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Abstract

Human language processing relies on many kinds of linguistic
knowledge, and is sensitive to their frequency, including lexi-
cal frequencies (Tyler, 1984; Salasoo & Pisoni, 1985; Marslen-
Wilson, 1990; Zwitserlood, 1989; Simpson & Burgess, 1985),
idiom frequencies (d’Arcais, 1993), phonological neighbor-
hood frequencies (Luce, Pisoni, & Goldfinger, 1990), subcate-
gorization frequencies (Trueswell, Tanenhaus, & Kello, 1993),
and thematic role frequencies (Trueswell, Tanenhaus, & Gar-
nsey, 1994; Garnsey, Pearlmutter, Myers, & Lotocky, 1997).
But while we know that each of these knowledge sources must
be probabilistic, we know very little about exactly how these
probabilistic knowledge sources are combined. This paper pro-
poses the use of Bayesian decision trees in modeling the prob-
abilistic, evidential nature of human sentence processing. Our
method reifies conditional independence assertions implicit in
sign-based linguistic theories and describes interactions among
features without requiring additional assumptions about modu-
larity. We show that our Bayesian approach successfully mod-
els psycholinguistic results on evidence combination in human
lexical, idiomatic, and syntactic/semantic processing.

Introduction
Many modern psychological models of language process-
ing are based on the on-line interaction of many kinds of
linguistic knowledge, (Clifton, Speer, & Abney, 1991; Fer-
reira & Clifton, 1986; MacDonald, 1994; Spivey-Knowlton,
Trueswell, & Tanenhaus, 1993; Trueswell et al., 1994; Tyler,
1989). Although the exact time-course of the use of these
different knowledge sources is not yet fully understood, it
is clear that the processing of this knowledge is sensitive
to frequency, from lexical frequencies (Tyler, 1984; Salasoo
& Pisoni, 1985; Marslen-Wilson, 1990; Zwitserlood, 1989;
Simpson & Burgess, 1985), idiom frequencies (d’Arcais,
1993), phonological neighborhood frequencies (Luce et al.,
1990), subcategorization frequencies (Trueswell et al., 1993),
and thematic role frequencies (Trueswell et al., 1994; Gar-
nsey et al., 1997). Probabilistic versions of linguistic knowl-
edge are also becoming common in linguistics (Resnik, 1993,
1992; Jurafsky, 1996).

But while we know that each of these knowledge sources
must be probabilistic, and in fact we have preliminary prob-
abilistic models of some specific linguistic levels, we know
very little about exactly how these probabilistic knowledge
sources are combined. This is particularly true with higher
level knowledge, where the association of probabilities with
sophisticated linguistic structural representation has only re-

cently begun. Can a coherent probabilistic interpretation be
given for the problem of language interpretation at different
levels? What kinds of conditional independence assumptions
can we make in combining knowledge, and how can we rep-
resent these assumptions? How can sophisticated linguis-
tic structural knowledge be combined with probabilistic aug-
mentations? The automatic speech processing (ASR) and nat-
ural language processing (NLP) literature (Bahl, Jelinek, &
Mercer, 1983; Fujisaki, Jelinek, Cocke, & Black, 1991; Char-
niak & Goldman, 1988; Hobbs & Bear, 1990) have argued
that language processing must be evidential and Bayesian.
This paper proposes the use of Bayesian decision trees to ad-
dress the issues in modeling the probabilistic, evidential na-
ture of human sentence processing.

Basic Result

The idea that lexical access is parallel is well-accepted (Swin-
ney, 1979), and it is also widely assumed that at least some
aspects of syntactic processing are parallel (Gorrell, 1989;
MacDonald, 1993). Similarly well-accepted is the role that
frequency plays in lexical (Marslen-Wilson, 1990; Salasoo &
Pisoni, 1985; Simpson & Burgess, 1985; Zwitserlood, 1989),
idiomatic (d’Arcais, 1993), syntactic (Trueswell et al., 1993),
and thematic processing (Trueswell et al., 1994; Garnsey
et al., 1997).

Jurafsky (1996) argued that a Bayesian model (i.e. using
posterior probabilities rather than frequencies) was also able
to account for a number of effects that were not explainable
by a frequentist model, including the intuitions of the Cacciari
and Tabossi (1988) results on idiom access, the Luce et al.
(1990) results on similarity neighborhoods, and the insight of
Tanenhaus and Lucas (1987) that psycholinguistic evidence
of top-down effects is very common in phonology, but much
rarer in syntax.

But complete probabilistic models of syntactic and seman-
tic processing have been much harder to build. For example,
a number of studies have focused on the main-verb (MV),
reduced relative (RR) ambiguity (Frazier & Rayner, 1987;
MacDonald, 1993; MacDonald, Pearlmutter, & Seidenberg,
1994; Spivey-Knowlton & Sedivy, 1995; Trueswell & Tanen-
haus, 1994, 1991; Trueswell et al., 1994; Spivey-Knowlton
& Sedivy, 1995). In many cases the MV/RR ambiguity is re-
solved in favor of the Main Clause reading leading to a garden



path analysis.

1. # The horse raced past the barn fell.

Proponents of the constraint satisfaction model have ar-
gued that this can be accounted for by the different lexi-
cal/morphological frequencies of the preterite and particip-
ial forms of the verb raced (MacDonald, 1993; Simpson &
Burgess, 1985).

But in other cases, constraints on verb subcategorization
permit the RR interpretation. The verb found, for example, is
transitive, and so doesn’t cause as strong a garden path in the
RR interpretation (Pritchett, 1988; Gibson, 1991):

2. a. The horse carried past the barn fell.
b. The bird found in the room died.

Studies have also found probabilistic effects of verb sub-
categorization preferences (Jurafsky, 1996; Trueswell et al.,
1993). For example Jurafsky (1996) suggested that the
garden-path effect could be caused by a combination of
lexical, syntactic, and verb subcategorization probabilities.
More recent studies have suggested that semantic context
and thematic fit can also impact disambiguation. For in-
stance Trueswell et al. (1994) showed that strong thematic
constraints were also able to ameliorate garden path effects
in RR/MV ambiguities; subjects experienced difficulty at the
phrase “by the lawyer” only in the first of the following three
examples: 1

3. a. The witness examined by the lawyer turned out to
be unreliable.

b. The witness who was examined by the lawyer
turned out to be unreliable.

c. The evidence examined by the lawyer turned out
to be unreliable.

Thus assorted previous work has argued that various prob-
abilistic knowledge sources each play a role in processing;
but how exactly are these probabilities to be combined? Our
model is based on 3 assumptions: linguistic knowledge is rep-
resented probabilistically, multiple interpretations are main-
tained in parallel, and the probabilities of these interpretations
can be computed via a Belief net (‘probabilistic independence
net’). Given the probabilities and the Bayes formalism, the
model explains a number of psychological results. The next
section explains what we mean by ‘assigning probabilities to
linguistic structure’. We then introduce the probabilistic inde-
pendence net formalism for combining different probabilities.
Finally, we examine how well the model stands up to various
psychological results.

Prior Probabilities
We assume that linguistic knowledge is represented as a col-
lection of signs or constructions, each of which represents

1Although the original study by Ferreira and Clifton (1986) had
not found semantic effects, Trueswell et al. (1994) used a stronger
manipulation of thematic constraint.

a conventionalized pairing of meaning and form, and each
of which is represented as signs in typed unification-based
augmented context-free rules (Pollard & Sag, 1987; Fill-
more, 1988). Thus words, morphological structures (like the
-ed past tense morpheme), and syntactic constructions (like
the passive construction) are each represented as ‘construc-
tions’. Each of these constructions is associated with a prior
probability, which can be computed from relative frequen-
cies from corpora or norming studies. 2 For example, in
order to compute the probability of the simplified Stochas-
tic Context-Free Grammar (SCFG) rule in (1), we can use the
Penn Treebank (Marcus et al., 1993) to get a frequency for
all NPs (52,627), and then for those NP’s which consist of a
Det and an N (33,108). The conditional probability is then
33,108/52,627=.63.

(1) ����� NP � Det N

Similarly, verb subcategorization probabilities can be com-
puted from the Treebank or from norming studies like Con-
nine et al. (1984). Thematic probabilities can be computed
by normalizing verb bias norms, for example from Garnsey
et al. (1997). Table 1 shows some lexical probabilities, for the
verb examine, including morphological, subcategorization,
and thematic probabilities. The thematic probabilities were
computed by using psychological norming studies (Trueswell
et al., 1994) to quantify the degree of fit between a specific
filler (such as “witness”) to a specific argument slot (“agent”
or “theme”) given a predicate verb (“examined”). This infor-
mation can also be obtained from a semantic database (like
WordNet) as was done by Resnik (Resnik, 1993). See Juraf-
sky (1996) for further details of the probability computations.

Table 1: Lexical and Thematic fit probabilities for examined.
Note “A” refers to Agent, “e” to examined, “ev” to evidence,
“w” to witness, and “T” to theme.

Past PP Trans Intran
.39 .61 .94 .06

P �Ajw,e� P �Tjw,e� P �Ajev,e� P �Tjev,e�
.642 .358 .18 .82

Construction Processing via Belief nets
Bayesian belief networks are data-structures that represent
probability distributions over a collection of random vari-
ables. The basic network consists of a set of variables and
directed edges between variables. Each variable can take on
one of a finite set of states. The variables and edges together
form a directed acyclic graph(DAG). For each variable A (a
node in the graph) with parents B�� � � � Bn , there is an at-
tached conditional probability table P �AjB�� � � � � Bn� . Im-
portantly, the network structure reflects conditional indepen-

2See (Roland & Jurafsky, 1998; Merlo, 1994; Gibson & Pearl-
mutter, 1994) for comparisons of experimental and corpus-based
frequencies.
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Figure 1: Sources of evidence for access, and a Belief net-
work representing the role of top-down and bottom-up evi-
dence.

dence relations between variables, which allow a decompo-
sition of the joint distribution into a product of conditional
distributions. The following theorem sets up the basic chain
rule which is used for computing the joint distribution from
the conditional distribution.3

Theorem 1 . Jensen (1995) Let B be a Belief network over
U � fA�� � � � � Amg . Then the joint probability distribution
P(U) is the product of the local conditional probability distri-
butions specified in B :

P �U� �
Y

i

P �Aijpa�Ai�� (1)

where pa�Ai� is the parent set of Ai .

The crucial insight of our Belief net model is to view
specific constructions as values of latent variables that ren-
der top-down ( e� ) and bottom-up evidence ( e� ) condi-
tionally independent (d-separate them (Pearl, 1988)). Thus
syntactic, lexical, argument structure, and other contextual
information acts as prior or causal support for a construc-
tion/interpretation, while bottom-up phonological or grapho-
logical and other perceptual information acts as likelihood,
evidential, or diagnostic support. Figure 1 shows a computa-
tional realization of this idea.

Using Belief nets to model human sentence processing al-
lows us to a) quantitatively evaluate the impact of different
independence assumptions in a uniform framework, b) di-
rectly model the impact of highly structured linguistic knowl-
edge sources with local conditional probability tables, while
well known algorithms for updating the Belief net (Jensen
(1995)) can compute the global impact of new evidence, and
c) develop an on-line interpretation algorithm, where partial
input corresponds to partial evidence on the network, and
the update algorithm appropriately marginalizes over unob-
served nodes. So as evidence comes in incrementally, dif-
ferent nodes are instantiated and the posterior probability of
different constructions changes appropriately.

3For a comprehensive exposition see Pearl (1988), Jensen
(1995).
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Figure 2: The Belief net that represents lexical support for the
two interpretations for the same input. The input is from data
in Table 1.

To apply our model to on-line disambiguation, we assume
that there are a set of constructions ( �c�� � � � cn� � C ) that
are consistent with the input data. At different stages of the
input, we compute the posterior probabilities of the different
interpretations given the top down and bottom-up evidence
seen so far. We then apply the beam-search algorithm of Ju-
rafsky (1996): prune out all constructions whose posterior
probability is less than a certain ratio of the best construction
(highest posterior). We will refer to this ratio as the Thresh-
old Confidence Ratio (TCR). (i.e. prune out all c � C where
P �cbest�
P �c� � TCR ). 4

Modeling Lexical and Thematic support

Our model requires conditional probability distributions
specifying the preference of every verb for different argument
structures, as well its preference for different tenses. We also
compute the semantic fit between possible fillers in the in-
put and different conceptual roles of a given predicate.5 Fig-
ure 2 shows the general structure and organization of lexical
and thematic information sources. The thematic probabilities
and their method of computation were shown in Table 1. As
shown in Figure 2, the MV and RR interpretations require
the conjunction of specific values corresponding to tense, se-
mantic fit and argument structure features. Note that only the
RR interpretation requires the transitive argument structure.

Modeling syntactic support

In Figure 3, the conditional probability of a construction
given top-down syntactic evidence P �cje� is relatively sim-
ple to compute in an augmented-stochastic-context-free for-
malism (parse trees shown in Figure 3. Recall that the

4In this paper, we will focus on the support from thematic, and
syntactic features for the Reduced Relative (RR) and Main Verb
(MV) interpretations at different stages of the input for the exam-
ples we saw earlier. So we will have two constructions c�� c� � C

where P �c�je
�� e�� � MV�P �c�je

�� e�� � RR . For all exam-
ples reported here we set TCR � � (prune out the RR interpre-
tation if MV

RR
� � ).

5The role of other features such as voice and aspect in access and
disambiguation can be tematically studied using methods developed
here.



Figure 3: The syntactic parse trees for the MV and the RR
interpretations assuming an SCFG generating grammar.
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Figure 4: The Belief network corresponding to the syntactic
support.

SCFG prior probability gives the conditional probability of
the right hand side of a rule given the left hand side. In par-
ticular, since the parser operates left to right, the top-down
probability P �cjesyn� is the probability that the evidence
left-expands to c :

P �e
L�
� c� (2)

In a context-free grammar, a nonterminal a left-expands
to a nonterminal b if there is some derivation tree whose root
is a and whose leftmost leaf is b .

Figure 4 illustrates the Belief network representation that
corresponds to the syntactic parse trees in Figure 3. Note that
the context-freeness property translates into the conditional
independence statements entailed by the network. 6

Computing the joint influence
The overall posterior ratio requires propagating the conjunc-
tive impact of syntactic and lexical/thematic sources on our
model. Figure 5 shows our Belief net architecture for com-
bining the two sources. The Belief net in Figure 5 embodies
the assumption that the syntactic and thematic influences are
dependent only the value of the specific construction, which
in this case is either the Main Verb (MV) or the Reduced
Relative (RR) construction. In other words, inter-source de-
pendencies are explicitly captured by specific constructions.
Furthermore, in computing the conjunctive impact of the lex-
ical/thematic and syntactic support to compute MV and
RR , we use the well studied NOISY-AND model (Pearl, 1988)

6For exact technical details, including an automatic network con-
struction technique, refer to (Narayanan, 1998)
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Figure 5: The Belief net that combines the thematic and syn-
tactic support for a specific construction.

for combining conjunctive sources where it is assumed that
whatever inhibits a specific source (syntactic) from indicating
support for a construction, is independent of mechanisms that
inhibit other sources (lexical) from indicating support for the
same construction. This is called the assumption of excep-
tion independence, and is used widely with respect to both
disjunctive (NOISY-OR) and conjunctive sources.

Model results

There are a number of psycholinguistic results which argue
for a Bayesian model of sentence processing. See Jurafsky
(1996), for example, for a summary of the argument that
conditional probabilities are a more appropriate metric than
frequencies. The main result we will discuss here is evi-
dence from on-line disambiguation studies that shows that a
Bayesian implementation of probabilistic evidence combina-
tion accounts for garden-path disambiguation effects.

We tested our model in the ambiguous region of the in-
put for all example sentences presented earlier, by computing
the ratio MV

RR
of the posterior at different stages of the input.

Note that under partial input the Belief net inference automat-
ically marginalizes over the values of the unseen input. So in
the case when only the subject has been input (“the horse”
in the examples in Figure 6) the thematic influence is mini-
mal and the MV

RR
ratio is basically a result of the syntactic

support.
The data in Figure 6 was taken from (MacDonald, 1993)

and from (Marcus et al., 1993) (for found). Figure 6 shows
the relevant posterior probabilities for the examples “The
horse raced past the barn fell”and the replacement of raced
by carried or found at different stages of the input. As shown
in Figure 6, our model predicts that the MV�RR ratio ex-
ceeds the threshold immediately after the verb raced is ac-
cessed (MV�RR � ���� 	 ) leading to the pruning of the
RR interpretation. In the other cases, while the MV�RR
ratio is temporarily rising, it never overshoots the threshold,
allowing both the MV and the RR interpretations to be ac-
tive throughout the ambiguous region.

Figure 6 and Figure 7 show the MV�RR ratio at different
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Figure 6: Disambiguation with Lexical Probabilities showing
that the MV�RR posterior ratio for raced falls above the
threshold and the RR interpretation is pruned. For found and
carried, both interpretations are active in the disambiguating
region.

Figure 7: The role of thematic fit on the MV�RR ratio. Data
shown for animate NP in the subject position (the witness),
inanimate NP with strong semantic fit (“the evidence”), and
with an unambiguous control.

stages of the examined examples. Information on thematic fit,
was culled from Typicality ratings used in the psychological
study by (Trueswell et al., 1994).

As illustrated in Figure 7 after processing the input phrase
“The witness examined”,the RR interpretation is less pre-
ferred but not pruned. This leads to limited processing diffi-
culty (limited because it approaches the TCR , but never ex-
ceeds it) when encountering the next phrase “by the lawyer”
which is both syntactically and semantically incompatible
with the MV interpretation. No reassignment of roles is
required in the case of “The evidence examined . . . ”, or with
the unambiguous control, hence no processing difficulty is
predicted.

Thus our model garden-paths on the example “The horse
raced past the barn fell” but will not garden path on the exam-
ple “The horse carried past the barn fell” or on the example
“The horse found past the barn fell”. Our model also ex-
plains the correlations that (Trueswell et al., 1994) found be-
tween thematic fit and processing difficulty. Furthermore we
are able to explain garden-pathing as a graded effect, where
processing difficulty and chance of garden pathing depends
on how strongly the input favors a given interpretation.

Conclusion
The computational model proposed here combines two basic
ideas in language processing. The first idea is that multiple
sources of linguistic knowledge, conceptual and perceptual,
interact in access and disambiguation. This idea is manifest
in the psychological literature on lexical access and sentence
processing, as well as in PDP and dynamical systems models
of language processing (Tabor, Juliano, & Tanenhaus, 1997).
The second idea is that linguistic knowledge is highly struc-
tured, and hierarchically organized (exemplified by syntactic
and argument-structure knowledge). Using probabilistic nets
allows us to compute the joint distribution of multiple cor-
related features by using structural relationships to minimize
the number of inter-feature interactions. This has the dual
advantages of compact representation and clarity of model.
Our hypothesis that linguistic structures are coded in partially
independent dimensions allows us to model a wide array of
psycholinguistic results, and offers a computational method
to systematically investigate the modularity/non-modularity
hypothesis.
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