
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2023. All

rights reserved. Draft of January 5, 2024.

CHAPTER

11 Fine-Tuning and Masked Lan-
guage Models

Larvatus prodeo [Masked, I go forward]
Descartes

In the previous chapter we saw how to pretrain transformer language models,
and how these pretrained models can be used as a tool for many kinds of NLP tasks,
by casting the tasks as word prediction. The models we introduced in Chapter 10 to
do this task are causal or left-to-right transformer models.

In this chapter we’ll introduce a second paradigm for pretrained language mod-
els, called the bidirectional transformer encoder, trained via masked language
modeling, a method that allows the model to see entire texts at a time, including

masked
language
modeling

both the right and left context. We’ll introduce the most widely-used version of the
masked language modeling architecture, the BERT model (Devlin et al., 2019).BERT

We’ll also introduce two important ideas that are often used with these masked
language models. The first is the idea of fine-tuning. Fine-tuning is the processfine-tuning

of taking the network learned by these pretrained models, and further training the
model, often via an added neural net classifier that takes the top layer of the network
as input, to perform some downstream task like named entity tagging or question an-
swering or coreference. The intuition is that the pretraining phase learns a language
model that instantiates rich representations of word meaning, that thus enables the
model to more easily learn (‘be fine-tuned to’) the requirements of a downstream
language understanding task. The pretrain-finetune paradigm is an instance of what
is called transfer learning in machine learning: the method of acquiring knowledgetransfer

learning
from one task or domain, and then applying it (transferring it) to solve a new task.

The second idea that we introduce in this chapter is the idea of contextual em-
beddings: representations for words in context. The methods of Chapter 6 like
word2vec or GloVe learned a single vector embedding for each unique word w in
the vocabulary. By contrast, with contextual embeddings, such as those learned by
masked language models like BERT, each word w will be represented by a different
vector each time it appears in a different context. While the causal language models
of Chapter 10 also use contextual embeddings, the embeddings created by masked
language models seem to function particularly well as representations.

11.1 Bidirectional Transformer Encoders

Let’s begin by introducing the bidirectional transformer encoder that underlies mod-
els like BERT and its descendants like RoBERTa (Liu et al., 2019) or SpanBERT
(Joshi et al., 2020). In Chapter 10 we explored causal (left-to-right) transformers
that can serve as the basis for powerful language models—models that can eas-
ily be applied to autoregressive generation problems such as contextual generation,
summarization and machine translation. However, when applied to sequence classi-
fication and labeling problems causal models have obvious shortcomings since they

2 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

are based on an incremental, left-to-right processing of their inputs. If we want to
assign the correct named-entity tag to each word in a sentence, or other sophisticated
linguistic labels like the parse tags we’ll introduce in later chapters, we’ll want to
be able to take into account information from the right context as we process each
element. Fig. 11.1a, reproduced here from Chapter 10, illustrates the information
flow in the purely left-to-right approach of Chapter 10. As can be seen, the hidden
state computation at each point in time is based solely on the current and earlier
elements of the input, ignoring potentially useful information located to the right of
each tagging decision.

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

a) A causal self-attention layer

x1

a1

x2

a2 a3 a4 a5

x3 x4 x5

b) A bidirectional self-attention layer

Figure 11.1 (a) The causal, backward looking, transformer model we saw in Chapter 10. Each output is
computed independently of the others using only information seen earlier in the context. (b) Information flow in
a bidirectional self-attention model. In processing each element of the sequence, the model attends to all inputs,
both before and after the current one.

Bidirectional encoders overcome this limitation by allowing the self-attention
mechanism to range over the entire input, as shown in Fig. 11.1b.

Why bidirectional encoders? The causal models of Chapter 10 are generative
models, designed to easily generate the next token in a sequence. But the focus
of bidirectional encoders is instead on computing contextualized representations of
the input tokens. Bidirectional encoders use self-attention to map sequences of
input embeddings (x1, ...,xn) to sequences of output embeddings the same length
(y1, ...,yn), where the output vectors have been contextualized using information
from the entire input sequence. These output embeddings are contextualized repre-
sentations of each input token that are generally useful across a range of downstream
applications. The models of Chapter 10 are sometimes called decoder-only; the
models of this chapter are sometimes called encoder-only, because they produce an
encoding for each input token but generally aren’t used to produce running text by
decoding/sampling.

11.1.1 The architecture for bidirectional models
Bidirectional models use the same self-attention mechanism as causal models. The
first step is to generate a set of key, query and value embeddings for each element
of the input vector x through the use of learned weight matrices WQ, WK, and WV.
These weights project each input vector xi into its specific role as a key, query, or
value.

qi = WQxi; ki = WKxi; vi = WVxi (11.1)

The output vector yi corresponding to each input element xi is a weighted sum of all

11.1 • BIDIRECTIONAL TRANSFORMER ENCODERS 3

the input value vectors v, as follows:

yi =

n∑
j=1

αi jv j (11.2)

The α weights are computed via a softmax over the comparison scores between
every element of an input sequence considered as a query and every other element
as a key, where the comparison scores are computed using dot products.

αi j =
exp(scorei j)∑n

k=1 exp(scoreik)
(11.3)

scorei j = qi ·k j (11.4)

As with the models of Chapter 10, since each output vector, yi, is computed
independently, the processing of an entire sequence can be parallelized via matrix
operations. The first step is to pack the input embeddings xi into a matrix X∈RN×dh .
That is, each row of X is the embedding of one token of the input. We then multiply
X by the key, query, and value weight matrices (all of dimensionality d × d) to
produce matrices Q ∈ RN×d , K ∈ RN×d , and V ∈ RN×d , containing all the key,
query, and value vectors in a single step.

Q = XWQ; K = XWK; V = XWV (11.5)

Given these matrices we can compute all the requisite query-key comparisons si-
multaneously by multiplying Q and Kᵀ in a single operation. Fig. 11.2 illustrates
the result of this operation for an input with length 5.

q1•k1

q2•k1 q2•k2

q5•k1 q5•k2 q5•k3 q5•k4 q5•k5

q4•k1 q4•k2 q4•k3 q4•k4

q3•k1 q3•k2 q3•k3

N

N

q1•k2 q1•k3 q1•k4 q1•k5

q2•k3 q2•k4 q2•k5

q3•k4 q3•k5

q4•k5

Figure 11.2 The N×N QKᵀ matrix showing the complete set of qi · k j comparisons.

Finally, we can scale these scores, take the softmax, and then multiply the result
by V resulting in a matrix of shape N×d where each row contains a contextualized
output embedding corresponding to each token in the input.

SelfAttention(Q,K,V) = softmax
(

QKᵀ

√
dk

)
V (11.6)

The key architecture difference is in bidirectional models we don’t mask the fu-
ture. As shown in Fig. 11.2, the full set of self-attention scores represented by QKT

constitute an all-pairs comparison between the keys and queries for each element
of the input. In the case of causal language models in Chapter 10, we masked the

4 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

upper triangular portion of this matrix (in Fig. ??) to eliminate information about fu-
ture words since this would make the language modeling training task trivial. With
bidirectional encoders we simply skip the mask, allowing the model to contextualize
each token using information from the entire input.

Beyond this simple change, all of the other elements of the transformer archi-
tecture remain the same for bidirectional encoder models. Inputs to the model are
segmented using subword tokenization and are combined with positional embed-
dings before being passed through a series of standard transformer blocks consisting
of self-attention and feedforward layers augmented with residual connections and
layer normalization, as shown in Fig. 11.3.

MultiHead Attention

z z z

z z zTransformer
Block

x1 x2 x3 xn…

Residual
connection

Residual
connection

+

+

h1 h2 h3 hn…

…Feedforward

Layer Normalize

Layer Normalize

Figure 11.3 A transformer block showing all the layers.

To make this more concrete, the original English-only bidirectional transformer
encoder model, BERT (Devlin et al., 2019), consisted of the following:

• An English-only subword vocabulary consisting of 30,000 tokens generated
using the WordPiece algorithm (Schuster and Nakajima, 2012).

• Hidden layers of size of 768,
• 12 layers of transformer blocks, with 12 multihead attention layers each.
• The resulting model has about 100M parameters.

The larger multilingual XLM-RoBERTa model, trained on 100 languages, has

• A multilingual subword vocabulary with 250,000 tokens generated using the
SentencePiece Unigram LM algorithm (Kudo and Richardson, 2018).

• 24 layers of transformer blocks, with 16 multihead attention layers each
• Hidden layers of size 1024
• The resulting model has about 550M parameters.

The use of WordPiece or SentencePiece Unigram LM tokenization (two of the
large family of subword tokenization algorithms that includes the BPE algorithm
we saw in Chapter 2) means that—like the large language models of Chapter 10—
BERT and its descendants are based on subword tokens rather than words. Every
input sentence first has to be tokenized, and then all further processing takes place
on subword tokens rather than words. This will require, as we’ll see, that for some

11.2 • TRAINING BIDIRECTIONAL ENCODERS 5

NLP tasks that require notions of words (like named entity tagging, or parsing) we
will occasionally need to map subwords back to words.

As with causal transformers, the size of the input layer dictates the complexity of
the model. Both the time and memory requirements in a transformer grow quadrati-
cally with the length of the input. It’s necessary, therefore, to set a fixed input length
that is long enough to provide sufficient context for the model to function and yet
still be computationally tractable. For BERT and XLR-RoBERTa, a fixed input size
of 512 subword tokens was used.

11.2 Training Bidirectional Encoders

We trained causal transformer language models in Chapter 10 by making them iter-
atively predict the next word in a text. But eliminating the causal mask makes the
guess-the-next-word language modeling task trivial since the answer is now directly
available from the context, so we’re in need of a new training scheme. Fortunately,
the traditional learning objective suggests an approach that can be used to train bidi-
rectional encoders. Instead of trying to predict the next word, the model learns to
perform a fill-in-the-blank task, technically called the cloze task (Taylor, 1953). Tocloze task

see this, let’s return to the motivating example from Chapter 3. Instead of predicting
which words are likely to come next in this example:

Please turn your homework .

we’re asked to predict a missing item given the rest of the sentence.

Please turn homework in.

That is, given an input sequence with one or more elements missing, the learning
task is to predict the missing elements. More precisely, during training the model is
deprived of one or more elements of an input sequence and must generate a proba-
bility distribution over the vocabulary for each of the missing items. We then use the
cross-entropy loss from each of the model’s predictions to drive the learning process.

This approach can be generalized to any of a variety of methods that corrupt the
training input and then asks the model to recover the original input. Examples of the
kinds of manipulations that have been used include masks, substitutions, reorder-
ings, deletions, and extraneous insertions into the training text.

11.2.1 Masking Words

The original approach to training bidirectional encoders is called Masked Language
Modeling (MLM) (Devlin et al., 2019). As with the language model training meth-

Masked
Language
Modeling

ods we’ve already seen, MLM uses unannotated text from a large corpus. Here, theMLM

model is presented with a series of sentences from the training corpus where a ran-
dom sample of tokens from each training sequence is selected for use in the learning
task. Once chosen, a token is used in one of three ways:

• It is replaced with the unique vocabulary token [MASK].

• It is replaced with another token from the vocabulary, randomly sampled
based on token unigram probabilities.

• It is left unchanged.

6 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

In BERT, 15% of the input tokens in a training sequence are sampled for learning.
Of these, 80% are replaced with [MASK], 10% are replaced with randomly selected
tokens, and the remaining 10% are left unchanged.

The MLM training objective is to predict the original inputs for each of the
masked tokens using a bidirectional encoder of the kind described in the last section.
The cross-entropy loss from these predictions drives the training process for all the
parameters in the model. Note that all of the input tokens play a role in the self-
attention process, but only the sampled tokens are used for learning.

More specifically, the original input sequence is first tokenized using a subword
model. The sampled items which drive the learning process are chosen from among
the set of tokenized inputs. Word embeddings for all of the tokens in the input
are retrieved from the word embedding matrix and then combined with positional
embeddings to form the input to the transformer.

Softmax over
Vocabulary

So [mask] and [mask] for

long thanks

CE Loss

all apricot fish

the

Token +
Positional

Embeddings

So long and thanks for all fishthe

Bidirectional Transformer Encoder

+
p1

+ + + + + + +
p2 p3 p4 p5 p6 p7 p8

z1 z2 z3 z4 z5 z6 z7 z8

Figure 11.4 Masked language model training. In this example, three of the input tokens are selected, two of
which are masked and the third is replaced with an unrelated word. The probabilities assigned by the model to
these three items are used as the training loss. The other 5 words don’t play a role in training loss. (In this and
subsequent figures we display the input as words rather than subword tokens; the reader should keep in mind
that BERT and similar models actually use subword tokens instead.)

Fig. 11.4 illustrates this approach with a simple example. Here, long, thanks and
the have been sampled from the training sequence, with the first two masked and the
replaced with the randomly sampled token apricot. The resulting embeddings are
passed through a stack of bidirectional transformer blocks. To produce a probability
distribution over the vocabulary for each of the masked tokens, the output vector zi
from the final transformer layer for each masked token i is multiplied by a learned
set of classification weights WV ∈ R|V |×dh and then through a softmax to yield the
required predictions over the vocabulary.

yi = softmax(WV zi)

With a predicted probability distribution for each masked item, we can use cross-
entropy to compute the loss for each masked item—the negative log probability
assigned to the actual masked word, as shown in Fig. 11.4. More formally, for a
given vector of input tokens in a sentence or batch be x, let the set of tokens that are

11.2 • TRAINING BIDIRECTIONAL ENCODERS 7

masked be M, the version of that sentence with some tokens replaced by masks be
xmask, and the sequence of output vectors be z. For a given input token xi, such as
the word long in Fig. 11.4, the loss is the probability of the correct word long, given
xmask (as summarized in the single output vector zi):

LMLM(xi) =− logP(xi|zi)

The gradients that form the basis for the weight updates are based on the average
loss over the sampled learning items from a single training sequence (or batch of
sequences).

LMLM =− 1
|M|

∑
i∈M

logP(xi|zi)

Note that only the tokens in M play a role in learning; the other words play no role
in the loss function, so in that sense BERT and its descendents are inefficient; only
15% of the input samples in the training data are actually used for training weights.
1

11.2.2 Next Sentence Prediction
The focus of mask-based learning is on predicting words from surrounding contexts
with the goal of producing effective word-level representations. However, an im-
portant class of applications involves determining the relationship between pairs of
sentences. These include tasks like paraphrase detection (detecting if two sentences
have similar meanings), entailment (detecting if the meanings of two sentences en-
tail or contradict each other) or discourse coherence (deciding if two neighboring
sentences form a coherent discourse).

To capture the kind of knowledge required for applications such as these, some
models in the BERT family include a second learning objective called Next Sen-
tence Prediction (NSP). In this task, the model is presented with pairs of sentencesNext Sentence

Prediction
and is asked to predict whether each pair consists of an actual pair of adjacent sen-
tences from the training corpus or a pair of unrelated sentences. In BERT, 50% of
the training pairs consisted of positive pairs, and in the other 50% the second sen-
tence of a pair was randomly selected from elsewhere in the corpus. The NSP loss
is based on how well the model can distinguish true pairs from random pairs.

To facilitate NSP training, BERT introduces two new tokens to the input repre-
sentation (tokens that will prove useful for fine-tuning as well). After tokenizing the
input with the subword model, the token [CLS] is prepended to the input sentence
pair, and the token [SEP] is placed between the sentences and after the final token of
the second sentence. Finally, embeddings representing the first and second segments
of the input are added to the word and positional embeddings to allow the model to
more easily distinguish the input sentences.

During training, the output vector from the final layer associated with the [CLS]
token represents the next sentence prediction. As with the MLM objective, a learned
set of classification weights WNSP ∈R2×dh is used to produce a two-class prediction
from the raw [CLS] vector.

yi = softmax(WNSPhi)

1 There are members of the BERT family like ELECTRA that do use all examples for training (Clark
et al., 2020).

8 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

Cross entropy is used to compute the NSP loss for each sentence pair presented
to the model. Fig. 11.5 illustrates the overall NSP training setup. In BERT, the NSP
loss was used in conjunction with the MLM training objective to form final loss.

Cancel my flight [SEP]

1

CE Loss

And the

Bidirectional Transformer Encoder

p1 p2 p3 p4 p5 p6 p7 p8

[CLS]

+ +

s1

Softmax

Token +
Segment +
Positional

Embeddings
hotel

p9

[SEP]

++

s1 s1 s1 s1 s2 s2 s2 s2

+ + + + + + + + + + + + + +

zCLS

Figure 11.5 An example of the NSP loss calculation.

11.2.3 Training Regimes
BERT and other early transformer-based language models were trained on about 3.3
billion words (a combination of English Wikipedia and a corpus of book texts called
BooksCorpus (Zhu et al., 2015) that is no longer used for intellectual property rea-
sons). Modern masked language models are now trained on much larger datasets
of web text, filtered a bit, and augmented by higher-quality data like Wikipedia, the
same as those we discussed for the causal large language models of Chapter 10.
Multilingual models similarity use webtext and multilingual Wikipedia. For exam-
ple the XLM-R model was trained on about 300 billion tokens in 100 languages,
taken from the web via Common Crawl (https://commoncrawl.org/).

To train the original BERT models, pairs of text segments were selected from
the training corpus according to the next sentence prediction 50/50 scheme. Pairs
were sampled so that their combined length was less than the 512 token input. To-
kens within these sentence pairs were then masked using the MLM approach with
the combined loss from the MLM and NSP objectives used for a final loss. Ap-
proximately 40 passes (epochs) over the training data was required for the model to
converge.

Some models, like the RoBERTa model, drop the next sentence prediction ob-
jective, and therefore change the training regime a bit. Instead of sampling pairs of
sentence, the input is simply a series of contiguous sentences. If the document runs
out before 512 tokens are reached, an extra separator token is added, and sentences
from the next document are packed in, until we reach a total of 512 tokens. Usually
large batch sizes are used, between 8K and 32K tokens.

Multilingual models have an additional decision to make: what data to use to
build the vocabulary? Recall that all language models use subword tokenization
(BPE or SentencePiece Unigram LM are the two most common algorithms). What
text should be used to learn this multilingual tokenization, given that it’s easier to get
much more text in some languages than others? One option would be to create this
vocabulary-learning dataset by sampling sentences from our training data (perhaps

https://commoncrawl.org/

11.3 • CONTEXTUAL EMBEDDINGS 9

web text from Common Crawl), randomly. In that case we will choose a lot of sen-
tences from languages like languages with lots of web representation like English,
and the tokens will be biased toward rare English tokens instead of creating frequent
tokens from languages with less data. Instead, it is common to divide the training
data into subcorpora of N different languages, compute the number of sentences ni
of each language i, and readjust these probabilities so as to upweight the probability
of less-represented languages (Lample and Conneau, 2019). The new probability of
selecting a sentence from each of the N languages (whose prior frequency is ni) is
{qi}i=1...N , where:

qi =
pα

i∑N
j=1 pα

i

with pi =
ni∑N

k=1 nk
(11.7)

Recall from (??) in Chapter 6 that an α value between 0 and 1 will give higher
weight to lower probability samples. Conneau et al. (2020) show that α = 0.3 works
well to give rare languages more inclusion in the tokenization, resulting in better
multilingual performance overall.

The result of this pretraining process consists of both learned word embeddings,
as well as all the parameters of the bidirectional encoder that are used to produce
contextual embeddings for novel inputs.

For many purposes, a pretrained multilingual model is more practical than a
monolingual model, since it avoids the need to build many (100!) separate monolin-
gual models. And multilingual models can improve performance on low-resourced
languages by leveraging linguistic information from a similar language in the train-
ing data that happens to have more resources. Nonetheless, when the number of
languages grows very large, multilingual models exhibit what has been called the
curse of multilinguality (Conneau et al., 2020): the performance on each language
degrades compared to a model training on fewer languages. Another problem with
multilingual models is that they ‘have an accent’: grammatical structures in higher-
resource languages (often English) bleed into lower-resource languages; the vast
amount of English language in training makes the model’s representations for low-
resource languages slightly more English-like (Papadimitriou et al., 2023).

11.3 Contextual Embeddings

Given a pretrained language model and a novel input sentence, we can think of the
sequence of model outputs as constituting contextual embeddings for each token incontextual

embeddings
the input. These contextual embeddings are vectors representing some aspect of the
meaning of a token in context, and can be used for any task requiring the meaning of
tokens or words. More formally, given a sequence of input tokens x1, ...,xn, we can
use the output vector zi from the final layer of the model as a representation of the
meaning of token xi in the context of sentence x1, ...,xn. Or instead of just using the
vector zi from the final layer of the model, it’s common to compute a representation
for xi by averaging the output tokens zi from each of the last four layers of the model.

Just as we used static embeddings like word2vec in Chapter 6 to represent the
meaning of words, we can use contextual embeddings as representations of word
meanings in context for any task that might require a model of word meaning. Where
static embeddings represent the meaning of word types (vocabulary entries), contex-
tual embeddings represent the meaning of word instances: instances of a particular

10 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

Input
Embeddings

Transformer
Blocks

[CLS] So long and thanks for all

z1zCLS z2 z3 z4 z5 z6

Figure 11.6 The output of a BERT-style model is a contextual embedding vector zi for each
input token xi.

word type in a particular context. Thus where word2vec had a single vector for each
word type, contextual embeddings provide a single vector for each instance of that
word type in its sentential context. Contextual embeddings can thus be used for
tasks like measuring the semantic similarity of two words in context, and are useful
in linguistic tasks that require models of word meaning.

11.3.1 Contextual Embeddings and Word Sense
Words are ambiguous: the same word can be used to mean different things. Inambiguous

Chapter 6 we saw that the word “mouse” can mean (1) a small rodent, or (2) a hand-
operated device to control a cursor. The word “bank” can mean: (1) a financial
institution or (2) a sloping mound. We say that the words ‘mouse’ or ‘bank’ are
polysemous (from Greek ‘many senses’, poly- ‘many’ + sema, ‘sign, mark’).2

A sense (or word sense) is a discrete representation of one aspect of the meaningword sense

of a word. We can represent each sense with a superscript: bank1 and bank2,
mouse1 and mouse2. These senses can be found listed in online thesauruses (or
thesauri) like WordNet (Fellbaum, 1998), which has datasets in many languagesWordNet

listing the senses of many words. In context, it’s easy to see the different meanings:

mouse1 : a mouse controlling a computer system in 1968.
mouse2 : a quiet animal like a mouse
bank1 : ...a bank can hold the investments in a custodial account ...
bank2 : ...as agriculture burgeons on the east bank, the river ...

This fact that context disambiguates the senses of mouse and bank above can
also be visualized geometrically. Fig. 11.7 shows a two-dimensional project of many
instances of the BERT embeddings of the word die in English and German. Each
point in the graph represents the use of die in one input sentence. We can clearly see
at least two different English senses of die (the singular of dice and the verb to die,
as well as the German article, in the BERT embedding space.

Thus while thesauruses like WordNet give discrete lists of senses, embeddings
(whether static or contextual) offer a continuous high-dimensional model of meaning

2 The word polysemy itself is ambiguous; you may see it used in a different way, to refer only to cases
where a word’s senses are related in some structured way, reserving the word homonymy to mean sense
ambiguities with no relation between the senses (Haber and Poesio, 2020). Here we will use ‘polysemy’
to mean any kind of sense ambiguity, and ‘structured polysemy’ for polysemy with sense relations.

11.3 • CONTEXTUAL EMBEDDINGS 11

Figure 4: Embeddings for the word "die" in different contexts, visualized with UMAP. Sample points
are annotated with corresponding sentences. Overall annotations (blue text) are added as a guide.

4.1 Visualization of word senses

Our first experiment is an exploratory visualization of how word sense affects context embeddings.
For data on different word senses, we collected all sentences used in the introductions to English-
language Wikipedia articles. (Text outside of introductions was frequently fragmentary.) We created
an interactive application, which we plan to make public. A user enters a word, and the system
retrieves 1,000 sentences containing that word. It sends these sentences to BERT-base as input, and
for each one it retrieves the context embedding for the word from a layer of the user’s choosing.

The system visualizes these 1,000 context embeddings using UMAP [15], generally showing clear
clusters relating to word senses. Different senses of a word are typically spatially separated, and
within the clusters there is often further structure related to fine shades of meaning. In Figure 4, for
example, we not only see crisp, well-separated clusters for three meanings of the word “die,” but
within one of these clusters there is a kind of quantitative scale, related to the number of people
dying. See Appendix 6.4 for further examples. The apparent detail in the clusters we visualized raises
two immediate questions. First, is it possible to find quantitative corroboration that word senses are
well-represented? Second, how can we resolve a seeming contradiction: in the previous section, we
saw how position represented syntax; yet here we see position representing semantics.

4.2 Measurement of word sense disambiguation capability

The crisp clusters seen in visualizations such as Figure 4 suggest that BERT may create simple,
effective internal representations of word senses, putting different meanings in different locations. To
test this hypothesis quantitatively, we test whether a simple classifier on these internal representations
can perform well at word-sense disambiguation (WSD).

We follow the procedure described in [20], which performed a similar experiment with the ELMo
model. For a given word with n senses, we make a nearest-neighbor classifier where each neighbor is
the centroid of a given word sense’s BERT-base embeddings in the training data. To classify a new
word we find the closest of these centroids, defaulting to the most commonly used sense if the word
was not present in the training data. We used the data and evaluation from [21]: the training data was
SemCor [17] (33,362 senses), and the testing data was the suite described in [21] (3,669 senses).

The simple nearest-neighbor classifier achieves an F1 score of 71.1, higher than the current state of
the art (Table 1), with the accuracy monotonically increasing through the layers. This is a strong
signal that context embeddings are representing word-sense information. Additionally, an even higher
score of 71.5 was obtained using the technique described in the following section.

6

Figure 11.7 Each blue dot shows a BERT contextual embedding for the word die from different sentences
in English and German, projected into two dimensions with the UMAP algorithm. The German and English
meanings and the different English senses fall into different clusters. Some sample points are shown with the
contextual sentence they came from. Figure from Coenen et al. (2019).

that, although it can be clustered, doesn’t divide up into fully discrete senses.

Word Sense Disambiguation

The task of selecting the correct sense for a word is called word sense disambigua-
tion, or WSD. WSD algorithms take as input a word in context and a fixed inventoryword sense

disambiguation
WSD of potential word senses (like the ones in WordNet) and outputs the correct word

sense in context. Fig. 11.8 sketches out the task.

an electric guitar and bass player stand off to one side

electric1:
using

electricity
electric2:

tense
electric3:
thrilling guitar1

bass1:
low range

…
bass4:
sea fish

…
bass7:

instrument
…

player1:
in game
player2:
musician
player3:

actor
…

stand1:
upright

…
stand5:

bear
…

stand10:
put

upright
…

side1:
relative
region
…

side3:
of body

…
side11:
slope
…

x1

y1

x2

y2

x3

y3
y4

y5 y6

x4 x5 x6

Figure 11.8 The all-words WSD task, mapping from input words (x) to WordNet senses
(y). Figure inspired by Chaplot and Salakhutdinov (2018).

WSD can be a useful analytic tool for text analysis in the humanities and social
sciences, and word senses can play a role in model interpretability for word repre-
sentations. Word senses also have interesting distributional properties. For example
a word often is used in roughly the same sense through a discourse, an observation
called the one sense per discourse rule (Gale et al., 1992).one sense per

discourse

12 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

The best performing WSD algorithm is a simple 1-nearest-neighbor algorithm
using contextual word embeddings, due to Melamud et al. (2016) and Peters et al.
(2018). At training time we pass each sentence in some sense-labeled dataset (like
the SemCore or SenseEval datasets in various languages) through any contextual
embedding (e.g., BERT) resulting in a contextual embedding for each labeled token.
(There are various ways to compute this contextual embedding vi for a token i; for
BERT it is common to pool multiple layers by summing the vector representations
of i from the last four BERT layers). Then for each sense s of any word in the corpus,
for each of the n tokens of that sense, we average their n contextual representations
vi to produce a contextual sense embedding vs for s:

vs =
1
n

∑
i

vi ∀vi ∈ tokens(s) (11.8)

At test time, given a token of a target word t in context, we compute its contextual
embedding t and choose its nearest neighbor sense from the training set, i.e., the
sense whose sense embedding has the highest cosine with t:

sense(t) = argmax
s∈senses(t)

cosine(t,vs) (11.9)

Fig. 11.9 illustrates the model.

I found the jar empty

cI cfound

find1v

cthe cjar cempty

find9v

find5vfind4v

ENCODER

Figure 11.9 The nearest-neighbor algorithm for WSD. In green are the contextual embed-
dings precomputed for each sense of each word; here we just show a few of the senses for
find. A contextual embedding is computed for the target word found, and then the nearest
neighbor sense (in this case find9

v) is chosen. Figure inspired by Loureiro and Jorge (2019).

11.3.2 Contextual Embeddings and Word Similarity
In Chapter 6 we introduced the idea that we could measure the similarity of two
words by considering how close they are geometrically, by using the cosine as a
similarity function. The idea of meaning similarity is also clear geometrically in the
meaning clusters in Fig. 11.7; the representation of a word which has a particular
sense in a context is closer to other instances of the same sense of the word. Thus we
often measure the similarity between two instances of two words in context (or two
instances of the same word in two different contexts) by using the cosine between
their contextual embeddings.

Usually some transformations to the embeddings are required before computing
cosine. This is because contextual embeddings (whether from masked language

11.4 • FINE-TUNING LANGUAGE MODELS 13

models or from autoregressive ones) have the property that the vectors for all words
are extremely similar. If we look at the embeddings from the final layer of BERT
or other models, embeddings for instances of any two randomly chosen words will
have extremely high cosines that can be quite close to 1, meaning all word vectors
tend to point in the same direction. The property of vectors in a system all tending
to point in the same direction is known as anisotropy. Ethayarajh (2019) defines
the anisotropy of a model as the expected cosine similarity of any pair of words inanisotropy

a corpus. The word ‘isotropy’ means uniformity in all directions, so in an isotropic
model, the collection of vectors should point in all directions and the expected cosine
between a pair of random embeddings would be zero. Timkey and van Schijndel
(2021) show that one cause of anisotropy is that cosine measures are dominated by
a small number of dimensions of the contextual embedding whose values are very
different than the others: these rogue dimensions have very large magnitudes and
very high variance.

Timkey and van Schijndel (2021) shows that we can make the embeddings more
isotropic by standardizing (z-scoring) the vectors, i.e., subtracting the mean and
dividing by the variance. Given a set C of all the embeddings in some corpus, each
with dimensionality d (i.e., x ∈ Rd), the mean vector µ ∈ Rd is:

µ =
1
|C|
∑
x∈C

x (11.10)

The standard deviation in each dimension σ ∈ Rd is:

σ =

√
1
|C|
∑
x∈C

(x−µ)2 (11.11)

Then each word vector x is replaced by a standardized version z:

z =
x−µ

σ
(11.12)

One problem with cosine that is not solved by standardization is that cosine tends
to underestimate human judgments on similarity of word meaning for very frequent
words (Zhou et al., 2022).

In the next section we’ll see the most common use of contextual representations:
as representations of words or even entire sentences that can be the inputs to classi-
fiers in the fine-tuning process for downstream NLP applications.

11.4 Fine-Tuning Language Models

The power of pretrained language models lies in their ability to extract generaliza-
tions from large amounts of text—generalizations that are useful for myriad down-
stream applications. There are two ways to make practical use of the generaliza-
tions. One way is to use natural language to prompt the model, putting it in a state
where it contextually generates what we want. We’ll introduce prompting in Chap-
ter 12. An alternative is to create interfaces from pretrained language models to
downstream applications through a process called fine-tuning. In fine-tuning, wefine-tuning

create applications on top of pretrained models by adding a small set of application-
specific parameters. The fine-tuning process consists of using labeled data about

14 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

the application to train these additional application-specific parameters. Typically,
this training will either freeze or make only minimal adjustments to the pretrained
language model parameters.

The following sections introduce fine-tuning methods for the most common ap-
plications including sequence classification, sequence labeling, sentence-pair infer-
ence, and span-based operations.

11.4.1 Sequence Classification
Sequence classification applications often represent an input sequence with a single
consolidated representation. With RNNs, we used the hidden layer associated with
the final input element to stand for the entire sequence. A similar approach is used
with transformers. An additional vector is added to the model to stand for the entire
sequence. This vector is sometimes called the sentence embedding since it referssentence

embedding
to the entire sequence, although the term ‘sentence embedding’ is also used in other
ways. In BERT, the [CLS] token plays the role of this embedding. This unique token
is added to the vocabulary and is prepended to the start of all input sequences, both
during pretraining and encoding. The output vector in the final layer of the model
for the [CLS] input represents the entire input sequence and serves as the input to
a classifier head, a logistic regression or neural network classifier that makes theclassifier head

relevant decision.
As an example, let’s return to the problem of sentiment classification. A sim-

ple approach to fine-tuning a classifier for this application involves learning a set
of weights, WC, to map the output vector for the [CLS] token—zCLS—to a set of
scores over the possible sentiment classes. Assuming a three-way sentiment clas-
sification task (positive, negative, neutral) and dimensionality dh for the size of the
language model hidden layers gives WC ∈ R3×dh . Classification of unseen docu-
ments proceeds by passing the input text through the pretrained language model to
generate zCLS, multiplying it by WC, and finally passing the resulting vector through
a softmax.

y = softmax(WCzCLS) (11.13)

Finetuning the values in WC requires supervised training data consisting of input
sequences labeled with the appropriate class. Training proceeds in the usual way;
cross-entropy loss between the softmax output and the correct answer is used to
drive the learning that produces WC.

A key difference from what we’ve seen earlier with neural classifiers is that this
loss can be used to not only learn the weights of the classifier, but also to update the
weights for the pretrained language model itself. In practice, reasonable classifica-
tion performance is typically achieved with only minimal changes to the language
model parameters, often limited to updates over the final few layers of the trans-
former. Fig. 11.10 illustrates this overall approach to sequence classification.

11.4.2 Pair-Wise Sequence Classification
As mentioned in Section 11.2.2, an important type of problem involves the classifica-
tion of pairs of input sequences. Practical applications that fall into this class include
paraphrase detection (are the two sentences paraphrases of each other?), logical en-
tailment (does sentence A logically entail sentence B?), and discourse coherence
(how coherent is sentence B as a follow-on to sentence A?).

11.4 • FINE-TUNING LANGUAGE MODELS 15

[CLS] entirely predictable and lacks energy

Word +
Positional

Embeddings

Bidirectional Transformer Encoder

zCLS

Figure 11.10 Sequence classification with a bidirectional transformer encoder. The output vector for the
[CLS] token serves as input to a simple classifier.

Fine-tuning an application for one of these tasks proceeds just as with pretrain-
ing using the NSP objective. During fine-tuning, pairs of labeled sentences from the
supervised training data are presented to the model, and run through all the layers of
the model to produce the z outputs for each input token. As with sequence classifi-
cation, the output vector associated with the prepended [CLS] token represents the
model’s view of the input pair. And as with NSP training, the two inputs are sepa-
rated by the [SEP] token. To perform classification, the [CLS] vector is multiplied
by a set of learning classification weights and passed through a softmax to generate
label predictions, which are then used to update the weights.

As an example, let’s consider an entailment classification task with the Multi-
Genre Natural Language Inference (MultiNLI) dataset (Williams et al., 2018). In
the task of natural language inference or NLI, also called recognizing textual

natural
language
inference entailment, a model is presented with a pair of sentences and must classify the re-

lationship between their meanings. For example in the MultiNLI corpus, pairs of
sentences are given one of 3 labels: entails, contradicts and neutral. These labels
describe a relationship between the meaning of the first sentence (the premise) and
the meaning of the second sentence (the hypothesis). Here are representative exam-
ples of each class from the corpus:

• Neutral

a: Jon walked back to the town to the smithy.
b: Jon traveled back to his hometown.

• Contradicts

a: Tourist Information offices can be very helpful.
b: Tourist Information offices are never of any help.

• Entails

a: I’m confused.
b: Not all of it is very clear to me.

A relationship of contradicts means that the premise contradicts the hypothesis; en-
tails means that the premise entails the hypothesis; neutral means that neither is
necessarily true. The meaning of these labels is looser than strict logical entailment

16 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

or contradiction indicating that a typical human reading the sentences would most
likely interpret the meanings in this way.

To fine-tune a classifier for the MultiNLI task, we pass the premise/hypothesis
pairs through a bidirectional encoder as described above and use the output vector
for the [CLS] token as the input to the classification head. As with ordinary sequence
classification, this head provides the input to a three-way classifier that can be trained
on the MultiNLI training corpus.

11.4.3 Sequence Labelling
Sequence labelling tasks, such as part-of-speech tagging or BIO-based named entity
recognition, follow the same basic classification approach. Here, the final output
vector corresponding to each input token is passed to a classifier that produces a
softmax distribution over the possible set of tags. Again, assuming a simple classifier
consisting of a single feedforward layer followed by a softmax, the set of weights
to be learned for this additional layer is WK ∈ Rk×dh , where k is the number of
possible tags for the task. As with RNNs, a greedy approach, where the argmax tag
for each token is taken as a likely answer, can be used to generate the final output
tag sequence. Fig. 11.11 illustrates an example of this approach.

yi = softmax(WKzi) (11.14)

ti = argmaxk(yi) (11.15)

Alternatively, the distribution over labels provided by the softmax for each input
token can be passed to a conditional random field (CRF) layer which can take global
tag-level transitions into account.

[CLS] Janet will back the bill

Embedding
Layer

Bidirectional Transformer Encoder

NNP MD VB DT NN

Figure 11.11 Sequence labeling for part-of-speech tagging with a bidirectional transformer encoder. The
output vector for each input token is passed to a simple k-way classifier.

A complication with this approach arises from the use of subword tokenization
such as WordPiece, SentencePiece Unigram LM or Byte Pair Encoding. Supervised
training data for tasks like named entity recognition (NER) is typically in the form
of BIO tags associated with text segmented at the word level. For example the
following sentence containing two named entities:

11.5 • ADVANCED: SPAN-BASED MASKING 17

[LOC Mt. Sanitas] is in [LOC Sunshine Canyon] .

would have the following set of per-word BIO tags.

(11.16) Mt.
B-LOC

Sanitas
I-LOC

is
O

in
O

Sunshine
B-LOC

Canyon
I-LOC

.
O

Unfortunately, the WordPiece tokenization for this sentence yields the following
sequence of tokens which doesn’t align directly with BIO tags in the ground truth
annotation:

’Mt’, ’.’, ’San’, ’##itas’, ’is’, ’in’, ’Sunshine’, ’Canyon’ ’.’

To deal with this misalignment, we need a way to assign BIO tags to subword
tokens during training and a corresponding way to recover word-level tags from
subwords during decoding. For training, we can just assign the gold-standard tag
associated with each word to all of the subword tokens derived from it.

For decoding, the simplest approach is to use the argmax BIO tag associated with
the first subword token of a word. Thus, in our example, the BIO tag assigned to
“Mt” would be assigned to “Mt.” and the tag assigned to “San” would be assigned
to “Sanitas”, effectively ignoring the information in the tags assigned to “.” and
“##itas”. More complex approaches combine the distribution of tag probabilities
across the subwords in an attempt to find an optimal word-level tag.

11.5 Advanced: Span-based Masking

For many NLP applications, the natural unit of interest may be larger than a single
word (or token). Question answering, syntactic parsing, coreference and semantic
role labeling applications all involve the identification and classification of longer
phrases. This suggests that a span-oriented masked learning objective might provide
improved performance on such tasks.

11.5.1 Masking Spans
A span is a contiguous sequence of one or more words selected from a training text,
prior to subword tokenization. In span-based masking, a set of randomly selected
spans from a training sequence are chosen. In the SpanBERT work that originated
this technique (Joshi et al., 2020), a span length is first chosen by sampling from a
geometric distribution that is biased towards shorter spans and with an upper bound
of 10. Given this span length, a starting location consistent with the desired span
length and the length of the input is sampled uniformly.

Once a span is chosen for masking, all the tokens within the span are substituted
according to the same regime used in BERT: 80% of the time the span elements are
substituted with the [MASK] token, 10% of the time they are replaced by randomly
sampled tokens from the vocabulary, and 10% of the time they are left as is. Note
that this substitution process is done at the span level—all the tokens in a given span
are substituted using the same method. As with BERT, the total token substitution
is limited to 15% of the training sequence input. Having selected and masked the
training span, the input is passed through the standard transformer architecture to
generate contextualized representations of the input tokens.

18 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

Downstream span-based applications rely on span representations derived from
the tokens within the span, as well as the start and end points, or the boundaries, of
a span. Representations for these boundaries are typically derived from the first and
last tokens of a span, the tokens immediately preceding and following the span, or
some combination of them. The SpanBERT learning objective augments the MLM
objective with a boundary oriented component called the Span Boundary Objective
(SBO). The SBO relies on a model’s ability to predict the tokens within a masked
span from the tokens immediately preceding and following the span.

Let the sequence of output from the transformer encoder for the n input tokens
s1, . . . ,xn be z1, . . . ,zn. A token xi in a masked span of tokens (xs, . . . ,xe), i.e., starting
with token xs and ending with token xe, is represented by concatenating 3 embed-
dings. The first two are the embeddings of two external boundary tokens xs−1 and
xe+1, i.e., the token preceding xs, the token following xe. The third embedding that
is concatenated is the relative position embedding of the target token pi−s+1. The
position embeddings p1, p2, . . . represent relative positions of the tokens with respect
to the left boundary token xs−1.

L(x) = LMLM(x)+LSBO(x) (11.17)

LSBO(xi) = − logP(xi|xs−1,xe+1, pi−s+1) (11.18)

This probability for token xi is formed by passing the concatenation of these embed-
dings through a 2-layer feedforward network to get the probability distribution over
the whole vocabulary at i:

si = FFN([zs−1;ze+1;pi−s+1]) (11.19)

yi = softmax(WV si) (11.20)

We then use si, the output of the vector representation of token i in the span, to pre-
dict the token xi by reshaping it and passing it through a softmax to get a probability
distribution yi over the vocabulary, and select from it the probability for input token
xi.
The final loss is the sum of the BERT MLM loss and the SBO loss.

Fig. 11.12 illustrates this with one of our earlier examples. Here the span se-
lected is and thanks for which spans from position 3 to 5. The total loss associated
with the masked token thanks is the sum of the cross-entropy loss generated from
the prediction of thanks from the output z4, plus the cross-entropy loss from the
prediction of thanks from the output vectors from the left external boundary z2, the
right external boundary z6, and the embedding for relative position 2 in the span.

11.5.2 Fine-tuning for Span-Based Applications
Span-oriented applications operate in a middle ground between sequence level and
token level tasks. That is, in span-oriented applications the focus is on generating
and operating with representations of contiguous sequences of tokens. Typical op-
erations include identifying spans of interest, classifying spans according to some
labeling scheme, and determining relations among discovered spans. Applications
include named entity recognition, question answering, syntactic parsing, semantic
role labeling and coreference resolution.

Formally, given an input sequence x consisting of T tokens, (x1,x2, ...,xT), a
span is a contiguous sequence of tokens with start i and end j such that 1 <= i <=

j <= T . This formulation results in a total set of spans equal to T (T+1)
2 . For practical

11.5 • ADVANCED: SPAN-BASED MASKING 19

So long [mask] [mask] [mask] all fish

Embedding
Layer

So long and thanks for all fishthe

Bidirectional Transformer Encoder

FFN

<latexit sha1_base64="TLLYS42oN5DcSo8OZKsu5vvui9Q=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiSlqMuiG5cV7APaUCbTSTt0kokzN0IN/Qk3Im4U/Bh/wb8xabNp64GBwzlnuPdcL5LCoG3/WoWNza3tneJuaW//4PCofHzSNirWjLeYkkp3PWq4FCFvoUDJu5HmNPAk73iTu8zvPHNthAofcRpxN6CjUPiCUUwltx9QHHt+8jIb1EqDcsWu2nOQdeLkpAI5moPyT3+oWBzwEJmkxvQcO0I3oRoFk3xW6seGR5RN6Ign81Vn5CKVhsRXOn0hkrm6lKOBMdPAS5PZambVy8T/vF6M/o2biDCKkYdsMciPJUFFst5kKDRnKKcpoUyLdEPCxlRThul1surOatF10q5Vnatq/aFeadzmRyjCGZzDJThwDQ24hya0gMETvMEnfFnSerXerY9FtGDlf05hCdb3HzOIjYs=</latexit>z2

<latexit sha1_base64="gEjGR4IWPa5ooEJ4YmtAT6IDm9Q=">AAAB7nicbVDLSsNAFL2pr1ofjbp0M1gEVyWRUl0W3bisYB/QljCZTtqhkwczN0IN+Q03Im4U/BR/wb8xabNp64GBwzlnuPdcN5JCo2X9GqWt7Z3dvfJ+5eDw6Lhqnpx2dRgrxjsslKHqu1RzKQLeQYGS9yPFqe9K3nNn97nfe+ZKizB4wnnERz6dBMITjGImOWZ16FOcul7y4iTNNK04Zs2qWwuQTWIXpAYF2o75MxyHLPZ5gExSrQe2FeEooQoFkzytDGPNI8pmdMKTxbopucykMfFClb0AyUJdyVFf67nvZsl8Ob3u5eJ/3iBG73aUiCCKkQdsOciLJcGQ5N3JWCjOUM4zQpkS2YaETamiDLML5dXt9aKbpHtdt5v1xmOj1rorjlCGc7iAK7DhBlrwAG3oAIMY3uATvozIeDXejY9ltGQUf85gBcb3H3Mijsw=</latexit>z6

+

Span-based loss

<latexit sha1_base64="0o0Mg1m8L/B4YdJ0Zefw5M+RdYc=">AAAB6nicbVDLSsNAFL2pr1pfVZduBovgqiSlqMuiG5cV7APaUCbTSTt0MklnboQS+hNuRNwo+DH+gn9j0mbT1gMDh3POcO+5XiSFQdv+tQpb2zu7e8X90sHh0fFJ+fSsbcJYM95ioQx116OGS6F4CwVK3o00p4EnecebPGR+54VrI0L1jLOIuwEdKeELRjGV3H5Acez5STQf1EqDcsWu2guQTeLkpAI5moPyT38YsjjgCpmkxvQcO0I3oRoFk3xe6seGR5RN6Igni1Xn5CqVhsQPdfoUkoW6kqOBMbPAS5PZambdy8T/vF6M/p2bCBXFyBVbDvJjSTAkWW8yFJozlLOUUKZFuiFhY6opw/Q6WXVnvegmadeqzk21/lSvNO7zIxThAi7hGhy4hQY8QhNawGAKb/AJX5a0Xq1362MZLVj5n3NYgfX9ByScjYE=</latexit>p2

z1 z2 z3 z4 z5 z6 z7 z8

and for
p1 p3p2

thanks

the

MLM loss SBO loss

Figure 11.12 Span-based language model training. In this example, a span of length 3 is selected for training
and all of the words in the span are masked. The figure illustrates the loss computed for word thanks; the loss
for the entire span is the sum of the loss for the three words in the span.

purposes, span-based models often impose an application-specific length limit L, so
the legal spans are limited to those where j− i < L. In the following, we’ll refer to
the enumerated set of legal spans in x as S(x).

The first step in fine-tuning a pretrained language model for a span-based ap-
plication is using the contextualized input embeddings from the model to generate
representations for all the spans in the input. Most schemes for representing spans
make use of two primary components: representations of the span boundaries and
summary representations of the contents of each span. To compute a unified span
representation, we concatenate the boundary representations with the summary rep-
resentation.

In the simplest possible approach, we can use the contextual embeddings of
the start and end tokens of a span as the boundaries, and the average of the output
embeddings within the span as the summary representation.

gi j =
1

(j− i)+1

j∑
k=i

zk (11.21)

spanRepi j = [zi;z j;gi, j] (11.22)

A weakness of this approach is that it doesn’t distinguish the use of a word’s em-
bedding as the beginning of a span from its use as the end of one. Therefore, more
elaborate schemes for representing the span boundaries involve learned representa-
tions for start and end points through the use of two distinct feedforward networks:

si = FFNstart(zi) (11.23)

e j = FFNend(z j) (11.24)

spanRepi j = [si;e j;gi, j] (11.25)

20 CHAPTER 11 • FINE-TUNING AND MASKED LANGUAGE MODELS

Similarly, a simple average of the vectors in a span is unlikely to be an optimal
representation of a span since it treats all of a span’s embeddings as equally impor-
tant. For many applications, a more useful representation would be centered around
the head of the phrase corresponding to the span. One method for getting at such in-
formation in the absence of a syntactic parse is to use a standard self-attention layer
to generate a span representation.

gi j = SelfAttention(zi: j) (11.26)

Now, given span representations g for each span in S(x), classifiers can be fine-
tuned to generate application-specific scores for various span-oriented tasks: binary
span identification (is this a legitimate span of interest or not?), span classification
(what kind of span is this?), and span relation classification (how are these two spans
related?).

To ground this discussion, let’s return to named entity recognition (NER). Given
a scheme for representing spans and a set of named entity types, a span-based ap-
proach to NER is a straightforward classification problem where each span in an
input is assigned a class label. More formally, given an input sequence x1, . . . ,xn,
we want to assign a label y, from the set of valid NER labels, to each of the spans in
S(x). Since most of the spans in a given input will not be named entities we’ll add
the label NULL to the set of types in Y .

yi j = softmax(FFN(spanRepi j) (11.27)

Contextualized
Embeddings (h)

Bidirectional Transformer Encoder

Jane Villanueva of United Airlines Holding discussed …

Span summary

Span representation

Classification
Scores FFNN FFNN

…

PER ORG

Softmax

SelfAttn SelfAttn

Figure 11.13 A span-oriented approach to named entity classification. The figure only illustrates the compu-

tation for 2 spans corresponding to ground truth named entities. In reality, the network scores all of the T (T+1)
2

spans in the text. That is, all the unigrams, bigrams, trigrams, etc. up to the length limit.

With this approach, fine-tuning entails using supervised training data to learn
the parameters of the final classifier, as well as the weights used to generate the
boundary representations, and the weights in the self-attention layer that generates
the span content representation. During training, the model’s predictions for all
spans are compared to their gold-standard labels and cross-entropy loss is used to
drive the training.

During decoding, each span is scored using a softmax over the final classifier
output to generate a distribution over the possible labels, with the argmax score for
each span taken as the correct answer. Fig. 11.13 illustrates this approach with an

11.6 • SUMMARY 21

example. A variation on this scheme designed to improve precision adds a calibrated
threshold to the labeling of a span as anything other than NULL.

There are two significant advantages to a span-based approach to NER over a
BIO-based per-word labeling approach. The first advantage is that BIO-based ap-
proaches are prone to a labeling mis-match problem. That is, every label in a longer
named entity must be correct for an output to be judged correct. Returning to the
example in Fig. 11.13, the following labeling would be judged entirely wrong due to
the incorrect label on the first item. Span-based approaches only have to make one
classification for each span.

(11.28) Jane
B-PER

Villanueva
I-PER

of
O

United
I-ORG

Airlines
I-ORG

Holding
I-ORG

discussed
O

...

The second advantage to span-based approaches is that they naturally accommo-
date embedded named entities. For example, in this example both United Airlines
and United Airlines Holding are legitimate named entities. The BIO approach has
no way of encoding this embedded structure. But the span-based approach can nat-
urally label both since the spans are labeled separately.

11.6 Summary

This chapter has introduced the topic of transfer learning from pretrained language
models. Here’s a summary of the main points that we covered:

• Bidirectional encoders can be used to generate contextualized representations
of input embeddings using the entire input context.

• Pretrained language models based on bidirectional encoders can be learned
using a masked language model objective where a model is trained to guess
the missing information from an input.

• Pretrained language models can be fine-tuned for specific applications by
adding lightweight classifier layers on top of the outputs of the pretrained
model.

Bibliographical and Historical Notes

22 Chapter 11 • Fine-Tuning and Masked Language Models

Chaplot, D. S. and R. Salakhutdinov. 2018. Knowledge-
based word sense disambiguation using topic models.
AAAI.

Clark, K., M.-T. Luong, Q. V. Le, and C. D. Manning.
2020. Electra: Pre-training text encoders as discrimina-
tors rather than generators. ICLR.

Coenen, A., E. Reif, A. Yuan, B. Kim, A. Pearce, F. Viégas,
and M. Wattenberg. 2019. Visualizing and measuring the
geometry of bert. NeurIPS.

Conneau, A., K. Khandelwal, N. Goyal, V. Chaudhary,
G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer,
and V. Stoyanov. 2020. Unsupervised cross-lingual rep-
resentation learning at scale. ACL.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. NAACL HLT.

Ethayarajh, K. 2019. How contextual are contextual-
ized word representations? Comparing the geometry of
BERT, ELMo, and GPT-2 embeddings. EMNLP.

Fellbaum, C., editor. 1998. WordNet: An Electronic Lexical
Database. MIT Press.

Gale, W. A., K. W. Church, and D. Yarowsky. 1992. One
sense per discourse. HLT.

Haber, J. and M. Poesio. 2020. Assessing polyseme sense
similarity through co-predication acceptability and con-
textualised embedding distance. *SEM.

Joshi, M., D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and
O. Levy. 2020. SpanBERT: Improving pre-training by
representing and predicting spans. TACL, 8:64–77.

Kudo, T. and J. Richardson. 2018. SentencePiece: A simple
and language independent subword tokenizer and detok-
enizer for neural text processing. EMNLP.

Lample, G. and A. Conneau. 2019. Cross-lingual language
model pretraining. NeurIPS, volume 32.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
2019. RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv preprint arXiv:1907.11692.

Loureiro, D. and A. Jorge. 2019. Language modelling makes
sense: Propagating representations through WordNet for
full-coverage word sense disambiguation. ACL.

Melamud, O., J. Goldberger, and I. Dagan. 2016. con-
text2vec: Learning generic context embedding with bidi-
rectional LSTM. CoNLL.

Papadimitriou, I., K. Lopez, and D. Jurafsky. 2023. Multilin-
gual BERT has an accent: Evaluating English influences
on fluency in multilingual models. EACL Findings.

Peters, M., M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer. 2018. Deep contextualized
word representations. NAACL HLT.

Schuster, M. and K. Nakajima. 2012. Japanese and Korean
voice search. ICASSP.

Taylor, W. L. 1953. Cloze procedure: A new tool for mea-
suring readability. Journalism Quarterly, 30:415–433.

Timkey, W. and M. van Schijndel. 2021. All bark and no
bite: Rogue dimensions in transformer language models
obscure representational quality. EMNLP.

Williams, A., N. Nangia, and S. Bowman. 2018. A broad-
coverage challenge corpus for sentence understanding
through inference. NAACL HLT.

Zhou, K., K. Ethayarajh, D. Card, and D. Jurafsky. 2022.
Problems with cosine as a measure of embedding simi-
larity for high frequency words. ACL.

Zhu, Y., R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun,
A. Torralba, and S. Fidler. 2015. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. IEEE International Con-
ference on Computer Vision.

https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://www.aclweb.org/anthology/H92-1045
https://www.aclweb.org/anthology/H92-1045
https://www.aclweb.org/anthology/2020.starsem-1.12
https://www.aclweb.org/anthology/2020.starsem-1.12
https://www.aclweb.org/anthology/2020.starsem-1.12
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://www.aclweb.org/anthology/D18-2012
https://www.aclweb.org/anthology/D18-2012
https://www.aclweb.org/anthology/D18-2012
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://www.aclweb.org/anthology/P19-1569
https://www.aclweb.org/anthology/P19-1569
https://www.aclweb.org/anthology/P19-1569
https://www.aclweb.org/anthology/K16-1006
https://www.aclweb.org/anthology/K16-1006
https://www.aclweb.org/anthology/K16-1006
https://doi.org/10.18653/v1/2023.findings-eacl.89
https://doi.org/10.18653/v1/2023.findings-eacl.89
https://doi.org/10.18653/v1/2023.findings-eacl.89
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N18-1202
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/2021.emnlp-main.372
https://doi.org/10.18653/v1/2021.emnlp-main.372
https://doi.org/10.18653/v1/2021.emnlp-main.372
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/2022.acl-short.45
https://doi.org/10.18653/v1/2022.acl-short.45

	Fine-Tuning and Masked Language Models
	Bidirectional Transformer Encoders
	The architecture for bidirectional models

	Training Bidirectional Encoders
	Masking Words
	Next Sentence Prediction
	Training Regimes

	Contextual Embeddings
	Contextual Embeddings and Word Sense
	Contextual Embeddings and Word Similarity

	Fine-Tuning Language Models
	Sequence Classification
	Pair-Wise Sequence Classification
	Sequence Labelling

	Advanced: Span-based Masking
	Masking Spans
	Fine-tuning for Span-Based Applications

	Summary
	Bibliographical and Historical Notes

