1"T'($YZ%[1,)8T.,)'$Y3%'6,<0,1+"(
¥ Embed	
 WSD	
 algorithm	
 in	
 a	
 task	
 and	
 see	
 if	
 you	
 can	
 do	
 the	
 task	
 better!

¥ What	
 we	
 often	
 do	
 for	
 convenience:	
 +(1#+()+:%'6,<0,1+"(
¥ Exact	
 match	
)'()' ,::0#,:G

¥ %	
 of	
 words	
 tagged	
 identically	
 with	
 the	
 human-­‐manual	
 sense	
 tags
¥ Usually	
 evaluate	
 using	
 ;'<$ T"01%$,1,%from	
 same	
 labeled	
 corpus

¥ Baselines
¥ Most	
 frequent	
 sense
¥ The	
 Lesk algorithm

>")1%R#'\0'(1%&'()'

¥ WordNet	
 senses	
 are	
 ordered	
 in	
 frequency	
 order
¥ So	
 Aþmost	
 frequent	
 senseAÿin	
 WordNet	
 =	
 Aþtake	
 the	
 first	
 senseAÿ
¥ Sense	
 frequencies	
 come	
 from	
 the	
 SemCor corpus

J'+<+(/

¥ Human	
 inter-­‐annotator	
 agreement
¥ Compare	
 annotations	
 of	
 two	
 humans
¥ On	
 same	
 data
¥ Given	
 same	
 tagging	
 guidelines

¥ Human	
 agreements	
 on	
 all-­‐words	
 corpora	
 with	

WordNet	
 style	
 senses
¥ 75%-­‐80%	

!"#$%&'()'%
*+),-.+/0,1+"(

Dictionary	
 and	

Thesaurus	
 Methods

4;'%&+-9<+7+'$%?')8 ,</"#+1;-

¥ Let’s	
 disambiguate	
 “.,(8D in	
 this	
 sentence:
The	
 .,(8 can	
 guarantee	
 deposits	
 will	
 eventually	
 cover	
 future	
 tuition	
 costs	

because	
 it	
 invests	
 in	
 adjustable-­‐rate	
 mortgage	
 securities.	

¥ given	
 the	
 following	
 two	
 WordNet	
 senses:	

16.6 • WSD: DICTIONARY AND THESAURUS METHODS 13

function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense! most frequent sense for word
max-overlap! 0
context! set of words in sentence
for eachsensein senses of word do
signature! set of words in the gloss and examples of sense
overlap! COMPUTEOVERLAP(signature, context)
if overlap> max-overlapthen

max-overlap! overlap
best-sense! sense

end
return (best-sense)

Figure 16.6 The Simplified Lesk algorithm. The COMPUTEOVERLAP function returns the
number of words in common between two sets, ignoring function words or other words on a
stop list. The original Lesk algorithm defines the contextin a more complex way. The Cor-
pus Leskalgorithm weights each overlapping word w by its " logP(w) and includes labeled
training corpus data in the signature.

bank1 Gloss: a financial institution that accepts deposits and channels the
money into lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgage
on my home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of

the river and watched the currents”

Sense bank1 has two non-stopwords overlapping with the context in (16.19):
depositsand mortgage, while sense bank2 has zero words, so sense bank1 is chosen.

There are many obvious extensions to Simplified Lesk. The original Lesk algo-
rithm (Lesk, 1986) is slightly more indirect. Instead of comparing a target word’s
signature with the context words, the target signature is compared with the signatures
of each of the context words. For example, consider Lesk’s example of selecting the
appropriate sense of conein the phrase pine conegiven the following definitions for
pineand cone.

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness

cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would select cone3 as the correct sense since two
of the words in its entry, evergreenand tree, overlap with words in the entry for pine,
whereas neither of the other entries has any overlap with words in the definition of
pine. In general Simplified Lesk seems to work better than original Lesk.

The primary problem with either the original or simplified approaches, how-
ever, is that the dictionary entries for the target words are short and may not provide
enough chance of overlap with the context.3 One remedy is to expand the list of
words used in the classifier to include words related to, but not contained in, their

3 Indeed, Lesk (1986) notes that the performance of his system seems to roughly correlate with the
length of the dictionary entries.

4;'%&+-9<+7+'$%?')8 ,</"#+1;-

The	
 .,(8 can	
 guarantee	
 deposits	
 will	
 eventually	
 cover	
 future	

tuition	
 costs	
 because	
 it	
 invests	
 in	
 adjustable-­‐rate	
 mortgage	

securities.	

16.6 • WSD: DICTIONARY AND THESAURUS METHODS 13

function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense! most frequent sense for word
max-overlap! 0
context! set of words in sentence
for eachsensein senses of word do
signature! set of words in the gloss and examples of sense
overlap! COMPUTEOVERLAP(signature, context)
if overlap> max-overlapthen

max-overlap! overlap
best-sense! sense

end
return (best-sense)

Figure 16.6 The Simplified Lesk algorithm. The COMPUTEOVERLAP function returns the
number of words in common between two sets, ignoring function words or other words on a
stop list. The original Lesk algorithm defines the contextin a more complex way. The Cor-
pus Leskalgorithm weights each overlapping word w by its " logP(w) and includes labeled
training corpus data in the signature.

bank1 Gloss: a financial institution that accepts deposits and channels the
money into lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgage
on my home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of

the river and watched the currents”

Sense bank1 has two non-stopwords overlapping with the context in (16.19):
depositsand mortgage, while sense bank2 has zero words, so sense bank1 is chosen.

There are many obvious extensions to Simplified Lesk. The original Lesk algo-
rithm (Lesk, 1986) is slightly more indirect. Instead of comparing a target word’s
signature with the context words, the target signature is compared with the signatures
of each of the context words. For example, consider Lesk’s example of selecting the
appropriate sense of conein the phrase pine conegiven the following definitions for
pineand cone.

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness

cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would select cone3 as the correct sense since two
of the words in its entry, evergreenand tree, overlap with words in the entry for pine,
whereas neither of the other entries has any overlap with words in the definition of
pine. In general Simplified Lesk seems to work better than original Lesk.

The primary problem with either the original or simplified approaches, how-
ever, is that the dictionary entries for the target words are short and may not provide
enough chance of overlap with the context.3 One remedy is to expand the list of
words used in the classifier to include words related to, but not contained in, their

3 Indeed, Lesk (1986) notes that the performance of his system seems to roughly correlate with the
length of the dictionary entries.

Choose	
 sense	
 with	
 most	
 word	
 overlap	
 between	
 gloss	
 and	
 context
(not	
 counting	
 function	
 words)

4;'%J"#90)%?')8 ,</"#+1;-

¥ Assumes	
 we	
 have	
 some	
 sense-­‐labeled	
 data	
 (like	
 SemCor)
¥ Take	
 all	
 the	
 sentences	
 with	
 the	
 relevant	
 word	
 sense:

These	
 short,	
 "streamlined"	
 meetings	
 usually	
 are	
 sponsored	
 by	
 local	
 !"$%#&,	

Chambers	
 of	
 Commerce,	
 trade	
 associations,	
 or	
 other	
 civic	
 organizations.

¥ Now	
 add	
 these	
 to	
 the	
 gloss	
 +	
 examples	
 for	
 each	
 sense,	
 call	
 it	
 the	

“signature”	
 of	
 a	
 sense.

¥ Choose	
 sense	
 with	
 most	
 word	
 overlap	
 between	
 context	
 and	

signature.

J"#90)%?')8 =%F*R%5'+/;1+(/
¥ Instead	
 of	
 just	
 removing	
 function	
 words

¥ Weigh	
 each	
 word	
 by	
 its	
 promiscuity’	
 across	
 documents
¥ Down-­‐weights	
 words	
 that	
 occur	
 in	
 every	
 `document’	
 (gloss,	
 example,	
 etc)
¥ These	
 are	
 generally	
 function	
 words,	
 but	
 is	
 a	
 more	
 fine-­‐grained	
 measure

¥ Weigh	
 each	
 overlapping	
 word	
 by	
 +(6'#)'%$":0-'(1%7#'\0'(:G

34

J"#90)%?')8 =%F*R%5'+/;1+(/
¥ Weigh	
 each	
 overlapping	
 word	
 by	
 +(6'#)'%$":0-'(1%7#'\0'(:G

¥ N	
 is	
 the	
 total	
 number	
 of	
 documents
¥ dfi =	
 “document	
 frequency	
 of	
 word	
 i”
¥ =	
 #	
 of	
 documents	
 with	
 word	
 I

35

idfi = log N
dfi

!

"

#
#

$

%

&
&

score(sensei, context j) = idfw
w ! overlap(signaturei, context j)

"

I#,9; T.,)'$%-'1;"$)
¥ First,	
 WordNet	
 can	
 be	
 viewed	
 as	
 a	
 graph

¥ senses	
 are	
 nodes
¥ relations	
 (hypernymy,	
 meronymy)	
 are	
 edges
¥ Also	
 add	
 edge	
 between	
 word	
 and	
 unambiguous	
 gloss	
 words

36

toast n
4

drink v
1

drinker n
1

drinking n
1

potation n
1

sip n
1

sip v
1

beverage n
1 milk n

1

liquid n
1food n

1

drink n
1

helping n
1

sup v
1

consumption n
1

consumer n
1

consume v
1

K"5%1"%0)'%1;'%/#,9;%7"#%!&*

¥ Insert	
 target	
 word	
 and	
 words	
 in	
 its	
 sentential	
 context	
 into	
 the	

graph,	
 with	
 directed	
 edges	
 to	
 their	
 senses

“She	
 drank	
 some	
 milk”
¥ Now	
 choose	
 the

most	
 central	
 sense
Add	
 some	
 probability	
 to
“drink”	
 and	
 “milk”	
 and	

compute	
 node	
 with
highest	
 “pagerank”37

drink v
1

drinker n
1

beverage n
1

boozing n
1

food n
1

drink n
1 milk n

1

milk n
2

milk n
3

milk n
4

drink v
2

drink v
3

drink v
4

drink v
5

nutriment n
1

ÒdrinkÓ ÒmilkÓ

!"#$%&'()'%
*+),-.+/0,1+"(

Semi-­‐Supervised	

Learning

&'-+ T&09'#6+)'$%?',#(+(/

W#".<'- :	
 supervised	
 and	
 dictionary-­‐based	

approaches	
 require	
 large	
 hand-­‐built	
 resources

What	
 if	
 you	
 don’t	
 have	
 so	
 much	
 training	
 data?
&"<01+"(:	
 Bootstrapping

Generalize	
 from	
 a	
 very	
 small	
 hand-­‐labeled	
 seed-­‐set.

U""1)1#,99+(/

¥ For	
 bass
¥ Rely	
 on	
 “One	
 sense	
 per	
 collocation” rule

¥ A	
 word	
 reoccurring	
 in	
 collocation	
 with	
 the	
 same	
 word	
 will	
 almost	

surely	
 have	
 the	
 same	
 sense.

¥ the	
 word	
 play occurs	
 with	
 the	
 music	
 sense	
 of	
 bass	

¥ the	
 word	
 fish occurs	
 with	
 the	
 fish	
 sense	
 of	
 bass

&'(1'(:')%'O1#,:1+(/%0)+(/%Aþ7+);Aÿ,($%
Aþ9<,GAÿ

16 CHAPTER 16 ¥ COMPUTING WITH WORD SENSES

?

?

A

?

A

?

A

?

?

?

A

?

?

?

?

?

? ?

? ?
?

?

?

?

B

?

?

A

?

?

?

A

?

A
AA

?
A

A

?

?

?

?
? ?

??

?

?
?

?
B

?

??

?

?

?

?
?

?

?

?

?
?

?

?

??

?

?

?

?

?

?

?
?

?

?

?

?

?
? ?

?

?

?

? ??
?

?

?

?

?

?

?

?

??

?

?

?
?

?
?

?

? ?

?

?

? ??
?

?
?

?

B

??

?
B
B
B

?

?

B

?
? B?

?? ?

?
?

?
?
?
?

?
?

?

? ?

?
?
??

?

??

?

?

?

?
?

?

?

?

?
?? ?

A

B B

??

?

?
?? ???

?

?

?

?? ?

?

?

?

A
??

?
?

A

?

?

?A

A
A

A

A

A

A

LIFE

B
B

MANUFACTURING

?

?

A

?

A

?

A

?

A

?

A

B

?

?

?

?

? ?

? ?
?

?

?

?

B

?
?
?

?
?

A

?

A

?

A

?

A
AA

A
A

A

?

?

?

?
? ?

??

?

?
?

?
B

?

??
?

?

?

?

?
?

?

?

?

?
?

?

?

??

?

?

?

?

?

?

?
?
?

?

?

?

?
? ?

?

?

?

A ?A
?

?

?

?

?

?

?

?

??

?

?

?
?

?
A

B

A A

?

?

? ??
?

?
?

?

B

??

?
B
B
B

?

?

B

?
B B?

?? ?

?
?

?
?
?
?

?
?

?

? ?

?
?
AA

?

??

?

?

?

?
?

?

?

?

?
?? ?

A

B B

??

B

?
????

?

?

?

?? B

B

?

?

A
?A

A
?

A

?

?

?A

A
A

A

A

A

A

LIFE

B
B

MANUFACTURINGEQUIPMENT

EMPLOYEE
?

??
B
B

?
?

??
???

ANIMAL

MICROSCOPICV0 V1

Λ0 Λ1

!"# !$#

Figure 16.9 The Yarowsky algorithm disambiguating ÒplantÓ at two stages; Ò?Ó indicates an unlabeled ob-
servation, A and B are observations labeled as SENSE-A or SENSE-B. The initial stage (a) shows only seed
sentences! 0 labeled by collocates (ÒlifeÓ and ÒmanufacturingÓ). An intermediate stage is shown in (b) where
more collocates have been discovered (ÒequipmentÓ, ÒmicroscopicÓ, etc.) and more instances inV0 have been
moved into! 1, leaving a smaller unlabeled setV1. Figure adapted fromYarowsky (1995).

We need more good teachers Ð right now, there are only a half a dozen who canplay
the freebasswith ease.

An electric guitar andbass player stand off to one side, not really part of the scene, just
as a sort of nod to gringo expectations perhaps.
The researchers said the worms spend part of their life cycle in suchÞsh as PaciÞc
salmon and stripedbassand PaciÞc rockÞsh or snapper.

And it all started whenÞshermen decided the stripedbass in Lake Mead were too
skinny.

Figure 16.10 Samples ofbasssentences extracted from the WSJ by using the simple cor-
relatesplayandÞsh.

strongly associated with the target senses tend not to occur with the other sense.
Yarowsky deÞnes his seedset by choosing a single collocation for each sense.

For example, to generate seed sentences for the Þsh and musical musical senses
of bass, we might come up withÞshas a reasonable indicator ofbass1 andplay as
a reasonable indicator ofbass2. Figure16.10shows a partial result of such a search
for the strings ÒÞshÓ and ÒplayÓ in a corpus ofbassexamples drawn from the WSJ.

The original Yarowsky algorithm also makes use of a second heuristic, called
one sense per discourse, based on the work ofGale et al. (1992b), who noticed thatone sense per

discourse
a particular word appearing multiple times in a text or discourse often appeared with
the same sense. This heuristic seems to hold better for coarse-grained senses and
particularly for cases of homonymy rather than polysemy(Krovetz, 1998).

Nonetheless, it is still useful in a number of sense disambiguation situations. In
fact, theone sense per discourseheuristic is an important one throughout language
processing as it seems that many disambiguation tasks may be improved by a bias
toward resolving an ambiguity the same way inside a discourse segment.

&0--,#G=%/'('#,1+(/%)''$)

1) Hand	
 labeling
2) “One	
 sense	
 per	
 collocation”:

¥ A	
 word	
 reoccurring	
 in	
 collocation	
 with	
 the	
 same	
 word	
 will	
 almost	
 surely	

have	
 the	
 same	
 sense.

3) “One	
 sense	
 per	
 discourse”:
¥ The	
 sense	
 of	
 a	
 word	
 is	
 highly	
 consistent	
 within	
 a	
 document	
 	
 -­‐ Yarowsky

(1995)
¥ (At	
 least	
 for	
 non-­‐function	
 words,	
 and	
 especially	
 topic-­‐specific	
 words)

&1,/')%+(%1;'%],#"5)8G .""1)1#,99+(/%
,</"#+1;-%7"#%1;'%5"#$%C9<,(1D

!

!

"

!

"

!

"

!

!

!

"

!

!

!

!

!

! !

! !
!

!

!

!

#

!

!

"

!

!

!

"

!

"
""

!
"

"

!

!

!

!
! !

! !

!

!
!

!
#

!

!!

!

!

!

!
!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

! !

!

!

!

! !!
!

!

!

!

!

!

!

!

!!

!

!

!
!

!
!

!

! !

!

!

! !!
!

!
!

!

#

!!

!
#

#
#

!

!

#

!

! #!

!! !

!
!

!
!

!
!

!
!

!

! !

!
!

!!

!

!
!

!

!

!

!
!

!

!

!

!
!! !

"

#

!!

!

!
! ! !!!

!

!

!

! ! !

!

!

!

"
!!

!

!

"

!

!

!"

"
"

"

"

"

"

$%&'

#
#

(")*&"+,*-%).

!

!

"

!

"

!

"

!

"

!

"

#

!

!

!

!

! !

! !
!

!

!

!

#

!
!
!

!

!

"

!

"

!

"

!

"
""

"
"

"

!

!

!

!
! !

! !

!

!
!

!
#

!

!!
!

!

!

!

!
!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

! !

!

!

!

" !"
!

!

!

!

!

!

!

!

!!

!

!

!
!

!
"

#

" "

!

!

! !!
!

!
!

!

#

!!

!
#

#
#

!

!

#

!

#!

!! !

!
!

!
!

!
!

!
!

!

! !

!
!

""

!

!
!

!

!

!

!
!

!

!

!

!
!! !

"

#

!!

#

!
! !!!

!

!

!

! ! #

#

!

!

"
!"

"

!

"

!

!

!"

"
"

"

"

"

"

$%&'

#
#

(")*&"+,*-%).'/*%0('),

'(0$12''

!
!!

#
#

!
!

!!
!!!

")%("$

(%+-13+10%+45 46

75 76

!"# !$#

&0--,#G

¥ Word	
 Sense	
 Disambiguation:	
 choosing	
 correct	
 sense	
 in	
 context
¥ Applications:	
 MT,	
 QA,	
 etc.
¥ Three	
 classes	
 of	
 Methods

¥ Supervised	
 Machine	
 Learning:	
 Naive	
 Bayes	
 classifier
¥ Thesaurus/Dictionary	
 Methods
¥ Semi-­‐Supervised	
 Learning

¥ Main	
 intuition
¥ There	
 is	
 lots	
 of	
 information	
 in	
 a	
 word’s	
 context
¥ Simple	
 algorithms	
 based	
 just	
 on	
 word	
 counts	
 can	
 be	
 surprisingly	
 good44

